角边角、角角边判定三角形全等
12.2.3三角形全等的判定——角边角、角角边(课件)八年级数学上册(人教版)
![12.2.3三角形全等的判定——角边角、角角边(课件)八年级数学上册(人教版)](https://img.taocdn.com/s3/m/0f311dc4fbb069dc5022aaea998fcc22bcd143cc.png)
∴ △ACD≌△ABE(ASA). ∴ AD = AE.
A
D
E
B
C
6.如图,AB⊥BC,AD⊥DC,垂足分别为点B,点D,∠1=∠2.
求证:AB=AD.
证明:∵AB⊥BC,AD⊥DC, ∴∠ABC=∠ADC=90°.
A
∵在△ABC和△ADC中,∠1=∠2,∠ABC=∠ADC,
在△ABC 和△ DEF 中,
∠A= ∠D, AB = DE, ∠B = ∠E,
∴△ABC≌△DEF (ASA).
C
A
B
F
D
E
在△ABC 和△ DEF 中,
∠A = ∠D, AB = DE, ∠B = ∠E,
∴△ABC ≌△DEF (ASA).
C
A
B
F
D
E
如图,D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,FC∥AB, 试说明:△ADE≌△CFE.
外作直线 l,AM⊥l 于点 M,BN⊥l 于点 N.
(1)试说明:MN=AM+BN; 解:∵∠ACB=90°,∴∠ACM+∠BCN=90°.
又∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°,
∴∠BCN+∠CBN=90°,∴∠ACM=∠CBN. ∠AMC=∠CNB,
在△ACM 和△CBN 中, ∠ACM=∠CBN, AC=CB,
(4)两角一边.
两角一边分为哪几种情况?
一种情况是边夹在
两角的中间 ,形成
两角夹一边
01
角-边-角
角-角-边
另一种情况是边不 夹在两角的中间 ,
0 2 形成两角一对边
《三角形全等的判定--角边角-角角边》说课稿-
![《三角形全等的判定--角边角-角角边》说课稿-](https://img.taocdn.com/s3/m/656c4f610a4c2e3f5727a5e9856a561252d3219a.png)
(1)三边(SSS)
满足全等三角 形的六组条件 中的三组
(2)两边一角 两边、一夹角(SAS)
两边、一对角(不一定) (3)两角一边
(4)三角
一、教材分析 二、教学目标 三、重点难点 四、教学流程
(二)合作交流、解读探究
1.实验验证(探究5),探索新知(角边角)
(1)分组实验,前后桌4位同学为一组,共同完 成实验。
三、重点与难点
一、教材分析 二、教学目标 三、重点难点
【重点】 用角边角、角角边来确定两个三角形全
等, 以及用全等证明角的相等、线段相等。
【难点】 用角边角、角角边来确定两个三角形全等; 证明三角形全等时的规范的书写格式。
一、教材分析 二、教学目标 三、重点难点 四、教学流程
四、教学流程
(一)创设情境, 孕育新知
3.拓展提高
一、教材分析 二、教学目标 三、重点难点 四、教学流程
如图所示,在△ABC和△DEF 中,已有条件 AB=DE,还需要添加两个条件才能使 △ABC≌△DEF,不能添加的一组是()
A. ∠B=∠E BC=EF B. BC=EF AC=DF C. ∠A=∠D ∠B=∠E D. ∠A=∠D BC=EF
一、教材分析 二、教学目标
二、教学目标
【知识技能】 1.让学生在自主探究的过程中得出A.S.A推 导出A.A.S定, 掌握
【过程与方法】 经历探索三角形全等条件的过程, 体会如何 探索、研究问题, 培养学生合作精神, 让学生初 步体会数学中的分类思想。
【情感态度与价值观】 通过画图、比较、验证, 培养学生注重观察、 善于思考、不断总结的良好思维习惯。
1.生活情境设疑,激发学生兴趣
小明在上美术课时,不慎将一块三角形玻璃调色板打破 成如图所示的三块,小明小心翼翼地将三块碎玻璃板捡起, 准备包好拿去玻璃店配制,老师看到后对小明说,如果只你 拿一块去,你看行吗? 你会拿哪一块呢?
《 “角边角”和“角角边”判定三角形全等》课件(3套)
![《 “角边角”和“角角边”判定三角形全等》课件(3套)](https://img.taocdn.com/s3/m/8904602d680203d8cf2f248d.png)
(4)射线A′D与B′E交于一点,记为C′. 即可得到△A′B′C′. 将△A′B′C′与△ABC重叠,发现两三角形全等. [师]
于是我们发现规律: 两角和它们的夹边分别相等的两三角形全等.(可以 简写成“角边角”或“ASA”) 这又是一个判定两个三角形全等的条件.
2.出示探究问题: 如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E, BC=EF,△ABC与△DEF全等吗?能利用角边角条件证 明你的结论吗?
例 如下图,点D在AB上,点E在AC上,AB=AC,∠B= ∠C.求证:AD=AE.
[师生共析]AD 和 AE 分别在△ADC 和△AEB 中,所
以要证 AD=AE,只需证明△ADC≌△AEB 即可.
学生写出证明过程.
证明:在△ADC 和△AEB 中,
∠A=∠A, AC=AB, ∠C=∠B, ∴△ADC≌△AEB(ASA). ∴AD=AE.
(1)求证:AE=CD; (2)若AC=12 cm,求BD的长.
解:(1)由ASA证△ACE≌△CBD (2)BD=6 cm
14.如图,在四边形ABCD中,点P是对角线BD上任意一点,∠1=∠2, ∠3=∠4.求证:PA=PC.
解:先证△ABD≌△CBD(ASA),再证△ABP≌△CBP(SAS)或 △ADP≌△CDP(SAS)
证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°,
∠A=∠D,∠B=∠E,
∴∠A+∠B=∠D+∠E. ∴∠C=∠F.
在△ABC 和△DEF 中,
∠B=∠E, BC=EF, ∠C=∠F, ∴△ABC≌△DEF(ASA). 于是得规律: 两角和其中一个角的对边分别相等的两个三角形全 等.(可以简写成“角角边”或“AAS”)
A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD
三角形全等的判定:角边角、角角边
![三角形全等的判定:角边角、角角边](https://img.taocdn.com/s3/m/4e09306eddccda38376baf3d.png)
——洪水未到先筑堤,豺狼未来先磨刀. 一只野狼卧在草上勤奋地磨牙,狐狸看到了,就对它说:天气这么好,大 家在休息娱乐,你也加入我们队伍中吧!野狼没有说话,继续磨牙,把它的牙 齿磨得又尖又利.狐狸奇怪地问道:森林这么静,猎人和猎狗已经回家了,老 虎也不在近处徘徊,又没有任何危险,你何必那么用劲磨牙呢?野狼停下来回 答说:我磨牙并不是为了娱乐,你想想,如果有 一天我被猎人或老虎追逐,到 那时,我想磨牙也来不及了.而平时我就把牙磨好,到那时就可以保护自己了.
等。(可以简写成“边角边”或“SAS”)
用符号语言表达为:
A D
在△ABC与△DEF中 AC=DF
∠C=∠F BC=EF
B
C F E
∴△ABC≌△DEF(SAS)
知识回顾:
A
B SSA不能 判定全等
A
C A
B
D
C
B
D
1.若AB=AC,则添加一个什么条件可得 A △ABD≌ △ACD?
△ABD≌ △ACD
在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能吗?
B A
AB=DE可以吗?
×
C
F
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。 ∠B=∠E AB ∥DE (ASA)
E
F
在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
两角及一角的对边对应相等的 你能从上题中得到什么结论? 两个三角形全等(AAS)。
如 何 用 符 号 语 言 来 表 达 呢
利用“角边角”“角角边”判定三角形全等课件
![利用“角边角”“角角边”判定三角形全等课件](https://img.taocdn.com/s3/m/636375e57d1cfad6195f312b3169a4517723e5ce.png)
能通过同学的讲解理解全等的理由得1❤
拓展创新 (针对目标3) 如图∠ABC=∠DCB, 试添加一个条件,使得△ ABC≌△DCB,这个条件 可以是 ∠A=∠D 或∠ACB=∠DBC . 并选择其中一个条件加以证明.
评价方式:自评、互评 评价标准:每添加一个条件得1❤
问题解决
2.如图,小明不慎将一块三角形玻璃打碎为三块,他是否可以只带其中的一块碎片 到商店去,就能配一块与原来一样的三角形模具吗? 如果可以,带哪块去合适?
你能说明其中理由吗?
1
2
3
当堂检测 (针对目标3) 3.已知:∠C=∠E,∠1=∠2,AB=AD,BC和DE相等吗?为什么?
评价方式:自评 评价标准:能独立得出正确答案得1❤
B
∴△ABC ≌△ A′B′ C′(ASA).
A C B'
A' C'
探索新知
(针对目标1)
问题1. 画线段AB=10cm,再画∠BAP=60°,∠ABQ=80°,AP与BQ相交于 点C. 剪下所画的△ABC在小组内进行比较. 你能得到什么结论?用语言描述 你们的发现.
时间:3分钟 展示:以小组为单位进行展示 评价方式:自评、互评 评价标准:参判定方法
文字语言 两角及其夹边分别相等的两个三角形全等,简写为“角边角”或“ASA”.
基本事实
几何语言
在△ABC和△DEF中 ∵ ∠___B_=∠___E_
_B__C_=_E_F__ ∠___C_=_∠__F_ ∴△ABC ≌△DEF( ASA )
运用新知
(针对目标3)
能得出结论得1❤
探索新知
(针对目标1)
问题2. 画线段 AB=16cm,再∠BAP=40°∠ABQ=30°,AP与BQ相交于点C. 剪下所画的△ABC在小组内进行比较.你能得到什么结论?用语言描述你们 的发现.
判定三角形全等———角边角和角角边
![判定三角形全等———角边角和角角边](https://img.taocdn.com/s3/m/ebf83e314b73f242336c5f9b.png)
2、三个角分别对应相等的两个三角形 是否全等? 判定两个三角形全等,至少要有一 条边对应相等.
判定方法2 两角及其夹边分别相等的两个 三角形全等。 简写成 “ 角边角 ” 或 “ ASA ”。 判定方法3 两角分别相等且其中一组等角的 对边也相等的两个三角形全等。 简写成 “ 角角边 ” 或 “ AAS ”
A
D
B
F
C
E
解:
Δ ABC ≌ Δ DEF
∵在Δ ABC与 Δ DEF中。 ∠ACB = ∠DFE (已知) ∠B = ∠E (已知) BC = EF (已知) ∴Δ ABC ≌ Δ DEF (ASA)
交 流 与 发 现
A
A1
B
C B1
C1
(1)边BC与∠A什么关系? (3) Δ ABC 与 Δ A1B1C1 边B1C1与∠A1呢? 全等吗?为什么?
3 2 1
D D
4
C
解:
挑战自我:
小亮在学习了全等三角形的判定方法2和判定方法3后,他 发现在这两个判定方法的条件中,相等的边可以是“ 两等角 的夹边 ”,也可以是 “一组等角的对边 ” ,于是,他认为可以 把这两个判定方法概括成 “ 满足两角及一边分别相等的两个 三角形全等 ” ,你同意吗?如果不同意,举例说明。
C1
用符号语言表示:
在Δ ABC与 Δ A1B1C1中, BC = B1C1 ∠B = ∠B1 ∠C = ∠C1 Δ ABC ≌ Δ A1B1C1
判定方法2: 两角及其夹边分别相等的两个三角形全等, 简写成 “角边角” 或 “ ASA ”。
精讲点拨:
例3 如图:已知∠ACB = ∠DFE , ∠B = ∠E ,BC=EF ,那么 Δ ABC与 Δ DEF全等吗? 为什么?
北师大版七年级数学下册角边角判定三角形全等课件
![北师大版七年级数学下册角边角判定三角形全等课件](https://img.taocdn.com/s3/m/41330198ba4cf7ec4afe04a1b0717fd5360cb20c.png)
B
∠B=∠E(已知)
BC=EF(已知)
∠C=∠F(已证)
E
∴ △ABC≌△DEF (ASA)
D F
探究二反应的规律是:
有两个角和其中一个角的对边对应相等的两个 三角形全等。 (简写成“角角边”或“AAS”)
A
用几何语言表达为:
证明:在△ABC和△DEF中
∠A= ∠D
B
ห้องสมุดไป่ตู้
∠B = ∠E
BC=EF
C D
例1.已知:点D在AB上,点E在AC上,BE和 CD相交于点O,AB=AC,∠B=∠C。
求证:△ACD≌△ABE
A
证明 :在△ADC和△AEB中 ∠A=∠A(公共角)
DO E
AC=AB(已知)
∠C=∠B(已知)
B
C
∴△ACD≌△ABE(ASA)
思考 如果把已知中的AB=AC改成AD=AE,那么
△ADC和△AEB还全等吗 ?
∴ △ABC≌△CDA(ASA) ∴ AB=CD BC=AD
(全等三角形对应边相等)
(1)学习了角边角、角角边
(2)注意角角边、角边角中两角与边的区分。
(3)会根据已知两角一边画三角形
(4)进一步学会用推理证明。 (5)证明线段或角相等,就是证明它们所 在的两个三角形全等。
布置作业
P
∴ △ABC≌△DEF (AAS)
F E
典型例题
例2.如图,∠1=∠2,∠3=∠4 求证: AC=AD
证明:∵ ∠3=∠4 ∴ ∠ABC=∠ABD
在△AB C与△ ABD中
∠1=∠2
AB=AB ∠ABC=∠ABD ∴ △AB C ≌ △ ABD (ASA)
∴ AC=AD
4.3.2 用“角边角、角角边”判定三角形全等
![4.3.2 用“角边角、角角边”判定三角形全等](https://img.taocdn.com/s3/m/8fc2d7b7dd3383c4bb4cd2bc.png)
(来自《教材》)
知2-导
归
纳
两角分别相等且其中一组等角的对边相等的两个 三角形全等,简写成 “角角边”或“AAS”.
(来自《教材》)
知2-讲
1.判定方法三:两角分别相等且其中一组等角的对边相
等的两个三角形全等(简写成“角角边”或“AAS”).
(来自《点拨》)
知1-练
1
如图,已知△ABC的六个元素,则下列甲、乙、丙 三个三角形中一定和△ABC全等的是( A.甲、乙 )
B.甲、丙
C.乙、丙 D.乙
(来自《典中点》)
知1-练
2
如图,某同学不小心把一块三角形玻璃打碎成三块, 现在要到玻璃店配一块与原来完全相同的玻璃,最 省事的方法是( A.带①和②去 )
B.只带②去
C.只带③去 D.都带去
(来自《典中点》)
知1-练
3
如图,已知AD是△ABC的BC边上的高,下列能使 △ABD≌△ACD的条件是( A.∠BAD=∠CAD B.∠BAC=99° )
C.BD=AC
D.∠B=45°
(来自《典中点》)
知2-导
知识点
议一议
2
三角形全等的条件:角角边
如果“两角及一边”条件中的边是其中一角的对
2.利用“角角边“判定两三角形全等:
1.必做: 完成教材P102习题4.7T1-4 2.补充: 请完成《典中点》剩余部分习题
其中∠BAE=∠BCE=∠ACD=90°,且BC=CE.
试说明:△ABC与△DEC全等.
(来自《点拨》)
知2-讲
解:如图,因为∠BCE=∠ACD=90°, 所以∠3+∠4=∠4+∠5. 所以∠3=∠5. 在△ACD中,∠ACD=90°, 所以∠2+∠D=90°. 因为∠BAE=∠1+∠2=90°,
北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》教案
![北师大版七年级数学下册《4.3 第2课时 利用“角边角”“角角边”判定三角形全等》教案](https://img.taocdn.com/s3/m/00ab188177eeaeaad1f34693daef5ef7ba0d12f8.png)
北师大版七年级数学下册《4.3 第2课时利用“角边角”“角角边”判定三角形全等》教案一. 教材分析《北师大版七年级数学下册》第4.3节主要讲述了利用“角边角”(AAA)和“角角边”(AAS)判定三角形全等的方法。
学生在学习本节课之前已经掌握了三角形的基本概念、性质以及全等三角形的判定方法“边角边”(SAS)。
本节课的内容是全等三角形判定方法的重要组成部分,是进一步研究三角形相似、解三角形等知识的基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,能够理解和掌握三角形的全等概念。
但是,对于“角边角”(AAA)和“角角边”(AAS)判定三角形全等的方法,他们可能还比较难以理解,需要通过大量的练习来巩固。
此外,学生可能对全等三角形的判定方法之间的联系和区别还不够清晰,需要教师进行引导和讲解。
三. 教学目标1.让学生掌握“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法。
2.使学生能够运用这两种方法解决实际问题。
3.培养学生空间想象能力和逻辑思维能力。
四. 教学重难点1.教学重点:掌握“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法。
2.教学难点:理解“角边角”(AAA)和“角角边”(AAS)判定三角形全等的原理,能够灵活运用这两种方法解决实际问题。
五. 教学方法采用讲授法、演示法、练习法、讨论法等教学方法。
通过教师的讲解和演示,学生的练习和讨论,使学生理解和掌握全等三角形的判定方法。
六. 教学准备1.教师准备PPT,内容包括全等三角形的判定方法、实例讲解等。
2.准备一些三角形模型或图片,用于展示和练习。
七. 教学过程1.导入(5分钟)通过一个实例引出全等三角形的判定方法,激发学生的兴趣。
例如,展示一个三角形模型,让学生观察并判断它是否与另一个三角形全等。
2.呈现(10分钟)教师通过PPT呈现“角边角”(AAA)和“角角边”(AAS)两种判定三角形全等的方法,并进行讲解。
北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案
![北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案](https://img.taocdn.com/s3/m/5e672e71e3bd960590c69ec3d5bbfd0a7956d5b6.png)
-难点一:理解并区分ASA和AAS判定条件。学生可能会混淆两种判定方法中角的对应关系和边的对应关系。
-举例:学生需要明确ASA中的边是夹在两组相等角之间的边,而AAS中的边不是夹在两组相等角之间的边。
-难点二:在实际问题中灵活应用判定方法。学生在面对具体的几何图形时,可能难以确定使用哪种判定方法。
2.利用“角角边”(AAS)判定三角形全等:学生通过实例分析,掌握当两个三角形中,有两组角和非夹边相等时,这两个三角形全等。
本节课将结合教材内容,通过实际例题和练习,使学生熟练运用“角边角”和“角角边”判定方法,证明三角形全等。
二、核心素养目标
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过引导学生运用“角边角”和“角角边”判定方法证明三角形全等,使其掌握几何图形的基本证明方法,提高逻辑推理能力。
北师大版七年级下册(新)第四章《4.3.2利用“角边角”“角角边”判定三角形全等》教案
一、教学内容
本节课选自北师大版七年级下册(新)第四章《几何图形的尺规作图与证明》中的4.3.2节,主要内容包括以下两点:
1.利用“角边角”(ASA)判定三角形全等:学生通过观察和实际操作,理解当两个三角形中,有两组角和它们之间的夹边相等时,这两个三角形全等。
2.培养学生的空间观念:通过观察、分析、操作几何图形,使学生形成对三角形全等的空间观念,提高对几何图形的理解和认识。
3.培养学生的数学应用意识:将三角形全等的判定方法应用于解决实际问题,使学生体会数学与现实生活的联系,提高数学应用意识。
三、教学难点与重点
1.教学重点
- “角边角”(ASA)判定方法的掌握:学生需要理解并熟练运用ASA判定方法,通过两组角和它们之间的夹边相等来证明两个三角形全等。
三角形全等的判定:角边角和角角边_课件
![三角形全等的判定:角边角和角角边_课件](https://img.taocdn.com/s3/m/da30c04cfc4ffe473368abaa.png)
结论
两角和其中一角对边对应相等的两个三角形全等 简写为“角角边”或“AAS”.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC与△DEF 中
∠B =∠E ∠A =∠D
一定要按“角,角, 边”的顺序列举条件
AC =DF
已知:点E 是正方形ABCD 的边CD上一点,点F 是CB 的延长 线上一点,且EA⊥AF,求证:DE=BF.
提示:证明△ABF ≌△ADE.
已知△ABC 中,BE ⊥AD 于E,CF⊥AD 于F,且BE =CF, 那么BD与DC 相等吗?
提示:证明△BDE ≌△CDF.
补充题 如图,AB∥CD,AD∥BC,那么 AB =CD 吗?为什么 ?AD 与BC 呢?
2.如图,要测量池塘两岸相对的两点A,B 的距离,可以在 池塘外取AB 的垂线BF上的两点C,D,使BC=CD,再画BF 的 垂线DE,使E与A,C在一条直线上,这时测得DE 的长就是 AB 的长.为什么?
如图,小明、小强一起踢球,不小心把一块三角形的装饰玻 璃踢碎了,摔成了3 块,两人决定赔偿.你能告诉他们只带其 中哪一块去玻璃店,就可以买到一块完全一样的玻璃吗?
结论
两角及夹边对应相等的两个三角形全等 简写为“角边角”或“ASA”.
结论 一张教学用的三角形硬纸板不小心被撕坏了,如图,你能 制作一张与原来同样大小的新教具吗?能恢复原来三角形 的原貌吗?
这利用的是什么原理呢?
ASA可以判定三角形全等.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC 与△DEF 中
八年级数学
精品 课件
第十二章 全等三角形:三角形全等的判定
角边角、角角边判定三角形全等
![角边角、角角边判定三角形全等](https://img.taocdn.com/s3/m/735294f8f8c75fbfc77db260.png)
D
∠1=∠2
(已知)
1 2
∠D=∠C(已知) AB=AB(公共边) ___ ) ∴AC=AD (全等三角形对应边相等)
C
1.如图,∠1=∠2,∠3=∠4
求证:AC=AD
证明:∵∠ ABD =180º -∠3 ∠ ABC =180º -∠4 D B 3
4
而∠3=∠4(已知) ∴∠ABD=∠ABC 在△ ABD 和△ ABC 中 ∠1=∠2 ( 已知 ) AB=AB ( 公共边 )
(2) (1)
利用“角边角”可知,带第(2)块去, 可以配到一个与原来全等的三角 形玻璃。
A
D
C
E
B
本节课我们主要学习了有关 全等三角形的“两角一边”识别 方法,有两种情况: 1. 两个角及两角的夹边; 2.两个角及其中一角的对边。 (都能够用来识别三角形全等)
判定两个三角形全等, 我们已有了哪些方法?
判断下列各对三角形是否全等, 如全等,说出理由。
61°
70°
20
70°
10
47° 10 61°
(1)
48° 5 60° 5 60° 48° 48° 72°
√
20 47°
27°
√
83°
(2)
108°
(3)
×
108°
√
(4)
2.如图,应填什么条件就有 △AOC≌ △BOD
∠A=∠B(已知)
AO=BO _____
(ASA)
(AAS)
两角和其中一角的对边对应相等的两个三角
形全等,简写成“角角边”或“AAS”
练 习 根据题目条件,判别下面的两个三 角形是否全等,并说明理由.
(不全等,因为 BC虽然是公共边, 但不是对应边。)
人教版八年级数学上册第十二章 1 第3课时 利用“角边角”“角角边”判定三角形全等
![人教版八年级数学上册第十二章 1 第3课时 利用“角边角”“角角边”判定三角形全等](https://img.taocdn.com/s3/m/75e0cb7ebdd126fff705cc1755270722192e599a.png)
以下判断正确的(包括判定三角形全等的依据)是 (
).
A.①对,②错 B.①错,②对 C.①②都对
D.①②都错
关闭
B
答案
1
2
1.利用“角边角”判定两个三角形全等
【例1】 如图,已知点E,C在线段BF上,BE=CF,AB∥DE,
“AC=DF ”,这个条件无法得到;如果能推导出任意的另一组角对应
相等,那么可判定两个三角形全等,题目的已知条件还有“AB∥DE ”,
所以利用平行线的性质,可以得到“∠B=∠DEF ”,这时,两个三角形
存在“两角及夹边”的对应关系,证明全等的条件就已经具备了.
1
2
证明:∵BE=CF(已知),
∴BE+EC=CF+EC,即BC=EF.
∴△ABC≌△EDB(AAS).
∵AB∥DE,∴∠B=∠DEF.
∠ = ∠(已证),
在△ABC 和△DEF 中, = (已证),
∠ = ∠(已知),
∴△ABC≌△DEF(ASA).
点拨:分析问题时,可把已知条件用相同的符号在图形中标出来,如
第一组相等的线段,在它们上面画上一竖,第二组相等的线段,在它们
上面画上两竖;或者用颜色笔,相等条件用同一颜色在图中标出来,如
分析:首先根据平行线的性质可得∠ACB+∠CBD=180°,然后可得
∠CBD=90°,最后利用AAS判定△ABC≌△EDB即可.
1
2
证明:∵AC∥BD,
∴∠ACB+∠CBD=180°.
∵∠C=90°,∴∠CBD=90°.
∠ = ∠,
在△ACB 和△EBD 中, ∠ = ∠,
三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)
![三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)](https://img.taocdn.com/s3/m/d80af6d60875f46527d3240c844769eae009a38b.png)
三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。
“角边角”和“角角边”判定三角形全等 公开课一等奖课件
![“角边角”和“角角边”判定三角形全等 公开课一等奖课件](https://img.taocdn.com/s3/m/61b5f45d52ea551810a687fa.png)
学生活动:自己动手操作,然后与同伴交流,发现规律. 教师活动:检查指导,帮助有困难的同学. 活动结果展示: 以小组为单位将所得三角形重叠在一起,发现完全重合, 这说明这些三角形全等. 提炼规律: 两角和它们的夹边分别相等的两个三角形全等.(可以简 写成“角边角”或“ASA”)
[师]我们刚才做的三角形是一个特殊三角形,随意画一个 △ABC,能不能作一个△A′B′C′,使∠A=∠A′,∠B= ∠B′,AB=A′B′呢?
? 想一想
今后我们应该怎样做?
公共场合,我们应该安静有序地排队等候。
课堂上我们应该静静的倾听,静静的思考
讨论问题的时候,我们要认真倾听 别人的意见,有序地发表自己的见解。
到室外或功能室上课前,迅速有序 列队,安静轻步走到上课地点,上下楼 梯靠右行。
让我们读一读
• 铃声响 速静心 进教室 坐端正 • 上下楼 靠右行 走廊里 步要轻 • 不追逐 不吵闹 休息好 讲文明 • 早操时 快静齐 课间时 也安静 • 管理班 守纪律 惜时间 勤学习 • 排路队 守秩序 不推挤 慢慢行 • 寻清静 现文明 好习惯 能养成
(4)射线A′D与B′E交于一点,记为C′. 即可得到△A′B′C′. 将△A′B′C′与△ABC重叠,发现两三角形全等. [师]
于是我们发现规律: 两角和它们的夹边分别相等的两三角形全等.(可以 简写成“角边角”或“ASA”) 这又是一个判定两个三角形全等的条件.
2.出示探究问题: 如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E, BC=EF,△ABC与△DEF全等吗?能利用角边角条件证 明你的结论吗?
我们可以安静一点吗?(节选)
• 德国摄影记者在东京旅行,拍下一辑东京地铁挤拥的照 片。许多日本人默默承受挤拥,不论西装笔挺,脸孔压在车 厢门的玻璃上,鼻扁嘴凸,面容扭曲,就是一副死忍,绝不 吭声半句。这个照片系列,成为日本国民性格的代表作。 • 日本人乘搭公共交通工具,不论地铁还是飞机,其恬静 是一大景观。手机不会响,为他人着想,固不必说,车厢里 鲜有交谈,即使有,声音也自觉低下来,令西方记者称奇。 • 日本火车与瑞士和欧洲各国的火车类似,就是乘客自觉 恬静,读书看报,或者上网工作。这方面,难怪日本早身在 西方文明国家之列,公共交通,首重一个“公”字,国民无 公德,国家再强,GDP再高,没有人心中真正看得起你。
用“角边角”和“角角边”证三角形全等
![用“角边角”和“角角边”证三角形全等](https://img.taocdn.com/s3/m/f92b9eddba1aa8114531d9d5.png)
用“角边角”和“角角边”证三角形全等一、知识点回顾1、两个角和它们的夹边分别相等的两个三角形全等(角边角 ASA)2、两个角和其中一个角的对边分别相等的两个三角形全等(角角边 AAS)3、三角分别相等的两个三角形不一定相等。
二、巩固练习1、如图所示,下列各组条件中,能判定△ABC≌△DEF的是()A. AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠C=∠F,AC=EFC.∠A=∠D,∠C=∠F,AC=DF D.∠A=∠D,∠B=∠E,∠C=∠F第1题第3题第4题1、在△ABC和△DEF中,AB=DE,∠A=∠D。
若证明△ABC≌△DEF,还需补充一个条件,错误的补充方法是( )A.∠B=∠EB.∠C=∠FC.BC=EFD.AC=DF3、如图,AB与CD相交于点O,∠A=∠B,AO=BO,因为________=________,所以△AOC≌△BOD,其理由是____ ____.4、如图,AE=AD,∠B=∠C,BE=6,AD=4,则AC=________.5、已知:如图,点B、F、C、E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.6、如图,点B在射线AE上,∠CAE=∠DAE,∠CBE=∠DBE.求证:AC=AD.三、能力提升7、如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC交AB于点E.求证:△ABC≌△MED.8、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去9、10、如图AD,BC分别平分∠CAB,∠DBA,且∠1=∠2,试探究AC与BD的数量关系,并说明理由。
C D1 2A B11.12、在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,求AE的长。
第2课时 利用“角边角”“角角边”判定三角形全等
![第2课时 利用“角边角”“角角边”判定三角形全等](https://img.taocdn.com/s3/m/2f6e606ef11dc281e53a580216fc700abb6852a7.png)
∠ACB=∠DBC(已知)B,
C
∴△ABC≌△DCB(ASA ).
判定方法:两角和它们的夹边对应相等两个三角形全等.
例2 如图,点D在AB上,点E在AC上,AB=AC,
∠B=∠C,试说明:AD=AE.
分析:证明△ACD≌△ABE,就可以得出AD=AE.
解:在△ACD和△ABE中,
A
∠A=∠A(公共角 ),
AC=AB(已知),
D
E
∠C=∠B (已知 ),
B
C
∴ △ACD≌△ABE(ASA),
∴AD=AE.
二 用“角角边”判定三角形全等
合作探究
问题:若三角形的两个内角分别是60°和45°, 且45°所对的边为3cm,你能画出这个三角形吗?
60°
45°
思考: 这里的条件与一中的条件有什么相同点与不同
点?你能将它转化为一中的条件吗?
答:带1去,因为有两角且 夹边相等的两个三角形全等.
1 23
能力提升:已知:如图,△ABC ≌△A′B′C′ ,AD、
A′ D′ 分别是△ABC 和△A′B′C′的高.试说明AD=
A′D′ ,并用一句话说出你的发现.
A
A′
B
DC B
D′ C′
′
A
A′
B
DC
B
解:因为△ABC ≌△A′B′C′ , ′
B′
作法:
(1)画A'B'=AB;
(2)在A'B'的同旁画∠DA'B '=∠A,∠EB'A '=∠B,
A'D,B'E相交于点C'.
想一想:从中你能发现什么规律?
《三角形全等的判定--角边角-角角边》说课稿-ppt市公开课获奖课件省名师示范课获奖课件
![《三角形全等的判定--角边角-角角边》说课稿-ppt市公开课获奖课件省名师示范课获奖课件](https://img.taocdn.com/s3/m/daadcadb8662caaedd3383c4bb4cf7ec4afeb6d2.png)
3、思索举证(探究7),全等小结
满足全等 三角形旳 六组条件 中旳三组
(1)三边(SSS)
(2)两边一角
两边、一夹角(SAS) 两边、一对角(不一定)
(3)两角一边 两角一夹边(ASA) 两角一对边(AAS)
∠A=∠A(公共角), AC=AB , ∠C=∠B, ∴ △ACD≌△ABE (ASA), ∴ AD=AE. (2)如图,AB⊥BC,AD⊥DC,∠1=∠2.求证AB=AD。 证明: ∵ AB⊥BC ,AD⊥DC, ∴ ∠B=∠D=90° 在△ABC和△ADC中, ∠B=∠D ∠1=∠2 AC=AC (公共边) ∴ △ABC≌△ADC (AAS),
二、教学目的
【知识技能】 1.让学生在自主探究旳过程中得出A.S.A推 导出A.A.S定,掌握
【过程与措施】 经历探索三角形全等条件旳过程,体会怎 样探索、研究问题,培养学生合作精神,让学 生初步体会数学中旳分类思想。
【情感态度与价值观】 经过画图、比较、验证,培养学生注重观 察、善于思索、不断总结旳良好思维习惯。
2、学术情境分类,明确探究任务
(1)三边(SSS)
满足全等三角 形旳六组条件 中旳三组
(2)两边一角 两边、一夹角(SAS)
两边、一对角(不一定) (3)两角一边
(4)三角
(二)合作交流、解读探究
1、试验验证(探究5),探索新知(角边角)
(1)分组试验,前后桌4位同学为一组,共同完 毕试验。
试验环节:①任意画一种三角形△ABC; ②前桌两位同学均各自再画△A′B′C′,使
本节课在知识构造上,它是同学们在学习了三 角形有关要素、全等图形旳概念后来进行旳,它即 是前面所学知识旳延伸与拓展,又是后继学习探索 相同形旳条件和基础,而且是用以阐明线段相等、 两角相等旳主要根据。所以,本节课旳知识具有承 上启下旳作用。在能力培养上,不论是动手操作能 力、逻辑思维能力,还是分析问题、处理问题旳能 力,都可在全等三角形旳教学中得以培养和提升。 所以,全等三角形在整个初中数学旳学习中有至关 主要旳作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
? 先任意画出一个△ABC,再画一 个△A'B'C',使A'B'=AB,∠A' =∠A, ∠B' =∠B。把画好的△A'B'C'剪下,放 到△ABC上,它们全等吗?
已知:任意△ ABC,画一个△ A'B'C' , 使A'B' =AB,∠A' =∠A,∠B'=∠B
C
D E
怎么办, 可以帮帮我吗?
1、这节课我们主要学了什么?
2、这节课通过对两个三角形全 等条件的进一步探究,你有什 么收获?将你的收获课后与其他 同学分享。
学习目标
探索并掌握两个三角形全等的条件:“ASA ”、 “AAS ”, 并能应用它们判别两个三角形是否全等。
如果两个三角形有两个角、一条边 分别对应相等,那么这两个三角形能 全等吗?
1. 两个角及这两 两 角的夹边分别对 种 应相等 情 2. 两个角及其中 况 一角的对边分别
对应相等
如果两个三角形有两个角及这两角 的夹边分别对应相等,那么这两个三 角形能全等吗?
B
如果两个三角形有两个角及其 中一角的对边分别对应相等,那 么这两个三角形能全等吗?
〖探究方法〗 ——用逻辑推理方法证明
有两个角及其中一角的 对边分别应相等的两个 三角形全等。
(简写成“角角边”或“AAS ”)
自学指导
三角对应相等的两个三角形全等吗? 如何进行说明?
判定两个三角形全等, 我们已有了哪些方法?
已知:如图,AB=A'B', ∠A=∠A',∠B=∠B'。
求证:△ABC≌ △A'B'C'
A
A' 证明:在 △ABC 和 △A'B'C' 中
_∠__A_=__∠__A' ( 已知 )
_A_B_=__A_'_B_' ( 已知 )
∠__B__=_∠__B_' ( 已知 )
C C'
B' ∴△_A_B__C__≌△A__'B_'_C_'_(ASA )
∴ AC=AD (全等三角形对应边相等)
2.如图,应填什么就有 △AOC≌ △BOD
∠A=∠B(已知)
_A_O_=B_O_
B
∠COA=∠BOD (已知)
∴△AOC≌△BOD
C
O D
A
如图,小明不慎将一块三角形模具打碎为两块 , 他是否可以只带其中的一块碎片到商店去 ,就能配 一块与原来一样的三角形模具吗 ? 如果可以,带 哪块去合适 ?你能说明其中理由吗 ?
1.如图,∠ 1=∠2,∠ 3=∠4
求证:AC=AD
证明:∵∠ ABD =180o-∠3
∠ ABC =180o-∠4
D
而∠3=∠4(已知)
∴∠ABD=∠ABC
A 1 B3
2
4
在△ ABD 和△ ABC 中 ∠1=∠2 ( 已知 ) AB=AB (公共边)
C
∠ABD=∠ABC ( 已知 )
∴△ ABD ≌ △ ABC ( ASA )
sss 、SAS 、ASA 、
AAS
D B
已知:点 D在AB上,点 E在AC上, BE 和CD相交于点 O,AB=AC,∠B=∠C。
求证:AD=AE
A
E O
证明 :在△ADC和△AEB中 ∠C=∠B (已知) AC=AB (已知) ∠A=∠A(公共角)
C ∴△ACD≌△ABE(ASA)
∴AD=AE (全等三角形的对应边相等)
A C'
A'
画法: 1 、画A'B'=AB 2 、在A'B'的同旁画 B ∠ DA'B'= ∠A , ∠E B'A' =∠B, A'D、B'E 交于点 C' 。 ∴△A'B'C' 就是所要 画的三角形。
B'
问:通过实验可以发现什么事实 ?
有两角和它们夹边对应 相等的两个三角形全等。
(简写成“角边角”或 “ASA ”)