中国数学发展

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国数学发展

--宋元数学

唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪(宋、元两代),筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》(11世纪中叶),刘益的《议古根源》(12世纪中叶),秦九韶的《数书九章》(1247),李冶的《测圆海镜》(1248)和《益古演段》(1259),杨辉的《详解九章算法》(1261)、《日用算法》(1262)和《杨辉算法》(1274-1275,朱世杰的《算学启蒙》(1299)和《四元玉鉴》(1303)等等。

宋元数学在很多领域都达到了中国古代数学,甚至是当时世界数学的巅峰。其中主要的工作有:(1)贾宪三角;(2)天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题;(3)大衍求一术,即一次同余式组的解法,现在称为中国剩余定理;(4)内插法和垛积术,即高次内插法和高阶等差级数求和。另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。

贾宪三角

1、每行数字左右对称,由1开始逐渐变大,然后变小,回到1。

2、第n行的数字个数为n个。

3、第n行数字和为2^(n-1)。

4、每个数字等于上一行的左右两个数字之和。可用此性质写出整个帕斯卡三角形。

5、将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第2n个斐波那契数。将第2n行第2个数,跟第2n+1行第4个数、第2n+2行第6个数……这些数之和是第2n-1个斐波那契数。

6、第n行的第1个数为1,第二个数为1×(n-1),第三个数为1×(n-1)×(n-2)/2,第四个数为1×(n-1)×(n-2)/2×(n-3)/3…依

此类推。

其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而贾宪三角的发现就是十分精彩的一页。

北宋人贾宪约1050年首先使用“贾宪三角”进行高次开方运算。

13世纪中国宋代数学家杨辉在《详解九章算术》里讨论这种形式的数表,并说明此表引自11世纪前半贾宪的《释锁算术》,并绘画了“古法七乘方图”。故此,杨辉三角又被称为“贾宪三角”。

元朝数学家朱世杰在《四元玉鉴》(1303年)扩充了“贾宪三角”成“古法七乘方图”。

意大利人称之为“塔塔利亚三角形”(Triangolo di Tartaglia)以纪念在

16世纪发现一元三次方程解的塔塔利亚。

在欧洲直到1623年以后,法国数学家帕斯卡在13岁时发现了“帕斯卡三角”。

布莱士·帕斯卡的著作Traité du triangle arithmétique(1655年)介绍了这个三角形。帕斯卡搜集了几个关于它的结果,并以此解决一些概率论上的问题,影响面广泛,Pierre Raymond de Montmort(1708年)和亚伯拉罕·棣·美弗(1730年)

都用帕斯卡来称呼这个三角形。

历史上曾经独立绘制过这种图表的数学家

·贾宪中国北宋 11世纪《释锁算术》

·杨辉中国南宋 1261《详解九章算法》记载之功

·朱世杰中国元代 1299《四元玉鉴》级数求和公式

·阿尔·卡西阿拉伯 1427《算术的钥匙》

·阿皮亚纳斯德国 1527

·施蒂费尔德国 1544《综合算术》二项式展开式系数

·薛贝尔法国 1545

·B·帕斯卡法国 1654《论算术三角形》

杨辉三角的三个基本性质主要是二项展开式的二项式系数即组合数的性质,它是研究杨辉三角其他规律的基础。杨辉三角横行的数字规律主要包括横行各数之间的大小关系。组合关系以及不同横行数字之间的联系。

简单的说,就是两个未知数和的幂次方运算后的系数问题,比如(x+y)的平

方=x的平方+2xy+y的平方,这样系数就是1,2,1这就是杨辉三角的其中一行,立方,

四次方,运算的结果看看各项的系数,你就明白其中的道理了。

这就是杨辉三角,也叫贾宪三角,在外国被称为帕斯卡三角。

他于我们现在的学习联系最紧密的是2项式乘方展开式的系数规律。如图,在贾宪三角中,第3行的第三个数恰好对应着两数和的平方公式(在此就不做说明了)依次下去,

常用公式:(a²+b²)=a²+2ab+b²

根据杨辉三角可得(a³+b³)=a³+3a²b+3ab²+b

以此类推分别将a降幂 b升幂

中国剩定理

中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国剩余定理。

公元前后的《孙子算经》中有“物不知数”问题:“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?”答为“23”。也就是求同余式组x≡2 (mod3),x≡3 (mod5 ),x≡2 (mod7)(式中a≡b (modm)表示m整除a-b )的正整数解。明朝程大位用歌谣给出了该题的解法:“三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。”即解为x≡2×70+3×21+

2×15≡233≡23(mod105)。此定理的一般形式是设m = m1 ,… ,mk 为两两互素的正整数,m=m1,…mk ,m=miMi,i=1,2,… ,k 。则同余式组x≡b1(mo dm1),…,x≡bk(modmk)的解为x≡M'1M1b1+…+M'kMkbk (modm)。式中M'iMi≡1 (modmi),i=1,2,…,k 。直至18世纪 C.F.高斯才给出这一定理。孙子定理对近代数学如环论,赋值论都有重要影响。

解法中的三个关键数70,21,15,有何妙用,有何性质呢?首先70是3除余1而5与7都除得尽的数,所以70a是3除余a,而5与7都除得尽的数,21是5除余1,而3与7都除得尽的数,所以21b是5除余b,而3与7除得尽的数。同理,15c是7除余c,3与5除得尽的数,总加起来 70a+21b+15c 是3除余a,5除余b ,7除余c的数,也就是可能答案之一,但可能不是最小的,这数加减105(105=3*5*7)仍有这样性质,可以多次减去105而得到最小的正数解。

数学公式

(中国剩余定理CRT)设m1,m2,...,mk是两两互素的正整数,即gcd(mi, mj) =1, i≠j, i,j = 1,2,...,k

则同余方程组:

x≡b1 mod m1

x≡b2 mod m2

...

x≡bk mod mk

模[m1,m2,...,mk]有唯一解,即在[m1,m2,...,mk]的意义下,存在唯一的x,满足:x≡bi mod [m1,m2,...,mk], i = 1,2,...,k

内插法和垛积术

已知函数f(x)在自变量是x1,x2,……x n时的对应值是f(x1),f(x2),……f(x n),求x i和x i+1之间的函数值的方法,称作内插法。如果x n是按等距离变化的,称自变数等间距内插法;如果x n是按不等距离变化的,称自变数不等间距内插法。例如f(x)=x3,当x=1,2,3,4,5,……时,x3=1,8,27,64,125,……求x=4.26时x3=(4.26)3的值,就可以应用等间距内插公式。等间距内插法的一般公式是:

相关文档
最新文档