第02讲--机器人系统组成结构
机器人系统的组成
机构。
机器人 机械本体 非 运 动 机 械 控制系统 感 知 系 统
运 动 机 械
微 电 脑
机器人的感官——传感系统(感知系统)
机器人的身体内,有许多不同的传感器 在工作,为机器人提供信息输入。 红外线传感器让机器人 “看到”障碍物; 声音传感器让机器人 “听到”各种声音;
机器人的大脑——主控系统(微电脑)
机器人的主控系统(机器 人思考、判断和决策中枢)负 责接收传感器传回来的信息, 经过一定的处理,然后发出控 制命令,指挥机器人的机械部 分执行各种动作。 机器人主控系统的核心是单片机,即集成 在一个单一的芯片内的一台微电脑。
Байду номын сангаас 机器人的身体——机械本体
机器人的机械本体是机器人行动的基础。 原动机 机 械 本 体 传动 执行 为机器人提供动力 将原动机的动力转变为执 行部分所需的运动形式。
完成预定功能
思考:
道路两旁的风向标、弹跳蛙、手表是机器 人吗?
机器人的定义:机器人是一种自动化的
机器,所不同的是这种机器具备一些与人 或生物相似的智能能力,是一种具有高度 灵活性的自动化机器。机器人技术的本质 是感知、决策、行动和交互技术的结合。
只要具备一些与人或生物相似的智能能 力的自动化机器,都属于机器人系统。
机器人系统的组成
机器人能够“弄懂”人的意图并遵照执行, 正是人工智能研究的结果。具体来说,和人 类智能类似, 机器人通过感官——传感系统获得信息, 经过机器人的大脑——主控系统的处理、 判断、决策,再发出指令给机器人的执行
机器人系统的组成
机器人系统的组成机器人系统通常由以下几个组成部分构成:1. 机械结构:包括机器人的物理外形和各个部件的机械结构,如关节、链条、连接器、传感器等。
这些结构决定了机器人的动作范围和运动能力。
2. 电气控制系统:包括电机、驱动器、传感器、计算机等电子设备,用于控制机器人的运动和感知环境。
电气控制系统接收来自计算机的指令,并将其转化为机械动作。
3. 计算机控制系统:包括嵌入式系统、单片机、PLC等,用于控制机器人的运动和执行任务。
计算机控制系统负责运算、决策和监控机器人的各种功能。
4. 感知系统:包括各种传感器,如摄像头、激光雷达、红外传感器等,用于感知机器人周围的环境信息。
感知系统可以获取到环境中的物体位置、距离、光照强度等数据,以辅助机器人的决策和动作。
5. 控制算法:包括路径规划、运动控制、动作规划等算法,用于指导和控制机器人的各项动作。
控制算法可以使机器人对特定任务做出适当的反应和行动。
6. 用户界面:通常是一台显示屏或者计算机界面,与机器人进行通信,可以通过界面对机器人进行控制和监控。
用户界面还可以提供机器人的工作状态、故障报警等信息。
这些组成部分相互配合,共同组成一个完整的机器人系统,实现使用者对机器人的控制和监控,并执行各种任务。
另外还有一些可选的组成部分,可以根据具体的机器人应用需求进行选择和配置:1. 操作系统:机器人可能运行一个特定的操作系统,如Linux 或Windows,用于管理和协调机器人系统的各项功能。
2. 数据存储和通信设备:机器人可能需要具备一定的存储和通信能力,以便存储和传输数据。
例如,机器人可以存储感知到的环境信息和任务执行过程中的数据。
3. 电源系统:机器人通常需要电源来驱动各个部件的工作,可以采用电池、电源适配器等不同形式的供电方式。
4. 人机交互接口:机器人可以配备触摸屏、声音识别、手势识别等人机交互设备,以便用户能够与机器人进行沟通和交互。
需要注意的是,不同类型的机器人系统在组成部分上可能会有所不同。
机器人的组成结构
常用的机身结构: 1)升降回转型机身结构 2)俯仰型机身结构 3)直移型机身结构 4)类人机器人机身结构
根据臂部的运动和布局、驱动方式、传动和导向装 置的不同可分为:
1)伸缩型臂部结构 2)转动伸缩型臂部结构 3)驱伸型臂部结构 4)其他专用的机械传动臂部结构
3.机身和臂部的配置形式
机身和臂部的配置形式基本上反映了机器 人的总体布局。由于机器人的运动要求、工作 对象、作业环境和场地等因素的不同,出现了 各种不同的配置形式。目前常用的有如下几种 形式:
36
1. 滑槽杠杆式手部
2.齿轮齿条式手部
4. 斜 楔 杠 杆 式
3.滑块杠杆式手部
5.移动型连杆式手部
6.齿轮齿条式手部
7.内涨斜块式手部
8.连杆杠杆式手部
手指类型:
吸附式取料手
吸式取料手是目前应用较多的一种执行器,特别是用于搬 运机器人。该类执行器可分气吸和磁吸两类。 1)气吸附取料手
连杆(Link):机器人手臂上 被相邻两关节分开的部分。
刚度(Stiffness):机身或臂部在外力作用下抵抗变形的能力。 它是用外力和在外力作用方向上的变形量(位移)之比来度量。
自由度(Degree of freedom) :或者称坐标轴数,是指描述物体 运动所需要的独立坐标数。手指的开、合,以及手指关节的自由 度一般不包括在内。
• 圆柱坐标型机械手有一 个围绕基座轴的旋转运 动和两个在相互垂直方 向上的直线伸缩运动。 它适用于采用油压(或气 压)驱动机构,在操作对 象位于机器人四周的情 况下,操作最为方便。
机器人系统组成结构
机器人系统组成结构
一、概述
机器人系统是一个复杂的系统,它由传感器、控制器、操作元件和传
动机构等模块组成,能够实现自动化操作和智能化控制,具有动作精准、
处理速度快、操控灵活等优点,对于工业生产、制造、医疗、服务、教育、军事等各个领域都有重要的应用价值。
二、组成部件
1、传感器:机器人系统的传感器是将环境中的信息转化成机械所能
处理的信息的装置,是实现感知能力的基础。
一般的机器人系统,会包括
触觉、视觉和声学等传感器,为机器人实现更全面的感知功能提供了强有
力的支持。
2、控制器:控制器是机器人系统中的智能中枢,它能够接收传感器
发送的信息,并根据程序分析处理,最终指挥机器人的每个元件完成正确
的动作,可以说机器人中的所有控制逻辑全靠控制器来实现。
3、操作元件:机器人系统的操作元件包括夹爪、臂膀、腿部及其他
结构机构,它们是机器人实现外界任务的执行器,通过控制器指挥其完成
正确的动作。
4、传动机构:传动机构由电机、减速机、导轨、传动带、减震器等
组成,不仅可以起到传动作用,还可以给机器人的每个部件提供动能,从
而让机器人能够运动、进行任务操作。
三、应用。
机器人系统组成
➢ 机器人系统通常由机械部分,控制系统,人机操作界面组成。 ➢ 机器人本体通常有四轴、六轴两种机械本体,有些还有七轴本体。 ➢ 控制系统由控制器、控制电机的伺服、用于外部的IO端子组成,集
成在控制柜中。 ➢ 人机操作界面主要就是示教器。
1
机器人系统结构
2
机器人系统结构
各部分名称: ① 底座 ② 转盘 ③ 平衡配重 ④ 连杆臂 ⑤ 手臂 ⑥手
3
机器人轴说明
各轴正负方向
4
各关节电机说明
各轴电机
5
各轴机械零点
6
机器人铭牌
7
ቤተ መጻሕፍቲ ባይዱ
管线包
8
线缆接口
9
示教器
smartPAD 示教器
操作机器人需要通过示教器来操作。
10
机器人四大系统组成部分
机器人四大系统组成部分机器人由驱动系统、机械系统、感知系统和控制系统等组成。
1、驱动系统驱动系统是驱使机械系统运动的机构,一般由驱动装置和传动机构两个部分组成。
它按照控制系统发出的指令信号,借助动力元件使机器人执行动作。
因驱动方式的不同,驱动装置可以分成电动、液动和气动三种类型。
驱动装置中的电动机、液压缸、气缸可以与操作机直接相连,也可以通过传动机构与执行机构相连。
传动机构通常有齿轮传动、链传动、谐波齿轮传动、螺旋传动、带传动等几种类型。
2、机械系统机器人的机械系统是机器人赖以完成作业任务的执行机构,即指机器人本体,一般是一台机械手,也称操作器或操作手。
它可以在确定的环境中执行控制系统指定的操作。
其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常为机器人的自由度数根据关节配置形式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。
出于拟人化的考虑,机器人本体的有关部位分别被称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等。
3、感知系统感知系统又称传感器,相当于人的感觉器官,能实时检测机器人的运动及工作情况,并根据需要反馈给控制系统,与设定信息进行比狡后,调整执行机构,以保证机器人的动作符合预定的要求。
传感器大致可以分为两类:内部传感器和外部传感器。
内部传感器主要用来检测机器人本身的状态,为机器人的运动控制提供必要的本体状态信息,如各关节的位置、速度、加速度等,并将所测得的信息作为反馈信号送至控制器,形成闭环控制,主要有位置传感器、速度传感器等;外部传感器则用来感知机器人所处的工作环境或工作状况信息,使机器人的动作适应外界情况的变化,达到更高层次的自动化,提高机器人的工作精度,常见的有力觉传感器、触觉传感器、接近觉传感器、视觉传感器等。
4、控制系统控制系统是机器人的指挥中枢,负责处理作业指令信息、内外环境信息,并依据预定的本体模型、环境模型和控制程序做出决策,产生相应的控制信号,通过驱动器驱动执行机构的各个关节按所需的顺序、确定的轨迹运动,完成特定的作业。
机器人篇-第2节机器人的系统组成
机器人的系统组成
机器人由哪些系统组成呢?
图1 搬运机器人图2 扫地机器人
功能:机器人完成工作任务的实体组成:机械手臂、支撑移动机构、末端执行器及其他结构部件感知系统驱动系统执行机构控制系统功能:将能源传送到执行机构组成:驱动器和传动机构两部分功能:对执行机构发出如何动作的命令组成:控制器、处理器和软件等
功能:收集机器人内部状态的信息或与外部通信组成:一般可分为内部和外部两类传感器
例1:该搬运机器人由哪些系统组成呢?
支撑机构手臂手臂腕部电动机电动机控制器线束执行机构
驱动系统
控制系统感知系统
末端执行器(手部)传感器
例2:该扫地机器人由哪些系统组成呢?
面盖、机身末端执行器(刷子、抹布)支撑移动机构
驱动系统
控制系统感知系统
执行机构
扫地机器人的系统组成机械结构系统驱动系统感知系统
控制系统电动机传感器
电动机控制器传感器有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
小结
例1:一种搬运机器
人的系统组成
机器人系统组成例2:一种扫地机器
人的系统组成。
机器人技术基础教学课件第2章
Ti ——输入力矩(N·m);
To ——输出力矩(N·m);
i ——输入齿轮角位移;
o ——输出齿轮角位移;
机器人技术基础
第二节 机器人的驱动机构
1.齿轮机构
Ti ,i
啮合齿轮转过的总的圆周距离相等,可以 得到齿轮半径与角位移之间的关系:
Rii Roo
TO ,O
Ri ——输入轴上的齿轮半径(m); R0 ——输出轴上的齿轮半径(m)。
第一节 工业机器人的结构
(3)连杆杠杆式回转型夹持器
夹紧力FN和驱动力Fp之间关系:
FN
Fpc
2b tan a
连杆杠杆式回转型夹持器 1—杆;2—-连杆;3—-摆动钳爪;4—-调整垫片
机器人技术基础
第一节 工业机器人的结构
(4)齿轮齿条平行连杆式平移型夹持器
夹紧力FN和驱动力Fp之间关系:
FN
Fp R
Fp c
2b sin
楔块杠杆式回转型夹持器 1—-杠杆;2—弹簧;3—滚子;4—楔块;5—气缸
机器人技术基础
第一节 工业机器人的结构
(2)滑槽杠杆式回转型夹持器
夹紧力FN和驱动力Fp之间关系:
FN
Fp a 2b cos2
a
滑槽杠杆式回转型夹持器 1—支架;2—杆;3—圆柱销;4—-杠杆;
机器人技术基础
1.液压驱动
液压隧道凿岩机器人 机器人技术基础
液压混凝土破碎切割机器人
第二节 机器人的驱动机构
2.气压驱动
优点:
缺点:
(1)容易达到高速(1m/s);
(1)压缩空气压力低;
(2)对环境无污染,使用安全;
(2)实现精确位置控制难度大;
工业机器人的组成ppt课件
部运动。
腰部:立柱,是 支撑手臂的部件,
其作用是带动臂 7
二、机械部分 2. 驱动—传动装置
工业机器人的驱动系统包括驱动器和传动 机构两部分,它们通常与执行机构连成机 器人驱本动体系统。
驱动器 传动机构
8
二、机械部分
2. 驱动—传动装置 工业机器人
驱动器通常有:
➢ 电机驱动:直流伺服电机、 步进电机、交流伺服电机。
传动机构常用的有:谐波减速器、滚珠丝 杆、链、带以及各种齿轮系。
传动机构 谐波传动 螺旋传动 链传动 带传动 齿轮传动
12
二、机械部分 2. 驱动—传动装置
- 由谐波发生器(椭圆形凸轮 及薄壁轴承)、柔轮(在柔 性材料上切制齿形)以及与 它们啮合的钢轮构成的传动 机构
13
三、控制部分 1. 人机交互系统
驱动器
➢ 液压驱动; ➢ 气动驱动。
各种电、液、气装置
9
驱动器
直动 气缸
气动
气动 马达
气爪
液压
液压 液压 马达 缸
直流 伺服 电动 机
电动
交流 伺服 电动 机
步进 电动 机
电液 气综 合驱 动
10
直流伺服电机与驱动放大器
交流伺服电机
驱动放大器
直流无刷电机
步进电机
直驱电机
11
二、机械部分 2. 驱动—传动装置
18
四、传感部分 2. 机器人-环境交互系统
机器人-环境交互系统实现工业机器人与 外部环境中的设备相互联系和协调的系统。
工业机器人与外部设备集成为一个功能单元, 如加工制造单元、多台机器人、多台机床或 设备、多个零件存储装置等集成为一个去执 行 复杂任务的功能单元。
3、简介机器人系统的组成与结构,包括三大部分、六个子系统
3、简介机器人系统的组成与结构,包括三大部分、六个子系统机器人系统是由多个组件和子系统构成的复杂系统,它们共同协作以实现不同的功能。
机器人系统通常由三大部分和六个子系统组成。
在本文中,将介绍机器人系统的组成和结构,并详细讨论每个子系统的作用和功能。
一、机器人系统的组成与结构1. 机械结构部分机器人的机械结构部分是其身体的框架,用于支持和保护机器人的其他组件。
这一部分包括机器人的主体结构、关节、传感器和执行器等。
机器人的机械结构应该具备足够的稳定性和灵活性,以适应不同的任务和环境。
2. 控制系统部分机器人的控制系统是其大脑,负责处理和指挥机器人的各个动作和功能。
它由多个电路、芯片和软件组成。
控制系统接收来自传感器的信息,并根据预设的算法和逻辑进行反馈和决策。
控制系统还与其他子系统进行通信,以实现协调运动和任务执行。
3. 感知系统部分机器人的感知系统用于感知和获取周围环境的信息。
它包括各种传感器,如视觉传感器、听觉传感器、力觉传感器等。
感知系统通过收集和处理环境信息,使机器人能够理解其周围环境,并做出相应的反应和决策。
二、机器人系统的六个子系统1. 定位和导航子系统定位和导航子系统使机器人能够在未知或复杂环境中准确定位和导航。
它利用传感器和地图等信息,通过算法和模型计算机器人的位置和前进方向,从而实现机器人的自主导航和路径规划。
2. 运动控制子系统运动控制子系统用于控制机器人的运动和动作。
它负责接收来自控制系统的指令,并通过调节执行器的运动,实现机器人的步态、速度和姿态控制。
运动控制子系统需要高精度和实时性,以确保机器人的精确和稳定的运动。
3. 人机交互子系统人机交互子系统使机器人能够与人类进行有效的交互和沟通。
它通过语音识别、语音合成、图像识别和触摸屏等技术,实现人机之间的信息传递和指令交互。
人机交互子系统在机器人的应用中扮演着关键的角色,使机器人能够更好地与人类进行合作和协作。
4. 感知与识别子系统感知与识别子系统用于感知和识别机器人周围环境的信息。
工业机器人-机器人系统由哪些部分组成?
工业机器人-机器人系统由哪些部分组成?机械系统工业机器人的机械系统包括机身、臂部、手腕、末端操作器和行走机构等部分,每一部分都有若干自由度,从而构成一个多自由度的机械系统。
此外,有的机器人还具备行走机构。
若机器人具备行走机构,则构成行走机器人;若机器人不具备行走及腰转机构,则构成单机器人臂。
末端操作器是直接装在手腕上的一个重要部件,它可以是两手指或多手指的手爪,也可以是喷漆枪、焊枪等作业工具。
工业机器人机械系统的作用相当于人的身体(如骨髓、手、臂和腿等)。
驱动系统驱动系统主要是指驱动机械系统动作的驱动装置。
根据驱动源的不同,驱动系统可分为电气、液压和气压三种以及把它们结合起来应用的综合系统。
该部分的作用相当于人的肌肉。
电气驱动系统在工业机器人中应用得较普遍,可分为步进电动机、直流伺服电动机和交流伺服电动机三种驱动形式。
早期多采用步进电动机驱动,后来发展了直流伺服电动机,交流伺服电动机驱动也逐渐得到应用。
上述驱动单元有的用于直接驱动机构运动:有的通过谐波减速器减速后驱动机构运动,其结构简单紧凑。
液压驱动系统运动平稳,且负载能力大,对于重载搬运和零件加工的机器人,采用液压驱动比较合理。
但液压驱动存在管道复杂、清洁困难等缺点,因此限制了它在装配作业中的应用。
无论电气还是液压驱动的机器人,其手爪的开合都采用气动形式。
气压驱动机器人结构简单、动作迅速、价格低廉,但由于空气具有可压缩性,其工作速度的稳定性较差。
但是,空气的可压缩性可使手爪在抓取或卡紧物体时的顺应性提高,防止受力过大而造成被抓物体或手爪本身的破坏。
气压系统的压力一般为0.7MPa,因而抓取力小,只有几十牛到几百牛大小。
控制系统控制系统的任务是根据机器人的作业指令程序及从传感器反馈回来的信号控制机器人的执行机构,使其完成规定的运动和功能。
如果机器人不具备信息反馈特征,则该控制系统称为开环控制系统;如果机器人具备信息反馈特征,则该控制系统称为闭环控制系统。
3、简介机器人系统的组成与结构,包括三大部分、六个子系统
机器人的系统的组成与结构。
一、三大部分三大部分是机械部分、传感部分和控制部分。
二、六个子系统六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换。
1.驱动系统,要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。
这就是驱动系统。
驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。
2.机械结构传动,工业机器人的机械结构系统由机座、手臂、末端操作器三大部分组成,每一个大件都有若干个自由度的机械系统。
若基座不具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。
手臂一般由上臂、下臂和手腕组成。
末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。
3.感受系统由内部传感器模块和外部传感器模块组成,用以获得内部和外部环境状态中有意义的信息。
智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。
人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于一些特殊的信息,传感器比人类的感受系统更有效。
4.机器人一环境交换系统是现代工业机器人雨外部环境中的设备互换联系和协调的系统。
工业机器人与外部设备集成为一个功能单元,如加工单元、焊接单元、装配单元等。
当然,也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。
5.人工交换系统是操作人员与机器人控制并与机器人联系的装置,例如,计算机的标准终端,指令控制台,信息显示板,危险信号报警器等。
该系统归纳起来分为两大类:指令给定装置和信息显示装置。
6.控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。
假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。
(图解)机器人系统组成介绍
(图解)机器人系统组成介绍一、机器人介绍1、机器人主体结构机器人主体结构主要由机器人本体、机器人控制柜、机器人控制面板组成。
2、机器人控制面板机器人控制面板,主要担负这人机对话的作用,我们对机器人的调试、操作、编程、校正等,均靠机器人控制面板来执行。
3、机器人本体构成机器人本体主要由手臂、手腕、平衡缸、连接臂、旋转台、底座组成;当然,如果其他类型的机器人会有相应的差异,我们这里主要以六轴机器人作为案例进行说明。
4、机器人的轴数分类1轴、2轴、3轴为主轴,4轴、5轴、6轴为腕部轴;我们这里是以六轴机器人作为案例说明,当然还有3轴、4轴等机器人就不在细说。
5、机器人工作区域机器人的工作区域是指,机器人在工作时,所可能需要运动的三维空间区域该工作区域内不能有固定障碍物或者机器人工作时进入临时障碍物,阻挡机器人的工作路径.a、俯视工作区域示意图b、侧视工作区域示意图c、注意:---在机器人运行的过程中,工作人员避免进入机器人的工作区域,以免造成伤害。
---方案设计工程师在设计的时候,需要特别考虑机器人运行的安全性,需要考虑设计给机器人增加安全保护网或者保护罩,避免工作人员疏忽靠近,进入机器人工作区域,造成伤害。
6、机器人软件概念机器人软件概念包含核心系统软件和操作系统软件;核心系统软件是指机器人本身具备的系统,而操作系统主要提供人们对机器人进行二次开发和人机对话所准备的,软件系统结构示意图:二、动力管线系统线是指机器人系统中的电源线和信号线等,管是指机器人系统中的气管和保护管等。
1、2000系统机器人动力管线示意图2、动力管线的长度调整示意图,管线应该配置适中,不可造成积压,不利于机器人运动,也容易造成摩擦力过大,导致管线加快磨损。
3、柔性管线的排布,管线应该布局合理,遵循机器人的运动方向为原创,使得管线得到比较良好的弯曲塑性。
4、动力管线-调整保护环保护环主要是保护机器人管线免于磨损;因为机器人管线直接布置在机器人本体表面上,机器人在工作的时候机器人本体会和布于其上面的管线发生相对摩擦运动,易造成管线磨损。
简述机器人的结构组成
简述机器人的结构组成
机器人的结构组成包括以下几个方面:
1. 机械结构:机器人主要以机械结构为基础,包括机械臂、关节、传动机构、运动控制系统等。
2. 传感器:机器人需要通过传感器获取外界环境信息,例如光电传感器、力传感器、位置传感器等。
3. 控制系统:机器人控制系统包括硬件和软件,用于实现机器人的动作控制、决策和计算等。
4. 电源系统:机器人需要电力供应,通常采用电池或外部电源供电。
5. 末端执行器:根据不同的应用需求,机器人的末端执行器可能是夹具、喷嘴、激光等。
机器人的结构组成因机器人类型和应用场景的不同而异,但以上五个方面是机器人基本结构组成的核心部分。
2机器人的组成结构
2机器人的组成结构机器人的组成结构包含了硬件和软件两个方面。
硬件方面主要包括主控系统、感知系统、执行系统以及电源系统等。
软件方面则包括机器人操作系统、控制算法、感知处理以及行为规划等。
1.主控系统主控系统是机器人的核心部分,负责控制机器人的整体运行。
通常由一块集成电路板制成,该电路板上集成了处理器、内存、输入/输出接口以及其他必要的控制电路。
主控系统负责接收和处理来自感知系统的传感器数据,根据预先编写的算法进行计算和决策,并向执行系统发送指令。
2.感知系统感知系统是机器人获取外界信息的重要组成部分,用于感知和理解周围环境。
感知系统通常包括各种传感器,如摄像头、激光雷达、红外线传感器、触摸传感器等。
这些传感器可以帮助机器人获取地图信息、目标检测、避障以及姿态控制等。
3.执行系统执行系统是机器人的运动和动作执行部分。
通常由电机和执行机构组成,用于驱动机器人的各个关节进行运动。
执行系统可以根据主控系统的指令实现机器人的运动控制,包括移动、转向、抓取、举起等动作。
4.电源系统机器人需要稳定的电源供应以保持正常运作。
电源系统主要包括电池、电源管理模块以及电源供应线路等。
电源系统必须满足机器人各个组件的工作电压和功率需求,同时也需要考虑电池寿命和容量等因素。
5.机器人操作系统机器人操作系统是机器人软件的基础,为机器人提供了各种功能和服务。
机器人操作系统通常提供多任务处理、网络通信、设备驱动、数据存储等功能,以及机器人编程和控制接口。
目前常用的机器人操作系统包括ROS(Robot Operating System)和ROS2等。
6.控制算法控制算法是机器人实现各种功能和任务的关键部分,涉及到机器人运动规划、路径规划、动作控制等。
控制算法通常基于传感器数据进行计算和决策,以达到用户预期的目标。
7.感知处理感知处理是通过对感知系统获取的数据进行处理和分析,从中提取出有用的信息。
感知处理包括图像处理、信号处理、目标识别、地图构建等,使机器人能够对周围环境进行理解和认知。
机器人系统组成结构
多关节柔性手结构图
多指灵巧手结构图
11
二、机械系统组成
2 机器人的手腕
单自由度手腕 二自由度手腕 三自由度手腕
单自由度手腕示意图 二自由度手腕示意图
三自由度手腕示意图
12
二、机械系统组成
机器人控制系统负责协调、管理、控制系统的所有部件进行工作 ,其基本功能包括:
记忆功能 与外围设备联系功能 示教功能 人机接口 位置伺服功能 传感器接口 故障诊断安全保护功能
22
三、控制系统
机器人控制系统框图
23
三、控制系统
3 机器人控制系统结构
机器人控制系统可分为集中控制、主从控制、分散控制
集中控制:所有控制工作由一台计算机(CPU)完成
48
五、驱动系统
7液压驱动 利用液体的抗挤压力来实现力的传递.
典型液压伺服控制系统
d 2 d (Vol) dx
4
Q d (Vol) d 2 dx d 2 x
dt
4 dt 4
dx表示期望的位移; dv是期望的速度;
控制液体流入速度--实现控制活塞速度
位置控制阀原理
49
五、驱动系统
7液压驱动
36
四、感知系统
4传感器-检测类传感器
温度传感器: 数字量输出:以一定协议直接向外输出数字量 模拟量输出:一般为通过电阻的变化间接测量
18B20
PT100
37
四、感知系统
4传感器-检测类传感器
加速度传感器: 一种能够测量加速力的电子设备。
38
四、感知系统
4传感器-检测类传感器
02-课件:1.4 机器人系统组成与结构
一般包括: (1)驱动装置(能源,动力) (2)减速器 (将高速运动变为低速运动)
(3)运动传动机构
(4)关节部分机构 (相当手臂,形成空间 的多自由度运动)
(5)把持机构,末端执行器,端拾器 (相 当手爪)
人类如果是按等差级数进化, 那机器人将是按等比级数进化。 因为,全人类的技术开发几乎
都是在为机器人进化服务。 未来会是什么样?
与作业环境、人和其它机器人之间自然交互, 自主适应复杂任务和动 态环境的共融机器人。
与环境共融
机器人间共融
与人共融
对机器人结构、感知与控制提出了新要求、新挑战!
控 机器人模型 制 环境模型 器 工作任务程序
控制算法
外 部
传 环境
感 器
关节机构 内 部机
减速机构 传 器 感人
驱动装置 器
6. 机器人控制信息流程图
作A运 驱 业 动动 控 控控 制 制制 器 器器
B
内部传感器 外部传感器
内部信息处理
C
外部信息处理
基座
减速器 关节
末端执行器 传感器
P
连杆 驱动器
机器人对控制系统的基本要求
多轴协调
位置高精度、无超调
大调速范围(空程高速) 调速范围=工作时最大速度/ 工作时最小速度
动态响应快 系统刚性好 各轴速度误差系数相近 有加减速控制(减少冲击)
机器人技术展望
伴随信息技术的飞速发展,机器人日新月异 机器人的进化绝对不会像人类进化那么漫长
第一、第二、第三代、…… 还不到半个世纪,机器人让人刮目相看
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
41
五、驱动系统
2驱动系统几个概念
刚性系统:对变化负载响应快、精度高
柔性系统:对变化负载响应慢、精度低
减速齿轮:用来增大工作转矩
如图电机及负载上的力矩及速 度比为:
Tl NTm
1 l m N
42
五、驱动系统
3电动类驱动器
电动驱动器类型和特点
有刷
电驱动
直流伺服电机驱动(包括直线电机) 无刷 交流伺服电机驱动 步进电机伺服驱动 舵机驱动 力矩电机
PUMA机器人工作空间
6
一、机器人组成概述
3 机器人部分术语及主要技术参数
思考:人的手臂共有多少个自由度?
共有27个自由度!!
人臂与手的自由度示意图
7
一、机器人组成概述
3 机器人部分术语及主要技术参数
其他重要参数:
承载能力:指机器人在工作范围内的任何位姿
上所能承受的最大负载
工作速度:单位时间内所移动的距离或转动的
多关节柔性手结构图
多指灵巧手结构图
11
二、机械系统组成
2 机器人的手腕
单自由度手腕
二自由度手腕 三自由度手腕
单自由度手腕示意图
三自由度手腕示意图 二自由度手腕示意图
12
二、机械系统组成
3机器人的手臂
手臂作用是支承腕部和手部,并将披抓取的
工件运送到给定的位置上
机器人手臂机械结构形式
国产单轴陀螺仪模块
进口单轴陀螺仪模块
39
四、感知系统
4传感器-检测类传感器
压力传感器 位移传感器 扭矩传感器
超声波测距传感器
电流检测传感器
40
五、驱动系统
1驱动器
机器人主要驱动器: (1)电动机:伺服电机、步进电机、直接驱动电机 (2)液压驱动器 (3)气动驱动器 (4)形状记忆合金驱动器 (5)磁滞伸缩驱动器
13
二、机械系统组成
4机器人的机身
机身:与臂部相连,支承臂部 分类:
直线移动机身
该类机器人的运动形式大多为 移动式
回转与升降机身
该类机身主要包括回转与升降两 部分
横梁直线移动式机身
回转与升降式机身
14
二、机械系统组成
4 机器人的机身
回转与俯仰机身:该类机身主要包括回转与俯仰两部分 类人式多自由度机身:与人体结构类似
(1)轮式行走机构
轮式是机器人最流行的行走运动机构,它具有高效率、机械简单等特点
全方位轮
轮式机器人车轮形式
17
二、机械系统组成
5机器人的行走机构
(2)履带式行走机构
履带式侦查机器人
履带式行走机构的主要特征是将圆环状的无限轨道带绕在多个车轮上, 使车轮不直接与路面接触 thunder3仿生履带机器人
角度。
刚度:机身或臂部在外力作用下抵抗变形的能
力。
8
二、机械系统组成
1 机器人机械系统组成
机器人机械结构通常由以下部分组成
手臂:连接机身和手腕的部分
手腕:连接手部和手臂的部件 手部:手腕上配置的操作机构,也称末端操作器
机身:机器人的基础部分,起支承作用 行走机构:机器人用来移动的重要装置
9
二、机械系统组成
43
五、驱动系统
3电动机-直流电机的控制
直流 (DC)伺服电机
开环脉冲宽度调速系统的组成:
直流电机调速系统结构(开环)
44
五、驱动系统
4电动机-步进电机的控制 结构与工作原理描述 工作原理:
0100 0010 0001
控制方法:
(1)给脉冲,对应一个步距 (2)改变频率,控制速度 (3)改变脉冲顺序,改变转动方向
位置控制阀原理
控制液体流入速度--实现控制活塞速度
49
五、驱动系统
7液压驱动
液压驱动器的优点
具有比较大的扭矩和功率,功率/重量比大;
减小执行装置的体积、刚度高;
实现高速、高精度的位置控制、通过流量控制可以实
现无级变速。
液压驱动器的缺点 稳定性较差、有因漏油而发生火灾的危险; 压油源和进油、回油管路等附属设备占空间较大。
光线传感器-激光类:
高精度、抗干扰能力强
普通红激光 传感器 进口激光测距 传感器
M12对射 激光开关
智能车中的激 光传感器
32
四、感知系统
2 传感器-光传感器
光传感器-红外:灵敏度高、响应快
普通红外发射接收管
红外对射类
红外反射类
红外热释电
33
四、感知系统
2 传感器-光传感器
光传感器-摄像头
分辨率、图像格式、图像压缩方式、视角、输入输出接口 MT9D111 OV7670
第二讲 机器人组成结构
1、机器人组成概述 2、机器人机械系统 3、机器人控制系统 4、机器人感知系统 5、机器人驱动系统
2
一 、机器人组成概述
1 机器人系统组成
机器人系统的三大部分
人机交互系统 控 制 部 分
机械部分 传感部分
传 感 部 分
感 知 系 统
控制系统
驱动系统 机 械 部 分
控制部分
机械系统
1000
步进电机驱动结构图
反应式步进电机结构
45
五、驱动系统
5 电动机-无刷电机的控制
定子 永磁转子 传感器定子 传感器转子
一体式无刷直流电机由电动 机主体和驱动器组成
无刷电机结构示意图
无刷直流电动机自控式运 行:
直流电 源
逆变器
电机本体
输 出
位置检测器 控制信号 控制器
无刷电机内部控制结构
46
五、驱动系统
2 机器人手部
两类:工业机器人的手部和仿人机器人的手部。
工业机器人手部:
夹钳式手部 吸附式手部(气吸式、磁吸式)
夹钳式手部示意图 1手指;2、4传动机构;3驱动装置;5工件
吸附式手部示意图 真空吸附式、气流负压气吸式、挤压排气式
10
二、机械系统组成
2 机器人手部
仿人机器人的手部
柔性手:能抓取不同外形的物体,物体表面受力均匀 多指灵巧手:由多个手指组成,每一个手指有三个回转关节
34
四、感知系统
3传感器-触碰类传感器
触碰类传感器: 非接触式、接触式
接触式:包括微 动开关、行程开关 、挡铁等
非接触式: 主要为接近开关
35
四、感知系统
4传感器-检测类传感器 其他传感器
增量式旋转编码器: 电机转速和角度的测量(机械式、电磁式)
主要技术参数:频率、线数
36
四、感知系统
力矩电动机的轴不是以恒功率输出动力而是以恒力矩输出 动力。
48
五、驱动系统
7液压驱动 利用液体的抗挤压力来实现力的传递.
典型液压伺服控制系统
4 d (Vol ) d 2 dx d 2 Q x dt 4 dt 4 d (Vol )
d 2
dx
dx表示期望的位移; dv是期望的速度;
24
三、控制系统
3 机器人控制系统结构
主从控制:采用主处理器、协处理器两部分共同完
成系统的全部控制任务
摄像头 裁判机
A 队决策机
B 队决策机
机器人主从控制系统框图
机器人足球中的 集 中控制系统
25
三、控制系统
3 机器人控制系统结构
分散控制:将彼此关联不大的系统模块分开处理
典型控制系统
机器人分散控制系统框图
6 电动机-舵机的控制
舵机 一种位置(角度)伺服的驱动器
以FUTABA-S3003为例,输出转角与输出 信号脉宽的关系如下图所示
一47
五、驱动系统
6 电动机-力矩电动机
力矩电动机 (torque motor) 直流力矩电机、交流力矩电机、和无刷直流力矩电机。
4
一、机器人组成概述
3 机器人部分术语及主要技术参数
关 节:即运动副,即手臂
各零 件之 间发 生相 对运动 的机构
连
杆:机器人手臂上被
相邻两关节分开的部分
5
一、机器人组成概述
3 机器人部分术语及主要技术参数
自由度 : 亦称坐标
轴数,是指描述物 体运动所需要的独 立坐标数
工作空间:机器人
手腕参考点或末端操 作器安装点所能到达 的所有空间区域
机器人—环境交互系统
3
一、机器人组成概述
2 系统概念 机械系统:由关节连在一起的许多机械连杆的集合体,形成开 环运动学链系; 驱动系统:使各种机械部件产生运动的装置; 感知系统:获取内部和外部环境中的有用信息,通过这些信息 确定机械部件各部分的运行状态; 控制系统:通过作业指令及反馈信息支配执行机构完成规定动 作的处理单元,包括闭环和开环系统; 机器人环境交互系统:实现机器人与外部环境中的设备相互联 系和协调的系统; 人机交互系统:操作人员参与机器人控制并与机器人进行联系 的装置;
18
二、机械系统组成
5机器人的行走机构
军用履带机器人
19
二、机械系统组成
5机器人的行走机构
(3)足式行走机构
足的数目越多,承载能力越强,运动速度越慢
六足机器人
本田公司的Asimo 双足机器人
单足弹跳机器人
20
二、机械系统组成
5机器人的行走机构
(4)轮足混合行走机构
轮足混合型行走机构可提高行走效率
26
三、控制系统
4 机器人控制方式
其他控制方式
点位式
轨迹式 力(力矩)控制方式
智能控制方式
铝箔生产中的力矩控制