轴承损坏形式及原因分析
轴承常见的损坏现象及原因
轴承常见的损坏现象及原因一、前言轴承是机械设备中的重要组成部分,其作用是支撑旋转的轴和减少摩擦。
然而,在长时间使用中,轴承会出现各种损坏现象,这些损坏现象会影响机器的正常运转,甚至导致机器停工。
因此,了解轴承常见的损坏现象及原因对于保护机器的安全运行具有重要意义。
二、常见的轴承损坏现象1. 疲劳裂纹疲劳裂纹是轴承最常见的故障之一。
它通常出现在滚道表面或滚珠上,并且与负荷、转速和润滑状态等因素有关。
疲劳裂纹会导致轴承失效并产生噪声。
2. 轨迹异常当轴承受到不适当的负荷或运行条件时,可能会出现轨迹异常。
这种情况下,滚道表面会变形或磨损,并且可能导致滚珠失去正确位置。
如果不及时处理,将导致更严重的故障。
3. 磨损轴承在长时间使用中会出现磨损现象,通常是由于摩擦和磨损引起的。
轴承的磨损会导致失效、噪声和振动等问题。
4. 锈蚀轴承在长时间使用中,如果没有得到良好的润滑和保护,就会出现锈蚀。
这种情况下,轴承表面会产生腐蚀或氧化,并且可能导致轴承失效。
5. 粘着当润滑不足或使用不当时,轴承可能会出现粘着现象。
这种情况下,滚珠和滚道之间的摩擦力增加,导致轴承失效。
三、常见的轴承损坏原因1. 载荷过大或不均匀当载荷过大或不均匀时,会导致轴承受到过度压力或负荷。
这种情况下,轴承容易出现裂纹、变形、磨损等问题。
2. 转速过高或过低当转速过高或过低时,都会对轴承造成影响。
转速过高可能导致润滑不足、温度升高等问题;转速过低则可能导致轴承失去润滑和冷却。
3. 润滑不良或污染润滑不良或污染是轴承损坏的主要原因之一。
如果轴承没有得到足够的润滑,就会导致磨损、摩擦、粘着等问题。
而污染物则会影响润滑油的性能,导致轴承失效。
4. 安装不当安装不当也是轴承损坏的原因之一。
如果安装时对轴承施加过大的力或者安装位置偏差过大,都会对轴承产生影响。
5. 环境因素环境因素也可能对轴承造成影响。
例如温度变化、湿度变化、腐蚀性气体等都可能导致轴承失效。
轴承故障原因分析及处理方法
轴承故障原因分析及处理方法[摘要]:本文介绍了轴承常见故障和处理办法,总结了避免故障发生的几种办法,保证生产的连续性。
[关键字]:轴承;故障率高;处理措施;一、前言:轴承是生产线设备上常用的支撑轴零件,它可以引导轴的旋转,也可以承受轴上空转的零件,由于其使用量大,生产过程中经常出现故障,给车间生产的连续性和产品质量的保障带来严重影响。
因此,迅速判断故障产生的原因,采取得当的解决措施,保证设备的连续运行是确保产品质量的重要基础和保证。
二、轴承故障原因分析:导致轴承故障率升高的常见原因:1、润滑不良,如润滑不足或过分润滑,润滑油质量不符合要求,变质或有杂物。
2、轴承异常,如轴承损坏,轴承装配工艺差,轴承各部位间隙调整不符合要求。
3、振动大,如联轴器找正工艺差不符合要求,转子存在动、静不平衡,基础刚性差、地脚空虚以及旋转失衡,喘振。
三、轴承发生故障时的处理方法:轴承出现故障时,应从以下几个方面解决问题1、加油不恰当,润滑油加的过多或过少。
应当按工作的的要求定期给轴承加油。
轴承加油后有时也会出现温度高的情况,这主要是加油过多。
2、轴承所加油脂不符号要求或被污染。
润滑油脂选用不合适,不易形成均匀的润滑油膜。
无法减少轴承内部的摩擦和磨损,润滑不足,轴承温度升高。
当不同型号的油脂混合时可能发生化学反应,造成油脂变质,结块,降低润滑效果。
加注油脂的过程中落入灰尘,造成油脂污染,会导致油脂劣化破坏轴承润滑,进而使轴承损坏。
因此应选用合适的油脂,检修中对轴承清洗,对加油油嘴进行检查疏通,不同型号的油脂不能混合使用,若更换其他型号的油脂时,应先将原来的油脂清理干净;运行维护中定期加油,油脂应妥善保管做好防潮防尘措施。
3、确认不存在上面的问题后再检查联轴器找正情况和轴承质量。
联轴器的找正要符合工艺标准。
在设备维修检查时看轴承有无咬坏和磨损;检查轴承的内外圈,滚动体,保持架其表面光洁度以及有无裂痕和锈蚀,凹坑,过热变色等现象。
电动机轴承损坏原因分析
电动机轴承损坏原因分析
1.轴承内外圈、滚珠、夹持器等有裂口和剥皮,这是由于轴承与转轴协作不当,强力套入所致。
2.轴承的滚珠、夹持器、轴圈等部位变成蓝色,高速运转无散热力量,致使部件受热氧化等,是由于严峻缺油所造成的。
3.滚道产生凹状的珠痕,四周间隙不匀称,这是由于安装不正确或用锤直接敲打轴承外圈,及传动带过紧、联轴器安装不同心所造成的。
4.电动机转子和定子的气隙很小而造成剧烈震痕,是由于转子铁芯受热变形,导致定子与转子相摩擦,或者是轴承老化,幅向间隙增大,在重力的作用下,致使转子旋转时摩擦定子铁芯的底部,而增大轴承负荷所致。
5.轴承滚道金属成片状或粒状碎屑,自滚道表面脱落,这是由于轴承金属材料疲惫所致。
6.轴承锈蚀、消失麻点,是由于轴承密封不严水汽或酸碱等侵入轴承内部所致,或使用不合格的润滑脂。
7.轴承磨损过快、过早老化,这很可能是有灰尘、砂土、金属颗粒等杂质侵入轴承内而加快轴承磨损所致。
另外,还可能是轴承缺油及所用的润滑脂型号不对,长期过载运行,维护保养不良,以及轴承本身质量不良等造成的。
8.轴承自身老化。
一般规定:重载运行1万小时,中等负载运行1.5万小时,轻载运行2万小时,应考虑更换新轴承,以确保平安运行。
1。
轴承失效形式及原因分析
轴承基本知识
轴承基本知识
轴承基本知识
轴承基本知识
我们车间目前使用的主轴承就是轧机轴承:粗中轧 轧辊和红圈辊箱均使用四列圆柱滚子轴承,CCR辊箱 使用为调心滚子轴承。 圆柱滚子轴承内径与辊颈采用紧配合,承受径向力 ,具有负荷容量大、极限转速高、精度高、内外圈可 分离且可以互换、加工容易、生产成本低廉、安装拆 卸方便等优点。 调心滚子轴承具有双列滚子,外圈有1条共用球面 滚道,内圈有2条滚道 并相对轴承轴线倾斜成一个角 度。这种巧妙的构造使它具有自动调心性能, 因而 不易受轴与轴承箱座角度对误差或轴弯曲的影响,适 用于安装误差或轴 挠曲而引起角度误差之场合。该 轴承除能承受径向负荷外,还能承受双向作用的轴向 负荷。
三、轴承失效原因
三、轴承失效原因
1、氧化渣、水等异物侵入引起的失效: 轧辊轴承的精密度很高,它对异物十分敏感,氧化渣、水等异物侵入轴承内部是使其过早失 效的最主要原因。氧化渣、水等异物与润滑油脂综合后很容易产生油污泥,油污泥的形成和 堆积能造成许多不良后果,其一是油污泥占据了原来润滑油脂的很大一部分空间,因而迟缓 了热量的传递和散发;其二是硬而胶性的堆积物在滚动体和滚道上形成时,在工作负荷下滚 动体滚过这些沉积物时,工作应力将大为增加,结果是轴承的正常疲劳寿命减少:其三是保 持架发生疲劳,随之而来使整个轴承彻底损坏。 2、过载和过热引起的失效: 在安装正确,密封良好的情况下,过载是引起轴承失效的另一原因。众所周知,轧辊辊颈轴 承运行时承受着巨大而又频繁的冲击力,长时间超负荷过载运行,会引起轴承材料的过早疲 劳,最终将体现在滚道表面层材料的碎裂剥离(麻面),这种损坏开始时发生在某些小面积上 ,但扩展极快。通常由于过载而引起的损坏总是先从内圈开始。过热而引起的失效情况多发 生在高线转速相对较快的10架~14架。轧辊轴承上,产生过热的原因可大致归结为:(1)润 滑油脂变质以及不足或过量;(2)过载:(3)装配不良:(4)外部热源传导进来的热量。轴承 长期过热会引起表面变色(暗蓝、蓝黑等)。过热不仅能使保持架严重氧化,同时也能使滚动 体、滚道退火软化,甚至咬死。
滚动轴承常见故障及原因分析
滚动轴承常见故障及原因分析1、故障形式(1)轴承转动困难、发热;(2)轴承运转有异声;(3)轴承产生振动;(4)内座圈剥落、开裂;(5)外座圈剥落、开裂;(6)轴承滚道与滚动体产生压痕。
2、故障原因分析(1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体与保持架,就是否有生锈、毛刺、碰伤与裂纹;检查轴承间隙就是否合适,转动就是否轻快自如,有无突然卡止的现象;同时检查轴径与轴承座孔的尺寸、圆度与圆柱度及其表面就是否有毛刺或凹凸不平等。
对于对开式轴承座,要求轴承盖与轴承底座接合面处与外座圈的外圆面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。
(2)装配不当。
装配不当会导致轴承出现上述的各种故障形式,以及以下的几种情况:A、配合不当轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。
一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机与离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。
旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,能在负荷作用下避免座圈在轴径与轴承座孔的配合表面上发生滚动与滑动。
滚动轴承常见故障原因分析但有时由于轴径与轴承座孔的尺寸测量不精确或配合面粗糙度未达到标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承转动困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。
不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。
同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。
但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。
轴承损坏原因分析
轴承负载过大,出现疲劳现象轴承缺失润滑轴承钢材质不达标轴承沾火过硬等原因在材质没有问题的情况下:内圈淬火过硬有很大的可能造成自现象大型初轧厂的热钢坯输送辊道采用长轴集中驱动、双列球面滚子轴承的支承。
在使用过程中发生轴承的外圈全部破碎及内圈断裂的恶性事故。
损坏轴承的安装部位见图2—11。
轴颈部位采用喷水冷却。
轴承型号是23144W33C3(相当于中国3G3003744Y),工作转速115r/min,使用硫磷型极压锂基脂N02进行集中给脂润滑。
损坏轴承所处的A14辊道已接近轧钢机,工作时冲击负荷很大,所输送的钢坯的最大质量约28000kg。
对轴承损坏情况进行检查:(1)轴承外圈全部破碎,内圈磨损十分严重,轴向已开裂,保持架断裂变形,圆锥滚动体严重扭曲;(2)轴承部位集中给脂系统工作正常,给脂管道畅通,该轴承总共运行6个月。
对其进行材料成分分析发现符合JISG4805轴承钢标准;对其进行宏观硬度检查表明轴承正常部位的硬度符合标准,而损伤严重的部位硬度下降;对其进行了损坏面表层材料分析,结果,表层边缘是一层白壳层,该区由淬火细小结晶状马氏体和粒状碳化物及少量残余奥氏体组成。
在白亮层下面是一层颜色较深的过渡区,它由回火屈氏体、粒状碳化物和少量残余奥氏体组成。
过渡区下面是回火隐晶马氏体、颗粒状碳化物和少量残余奥氏体,但也有少量回火屈氏体。
经显微硬度和扫描电镜高倍检验,表面是高温回火组织。
外圈有大量的表面龟裂,微裂纹是从表面淬火层开始,有的微裂纹已穿过过渡区,并汇合成一条较大的裂纹,显而易见,这种二次淬火裂纹是断裂的起源。
二次淬硬层厚度不均匀,大约从0.05~0.2mm,说明表面受热不均,二次淬硬层质脆,在冲击负荷和高接触应力下容易剥落。
经检查在外滚道中部的非负荷区发现材料表面有类似疲劳剥落的凹坑,在该区并不会发生滑动和滚动的摩擦,不存在金属的疲劳剥落,进一步检查,在这些凹坑中有氯离子和金属钠离子,根据现场使用条件判断,是属冷却水进入轴颈部位而形成的腐蚀孔。
18种常见轴承损坏原因分析
润滑剂的选择
油润滑 作为选择时的参考,下图示出了润滑油的温度与粘度的关 系。 润滑油粘度与温度的关系
润滑剂的选择
油润滑 作为选择时的参考,下表示出了轴承在使用条件下选择润 滑油的例子。
运转温度 转 速 轻载荷或通载荷 重载荷或冲击载荷
-30~0℃
容许转速以下
容许转速50%以下
ISOVG 15,22,32(冷冻机油)
采用测声器对会发出异常音 和不规则音,用测声器能够分辨。
运转检查与故障处理
(2) 轴承的振动 运转中的机器,通过振动测定,便可得知轴承有否异常。 采用特殊的振动测量器(频率分析器等)可测量出振动的大 小 , 通过频率分布可推断出异常的具体情况。测得的数值
轴承失效形式比例
14
%
污
染
轴承是精密零件,如果轴承及润滑脂收到污染,将无法有效运行。此外,由于已经注 有润滑脂的免维护密封轴承只占有所有使用轴承中的一小部分,所以所有提前失效的 轴承中至少有 14%是由于污染问题造成的 SKF 拥有卓越的轴承制造和设计能力,可 以为各种恶劣的工作环境提供密封解决方案。
滚子轴承的运行轨迹也一样,(I) 是对在内圈旋转载荷时所使用的圆柱滚子轴承 正确加上径向载荷时的外圈运行轨迹。 (J) 是内圈与外圈相对倾斜, 轴的挠度较 大时的运行轨迹。滚道面的运行轨迹 , 在其纵向上产生浓淡 , 在负载圈的出人口 处 , 运行轨迹是倾斜的。双列圆锥滚子轴承是内圈旋转。 K 表示只负担径向载荷 时的外圈的运行轨迹。 L 表示只受轴向载荷时的轨迹。在内圈与外圈相对倾斜 , 只承受径向载荷的情况时,其运行轨迹偏离在两列轨道面180゜的位置上(m)。
34
%
疲
劳
如果机器出现过载、使用或维护不当,轴承都会收到影响,导致提前失效的轴承中有 34%是由于疲劳引起的。由于轴承在维护不当或应力过大时会发出“提前警告” ,可 以用状态监控设备进行检测和分析,因此突然的或计划外的失效是可以避免的。
轴承损坏原因及解决的方法
轴承损坏原因及解决的方法轴承损坏原因及解决的方法造成轴承损坏五大原因:润滑不良;游隙不适当;出现生锈、擦伤影响轴承的精度;表面变形;轴承载荷过大。
那么有什么办法可以解决吗?下面和大家一起剖析轴承损坏的六大原因及解决方法。
根据有关数据显示,轴承因为润滑不良而损坏占轴承损坏总数的百分之四十,所以一定要选择合适的润滑油,紧记不要让异物进入了润滑油内。
如果发现轴承箱的刚性不均的时候就一定要检查轴和轴承箱的精度,不要出现因为游隙不适当造成轴承损坏。
轴承出现生锈或擦伤都会造成轴承损坏,防止轴承生锈要涂润滑油,防止擦伤就要小心安装的不当。
轴承的表面变形是因为使用不良,载荷过大的轴承没特别小心,造成安装到位而损坏轴承。
轴承在安装的时候不小心进水或异物侵入,也会造成安装到位而损坏轴承,这时候就要改善密封装置。
想提高轴承的效益,那么就要做到轴承的润滑适当;轴承没有游隙;轴承不出现生锈或擦伤;对载荷过大的轴承安装时要特别小心;不要损坏轴承善密封装置。
轴承疲劳损坏的原因及解决办法2017-03-22 20:05 | #2楼一、轴承疲劳损坏的现象分析:1、轴承从开始使用导第一个材料疲劳的现象出现的这个期间长短是和轴承的转速,负载的大小,润滑干净度有关系的。
2、疲劳是负载表面下剪应力周期性出现所形成的结果,经过一段时间后,这些剪应力便引发细小的裂颅,然后渐渐延伸到表面,当滚动件经过这些裂颅后,便有些裂块脱落,形成所谓“剥皮现象”,然后随着剥皮的情况继续扩大,轴承即损坏不堪使用。
3、以上是轴承疲劳的描述,它最初是发生在表面以下的,虽然最初的剥皮情况通常非常轻微,但是随着应力的增加和裂块的增多,导致剥皮面积的蔓延,这种破坏形势通常维持很长一段时间,其明显可见的阶段是在噪音及震动增加的时候。
4、自行车轴承在损坏的最初级阶段,可能仅是转动时难以感觉的,而后期发现转动时有麻点感,而一但出现麻点感,轴承并不是不能使用,只是在每次前进珠子和轴碗和轴档都发生更大的磨损和更严重的损坏,由于自行车是一种低速高极压类型的轴承方式,所以即使表面剥皮现象严重,也不是不堪使用的,而是无形无声中消耗你的动力,而你的感觉可能仅是觉得车子不知道为什么不好骑不顺了。
滚动轴承常见故障及其原因分析
滚动轴承常见故障及原因分析1.故障形式(1)轴承旋转困难、发热;(2)轴承运行时发出异常声音;(3)轴承振动;(4)内圈剥落、开裂;(5)外圈剥落、开裂;(6)轴承滚道和滚动体的压痕。
2.故障原因分析(1)装配前检查不仔细,轴承在装配前要先清洗并认真检查轴承的内外座圈、滚动体和保持架,是否有生锈、毛刺、碰伤和裂纹;检查轴承间隙是否合适,转动是否轻快自如,有无突然卡止的现象;同时检查轴径和轴承座孔的尺寸、圆度和圆柱度及其表面是否有毛刺或凹凸不平等。
对于对开式轴承座,要求在轴承盖与轴承座结合面与外圈外圆表面之间,应留出0.1mm~0.25mm间隙,以防止外座两侧“瓦口”处出现“夹帮”现象导致的间隙减小,磨损加快,使轴承过早损坏。
(2)装配不当。
装配不当会导致轴承出现上述故障形式,以及以下的几种情况:A.合作不当轴承内孔与轴的配合采用基孔制,轴承外圆与轴承座孔的配合采用基轴制。
一般在正常负荷情况下工作的离心泵、离心机、减速机、电动机和离心式压缩机的轴与轴承内座圈,采用j5,js5,js6,k5,k6,m6配合,轴承座孔与轴承外座圈采用j6,j7配合。
旋转的座圈(大多数轴承的内座圈为旋转座圈,外座圈不为旋转座圈,少部分轴承则相反),通常采用过盈配合,它可以防止座圈在负载作用下在轴径和轴承座孔的配合面上滚动和滑动。
然而,有时轴径和轴承座孔的测量不准确,或配合面粗糙度不符合标准要求,造成过大的过盈配合,使轴承座圈受到很大挤压,从而导致轴承本身的径向间隙减少,使轴承旋转困难、发热,磨损加剧或卡死,严重时会造成轴承内外座圈在按装时开裂。
不旋转座圈常采用间隙或过盈不大的配合,这样不旋转座圈就有可能产生微小的爬动,而使座圈与滚动体的接触面不断更换,座圈滚道磨损均匀。
同时也可以消除轴因热伸长而使轴承中滚动体发生轴向卡住的现象。
但过大的间隙配合,会使不旋转座圈随滚动体一同转动,致使轴(或轴承座孔)与内座圈(或外座圈)发生严重磨损,而出现摩擦使轴承发热、振动。
轴承的主要失效形式和处理方法
轴承的主要失效形式和处理方法滚动轴承在使用过程中由于本身质量和外部条件的原因,其承载能力,旋转精度和减摩能性能等会发生变化,当轴承的性能指标低于使用要求而不能正常工作时,就称为轴承损坏或失效,轴承一旦发生损坏等意外情况时,将会出现其机器、设备停转,功能受到损伤等各种异常现象。
轴承坏了,要先分析出坏的原因,然后再找到解决办法。
因此需要在短期内查处发生的原因,并采取相应措施。
一、轴承的损坏的原因轴承是损耗型的零件,只要一用就肯定会损,只是要积累到一定的程度才表现出来,也就是要到一定的量才坏。
当然,滚动轴承损坏的情况比一般机械零件的损坏要复杂得多,滚动轴承损坏的特点是表现形式多,原因复杂,轴承的损坏除了轴承设计和制造的内在因素外,大部分是由于使用不当,例如:选型不适合、支承设计不合理,安装不当,润滑不良,密封不好等外部因素引起的。
1、发生金属锈蚀。
如果缺少润滑的话,很容易被空气氧化,生锈。
防止轴承的锈蚀,不要用水泡。
轴承是精钢做的,但也怕水。
用手拿取轴承时,要充分洗去手上的汗液,并涂以优质矿物油后再进行操作,在雨季和夏季尤其要注意防锈。
轴承自然锈蚀磨损的具体原因主要有以下几种:①氧化磨损。
其摩擦外表上的微小峰谷互相挤压,使脆性表层逐渐脱落而磨损。
轴承相对运动外表上的微小峰谷与空气中的氧化合成而生成与基体金属接合不牢的脆性氧化物,该氧化物在摩擦中极易脱落,发生的磨损称为氧化磨损。
②摩擦生热磨损。
当轴承在高速重负荷和润滑不良的情况下工作时,外表峰谷处由于摩擦而产生高温、接触点硬度及耐磨性下降,甚至发生粘连、撕裂现象。
这种磨损称为摩擦生热磨损。
③硬粒磨损。
如果轴承作相对运动时。
轴承运动外表组织不匀,存在硬颗粒,或轴承的运动外表间落入沙粒、摩屑、切屑等杂质,轴承在相对运动中,硬粒或杂质会使轴承外表擦伤甚至形成沟槽,这种磨损称为硬粒磨损。
汽车轴承④点蚀磨损。
齿轮、轴承等滚动接触外表,相对过程中周期性地受到很大的接触压力,长时间作用,金属外表发生疲劳现象,使得轴承外表上发生微小裂纹和剥蚀,这种磨损称为点蚀磨损。
轴承疲劳损坏的原因及解决办法
些培林在装入时就已经发生了光滑铛碗表面的
敲击硬伤。
为了让培林卡紧轴心,防止轴套摩擦现象的
产生(这种现象会在高速转动机械上瞬间产生高 温,造成润滑油烧干甚至导致热涨卡死,造成停
机),所以轴承的内铛和外碗(工业上也称轴承
箱)使用一种过盈现象,通俗的说就是轴比内铛 大,或者外碗比装入物大,这种过盈需要很大的
4)、自行车轴承在损坏的最初级阶段,可能
仅是转动时难以感觉的,而后期发现转动时有麻 点感,而一但出现麻点感,轴承并不是不能使用,
只是在每次前进珠子和轴碗和轴档都发生更大
的磨损和更严重的损坏,由于自行车是一种低速
高极压类型的轴承方式,所以即使表面剥皮现象
严重,也不是不堪使用的,而是无形无声中消耗 你的动力,而你的感觉可能仅是觉得车子不知道
皮现象,然后随着剥皮的情况继续扩大,轴承即
损坏不堪使用。
3)、以上是轴承疲劳的描述,它最初是发生
在表面以下的,虽然最初的剥皮情况通常非常轻 微,但是随着应力的增加和裂块的增多,导致剥
在原地地等着你。从未离去。天各一方,自此不相往来
皮面积的蔓延,这种破坏形势通常维持很长一段
时间,其明显可见的阶段是在噪音及震动增加的 时候。
但是这样油料的粘稠度仅 110,对高负荷,极压,
往复运动的能力都差,而根据自行车轴的使用情 况,这应该是一种低转速,高极压(因为大量压 力仅集中在几个细小的培林上,且冲击跳跃时会 产生更大压力),所以我们后来选择了 SKF 的 LGEP-2 合成锂基脂,而这种虽然也贵(155 元),
在原地地等着你。从未离去。天各一方,自此不相往来
但是其粘度达到 200,高负荷,高防水,高防锈,
高抗震,虽然在低扭距摩擦指标上不如 LGMT-2, 但是却完全适合自行车的前后中轴和车首碗组
车用轴承损坏的形式与原因
李
金
建
盟
鸿
过高 ,致 使滚动 体过 热而硬 轮 边 漏 油 许 多 车 辆 在 度 显著 降低 ,加 速磨损 。此 强 制 保 养 或 更 换 轮 边 齿
力过高 、 应力集 中等 。口
( 者单位 : 作 军事 交通 学院、5 8 部 队) 9 86
质或 油液不足 , 造成 轮边 油封损 坏。口
( 者单位 :5 8 部 队) 作 6 12
2 l . 7l - 车运用 0 0年 第 l汽 t
精度 和运动 精度 尚好 ,应检 生。一般为 轮边 齿轮 油加 查硬 度是否 尚好 , 方法是 : 得 过 多 , 过 了规 定 油平 其 超 用锉 刀锉削 轴承外 圈圆角部 面 , 辆运 行 中轮边 温度 车 分 , 不动 , 明硬 度 尚好 , 升 高 ,油 液膨 胀量 较 大 , 锉 说 轴承仍 可 以使 用 ; 能锉 动 , 说 轮边 内腔 压力 较 高 , 油 使 明轴 承 已退火 ,不 能继续使 液 经油 封 压 出 , 成 轻微 形
和含 有水分 , 或密 封不严进水 而造成 的。轴承工 作表面 的 缝 隙 中 , 油前 , 放 最好 先让 车 辆 行 驶 一 下 , 油 温 升 使
锈蚀 , 将会过早 地 出现麻点 和剥 离 。 锈蚀生成 物及泥水 、 润 高 ; 油 时, 车轮旋 转 , 放 油孔在 最 下方 位置 , 放 将 至 同
高或 中 、 大颗粒 的杂质过多 。轴承与轴 颈磨合不 良。② 擦 口有 油 流 l 并不 意 味着 油 已加 满 , 时要 等上 3 5 出, 这  ̄
轴承损坏原因分析
轴承损坏的常见类型
疲劳剥落
磨损
轴承在运转过程中,由于长期承受交变载 荷的作用,在轴承表面出现疲劳裂纹并逐 渐扩展,最终导致轴承表面剥落。
轴承在运行过程中,由于尘埃、金属颗粒 等杂质侵入,或者润滑不良,导致轴承表 面磨损,影响轴承的正常功能。
诊断性试验的局限性在于试验条件较 为复杂,需要专业的设备和操作人员。
诊断性试验能够较为准确地模拟轴承 的实际工况,提供较为准确的诊断结 果。
05
轴承损坏的修复与更换
修复方法的选择
根据损坏程度选择修复方法
对于轻微磨损或损伤,可以选择局部修复;对于严重磨损或损坏,需要更换轴 承或修复套圈。
根据轴承类型选择修复方法
油样分析
01
油样分析是通过分析轴承润滑油中的磨损颗粒来判断轴承是 否出现故障的方法。
02
油样分析能够提供轴承磨损的具体信息,如磨损部位、程度 等。
03
油样分析的局限性在于需要定期取样、分析,无法实时监测 轴承状态。
诊断性பைடு நூலகம்验
诊断性试验是通过模拟轴承在不同工 况下的运转情况来判断其是否正常的 方法。
正确的安装和拆卸方法
使用适当的安装工具
01
避免使用不合适的工具或蛮力安装,以免损坏轴承或相关部件。
确保轴承安装到位
02
确保轴承安装正确,无倾斜或偏心,以免在运行过程中产生额
外的载荷或摩擦。
使用正确的拆卸方法
03
使用适当的拆卸工具,按照正确的顺序逐步拆卸,避免损坏轴
承或相关部件。
保持适当的润滑
选择合适的润滑剂
轴承失效的原因及其对应的损坏形式
(5) 润滑油等级或密度不对
(6) 间断供油
(1) 过热软化
(2) Байду номын сангаас伤、咬合
(2)、(3)、(5)粗糙化、起麻点、 剥落
(4)金属涂抹
(7) 保持架破碎
(8)
3.安装不正确
(1) 预压过大
(2) 调整过紧
(3) 强装
(4) 外圈与壳体配合过松
(5) 轴与轴承内孔配合过松
(6) 装配过紧
1.产品失效
30.1
23.4
(1) 质量低劣
14.4
10.7
(2) 计划、设计和计算的错误及工艺缺陷
13.8
9.1
(3) 轴承各部件材料使用不当
1.9
3.6
2.运行失误
65.9
69.6
(1) 操作失误、维护不当和监控装置失效
37.4
39.1
(2) 连续运行中磨损
28.5
30.5
3.外界影响
4.0
7.0
轴承失效的原因及其对应的损坏形式
失效原因
具体案例原因
与原因对应的损坏形式
1.润滑油污染
(1) 水汽
(2) 磨料
(3) 外界物质(大颗粒尘土,金属 屑)
(1) 腐蚀(1)+(2)划伤、 擦伤
(2) 发灰、变色
(3) 磨损、起麻点、剥落
2.润滑不正确
(1) 完全没有润滑油
(2) 供油量太少
(3) 润滑油种类不对
(3) 速度和载荷过大
(4) 振动使滚动体在不动的座圈上 前后滑动
(1) 座圈压痕,座圈和滚动体 破裂
(2) 座圈破碎
(3) 座圈表面片状剥落
滚动轴承常见的失效形式及原因
滚动轴承常见的失效形式及原因分析滚动轴承在使用过程中由于很多原因造成其性能指标达不到使用要求时就产生了失效或损坏.常见的失效形式有疲劳剥落、磨损、塑性变形、腐蚀、烧伤、电腐蚀、保持架损坏等;一,疲劳剥落疲劳有许多类型,对于滚动轴承来说主要是指接触疲劳;滚动轴承套圈各滚动体表面在接触应力的反复作用下,其滚动表面金属从金属基体呈点状或片状剥落下来的现象称为疲劳剥落;点蚀也是由于材料疲劳引起一种疲劳现象,但形状尺寸很小,点蚀扩展后将形成疲劳剥落;疲劳剥落的形态特征一般具有一定的深度和面积,使滚动表面呈凹凸不平的鳞状,有尖锐的沟角.通常呈显疲劳扩展特征的海滩装纹路.产生部位主要出现在套圈和滚动体的滚动表面.轴承疲劳失效的机理很复杂,也出现了多种分析理论,如最大静态剪应力理论、最大动态剪应力理论、切向力理论、表面微小裂纹理论、油膜剥落理论、沟道表面弯曲理论、热应力理论等;这些理论中没有一个理论能够全面解释疲劳的各种现象,只能对其中的部分现象作出解释;目前对疲劳失效机理比较统一的观点有:1、次表面起源型次表面起源型认为轴承在滚动接触部位形成油膜的条件下运转时,滚动表面是以内部次表面为起源产生的疲劳剥落;2、表面起源型表面起源型认为轴承在滚动接触部位未形成油膜或在边界润滑状态下运转时,滚动表面是以表面为起源产生的疲劳剥落;3、工程模型工程模型认为在一般工作条件下,轴承的疲劳是次表面起源型和表面起源型共同作用的结果;疲劳产生的原因错综复杂,影响因素也很多,有与轴承制造有关的因素,如产品设计、材料选用、制造工艺和制造质量等;也有与轴承使用有关的因素,如轴承选型、安装、配合、润滑、密封、维护等;具体因素如下:A、制造因素1、产品结构设计的影响:产品的结构设计是根据使用性能目标值来确定的,这些目标值如载荷容量、寿命、精度、可靠性、振动、磨损、摩擦力矩等;在设计时,由于各种原因,会造成产品设计与使用的不适用或脱节,甚至偏离了目标值,这种情况很容易造成产品的早期失效;2、材料品质的影响:轴承工作时,零件滚动表面承受周期性交变载荷或冲击载荷;由于零件之间的接触面积很小,因此,会产生极高的接触应力;在接触应力反复作用下,零件工作表面将产生接触疲劳而导致金属剥落;就材料本身的品质来讲,其表面缺陷有裂纹、表面夹渣、折叠、结疤、氧化皮和毛刺等,内部缺陷有严重偏析和疏松、显微孔隙、缩孔、气泡、白点、过烧等,这些缺陷都是造成轴承早期疲劳剥落的主要原因;在材料品质中,另一个主要影响轴承疲劳性能的因素是材料的纯洁度,其具体表现为钢中含氧量的多少及夹杂物的数量多少、大小和分布上;3、热处理质量的影响:轴承热处理包括正火、退火、渗碳、淬火、回火、附加回火等;其质量直接关系到后续的加工质量及产品的使用性能;4、加工质量的影响:首先是钢材金属流线的影响;钢材在轧制或锻造过程中,其晶粒沿主变形方向被拉长,形成了所谓的钢材流线纤维组织;试验表明,该流线方向平行于套圈工作表面的与垂直的相比,其疲劳寿命可相差倍;其次是磨削变质层;磨削变质层对轴承的疲劳寿命与磨损寿命有很大的影响;变质层的产生使材料表面层的组织结构和应力分布发生变化,导致表面层的硬度下降、烧伤,甚至微裂纹,从而对轴承疲劳寿命产生影响; 受冷热加工条件及质量控制的影响,产品在加工过程中会出现质量不稳定或加工误差,如热加工的材料淬、回火组织达不到工艺要求、硬度不均匀和降低,冷加工的几何精度超差、工作表面的烧伤、机械伤、锈蚀、清洁底低等,会造成轴承零件接触不良、应力集中或承载能力下降,从而对轴承疲劳寿命产生不同程度的影响;B、使用因素使用因素主要包括轴承选型、安装、配合、润滑、密封、维护等; 不正确的安装方法很容易造成成轴承损坏或零件局部受力产生应力集中,引起疲劳;过大的配合过盈量容易造成内圈滚道面张力增加及零件抗疲劳能力下降,甚至出现断裂; 润滑不良会引起不正常的摩擦磨损,并产生大量的热量,影响材料组织和润滑剂性能;如果润滑不当,即便选用再好的材料制造,加工精度再高,也起不到提高轴承寿命的效果; 密封不良容易使杂质进入轴承内部,既影响零件之间的正常接触形成疲劳源,又影响润滑或污染润滑剂; 根据疲劳产生的机理和主要影响因素,可以有针对性地提出预防措施;如对表面起源损伤引起的疲劳,可以通过对零件表面进行表面强化处理,对次表面起源型疲劳可以通过改善材料品质等措施;而提高零件加工质量尤其是零件表面质量、提高使用质量、控制杂质流入轴承内部、保证润滑质量等措施对预防和延缓疲劳都有十分重要的意义;二、表面塑性变形表面塑性变形主要是指零件表面由于压力作用形成的机械损伤;在接触表面上,当滑动速度比滚动速度小得多的时候会产生表面塑性变形; 表面塑性变形分为一般表面塑性变形和局部表面塑性变形两类;A、一般表面塑性变形:是由于粗糙表面互相滚动和滑动,同时,使粗糙表面不断产生塑性碰撞所造成,其结果形成了冷轧表面,从外观上看,这种冷轧表面已被辗光,但是,如果辗光现象比较严重,在冷轧表面上容易形成大量浅裂纹,浅裂纹进一步发展可能在粗糙表面区域区导致显微剥落,但这种剥落很浅,只有几个微米,它能够覆盖很宽的接触表面;根据弹性流体动压润滑理论,一般表面塑性变形产生的原因是由于两个粗糙表面直接接触,其间没有形成承载的弹性流体动压润滑膜.因此,当油膜润滑参数小于一定值时,将产生的一般表面塑性变形.一般油膜润滑参数值越小表面塑性变形越严重.B、局部表面塑性变形:局部表面塑性变形是发生在摩擦表面的原有缺陷附近;最常见的原有缺陷,如压坑痕、磕碰伤、擦伤、划伤等;1、压坑痕:压坑痕是由于在压力作用下硬质固体物侵入零件表面产生的凹坑痕现象; 压坑痕的形态特征是:形状和大小不一,有一定深度,压坑痕边缘有轻微凸起,边缘较光滑;硬质固体特的来源是轴承零件在运转中产生的金属颗粒、密封不良造成轴承外部杂质侵入;压坑痕产生的部位主要在零件的工作表面上; 预防压坑痕的措施主要有:提高零件的加工精度和轴承的清洁度、改善润滑、提高密封质量等;2、磕碰伤:磕碰伤是由于两个硬质特体相互撞击形成的凹坑现象;磕碰伤的形态特征视两物体形状和相互撞击力的不同其形状和大小不一,但有一定深度,在其边缘处常有突起;磕碰伤主要是操作不当引起的;产生部位可以在零件的所有表面上;预防磕碰伤的措施主要有:提高操作者的责任心、规范操作、改进产品容器的结构和增加零件的保护措施等;3、擦伤:擦伤是两个相互接触的运动零件,在较大压力作用下因滑动摩擦产生的金属迁移现象;严重时可能伴随烧伤的出现;擦伤的形状不确定,有一定长底和宽度,深度一般较浅,并沿滑动或运动方向由深而浅;擦伤可以在产品制造过程中产生也可以在使用过程中产生; 轴承制造成过程中的擦伤预防措施与磕碰伤的预防措施相同;使用中的擦伤预防措施主要是从防止“打滑”方面考虑,改进产品内部结构、提高过盈配合量、调整游隙、改善润滑、保证良好接触状态等;4、划拉伤划拉伤是指硬质和尖锐物体在压力作用下侵入零件表面并产生相对移动后形成的痕迹; 划伤一般呈线型状,有一定深度,宽度比擦伤窄,划伤的伤痕方向是任意的,长度不定;产生部位主要在零件的工作表面和配合表面上;而拉伤只发生在轴承内径过盈配合面上,伤痕方向一般与轴线平行,有一定长度、宽度和深度,并成组出现;划伤可以在轴承制造过程中产生也可在使用中产生;而拉伤只发生在轴承安装拆卸过程中; 预防轴承制造过程中的划伤与预防磕碰伤的措施相同;预防使用中划伤与预防压坑痕的措施基本相同; 预防拉伤的措施是严格安装拆卸规程、保证配合面的清洁、安装时在配合面上适当润滑等;综上所述,预防表面塑性变形的措施是要正确选用轴承、增强材料的耐磨性,保证润滑的有效性、注意安装方法、提高轴承密封装臵的密封性等;三、磨损:在力的作用下,两个相互接触的金属表面相对运动产生摩擦,形成摩擦副;磨擦引起金属消耗或产生残余变形,使金属表面的形状、尺寸、组织或性能发生改变的现象称为磨损;磨损过程包含有两物体的相互作用、黏着、擦伤、塑性变形、化学反应等几个阶段;其中物体相互作用的程度对磨损的产生和发展起着重要的作用; 磨损的基本形工有:疲劳磨损、黏着磨损、磨料粒磨损、微动磨损和腐蚀磨损等; 产生磨损的主要原因: A、异物通过了密封不良的装臵或密封圈进入了轴承内部;B、润滑不当;如润滑油中的杂质未过滤干净、润滑方式不良、润滑剂选用不当、润滑剂变质等; C、零件接触面上的材料颗粒脱离,D、锈蚀;如,由于轴承使用温度变化产生的冷凝水、润滑剂中添加剂的腐蚀性特质等原因形成的锈蚀; 实际中多数磨损属于综合性磨损,预防对策应根据磨损的形式和机理分别采取措施;对于微动磨损,可以采用小游隙或过盈配合来减少使用过程中的微动磨损;可在套圈与滚动体之间采用稀润滑剂润滑或分别包装来减少运输过程的微动磨损;另外,轴承应放在无振动环境下保管,或将轴承内外圈隔离存放可以防止保管过程中产生的微动磨损; 对于黏着磨损可以采取提高加工精度、增强润滑效果等措施来解决; 对于磨料粒磨损,可以采用表面强化处理、表面润滑处理如渗硫、磷化、表面软金属膜涂层等、改善轴承密封结构、提高零件加工精度、保证润滑油过滤质量、减少制造和使用过程中对表面的损伤等方法来解决; 对于腐蚀磨损,应减少轴承使用环境中腐蚀物质的侵入、对零件表面进行耐腐蚀处理或采用耐腐蚀材料制造产品等手段来解决;另外,还可以从产品结构设计和制造的角度进行改进,如提高零件的加工精度、减少磨削加工中产生的变质层、保证弹性流体动压润滑膜等实现预防磨损的目的;四、腐蚀:金属与其所处环境中的物质发生化学反应或电化学反应变化所引起的消耗称为腐蚀;金属腐蚀的形式多种多样,就金属与周围介质作用的性质来分可以分为化学腐蚀和电化学腐蚀两类 ;化学腐蚀是由于金属与周围介质之间的纯化学作用引起的;其过程中没有电流产生,但有腐蚀物质产生;这种物质一般都覆盖在金属表面上形成一层疏松膜.化学反应形成的腐蚀机理比较简单,主要是物体之间通过接触产生了化学反应,如金属在大气中与水产生的化学反应形成的腐蚀又称为锈蚀电化学腐蚀是由于金属与周围介质之间产生电化学作用引起的;其基本特点是在腐蚀的同时又有电流产生;电化学反应的腐蚀机理主要是微电池效应; 就滚动轴承而言,产生腐蚀的主要原因有: A、轴承内部或润滑剂中含有水、碱、酸等腐蚀物质 B、轴承在使用中的热量没有及时释放,冷却后形成水分 C、密封装臵失效 D、轴承使用环境湿度大 E、清洗、组装、存放不当腐蚀产生部位:零件各表面都会有;按程度有腐蚀斑点或腐蚀坑洞,斑点和蚀坑一般呈零星或密集分布,形状不规则,深度不定,颜色有浅灰色、红褐色、灰褐色、黑色; 对于金属材料来说,消除腐蚀是比较困难的,但可以减缓腐蚀的发生,防止轴承与腐蚀物质接触,可以通过合金化,表面改性等方法提高耐腐蚀能力,使得金属表面形成一层稳定致密与基体结合牢固的钝化膜;五、蠕动:受旋转载荷的轴承套圈,如果选用间隙配合,在配合表面上会发生圆周方向的相对运动,使配合面上产生磨擦、磨损、发热、变形,造成轴承不正常损坏;这种配合面周向的微小滑动称为蠕动或爬行; 蠕动形成的机理是当内圈与轴配合过盈量不足时,在内圈与轴之间的配合面上因受力产生弹性变形而出现微小的间隙,造成内圈与轴旋转时在圆周方向上的不同步、打滑,严重时在压力作用下发生金属滑移;在外圈与壳体也同样会出理类似的情况; 蠕动形貌特征在一些方面具有腐蚀磨损和微动磨损的某些特征;蠕变在形成过程中也有一些非常细小的磨损颗粒脱落并立即局部氧化,生成一种类似铁锈的腐蚀物;其区别主要根据它们的位臵和分布来判断,如果零件没有受到腐蚀又出现了褐色锈斑,锈斑的周围常常围绕着一圈碾光区,出现的部位又在轴承的配合表面上,那么可能就是蠕动;发生蠕动的配合面上,或出现镜面状的光亮色,或暗淡色,或咬合状,蠕动部位与零件原表面有明显区别; 在轴承的端面由于轴向压紧力不足;或悬臂轴频繁挠曲,运转一定时间后也会出现蠕动的特征;产生蠕动的主要原因是内,外圈与轴或轴承座的配合过盈量不足,或载荷方向发生了变化; 预防的措施:采用过盈配合并适当提高过盈量,在采用间隙配合的场合的场合可用黏结剂将两个配合面固定或沿轴或轴承座的轴向方向将轴承紧固;六烧伤:轴承零件在使用中受到异常高温的影响,又得不到及时冷却,使零件表面组织产生高温回火或二次淬火的现象称为烧伤; 烧伤产生的主要原因是润滑不良、预载荷过大、游隙选择不当、轴承配臵不当、滚道表面接触不良、应力过大等因素所致;如: A、在轴向游动轴承中,如果外圈配合的过紧,不能在外壳孔中移动;B、轴承工作中运转温度升高,轴的热膨胀引起很大的轴向力,而轴承又无法轴向移动时; C、由于润滑不充分,或润滑剂选用不合理、质量问题、老化和变质等; D、内外圈运转温度差大,加上游隙选择不当,外圈膨胀小内圈大呈过盈导致轴承温度急剧升高;E、轴承承受的载荷过大和载荷分布均匀,形成应力集中; F、零件表面加工粗糙,造成接触不良或油膜形成困难; 烧伤的形貌特征可以根据零件表面的颜色不同来判断;轴承在使用中由于润滑剂、温度、腐蚀等原因;零件表面会发生变化,颜色主要有淡黄色、黄色、棕红色、紫蓝色及蓝黑色等,其中淡黄色、黄色、棕红色属于变色,若出现紫蓝色或蓝黑色的为烧伤;烧伤容易造成零件表面硬度下降或出现微裂纹; 烧伤产生的部位主要发生在零件的各接触表面上,如圆锥滚子轴承的挡边工作面、滚子端面、应力集中的滚表面等;烧伤的预防可根据烧伤产生的原因有针对性地采取措施;如正确选用轴承结构和配臵、避免轴了砂承受过大的载荷、安装时采用正确的安装方式防止应力集中、保证润滑效果等;七、电蚀:电蚀是由电流放电引起,致使轴承零件表面出现电击的伤痕,此种损伤称为电蚀;在两零件接触面间一般存在一层油膜,该油膜一定有的绝缘作用,当有电流通过轴承内部时,在两面三刀零件接触表面形成电压差,当电压差高到足以击穿绝缘层时就会在两零件接触表面处产生火区放电,击穿油膜放电,产生高温,造成局部表面的熔融,形成弧凹状或沟蚀;受到电蚀的零件,其金属表面被局部加热和熔化,在放大镜下观察损伤区域一般呈现斑点、凹坑、密集的小坑,有金属熔融现象,电蚀坑呈现火山喷口状;电蚀会使零件的材料硬度下降,并加快磨损发生速度,也会诱发疲劳剥落; 预防电蚀的措施是在焊接或其他带电体与轴承接触时加强轴承的绝缘或接地保护,防止电荷的聚集并形成高的电位差,避免放电现象产生;防止电流与轴承接触;八、裂纹和缺损:当轴承零件所承受的应力超出材料的断裂极限应力时,其内部或表面便发生断裂和局部断裂,这种使材料出现不连续或断裂的现象称为裂纹; 在材料表面或表层下有一种貌似毛发的细微裂纹称为发纹;当发纹扩展到一定程度,使得部分材料完全脱离零件基体的现象称为断裂; 裂纹一般呈线状,方向不定,有一定长度和深宽度,有尖锐的根部和边缘;裂纹有内部裂纹和表面裂纹之分,也有肉眼可见和不可见两种形式,对于肉眼不可见裂纹需要采用无损检测的方法进行观察;发纹一般呈细线状,方;向沿钢材轧制方向断续分布,有一定长度和深度,有时单条有时数条出现; 裂纹产生的原因较为复杂,影响因素很多,如原材料、锻造、冲压折叠、热处理、磨削、局部过大的应力等;发纹形成的原因是钢材在冶炼过程中产生的气泡或夹杂,经轧制变形后存在于材料表层;对于肉眼不可见裂纹需要采用无损检测的方法进行观察; 裂纹的预防措施主要有,在制造方面应控制原材料缺陷如非金属夹杂、表面夹渣、折叠、显微孔隙、缩孔、气泡等;控制加工应力如热处理淬火时产生的内应力热应力和组织应力、磨削应力、冲压应力等;在使用方面注意轴承安装过程中的非正常敲撞击以及安装不良造成的局部应力过大等;另外,还要保证润滑,增强密封效果,控制外部杂质流入,避免轴承与腐蚀性物质接触等;九、保持架损坏:当滚动体进入或离开承载区域时,保持架将受到带有一定冲击性质的拉压应力作用,尤其是滚子轴承的滚子产生倾斜时所受到的应力会更大;在这种应力的反复作用下,保持架的兜孔、过梁、铆钉会出现变形、磨损、疲劳,甚至断裂现象;另外,不正确的安装方式也会损坏保持架;保持架相对套圈的强度一般较弱尤其是冲压保持架,如果安装不得当,将安装力直接施加在保持架上,很容易造成保持架变形;冲压保持架制造过程中产生的应力过大也是造成保持架损坏的原因之一; 防止保持架损坏的措施可以从设计、制造、安装方面考虑;保持架在运转中受到的拉压应力是无法避免的;但提高保持架的强度可通过适当增加保持架过梁铆钉强度来解决;滚子产生倾斜可以通过提高制造和安装质量来解决;改善润滑条件有助于减少磨损;对冲压保持架制造过程中产生的应力可采用振动光饰等方法支除或减少应力;十、尺寸变化:轴承运转一定时间以后,会出现游隙减小或增大的现象;通过对零件尺寸检测可以发现轴承内、外圈或滚动体直径方向的尺寸发生了变化增大或减小,影响轴承的正常旋转精度;若没有了游隙,会出现摩擦磨损加剧、工作温度上升、甚至“卡死”等现象;若游隙变大,会出现振动或噪声增大、旋转精度降低、应力集中等情况;轴承内径增大还很可能出现“甩圈”现象;轴承零件在热处理过程中,保留了一定数量的残佘奥氏体,而奥氏体是一种不稳定相,随着时间或温度的变化,奥氏体将逐步转变为较稳定的马氏体组织,由于马氏体组织的体积大于奥氏体组织,因此,在转变过程中零件的体积将发生涨大;而马氏体组织自身也会产生分解,马氏体分解的结果会出现尺寸收缩的现象;轴承工作温度高对奥氏体的转变和马氏体的分解有促进作用;还有一种情况,零件在内应力释放过程中也会引起尺寸的改变;从预防或控制零件尺寸稳定性的角度考虑,可以在轴承零件热处理时对不稳定的残余奥氏体组织进行稳定化处理;另外,在使用中应保证轴承的使用温度低于轴承允许的工作温度,以防止尺寸出现较大的变化;十一、使用不当引起的损坏:轴承使用不当引起的损坏在轴承失效中占有很大的比例;轴承使用不当涉及轴承选型、轴承配臵、轴承支承结构、配合、安装、润滑、密封、维护保养等诸多方面;轴承失效与使用不当密不可分;十二、其他损伤:A、变色变色是由于轴承在运转过程中因发热引起的表面颜色变化;另外,在温度作用下润滑剂中的部分化学物质、磨损的金属粉末等杂质会黏附在零件表面上也会引起轴承零件颜色变化,这种变色又称污斑;表面颜色一般呈淡黄色、黄色、茶色、棕红色、紫蓝色及蓝黑色等,发热引起的变色一般没有深度;对于使用中的轴承若出现深度变色如紫蓝色或蓝黑色的则有可能形成了烧伤;零件腐蚀也会引起变色,但这类变色有一定深度;轴承零件在运转过程中,因摩擦会产生大量的热,若润滑不充分或散热条件差,热量得不到及时的冷却或扩散,热量的聚积使轴承温度很快升高,温度升高会使附着在轴承零件表面的油膜产生氧化现象,形成一种浅褐色的氧化制,沉积附着在轴承的表面上;但这种变色并不影响轴承的使用,所以允许存生;当轴承因安装不当如安装倾斜或润滑不良等原因使轴承处于一种极不正常的工作状态,引起温度的急速上升,此时轴承的局部温度有可能超过轴承零件的回火温度,甚至更高,并产生严重的变色如蓝黑色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14) 野蛮安装敲打造成的裂痕 此裂痕为崩裂的缺口,通常只发 生在一边。这是由于野蛮敲打通过滚 动体将力传递到套圈端面形成冲击力 所致。请勿直接敲打轴承环。
15) 过度的挤压造成的裂痕 裂痕通过全断面。这是由于轴承内 环的干涉配合太大或是在圆锥轴上过 度推进所造成的。
16) 微动腐蚀所造成的裂痕 在内环上为横断向,在外环上则为 圆周方向。是由于配合太松或是轴承 箱形状不佳引起的。
4) 异物所造成的凹痕 工作表面与滚子表面遍布凹痕, 可能是安装时带入异物或是润滑剂 异物以及周围环境等。轴承安装清 洗干净,使用干净的润滑剂并检查 油封。
5) 滚子端面擦伤 在滚子端面与引导挡边磨擦,产 生刻痕及变色。此情况是由于过大的 轴向负荷下滑动或润滑不足引起的。 此类损坏可选择黏度较高的润滑剂。
摩擦: 滚动轴承摩擦系数以轴承内径为基准,可用公式表示为:
2M Pd
式中:μ:摩擦系数 类型 深沟球轴承 向心推力球轴承 调心球轴承 μ x10-3 1.0—1.5 1.2—1.8 0.8—1.2
M:摩擦力矩N.mm
P:负荷N d:轴承内径 mm
圆柱滚子轴承
圆锥滚子轴承 球面滚子轴承 推力滚子轴承 滚针轴承
轴承损坏形式及原因分析
一、为什么轴承会损坏?
1、轴承损坏主要原因有:
①材料疲劳; ②润滑不良; ③污染; ④安装问题; ⑤处理不当。
大体上讲,有三分之一的轴承损坏原因是材料疲劳;有三分之一 是润滑不良;另外三分之一是污染物进入轴承或安装处理不当。
2、轴承损坏的开始:
轴承从开始使用到第一个材料疲劳点的出现的时间长短是和 这段时间轴承的转数、负载大小、润滑及清洁度有关。疲劳是负 载表面下剪应力周期性出现所形成的结果,经过一段时间后,便 会引发微小的裂纹,然后渐渐延伸至表面。当滚动体经过这些裂 纹形成的小块面积后,便有些裂块开始脱落,形成所谓的剥皮现 象,随着剥皮的继续扩大,轴承损坏不能使用。最初发生在表面 下,虽然最初的剥皮通常非常轻微,但随着应力的增加及裂块的 增多,导致剥皮面积的蔓延,这种过程通常持续很长一段时间, 期间有明显的振动和噪音,因此在没坏之前,应有足够的时间来 更换它。
3、轴承的受力痕迹
通常轴承在运转工作一段时间后,在工作表面都会有明显的 受力痕迹,并非所有的痕迹的出现就表示轴承坏掉了,轴承在正常
的状况下使用也会留下受力痕迹的。 轴承在负荷下运转,其滚道的接触面在外观上呈晦暗的发 乌。但这并非表示是磨损,同时也跟寿命无关。此发乌的痕迹构 成了轴承的受力痕迹,此痕迹随其运转与负荷状况,其外观也各 不相同,仔细地检查就能帮助我们判断轴承是否在正常的状况下 运转。
二、噪音
1.润滑脂或机油失效,润滑剂型号选择不当。 对策:选择适当的润滑剂,应确认它们的相容性。 2.油位太低或轴承箱润滑脂不足。 对策:油位应略低于最下方滚动体的中心,轴承箱内填充润滑脂 1/3~1/2空间。 3.轴承内部间隙不适当,紧定套筒过分锁紧,轴径过大与轴承内孔过 盈太大等都能造成轴承间隙减小,当轴面有热流通过时,导致内环 过分膨胀。 对策: 1)检查过热轴承间隙是否与原始设计相符,如果依旧,可以改用较 大间隙。如由“0”组改成“C3”由“C3”改成“C4”。 2)改善紧定套筒锁紧量,检测径向间隙,确定在适当的位置。 3)调整轴与轴承内孔的配合关系。
向心轴承、球轴承、球面、双列球只承受径向力,能承少量的 轴向负荷,往往损坏的形式都是过大的轴向力造成的。 ⑴、单向的径向负荷:两种情况,一种是内环旋转;一种是 内环固定。
内环旋转,外环固定
外环旋转,内环固定
内
外
内
外
受力痕迹
受力痕迹
⑵、单向的轴向负荷: 内环或外环旋转。
⑶、单向的径向负荷 与轴向负荷组合。
5.接触型(摩擦)油封太干或弹簧过紧。 对策:更换接触型的油封,并润滑其油封表面。
弹簧
6.轴承箱内孔不圆,轴承箱扭曲变形、支撑面不平坦、箱孔内径过小。 对策:检查轴承箱、内孔,调整底座调整片均匀分布。 7.旋转油封与压盖相磨擦,或轴肩摩擦到轴承密封盖上。 对策;检查旋转的油封的运转间隙以避免摩擦,防止不对正。 8.交叉定位或一轴上有两个定位轴承,由于过多轴向膨胀而导致轴承 内间隙不足。 对策: 1)在轴承箱和端盖凸缘之间插入调整片以释放轴承的轴向预压。 2)将任一轴承箱的端盖往外移,利用调整片以获得介于轴承箱和外 环之间的间隙,有可能的话施加轴向弹簧力量在外环上,以降低 轴的轴向浮动。 9.紧定套过分紧锁:放松固定螺帽与套筒,重新锁紧,确保轴承能自 由的旋转。
2)过高的转速:如果轴承以超出保持架材质所能承受的速度运转, 惯性力将使保持架破碎。
3)磨损:不当的润滑或坚硬的异物都能使保持架磨损,由于架是 由软材料制成的,运转中架与滚动体之间是滑动摩擦,一旦润滑不良, 架磨损速度相当快,渐渐地架的兜孔会因磨损间隙不断扩大,因此而 产生撞击力使架很快破碎。 4)卡死:零件的破碎物或坚硬的颗粒可能会卡在架与滚动体之间, 阻碍滚动体滚动,也会造成架破碎。
12) 轴向负荷造成的剥落 受力痕迹明显,环的一侧或双列轴 承的某一滚道表皮剥落。 原因: a、安装不正确造成的轴向负荷; b、予压过度; c、非固定轴承被卡住或轴向位移 预留量不足。
13) 印痕所造成的剥落 滚道表面剥落,并有与滚子间距 相等的印痕。这种是不正确安装引起 的轴承在静止状态负荷过度。其它的 细微印痕可能是安装时带入的异物或 润滑剂中的异物。
10.具有两个或多个轴承的轴心耦合时,产生不正确的直线偏差或角度 歪斜。 对策;由调整片来调整正确的对位,确保轴心耦合在一条直线上, 尤其是当轴上同时有三个或多个轴承运转时,更得注意。 11.轴的直径过大,导致内环膨胀过多,减少轴承间隙。 对策: 1)研磨轴径,使轴与轴承内环之间获得一适当的配合。 2) 改用径向间隙大的轴承。 12.由于轴承箱孔的材质太软受力后孔径变大,导致外环在箱孔内打滑。 对策:改善箱体材质或加工一个钢质衬套挤进箱孔,然后加工衬 套内孔至正确尺寸。
6) 滚子与滚道的磨伤 在滚道负荷区开始端与滚子有磨 伤及局部变色,这是由于滚子进入负 荷区,突然加速所造成的。 有两种可行办法;其一是选择黏 度较高的润滑剂;其二是减小轴承间 隙。
7) 外表面的磨伤 内环内孔与外环外表面有刻痕及 局部变色,此种情况是环与轴或轴承 箱有相对运动所致。解决的唯一方法 是加大环与轴或轴承箱的配合过盈量 来防止相互转动。轴向制动或夹紧无 法解决此类问题。 8) 表面坑痕: 滚道、滚动体表面或大端面小而 浅的坑痕,呈结晶壮的破坏壮。这是 由于润滑不良所致。例如;少油或由 于温升所造成的黏度改变,使油膜无 法将接触面分离,表面有瞬间的接触。 办法:改善润滑。
17) 微动腐蚀所造成的剥落 轴承环的滚道表面剥落。相对于此 处剥落的外表面有腐蚀现象。由于配 合太松或轴承箱形状不正确所致。
5、保持架的损坏
保持架的损坏,通常不易判断。若保持架坏了,轴承其它零件也 都坏掉了,这使得原因难以分析。造成架损坏主要原因有以下几种: 震动、转速太高磨损、卡死和歪斜等。 1)震动:当轴承处于震动状况下,轴承内部的力量可能导致保持 架出现疲劳裂痕,渐渐地,会使架破碎。
9) 微动腐蚀 轴承环与轴或轴承箱之间有相对 运动才发生的现象。这是由于太松的 配合或轴承座变形所致。
10) 电流腐蚀 滚道或滚动体表面有暗棕色或灰 黑色的直条痕或麻点。当电流通过轴 承时,轴承零件表面会发生熔接现象。 办法:阻止电流流过轴承。
11) 滚道表面对称位置的剥落 在两环中有一环径向对称位置有明 显的受力痕迹,且有表皮剥落。这是 由于轴承箱变形、椭圆压缩所致,重 新制造轴承箱。
三、振动
1.脏物、异物、砂粒或其它污染物进入箱体中。 对策:将轴承箱清洗干净,更换新的油封。 2.水、酸、油漆或其它腐蚀性物质进入轴承箱中。 对策:安装一个保护性防尘盖,改良油封。 3.轴承箱内孔不圆、扭曲变形、支撑面不平。 对策:检查轴承箱,调整支撑面、调整垫片。 4.轴径小或紧定套未锁紧。 对策:检测轴径,选择合适的配合量,重新锁紧紧定套。 5.不平衡负荷,箱孔间隙大,外环在箱孔内打滑。 对策:更换合乎设计要求孔径的轴承箱。 6.两个或多个轴承耦合,产生轴心直线偏差和角度偏差。 对策:重新调整垫片,使轴心耦合在同一直线上。 7.不正确的安装,用锤直接敲击在轴承上。 8.轴承间隙过大。 9.设备振动。
4.脏物、砂粒粉尘或其它污染物进入轴承箱。 对策:将轴承箱清洗干净,更换新的油封或改良油封设计。 5.水、酸、油漆或其它腐蚀性物质进入轴承箱。 对策:安装一保护性防压盖或甩压环以防止外物进入轴承。 6.轴承箱内孔不圆、扭曲变形、内孔过小。 对策:检查轴承箱是否挤压轴承,孔径尺寸是否正确。 7.安装轴承前轴承箱内的碎片,异物没有清除干净。 对策:仔细清洗轴承箱和轴承本身。 8.(交叉定位) 同一轴上有两个定位轴承,而引起的不对正或由于轴热膨胀而导致 轴承内部间隙不足。 对策:调整轴承箱与端盖之间的调整垫片,使轴承箱与外环之间有 一定的间隙。 9. 轴肩摩擦到轴承密封盖,轴肩部直径不正确与保持架摩擦。 对策:重新加工轴肩,检查肩部直径及圆角。
轴 承 温 升
轴承的摩擦损失在轴承内部几乎都变为热,因而导致轴承 温度上升。摩擦力矩造成的发热量可用下式表示 :
Q=0.105*10-6MN
Q:发生热量 kw
M:摩擦力矩 N.mm N:轴承转速 r.pm 发热量与排热量平衡,则轴承温度稳定。一般运转初期温 度急剧上升,但达到正常状态则基本稳定。达到安定状态为 止的时间,温度则因发热量、轴承箱等热容量、冷却面积、 润滑油量、周围温度不同而不同。若总是稳定不下来,达不 到安定状态,就只能判断为某种异常。 温升异常的原因有:轴承扭动(力矩负荷);游隙过小、 预压过大、润滑剂过多或不足;异物混入及密封装置的发热 等。
10.外环与轴承箱扭曲,轴与内环扭曲。是由于箱孔圆角过大;没有足 够的支撑。轴肩圆角过大,没有足够支撑,两端面靠不实。 对策:重新加工箱孔圆角和轴肩的圆角。 11.不正确的安装方式,用锤直接敲到轴承上,导致轴承工作表面有磕 伤。 对策:选择正确的安装方法:套筒法、加热法、油压法等。 12.固定垫圈的太阳片(锁紧垫片)摩擦到轴承。 对策:将太阳片打倒或更换新的。 13.设备中的转动件干涉到静止件。 对策:仔细检查,避免发生干涉现象。 14.轴承间隙过大导致振动。 15.设备振动,检查设备旋转件的平衡量校正之。