导数的概念PPT课件(1)
合集下载
高等数学导数的概念教学ppt课件.ppt
h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )
有
lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,
导数的概念课件
03
通过求解能量和功率函数的导数,可以得到物体的能量守恒关
系。
05
导数的实际应用案例 分析
导数在经济学中的应用案例分析
边际分析和最优化问题
导数可以用来分析经济函数的边际变化,帮助决策者找到经 济活动的最优解。例如,在生产函数中,通过求导可以找到 生产要素的最佳组合。
弹性分析
复合函数的导数
复合函数的导数是内外函数导数的乘积
$(f(g(x)))' = f'(g(x)) \times g'(x)$
举例
$(sin(x^2))' = cos(x^2) \times 2x$
03
导数在几何中的应用
导数在曲线切线中的应用
切线的斜率
导数可以用来表示曲线在某一点 的切线斜率,斜率越大,曲线在
THANKS
感谢观看
该点的变化率越大。
切线的方向
导数还可以用来确定曲线在某一 点的切线方向,即函数值增加或
减少最快的方向。
极值点与拐点
导数的符号可以用来判断函数在 某一点的极值点与拐点,当一阶 导数大于0时,函数在该点单调 递增;当一阶导数小于0时,函
数在该点单调递减。
导数在曲线长度中的应用
曲线长度的计算
通过利用导数求出曲线的斜率, 可以计算出曲线的长度,即曲线 与x轴围成的面积。
导数可以用来计算需求的弹性,即需求量对价格变动的敏感 程度。这可以帮助企业了解产品价格的变动对市场需求的影 响,从而制定更合理的定价策略。
导数在物理学中的应用案例分析
速度和加速度
在物理学中,导数被用来表示物体的 速度和加速度。例如,一个物体的位 移对时间的导数就是它的速度,速度 对时间的导数就是它的加速度。
导数的概念 课件
刻t0的速度.Δt越小, v 就越接近于时刻t0的速度,当Δt→0
时,这个平均速度的极限v= lim Δt→0
ΔS Δt
=
lim
Δt→0
St0+Δt-St0 Δt
就
是物体在时刻t0的速度即为________.
2.导数的概念.
设函数y=f(x)在区间(a,b)上有定义,x0∈(a,b),当Δx
无限趋近0时,比值
Δx→0
fx0+Δx-fx0 Δx
=
lim
Δx→0
Δy Δx
.我们称它为函数y=f(x)在x=x0处的
导数.记作f′(x0)或y′|x=x0,即f′(x0)= lim Δx→0
fx0+ΔΔxx-fx0.
Δy Δx
=
lim
Δx→0
3.对导数概念的理解 (1)“导数”是从现实生活中大量类似问题里,撇开一些 量的具体意义,单纯地抓住它们数量上的共性而提取出来的 一个概念,所以我们应很自然的理解这个概念的提出与其实 际意义. (2)某点导数即为函数在这点的变化率.某点导数概念包 含着两层含义:
∴y′= lim
Δx→0
1 x+Δx+
=1 x2
x.
∴y′|x=1=12.
题型三 导数的应用 例3 某物体按照s(t)=3t2+2t+4的规律作直线运动,求 自运动开始到4s时,物体运动的平均速度和4s时的瞬时速度. 分析 解答本题,可先求自运动开始到ts时的平均速度v(t) 及函数值的增量Δs,自变量的增量Δt,再利用公式求解即可.
解
自运动开始到ts时,物体运动的平均速度
-v
(t)=
st t
=3t+2+
4 t
,故前4秒物体的平均速度为
第一节-导数的概念及运算定积分ppt课件
谨记结论·谨防易错 (1)f′(x0)代表函数 f(x)在 x=x0 处的导数值;(f(x0))′是函数值 f(x0)的导 数,且(f(x0))′=0. (2)奇函数的导数是偶函数,偶函数的导数是奇函数.周期函数的导数还是 周期函数. (3)f1x′=-f[′fxx]2. (4)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线 相切只有一个公共点.
3.在桥梁设计中,桥墩一般设计成圆柱形,因为其各向受力均衡,而且在相
同截面下,浇筑用模最省.假设一桥梁施工队在浇筑桥墩时,采用由内向
外扩张式浇筑,即保持圆柱高度不变,截面半径逐渐增大,设圆柱半径关
于时间变化的函数为 R(t).若圆柱的体积以均匀速度 c 增长,则圆柱的侧面
积的增长速度与圆柱半径
()
A.成正比,比例系数为 c
四、“基本活动经验”不可少 为了响应国家节能减排的号召,甲、乙两个工厂进行了污 水排放治理,已知某月内两厂污水的排放量 W 与时间 t 的关系如图所示. (1)该月内哪个厂的污水排放量减少得更多? (2)在接近 t0 时,哪个厂的污水排放量减少得更快? 答案:(1)乙 (2)甲
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
为函数y=f(x)在x=x0处的导数
记法
记作f′(x0)或y′|x=x0,即f′(x0)=li m Δx→0
ΔΔxy=
li m fx0+Δx-fx0
Δx→0
Δx
几何 是曲线y=f(x)在点 (x0,f(x0)) 处的 切线的斜率 ,相应的切线方程为 意义 y-f(x0)=f′(x0)(x-x0)
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
3.在桥梁设计中,桥墩一般设计成圆柱形,因为其各向受力均衡,而且在相
同截面下,浇筑用模最省.假设一桥梁施工队在浇筑桥墩时,采用由内向
外扩张式浇筑,即保持圆柱高度不变,截面半径逐渐增大,设圆柱半径关
于时间变化的函数为 R(t).若圆柱的体积以均匀速度 c 增长,则圆柱的侧面
积的增长速度与圆柱半径
()
A.成正比,比例系数为 c
四、“基本活动经验”不可少 为了响应国家节能减排的号召,甲、乙两个工厂进行了污 水排放治理,已知某月内两厂污水的排放量 W 与时间 t 的关系如图所示. (1)该月内哪个厂的污水排放量减少得更多? (2)在接近 t0 时,哪个厂的污水排放量减少得更快? 答案:(1)乙 (2)甲
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
为函数y=f(x)在x=x0处的导数
记法
记作f′(x0)或y′|x=x0,即f′(x0)=li m Δx→0
ΔΔxy=
li m fx0+Δx-fx0
Δx→0
Δx
几何 是曲线y=f(x)在点 (x0,f(x0)) 处的 切线的斜率 ,相应的切线方程为 意义 y-f(x0)=f′(x0)(x-x0)
在日常生 活中, 随处都 可以看 到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
导数的概念及运算ppt课件演示文稿(1)
原函数
f(x)=
x
导函数
f′(x)=________ f′(x)=________ f′(x)=________ f′(x)=________ f′(x)=________ f′(x)=________ f′(x)=________ f′(x)=________
f(x)=xa(a为常数) f(x)=ax(a>0且a¹1) f(x)=logax(a>0且a¹1) f(x)=ex f(x)=ln x f(x)=sin x f(x)=cos x
为7和-7.所以切线方程为y-2=7(x-2)和y-2=-7(x+5),
化简可得切线方程为7x-y-12=0和7x+y+33=0.
经典例题
题型一 导数的定义
【例1】 设函数f(x)存在导数,当t无限趋近于0时,化 简 f a 4t f a 5t =________.
t
f a 4t f a 5t 解: t f a 4t f a f a f a 5t t f a 4t f a f a 5t f a 4 5, 4t 5t
[ g x ]2
f x2 f x1 x2 x1
基础达标
1. 函数f(x)=2x+b在区间[m,n]上的平均变化率为________.
f x 2. 若f′(x0)=2,则当k无限趋近于0时,
0
k f x0 2k
=________.
3. 函数y=x3+cos x的导数为________.
6. 复合函数的导数 一般地,若y=f(u),u=ax+b,则y′x=y′u〓u′x, 即
导数的概念(1)课件人教新课标
f '(6)=5 说明在第6h附近,原油温度 大约以5 ℃/h的速度上升;
练习1、以初速度为v0(v0>0)作竖直上抛
运动的物体,t秒时的高度为h(t)=v0t--12gt2,
求物体在时刻t0时的瞬时速度。
h
v0
(t0
t)
1 2
g (t0
t)2
v0t0
1 2
gt02
(v0
gt0
)t
1 2
gt
2
x) x
f
(x0 ) 不存在,则称
函数在点x0处不可导。
物体的运动方程 s=s(t)在t0处的导数 即在t0处的瞬时速度vt0
函数y=f(x)在x0处的导数 即曲线在x0处的切线斜率.
导数可以描述任何事物的瞬时变化率. 瞬时变化率除了瞬时速度,切线的斜率 还有:点密度,国内生产总值(GDP)的增
v lim s lim g 6 t 3g 29.4m / s
t0 t t0 2
一般结论
设物体的运动方程是 s=s(t),
物体在时刻 t 的瞬时速度为 v ,
就是物体在 t 到 t+△t 这段时间内,
当△t→0 时平均速度的极限 ,即
v lim s lim st t st
t0 t
或
即
f
x0
lim
x0
y x
lim
x0
f x0
x
x
f
x0
注意:
1、函数应在点的附近有定义, 否则导数不存在。
2、在定义导数的极限式中,△x趋近于0 可正、可负,但不为0,而△y可能为0。
3、导数是一个局部概念,它只与函数在x0 及其附近的函数值有关,与△x无关。
练习1、以初速度为v0(v0>0)作竖直上抛
运动的物体,t秒时的高度为h(t)=v0t--12gt2,
求物体在时刻t0时的瞬时速度。
h
v0
(t0
t)
1 2
g (t0
t)2
v0t0
1 2
gt02
(v0
gt0
)t
1 2
gt
2
x) x
f
(x0 ) 不存在,则称
函数在点x0处不可导。
物体的运动方程 s=s(t)在t0处的导数 即在t0处的瞬时速度vt0
函数y=f(x)在x0处的导数 即曲线在x0处的切线斜率.
导数可以描述任何事物的瞬时变化率. 瞬时变化率除了瞬时速度,切线的斜率 还有:点密度,国内生产总值(GDP)的增
v lim s lim g 6 t 3g 29.4m / s
t0 t t0 2
一般结论
设物体的运动方程是 s=s(t),
物体在时刻 t 的瞬时速度为 v ,
就是物体在 t 到 t+△t 这段时间内,
当△t→0 时平均速度的极限 ,即
v lim s lim st t st
t0 t
或
即
f
x0
lim
x0
y x
lim
x0
f x0
x
x
f
x0
注意:
1、函数应在点的附近有定义, 否则导数不存在。
2、在定义导数的极限式中,△x趋近于0 可正、可负,但不为0,而△y可能为0。
3、导数是一个局部概念,它只与函数在x0 及其附近的函数值有关,与△x无关。
导数的概念-课件-导数的概念
导数在现代数学中的地位和作用
基本概念
导数是现代数学的基本概念之一,是研究函数性质和解决实际问题的 重要工具。
数学分析
导数是数学分析的重要分支,是研究函数的可微性、可导性和连续性 的基础。
应用领域
导数的应用领域非常广泛,不仅限于数学和物理领域,还涉及到工程 学、经济学和计算机科学等多个领域。
数学建模
导数的应用发展
物理学
工程学
导数在物理学的各个分支中都有广泛的应 用,如力学、电磁学、热学等。
在机械工程、航空航天工程、土木工程等 领域,导数被用于优化设计、控制工程和 流体力学等方面。
经济学
计算机科学
导数在经济学中被用于研究经济系统的变 化率和最优决策问题。
在计算机图形学、数值分析和机器学习等 领域,导数被用于计算图像处理、数据拟 合和模型训练等方面。
高阶导数在研究函数的极值、拐 点、曲线的形状等方面有重要应 用。
微分学基本定理
微分学基本定理的内容
微分学基本定理是导数与微分之间的关系,即函数在某点的导数 等于该函数在该点的切线的斜率。
微分学基本定理的推导
通过极限的概念和性质,利用切线斜率的定义推导出微分学基本定 理。
微分学基本定理的应用
微分学基本定理是微分学的基础,在研究函数的增减性、极值、曲 线的形状等方面有重要应用。
复合函数求导法则
若$y = f(u)$和$u = g(x)$都可导, 则复合函数$y = f[g(x)]$的导数为 $(y)' = u' cdot (u)' = u' cdot v'$。
隐函数的导数
由显函数表示的隐函数求 导
若由显函数$F(x, y) = 0$表示的隐函数为$y = f(x)$,则通过求偏导数$frac{partial F}{partial x}$和$frac{partial F}{partial y}$ ,可以得到隐函数$y = f(x)$的导数。
导数的概念-课件-导数的概念(第一课时)
总结导数的理论知识和实 际应用,鼓励学生深入学 习和探索导数。
小结
1 本次课程的重点
总结本次课程的重点内容,帮助学生加深对导数概念的理解。
2 理解和应用
P强调学生对导数的理解和应用,鼓励他们练习导数的求法和应用方法。
导数的概念-课件-导数的 概念(第一课时)
导数的概念-课件-导数的概念(第一课时) 大纲
引言
1 重要性
深入讲解导数的重要性,为学生明确学习目标。
2 概念的含义
引导学生思考导数概念的含义,激发他们对导数的兴趣。
导数的定义
1 定义及公式
详细讲解导数的定义及公式,帮助学生掌握导数的基本概念。
2 导数与函数的关系
讲解导数对函数的单调性的影响,帮助学生分析 函数图像。
求导法则
简要介绍常数函数、幂函数、指数函数、对数函 数及三角函数的求导法则。
应用
1 使用导数求函数极值 2 其它应用领域
3 理论与实际应用
教授使用导数求函数极值 的方法,帮助学生应用导 数解决实际问题。
介绍导数在其他领域的应 用,引发学生对导数的更 多思考。
解释导数与函数的关系,帮助学生理解导数在函数中的应用。
3 使用举例解释
通过举例解释导数的定义,让学生更好地理解导数的具体应用。
导数的性质
可加性和可乘性
介绍导数的可加性和可乘性,帮助学生理解导数 在数学运算中的灵活性。
图形意义
解释导数在图形上的意义,让学生从图像中探索 导数
高等数学导数的概念ppt课件.ppt
x0 处的右 (左) 导数, 记作
y
y x
o
x
机动 目录 上页 下页 返回 结束
定理2. 函数 是
在点 可导的充分必要条件 且
简写为 f (x0) 存在
f(x0 )
定理3. 函数 在点 处右 (左) 导数存在
在点 必 右 (左) 连续.
若函数
在开区间
内可导, 且
都存在 , 则称
在闭区间
上可导.
显然:
f
(0)
lim
x 0
sin x
x
0
0
1
ax 0
f
(0)
lim
x 0
x0
a
故 a 1 时
此时
在
都存在,
机动 目录 上页 下页 返回 结束
作业
P49 5 , 7, 9
第二节 目录 上页 下页 返回 结束
备用题
1. 设
存在, 且
求
解: 因为
1 f (1 (x)) f (1)
lim
2 x0
(x)
在闭区间 [a , b] 上可导
与 f(b)
机动 目录 上页 下页 返回 结束
练习:讨论下列函数在x=0时候的连 续性与可导性.
练习:习题2.1题8
f
x
xk
sin
1 x
,
x0
0, x 0.
若函数在x 0连续,则
lim f x lim xk sin 1 f 0 0,
x0
x0
x
必须满足 lim xk 0, k 0即可. x0
反例:
在 x = 0 处连续 , 但不可导. o
x
机动 目录 上页 下页 返回 结束
导数的概念 课件
A.物体5 s内共走过42 m B.物体每5 s钟运动42 m C.物体开始运动到第5 s运动的平均速度是42 m/s D.物体以t=5 s时的瞬时速度运动的话,每经过一秒, 物体运动的路程为42 m
由导数的定义求导数,是求导数的基本方法,必须严格 按以下三个步骤进行:
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
解析:
f′(1)= lim Δx→0
f1+ΔΔxx-f1=
lim
Δx→0
1+ΔΔxx2-1=Δlixm→0
(2+Δx)=2.
同理可得f′(3)=6.
1.一直线运动的物体,从时间t到t+Δt时,物体的位移
为Δs,那么 lim Δt→0
Δs Δt
为(
B
)
A.从时间t到t+Δt时,物体的平均速度
B.时间为t时该物体的瞬时速度
变化率与导数 导数的概念
基础梳理
1. 函数f(x)在x=x0处的瞬时变化率定义:
一般地,lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
,我们称它为函数y=
f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,
即y′|x=x0=f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
C.当时间为Δt 时该物体的速度
D.从时间t到t+Δt时位移的平均变化率
2.Biblioteka 设函数f(x)在x0处可导,则
lim
Δx→0
fx0-Δx-fx0 Δx
=(
C
)
A.f′(x0)
B.f′(-x0)
C.-f′(x0)
D.-f(-x0)
3.一物体运动满足方程s=4t2+2t-3且s′(5)=42(m/s), 其实际意义是( D )
由导数的定义求导数,是求导数的基本方法,必须严格 按以下三个步骤进行:
(1)求函数的增量Δy=f(x0+Δx)-f(x0);
解析:
f′(1)= lim Δx→0
f1+ΔΔxx-f1=
lim
Δx→0
1+ΔΔxx2-1=Δlixm→0
(2+Δx)=2.
同理可得f′(3)=6.
1.一直线运动的物体,从时间t到t+Δt时,物体的位移
为Δs,那么 lim Δt→0
Δs Δt
为(
B
)
A.从时间t到t+Δt时,物体的平均速度
B.时间为t时该物体的瞬时速度
变化率与导数 导数的概念
基础梳理
1. 函数f(x)在x=x0处的瞬时变化率定义:
一般地,lim Δx→0
ΔΔyx=Δlixm→0
fx0+Δx-fx0 Δx
,我们称它为函数y=
f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,
即y′|x=x0=f′(x0)=Δlixm→0
fx0+Δx-fx0 Δx
C.当时间为Δt 时该物体的速度
D.从时间t到t+Δt时位移的平均变化率
2.Biblioteka 设函数f(x)在x0处可导,则
lim
Δx→0
fx0-Δx-fx0 Δx
=(
C
)
A.f′(x0)
B.f′(-x0)
C.-f′(x0)
D.-f(-x0)
3.一物体运动满足方程s=4t2+2t-3且s′(5)=42(m/s), 其实际意义是( D )
导数ppt教学课件(1)
( u v
)
uv v2
uv
(v
0)
例5. y x2 的导数 sin x
解: sin 2 x
(sin
x)'
2x sin x x2 sin 2 x
cos
x
例6. 求
y
x x2
3 3
在点x
3处的导数
解:y '
1 ( x2
3) (x (x2 3)2
3) 2x
x2 6x (x2 3)2
3
y'
|x3
9 18 (9 3)2
3
24 144
1 6
Unit Five My Home
Living room
bedroom
bathroom
kitchen
study
home
shelf
bed
fridge
phone
sofa
TV
table
(u v) u v
1.和(或差)的导数 (u v) u v
证明:y f (x) u(x) v(x)
y u(x x) v(x x) u(x) v(x) u(x x) u(x) v(x x) v(x)
u v
y u v x x x
lim y lim u v lim u lim v x0 x x0 x x x0 x x0 x
desk
table
x x0
x0
x
x0
x
u'(x)v(x) u(x)v'(x)
即 y' (uv)' u'v uv'
推论 : (Cu) Cu
例3.求 y 2x2 3x2 5x 4的导数
3.1 导数的概念 课件 (共21张PPT)《高等数学》(高教版).ppt
(2)若极限 点 处的右导数,记作
,即:
存在,则称其为函数 在
定理1 函数
在点 处可导的充分必要条件是
在点 处的左导数和右导数都存在且相等,即
.
例1 讨论函数
在 处的连续性和可导性.
解:因为
又
,所以函数
在 处的连续.
由于
,所以函数
在 处不可导.
例2 讨论函数
解:因为 连续.
又因为 处不可导.
在 处的连续性和可导性.
在点
分析:设函数
在点 处可导,则
故函数
在点 处一定连续.
随堂练习
1、设 解:
,判断 在点 函数
处的连续性与可导性. 在 处连续.
函数 在 处不可导.
2、若函数
处处可导,求 的值.
解: 函数 在 处可导,则在
处处可导.由于函数
可导必连续.得
再根据函数在 处可导,
则左右导数存在且相等.
故
时,
函数 在点
或 ,即
函数
在点 处的导数就是导函数 在点 处的函数值
,即
注:若函数
在区间
在区间 上不可导.
内有一点处不可导,则称函数
由导数的定义可知,求函数
个步骤:
(1)求增量
;
(2)算比值
;
(3)取极限
例1 求函数
的导数.
解:
常量函数的导数为
的导数可分为以下三 .
例6 求函数 解:
的导数.
例7 求函数 解:
,所以函数
在 处的
,所以函数
在
从图形上看,曲线 线.这也说明函数 原点外,处处可导.因 连续.
在原点O处具有垂直于 轴的切
(-人教A版)导数的概念课件-(共28张)
[随堂训练]
1.已知函数 y=f(x)=x2-1,则当 x=2,Δx=0.1 时,Δy 的值为( )
A.0.40
B.0.41
C.0.43
D.0.44
解析:Δy=f(2.1)-f(2)=(2.12-1)-(22-1)=4.41-4=0.41.
答案:B
2.若函数 f(x)=2x2 的图象上有点 P(1,2)及邻近点 Q(1+Δx,2+Δy),则 liΔmx→0 ΔΔxy等
(3)h′(1)=liΔmt→0 ΔΔht =liΔmt→0 h1+ΔΔtt-h1=liΔmt→0[5(Δt)2+45Δt+120]=120,即 第 1 s 末高度的瞬时变化率为 120 m/s. 它说明在第 1 s 末附近,航天飞机的高度大约以 120 m/s 的速度增加.
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上,要不断反思、关 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大事者,不惟有超世 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已,不亦远乎?心中有 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭疏食,饮水,曲肱 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策,有包藏宇宙之机, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐民之乐者,民亦乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与不学同;知而不能 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不信者行不果。立志 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋而不忠乎?与朋友 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担当。为天地立心, 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地势坤,君子以厚德 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立志,难成!海纳百 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧。”真正努力精 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学技术,都需要无数 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁击溃过你,都不重 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。最深的孤独不是长 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一个人的价值,应该 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知,最苦的是等待,最 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世界的真正财富。人 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便是黑暗中的那一盏 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太过短暂,今天放弃 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目标,去承受常人承 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服的枕头。嫉妒他人, 表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微中站起来,带着封 存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以,过去的懒惰,决 定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是逃避或绕开它们, 而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做不了决定的时候, 让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚持自己发现的意志, 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志。公共的利益,人 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶,叶而后花。意志 的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。即使遇到了不幸的 灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈从,不论程度如何, 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点是:在不利和艰难 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的,所以才能坚硬和什 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。
数学分析--导数 ppt课件
数,如果要讨论改函数在端点处的变化率时,就要对导数概念加以补充,引出单 侧导数的概念。
定义 2 设函数 y f (x) 在点 x0 的某右邻域 (x0 ,x 0 δ)上有定义,若右
极限 或
l i m Δ y l i m f ( x0 Δ x ) f ( x0 ) (0< x < )
Δ x Δx 0
理 5.1, f(x) x 在 x x 0 0 处不可导。
当 x0 0 时,由于 D(x) 为有界函数, 因此得到
f(0)
lim
f(x)
f(0)
li
mxD(x)
0.
x0 x 0
x 0
ppt课件
下页 18
(二)函数在一点的单侧导数
类似于函数在一点有左、右极限, 对于定义在某个闭区间或半开区间上的函
dx
dx
运算,待到学过“微分”之后,将说明这个记号实际上是一个“商”,相应于上述各种
表示导数的形式,f |x x 0 或
dy dx
|xx0
。
ppt课件
下页 23
例 6 证明:
(i) ( xn ) nxn1, n 为正整数 ;
(ii) (sinx) cosx , (cosx) sinx
(iii)
y 1
-1/π
0
1/π
x
ppt课件
下页 22
(三)导函数 若函数在区间 I 上每一点都可导(对区间端点,仅考虑相应的单侧导数),则称 f
为 I 上的可导函数。此时对每一个χ∈I,都有 f 的一个导数 f '(x) (或单侧导数)与之
对应,这样就定义了一个在 I 上的函数,称为 f 在 I 上的导函数,也简称为导数,记作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以
s4 0.295g v4 2.95g (m / s) t4 0.1
设在[2.99,3]内的平均速度为v5,则
s5 0.02995 g v5 2.995g (m / s) t5 0.01
设在[2.999,3]内的平均速度为v6,则
s6 0.0029995 g v6 2.9995g (m / s) t6 0.001
函数在点x0处不可导。
物体的运动方程 s=s(t)在t0处的导数
即在t0处的瞬时速度vt0
函数y=f(x)在x0处的导数 即曲线在x0处的切线斜率.
导数可以描述任何事物的瞬时变化率. 瞬时变化率除了瞬时速度,切线的斜率 还有:点密度,国内生产总值(GDP)的增 长率,经济学上讲的一切边际量 等.
各种情况的平均速度 △t>0 0.1 0.01 0.001 v 3.05g 3.005g 3.0005g △t<0 -0.1 -0.01 -0.001 v 2.95g 2.995g 2.9995g
当△t→0时,
物体的速度趋近于一个确定的值3g
在 t=3s 这一时刻的瞬时速度等于
在 3s 到 (3+△t)s 这段时间内的平均速度
s s t t s t v lim lim t 0 t t 0 t
例2、
y
y f ( x)
相交
o
P
x
再来一次
y f ( x)
y
Q Q Q P
再来一次
x x2x 3
Байду номын сангаас
T
o
1
x
上面我们研究了切线的斜率问题,
可以将以上的过程概括如下: 设曲线C是函数 y=f(x) 的图象, 在曲线C上取一点 P及P点邻近的任一点 Q(x0+△x,y0+△y) , 过P,Q两点作割线,
f f ( 2 x ) f ( 2) x x
f(x)=x2-7x+15
(2 x) 2 7(2 x) 15 (22 7 2 15) x
4x x 2 7x x
x 3
f lim (x 3) 3 所以,f (2) lim x 0 x x 0
f x0 x f x0 y lim lim x 0 x x 0 x
上式称为函数y=f(x)在x=x0处的导数 记作: f x0 或 y x x0 即
f x0 x f x0 y f x0 lim lim x0 x x0 x
s3 0.0030005 g v3 3.0005g (m / s) t3 0.001
例1是计算了[3,3+△t]当 t=0.1,t=0.01,t=0.001时的平均速度。 上面是计算了△t>0时的情况 下面再来计算△t<0时的情况
解:设在[2.9,3]内的平均速度为v4,则 △t1=3-2.9=0.1(s) △s1=s(3)-s(2.9)= 0.5g×32-0.5g×2.92 =0.295g(m)
注意:
1、函数应在点的附近有定义, 否则导数不存在。 2、在定义导数的极限式中,△x趋近于0
可正、可负,但不为0,而△y可能为0。
3、导数是一个局部概念,它只与函数在x0 及其附近的函数值有关,与△x无关。
f ( x0 x) f ( x0 ) 4、若极限 lim 不存在,则称 x 0 x
则直线PQ的斜率为
( y0 y) y0 y k PQ xQ xP ( x0 x) x0 x yQ yP
当直线PQ转动时,Q逐渐向P靠近,
也即△x 变小
当△x→0时,PQ无限靠近PT 因此:
k PT lim k PQ
x 0
f ( x0 x) f ( x0 ) y lim lim x 0 x x 0 x
同理可得
f '(6)=5
f (2) 3
说明在第2h附近,原油温度 大约以3 ℃/h的速度下降;
f '(6)=5
第三章 导数及其应用
3.1.2 导数的概念
平均速度不一定能反映物体在某一时刻
的运动情况。 自由落体运动中,物体在不同时刻的 速度是不一样的。 物体在某一时刻的速度称为瞬时速度。
例1、自由落体运动的运动方程为s=
1 2 2 gt ,
计算t从3s到3.1s, 3.01s , 3.001s 各段时间
当△t→0的极限, s g v lim lim 6 t 3g 29.4m / s t 0 t t 0 2
一般结论 设物体的运动方程是 s=s(t),
物体在时刻 t 的瞬时速度为 v ,
就是物体在 t 到 t+△t 这段时间内,
当△t→0 时平均速度的极限 ,即
内的平均速度(位移的单位为m)。 解:设在[3,3.1]内的平均速度为v1,则
△t1=3.1-3=0.1(s) △s1=s(3.1)-s(3)= 0.5g× 3.12-0.5g×32
=0.305g(m)
s1 0.305g 3.05g (m / s) 所以 v1 t1 0.1
s2 0.03005g v2 3.005g (m / s) 同理 t2 0.01
例1、将原油精炼为汽油、柴油、塑胶等 各种不同产品,需要对原油进行冷却和加 热。如果第xh时,原油的温度(单位:℃) 为f(x)=x2-7x+15 (0x 8).计算第2h和第6h 时,原油温度的瞬进变化率,并说明它们 的意义。 解:第2h和第6h时,原油温度的 瞬进变化率就是f ' (2)和f ' (6) 根据导数定义:
k PT lim k PQ
x 0
f ( x0 x) f ( x0 ) y lim lim x 0 x x 0 x
s s t t s t v lim lim t 0 t t 0 t
一般地,
函数y=f(x)在x=x0处的瞬时变化率是