新北师大版八年级数学下册2.1不等关系课件
北师大版数学八年级下册2.1《不等关系》教案
![北师大版数学八年级下册2.1《不等关系》教案](https://img.taocdn.com/s3/m/cf7b25455e0e7cd184254b35eefdc8d376ee14ed.png)
北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。
这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念和基本性质。
2.学会用不等式表示实际问题中的不等关系。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.不等式的概念和基本性质。
2.如何用不等式表示实际问题中的不等关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。
六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。
2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。
3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。
4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。
5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。
7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。
8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。
教学过程每个环节所用的时间如上所示,供您参考。
一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)
![一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)](https://img.taocdn.com/s3/m/9eee622da7c30c22590102020740be1e640ecc71.png)
随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:
北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)
![北师大版八年级数学下册第一讲 不等式的基本性质(基础讲解)(含解析)](https://img.taocdn.com/s3/m/142be423ef06eff9aef8941ea76e58fafbb04550.png)
第一讲不等式的基本性质【学习目标】1.了解不等式的意义,认识不等式和等式都可以用来刻画现实世界中的数量关系.2. 知道不等式解集的概念并会在数轴上表示解集.3. 理解不等式的三条基本性质,并会简单应用.【知识总结】一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.二、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:要点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a而言,x>a或x≥a向右画;对边界点a而言,x<a或x≤a 向左画.注意:在表示a的点上画空心圆圈,表示不包括这一点.三、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).要点诠释:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变. 【典型例题】【类型】一、不等式的概念例1.给出下列表达式:①()a b c ab ac +=+;②20-<;③5x ≠;④21a b >+;⑤222x xy y -+;⑥236x ->,其中属于不等式的是______.(填序号) 【答案】②③④⑥【分析】根据不等式的定义判断即可. 解:①a (b+c )=a b+ac 是等式;②-2<0是用不等号连接的式子,故是不等式; ③x≠5是用不等号连接的式子,故是不等式; ④2a >b+1是用不等号连接的式子,故是不等式; ⑤x 2-2xy+y 2是代数式;⑥2x-3>6是用不等号连接的式子,故是不等式, 故答案为:②③④⑥.【点拨】本题考查的是不等式的定义,即用“>”或“<”号表示大小关系的式子,叫做不等式,用“≠”号表示不等关系的式子也是不等式.【训练】下列式子:①-1>2;②3x≥-1;③x -3;④s =vt ;⑤3x -4<2y ;⑥3x -5=2x +2;⑦a 2+2≥0;⑧a 2+b 2≠c 2.其中是不等式的是___________________.(只填序号) 【答案】①②⑤⑦⑧ 【解析】【分析】根据不等式的定义即可得出结论.解:根据不等式的定义:①-1>2,②3x ≥-1,⑤3x -4<2y ,⑦a 2+2≥0,⑧a 2+b 2≠c 2是不等式;③x -3,④s =vt ,⑥3x -5=2x +2不是不等式. 故答案为:①②⑤⑦⑧.【点拨】本题考查了不等式的概念.掌握不等式的概念是解题的基础. 【训练】下列式子属于不等式的是_______________.① 50-< ② 2x 3= ③ 3x 12-> ④4x 2y 0-≤ ⑤ 2x 3x 20-+> ⑥ x 2y - ⑦ 57x ≠ ⑧54< ⑨ x y 0+≥【答案】①③④⑤⑦⑧⑨【解析】【分析】根据不等式的概念即可解题. 解:∵不等式要求用不等号连接 ∴排除②⑥∴不等式的有①③④⑤⑦⑧⑨【点拨】本题考查了不等式的识别,属于简单题,熟悉不等式的概念是解题关键.【类型】二、不等式的解及解集例2.(2018·安徽全国·七年级单元测试)下列数值中哪些是不等式3x-1≥5的解?哪些不是? 100, 98, 51, 12, 2, 0, -1, -3, -5.【答案】100, 98, 51, 12, 2是不等式3x-1≥5的解;0,-1,-3,-5不是不等式3x-1≥5的解. 【解析】试题分析:把上述各数分别代入不等式315x -≥的左边计算出左边的值,看是否大于或等于5即可. 试题解析:∵在不等式315x -≥中,当100x =时,左边=312995x -=>; 当98x =时,左边=312935x -=>; 当51x =时,左边=311525x -=>; 当12x =时,左边=31355x -=>; 当2x =时,左边=315x -=;当0x =时,左边=3115x -=-<; 当1x =-时,左边=3145x -=-<; 当3x =-时,左边=31105x -=-<; 当5x =-时,左边=31165x -=-<;∴上述各数中,100,98,51,12,2是不等式315x -≥的解;0,-1,-3,-5不是不等式315x -≥的解. 例3. 把下列不等式的解集在数轴上表示出来. (1)x≥-3; (2)x >-1; (3)x≤3;(4)x<-32. 【答案】(1)(2) (3)(4)【解析】将上述不等式的解集规范的表示在数轴上即可. 试题解析:(1)将3x ≥-表示在数轴上为:(2)将1x >-表示在数轴上为:(3)将3x ≤表示在数轴上为:(4)将32x <-表示在数轴上为:点拨:将不等式的解集表示在数轴上时,需注意两点:(1)“大于(大于或等于)向右,小于(小于或等于)向左”;(2)“x a >或(x a <)时”,数轴上表示数“a ”的点用“空心圆圈”,“x a ≥(或x a ≤)时”,数轴上表示数“a ”的点用“实心圆点”. 【训练】在数轴上表示不等式﹣3≤x <6的解集和x 的下列值:﹣4,﹣2,0,142,7,并利用数轴说明x 的这些数值中,哪些满足不等式﹣3≤x <6,哪些不满足? 【答案】﹣2,0,142满足不等式;﹣4,7不满足不等式 【分析】根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式的解集和x 的下列值:﹣4,﹣2,0,142,7在数轴上表示出来,这些值如果在解集范围内则表示满足不等式,否则就是不满足不等式.解:根据图可知:x 的下列值:﹣2,0,142满足不等式;x 的下列值:﹣4,7不满足不等式.【点拨】不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.【类型】三、不等式的性质例4.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式.(1)x 15-<. (2)4x 13-≥. (3)1x 142-+≥. (4)4x 10-<-. 【答案】(1)x 6<;(2)x 1≥;(3)x 6≤-;(4)5x 2>.【分析】(1)利用不等式的性质将两边加上1即可求解;(2)利用不等式的性质先将两边加上1,再两边同除以4即可求解; (3)利用不等式的性质先将两边减去1,再两边同除以12-即可求解; (3)利用不等式的性质将两边同除以-4即可求解; 解:(1)x 15-<,两边加上1得:x 1151-+<+, 解得:x 6<; (2)4x 13-≥,两边加上1得:4x 1131-+≥+,即4x 4≥, 两边除以4得:x 1≥; (3)1x 142-+≥, 两边减去1得:1x 11412-+-≥-,即1x 32-≥, 两边除以12-得:x 6≤-; (4)4x 10-<-, 两边除以4-得:5x 2>. 【点拨】本题考查不等式的性质,解题的关键是熟练掌握不等式的性质.【训练】根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:(1)5x>4x+8 (2)x+2<-1 (3)-23x>-1(4)10-x>0 (5)-15x<-2 (6)3x+5<0【答案】(1)x>8;(2)x<-3;(3)x<32;(4)x<10;(5)x>10;(6)x<-53.【分析】根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变;依次分析各小题即可.解:(1)根据不等式性质1,不等式两边都减4x,不等号的方向不变,得5x-4x>4x+8-4x,即x>8;(2)根据不等式性质1,不等式两边都减去2,不等号的方向不变,得x+2-2<-1-2即x<-3;(3)根据不等式性质3,不等式两边同除以-23,不等号的方向改变,得-23x÷(-23)<-1÷(-23)即x<32;(4)根据不等式性质1,不等式两边同减10,不等号的方向不变,得10-x-10>0-10即-x>-10,再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;(5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,得-15x·(-5)>-2×(-5)即x>10;(6)根据不等式性质1,不等式两边都减去5,不等号的方向不变得3x+5-5<0-5即3x<-5,再根据不等式性质2,不等式两边同除以3,不等号的方向不变,得3x÷3<-5÷3即x<-53.【点拨】本题主要考查了不等式的基本性质,本题重在考查不等式的三条基本性质,特别是性质3,两边同乘以(•或除以)同一个负数时,一定要改变不等号的方向!•这条性质是初学者最易出错也经常出错的地方.。
一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)
![一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)](https://img.taocdn.com/s3/m/03f267ee0d22590102020740be1e650e53eacf71.png)
探究新知
解:设该单位参加这次旅游的人数是 x 人,选择甲旅行 社时,所需的费用为 y 1 元,选择乙旅行社时,所需的费 用为 y 2 元,则 y 1 = 200 × 0.75 x, 即 y 1 = 150 x; y 2 = 200 × 0.8(x - 1),即 y 2 = 160 x - 160.
探究新知
例 3 : 为绿 化 校园 , 某校 计 划购 进 A, B两 种 树苗 , 共 21 棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种 树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为________; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种
千米收取的费用比乙租赁公司多 D.除去月固定租赁费,甲租赁公司平均每
千米收取的费用比乙租赁公司少
随堂练习
4.某电信公司有甲、乙两种手机收费业务.甲种业务规定 月租费10元,每通话1 min收费0.3元;乙种业务不收月 租费,但每通话1 min收费0.4元.你认为何时选择甲种业 务对顾客更合算?何时选择乙种业务对顾客更合算?
情境导入
一次函数与一元一次不等式的关系是什么? 一次函数与一元一次不等式的关系: 任何一元一次不等式都可以化为ax+b>0或ax+b<0(a,b为 常数,a≠0)的形式,所以解一元一次不等式就可以看成当一次 函数的值大于或小于0时,求相应的自变量的取值范围. 从 图 象 上 看 , ax + b > 0 或 ax + b < 0 的 解 集 是 使 直 线 y = ax + b(a≠0)位于x轴的上方或下方的部分对应的x的取值范围.
探究新知
核心知识点一: 一元一次不等式与一次函数的综合应用
例1:某电信公司有甲、乙两种手机收费业务.甲种业务规 定月租费10元,每通话1min收费0.3 元;乙种业务不收月租 费,但每通话1min收费0.4 元. 你认为何时选择甲种业务对 顾客更合算?何时选择乙种业务对顾客更合算?
北师大版八年级数学下册2.1不等关系课件(20张PPT)
![北师大版八年级数学下册2.1不等关系课件(20张PPT)](https://img.taocdn.com/s3/m/dbc9bc6710a6f524ccbf85a6.png)
“五一”劳动节,小明及其父 母到游乐园去玩,他们看到
“蹦蹦床”游戏有以下温馨
提示:为了你及其他小朋友的 安全,请遵守以下规则:
若设年龄为a岁,则a应满
足的关系式为 a ≥3
若设身高为h米,则h应满
足的关系式为 h ≤ 1.3
1.年龄至少为3岁. 2.身高不超过1.3m.
归纳总结:
关
键
①大于
词
②比…大
作业
P38,习题1、2.
6 3x 30
议一议
观察由上述问题得到的关系式,它们有什么共 同特点?l2 l2 a c 160 6 3x 30
4 16
一般地,用符号“<”(或“≤”)、“>” (或“≥”)、“≠”连接的式子叫做不等式。
练一练:
1.用适当的符号表示下列关系:
(1) a是非负数.
a+b<5
(8)x与2的差大于-1;
x-2>-1
(9)x的4倍不大于7;
4x≤7
(10)y的一半不小于3.
1 y≥3 2
2.用“<”或“>”号填空:
(1)-7_<___-5; (2)|-0.5|_<___|-1000|; (3)(-3)4__=__34; (4)(-4)2__>__(-3)2 ; (5)3+4__>__1+4; (6)5+3__>__12-5; (7)6×3_>___4×3; (8)6×(-3)_<___4×(-3).
语
表明数量的不等关系
①小于 ②比…小
①不大于 ②不超过 ③至多
①不小于 ②不低于 ③至少
不等号
>
<
≤
≥
文字 语言
表明数量的范围特征
a是正 a是负 a是非 a是非
北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)
![北师大版2019-2020八年级数学下册第二章 一元一次不等式与一元一次不等式组章末复习课件(共60张)](https://img.taocdn.com/s3/m/3076910967ec102de2bd8962.png)
章末复习
解 解不等式组, 得xx≤≥b4,.5. 由题意知原不等式组有解, 所以原不等式 组的解集为4.5≤x≤b, 如图2-Z-2所示, 将x≥4.5表示在数轴上. 由整数解 有3个, 可知整数解为5, 6, 7.结合图形可知7≤b<8.
章末复习
链接1 [南宁中考]若m>n, 则下列不等式正确的是( ).
解析 ①分别求出两个不等式的解集;②求两个不等式解集的公共部分; ③在两个不等式解集的公共部分中确定整数解.
章末复习
解:解不等式 3x-1<x+5,得 x<3. 解不等式x-2 3<x-1,得 x>-1. ∴不等式组的解集为-1<x<3,它的整数解为 0,1,2.
章末复习
专题三 根据不等式(组)的解集确定字母的值(取值范围)
分析 由题意可得不等关系:购买乒乓球的花费+购买球拍的花≤200元, 由此可列不等式解决问题.
章末复习
解 设购买 x个球拍. 根据题意, 得1.5×20+22x≤200.
解这个不等式,
得x≤
8 711
. 因为x取整数,
所以x的最大值为7.
故孔明应该买7个球拍.
章末复习
相关题4 为加强中小学生安全和禁毒教育, 某校组织了“防溺水、 交通安全、禁毒”知识竞赛, 为奖励在竞赛中表现优异的班级, 学校准备从体育用品商场一次性购买若干个足球和篮球(每个足 球的价格相同, 每个篮球的价格相同). 已知购买1个足球和1个篮 球共需159元;1个足球的价格比1个篮球的价格的2倍少9元. (1)足球和篮球的单价各是多少? (2)根据学校实际情况, 需一次性购买足球和篮球共20个, 但要求 购买足球和篮球的总费用不超过1550元, 学校最多可以购买多少 个足球?
3.1《不等关系》课件(北师大版必修5)
![3.1《不等关系》课件(北师大版必修5)](https://img.taocdn.com/s3/m/50f0c2db33d4b14e85246884.png)
1.若b<0,a+b>0,则a-b的值( A.大于零 B.小于零 C.等于零 D.不能确定 解析: ∵b<0,a+b>0, ∴a>-b>0,∴a-b>0. 答案: A的速度 v 的最大限速为 120 km/h,行驶过程中,同一车道上的车间距 d 不得小于 10 m,用不 等式表示为( ) B.v≤120(km/h)或 d≥10(m) D.d≥10(m)
a 已知 12<a<60,15<b<36,求 a-b 及b的取值范围.
a 1 欲求 a-b,应先求-b 范围,欲求 ,应先求 范围,再 b b 利用不等式性质可求解.
[解题过程] ∵15<b<36,∴-36<-b<-15. ∴12-36<a-b<60-15,∴-24<a-b<45. 1 1 1 12 a 60 1 a 又 < < ,∴ < < ,∴ < <4. 36 b 15 36 b 15 3 b 1 a ∴-24<a-b<45,3<b<4.
3.利用不等式的性质判断下列各结论是否成立,并简述 理由. a b (1)若 2> 2,则 a>b; c c 1 1 (2)若 a>b,ab≠0,则a<b; (3)a>b,c>d⇒a-c>b-d; 1 1 (4)若 a>b, > ,则 a>0,b<0. a b
解析:
(1)正确.∵c2≠0,∴c2>0.
某厂使用两种零件A、B,装配两种产品: 甲、乙,该厂的生产能力是月产甲最多2 500 件,月产乙最多1 200件,而组装一件甲需要4 个A,2个B;组装一件乙需要6个A,8个B.某个月, 该厂能用的A最多有14 000个,B最多有12 000 个.用不等式将甲、乙两种产品产量之间的关 系表示出来.
北师大版数学八年级下册2.1《不等关系3》说课稿
![北师大版数学八年级下册2.1《不等关系3》说课稿](https://img.taocdn.com/s3/m/b9fd575b854769eae009581b6bd97f192279bfd7.png)
北师大版数学八年级下册2.1《不等关系3》说课稿一. 教材分析北师大版数学八年级下册2.1《不等关系3》这一节内容,是在学生已经掌握了不等式的概念、不等式的性质、不等式的解法等基础知识的基础上进行讲解的。
本节课的主要内容是让学生了解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
在教材中,通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
然后,通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
最后,通过练习题,让学生巩固所学的不等关系知识。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于不等式的概念和性质有一定的了解。
但是,学生对于不等关系的理解和应用还比较模糊,需要通过实例和练习来加深理解。
同时,学生对于实际问题中的不等关系还没有直观的认识,需要通过生活中的实例和问题来引导学生理解不等关系。
此外,学生在这一阶段的学习中,需要培养分析问题和解决问题的能力,因此,在教学过程中,需要注重学生的参与和实践。
三. 说教学目标1.知识与技能目标:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
2.过程与方法目标:通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生分析问题和解决问题的能力。
四. 说教学重难点1.教学重点:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系。
2.教学难点:让学生理解实际问题中的不等关系,并能够用不等号表示出来。
五. 说教学方法与手段在教学过程中,我将采用讲授法、实例分析法、小组讨论法等教学方法,结合多媒体课件和黑板等教学手段,引导学生理解和掌握不等关系。
六. 说教学过程1.引入新课:通过一个实际问题,引导学生用不等号表示问题中的不等关系,从而引出不等关系的概念。
北师大版八年级下册2.1《不等关系》教学设计
![北师大版八年级下册2.1《不等关系》教学设计](https://img.taocdn.com/s3/m/8a9c09b5b9f67c1cfad6195f312b3169a451ea85.png)
教学过程:布置一些具有代表性的习题,要求学生在课后完成。同时,鼓励学生在日常生活中观察和发现不等式的应用,将数学知识与社会实践相结合。
五、作业布置
为了巩固学生对《不等关系》这一章节知识的掌握,激发他们的学习兴趣,培养独立思考和解决问题的能力,特布置以下作业:
6.定期进行课堂小结,引导学生总结所学知识,形成知识体系,提高他们的概括和归纳能力。
7.关注学生的个体差异,实施差异化教学,针对学生在不等式学习中的薄弱环节,给予个性化指导,帮助他们克服困难。
8.创设问题情境,引导学生运用所学知识解决实际问题,培养他们的创新意识和实际操作能力。
9.强化过程评价,关注学生在课堂上的表现,鼓励他们积极参与、主动思考,激发学习积极性。
4.将实际问题转化为不等式问题,解决实际问题。
(二)教学难点
1.学生对不等式性质的理解和运用。
2.图像法、区间法等求解不等式方法的掌握。
3.解决实际问题时,对问题的分析和不等式的构建。
(教学设想)
1.采用情境教学法,以生活中的实例引入不等式的概念,帮助学生理解不等式与现实生活的联系,激发学习兴趣。
2.利用比较法,将等式与不等式进行对比,引导学生发现两者的共性与差异,加深对不等式性质的理解。
1.采用问题驱动的教学方法,以实际问题引入不等式的概念,激发学生的兴趣和探究欲望。
2.通过小组合作、讨论交流等形式,引导学生发现和总结不等式的性质,培养他们的合作精神和探究能力。
3.利用图像法、区间法等直观方法,帮助学生形象地理解不等式的解集,提高他们解决问题的能力。
4.设计不同难度的习题,引导学生教学内容:针对学生的解题过程,进行个别辅导。
教学过程:在学生解题过程中,教师密切关注每个学生的进展,及时发现问题并进行个别辅导。对学生的疑问给予解答,帮助他们找到解题的思路和方法。
北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义
![北师大数学八年级下册第二章-含参数一元一次不等式(组)经典讲义](https://img.taocdn.com/s3/m/672d1adcd4bbfd0a79563c1ec5da50e2534dd15a.png)
第03讲_含参数一元一次不等式(组)知识图谱含参数一元一次不等式(组)知识精讲含字母的一元一次不等式(组)未知数的系数含有字母或常数项含有字母的一元一次不等式(组) 未知数的系数含有字母若0a >,axb >的解为b x a >; 若0a <,ax b >的解为bx a<;若0a =,则当0b ≥时,ax b >无解, 当0b <时,ax b >的解为任何实数已知23a ≠,解关于x 的不等式()()14321a x a x ++<-- 原不等式化为:()()13214a x a x +--<--()325a x -<-(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-参数取值范围首先把不等式的解集用含有字母的代数式表示出来,然后把它与已知解集联系起来求解,在求解过程中可以利用数轴进行分析.五.易错点1.注意参数取值范围导致的变号问题.2.分清参数和未知数,不要混淆.3.解连续不等式时要注意拆分为不等式组.三点剖析一.考点:含参的一元一次方程(组).二.重难点:参数与解集之间的关系,整数解问题,不等式与方程综合. 三.易错点:注意参数取值范围导致的变号问题.解含参一元一次不等式(组)例题1、 解关于x 的不等式:ax ﹣x ﹣2>0. 【答案】 当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -【解析】 ax ﹣x ﹣2>0. (a ﹣1)x >2,当a ﹣1=0,则ax ﹣x ﹣2>0为空集,当a ﹣1>0,则x >21a -,当a ﹣1<0,则x <21a -.例题2、 已知a 、b 为常数,解关于x 的不等式22ax x b ->+ 【答案】 2a >时,()212b x a +>- 2a <时,()212b x a +<-2a =时,①如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数 【解析】 原不等式可化为()()221a x b ->+,(1)当20a ->,即2a >时,不等式的解为()212b x a +>-; (2)当20a -<,即2a <时,不等式的解为()212b x a +<-;(3)当20a -=,即2a =时,有 ①:如果10b +≥,不等式无解;②如果10b +<,则不等式的解为任何实数.例题3、 已知a 、b 为常数,若0ax b +>的解集为23x >,则0bx a -<的解集是( ) A.32x >B.32x <C.32x >-D.32x <-【答案】 C 【解析】 该题考查的是解不等式.0ax b +>的解集为23x >,化简得2=3b a - 且a>00bx a -<的解集为a x b >,32x >-.所以该题的答案是C .例题4、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()()13214a x a x +--<-- ()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数.(1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a>-例题5、 已知关于x 的不等式22m mx ->12x ﹣1.(1)当m=1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.【答案】 (1)x <2(2)当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2;当x <﹣1时,不等式的解集为x >2【解析】 (1)当m=1时,不等式为22x ->2x﹣1,去分母得:2﹣x >x ﹣2, 解得:x <2;(2)不等式去分母得:2m ﹣mx >x ﹣2, 移项合并得:(m+1)x <2(m+1), 当m≠﹣1时,不等式有解,当m >﹣1时,不等式解集为x <2; 当m <﹣1时,不等式的解集为x >2.随练1、 解关于x 的不等式22241x x a a a-≥+.【答案】当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立; 当2a <-时,有2x a ≥-【解析】 因为0a ≠,所以20a >,将原不等式去分母,整理得()224a x a +≤-.当2a >-且0a ≠时,有2x a ≤-;当2a =-时,x 为任意数不等式都成立;当2a <-时,有2x a ≥-.随练2、 已知23a ≠,解关于x 的不等式()()14321a x a x ++<--.【答案】 当23a >时,不等式的解为523x a <-;当23a <时,不等式的解为523x a >-【解析】 原不等式化为:()325a x -<-,因为23a ≠,所以320a -≠,即32a -为正数或负数. (1)当320a ->时,即23a >时,不等式的解为523x a <-;(2)当320a -<,即23a <时,不等式的解为523x a >-随练3、 解下列关于x 的不等式组:()23262111x a x x x +⎧->⎪⎨⎪+>-⎩;【答案】 13a >时,32x a >+;13a ≤时,3x >【解析】 原不等式组可化为323x a x >+⎧⎨>⎩.当323a +>,即13a >时,不等式组的解集为32x a >+.当323a +≤,即13a ≤时,不等式组的解集为3x >随练4、 已知a ,b 为实数,若不等式ax +b <0的解集为12x >,则不等式b (x -1)-a <0的解集为( )A.x >-1B.x <-1C.a b x b +>D.a b x b+< 【答案】 B【解析】 暂无解析随练5、已知关于x 的不等式()2340a b x a b -+->的解集是1x >.则关于x 的不等式()4230a b x a b -+->的解集是____________.【答案】 13x <-【解析】 ()2340a b x a b -+->, 移项得:()232a b x a b ->-,由已知解集为1x >,得到20a b ->,变形得:322a bx a b ->-,可得:3212a ba b-=-,整理得:a b =, ()4230a a x a a ∴-+->,即0a >,∴不等式()4230a b x a b -+->可化为()4230a a x a a -+->. 两边同时除以a 得:31x ->,解得:13x <-.随练6、 已知实数a 是不等于3的常数,解不等式组2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥()< ,并依据a 的取值情况写出其解集. 【答案】 当a >3时,不等式组的解集为x ≤3,当a <3时,不等式组的解集为x <a【解析】 2x 3311x 2a x 022-+-⎧⎪⎨-+⎪⎩≥(①②)<, 解①得:x ≤3,解①得:x <a ,∵实数a 是不等于3的常数,∴当a >3时,不等式组的解集为x ≤3, 当a <3时,不等式组的解集为x <a .随练7、 关于x 的不等式组2131x a x +>⎧⎨->⎩.(1)若不等式组的解集是1<x <2,求a 的值;(2)若不等式组无解,求a 的取值范围. 【答案】 (1)a=3;(2)a≤2【解析】 (1)解不等式2x+1>3得:x >1, 解不等式a ﹣x >1得:x <a ﹣1, ∵不等式组的解集是1<x <2,∴a ﹣1=2, 解得:a=3;(2)∵不等式组无解, ∴a ﹣1≤1, 解得:a≤2.参数与解集之间的关系例题1、 若关于x 的一元一次不等式组011x a x x ->⎧⎨->-⎩无解,则a 的取值范围是 .【答案】 a≥2.【解析】 由x ﹣a >0得,x >a ;由1﹣x >x ﹣1得,x <1, ∵此不等式组的解集是空集, ∴a≥1.例题2、 已知关于x 的不等式组301(2)342x a x x -≥⎧⎪⎨->+⎪⎩有解,求实数a 的取值范围,并写出该不等式组的解集.【答案】 a <﹣6,3a≤x <﹣2.【解析】 解不等式3x ﹣a≥0,得:x≥3a,解不等式12(x ﹣2)>3x+4,得:x <﹣2,由题意得:3a<﹣2,解得:a <﹣6,∴不等式组的解集为3a≤x <﹣2.例题3、 如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是( ) A.a <﹣1 B.a <0 C.a >﹣1 D.a >0或a <﹣1 【答案】 A【解析】 (a+1)x >a+1, 当a+1>0时,x >1, 当a+1<0时,x <1, ∵解集为x <1, ∴a+1<0, a <﹣1. 故选:A .例题4、 当1≤x≤4时,mx ﹣4<0,则m 的取值范围是( ) A.m >1 B.m <1 C.m >4 D.m <4 【答案】 B【解析】 设y=mx ﹣4,由题意得,当x=1时,y <0,即m ﹣4<0, 解得m <4,当x=4时,y <0,即4m ﹣4<0, 解得,m <1,则m 的取值范围是m <1,例题5、 若不等式(a ﹣3)x >1的解集为x <13a -,则a 的取值范围是 .【答案】 a <3.【解析】 ∵(a ﹣3)x >1的解集为x <13a -, ∴不等式两边同时除以(a ﹣3)时不等号的方向改变, ∴a ﹣3<0, ∴a <3.故答案为:a <3.例题6、 如果关于x 的不等式()122a x a +>+的解集是2x <,则a 的取值范围是( ) A.0a < B.1a <-C.1a >D.1a >-【答案】 B【解析】 将原不等式与其解集进行比较,在不等式的变形过程中利用了不等式的性质三,因此有10a +<,故1a <-例题7、 若不等式组()322110b x x a -<--⎧⎨->⎩的解集为﹣2<x <4,求出a 、b 的值.【答案】 a=﹣10,b=3.【解析】 解不等式10﹣x <﹣(a ﹣2),得:x >a+8,解不等式3b ﹣2x >1,得:x <312b -,∵解集为﹣2<x <4, ∴314282a b ⎧⎪⎨-=+=-⎪⎩,解得:a=﹣10,b=3.随练1、 已知关于x 的不等式(m -2)x >2m -4的解集为x <2,则m 的取值范围是________. 【答案】 m <2【解析】 不等式(m -2)x >2m -4的解集为x <2, ∴m -2<0,m <2.随练2、 关于x 的不等式组()3141x x x m ⎧->-⎪⎨<⎪⎩的解集为x <3,那么m 的取值范围是 .【答案】 m≥3【解析】 ()3141x x x m ->-⋅⋅⋅⎧⎪⎨<⋅⋅⋅⎪⎩①②,解①得x <3,∵不等式组的解集是x <3, ∴m≥3.故答案是:m≥3.随练3、 若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩有解,则m 的取值范围为( )A.23m >-B.23m ≤C.23m >D.23m ≤-【答案】 C【解析】 202x m x m -<⎧⎨+>⎩①②,解不等式①得,x <2m , 解不等式②得,x >2-m , ∵不等式组有解, ∴2m >2-m ,∴23m >.随练4、 若不等式组0422x a x x +⎧⎨->-⎩≥有解,则实数a 的取值范围是( )A.a≥-2B.a <-2C.a≤-2D.a >-2【答案】 D【解析】 0422x a x x +⎧⎨->-⎩≥,解不等式x +a≥0得,x≥-a ,由不等式4-2x >x -2得,x <2,∵不等式组:不等式组0422x a x x +⎧⎨->-⎩≥有解,∴a >-2,随练5、 已知不等式31(x ﹣m )>2﹣m . (1)若上面不等式的解集为x >3,求m 的值.(2)若满足x >3的每一个数都能使上面的不等式成立,求m 的取值范围. 【答案】 (1)23(2)m≥23 【解析】 (1)解不等式可得x >6﹣2m ,∵不等式的解集为x >3, ∴6﹣2m=3,解得m=23;(2)∵原不等式可化为x >6﹣2m ,满足x >3的每一个数都能使不等式成立, ∴6﹣2m≤3,解得m≥23.整数解问题例题1、 关于x 的不等式-1<x≤a 有3个正整数解,则a 的取值范围是________. 【答案】 3≤a <4【解析】 ∵不等式-1<x≤a 有3个正整数解, ∴这3个整数解为1、2、3, 则3≤a <4.例题2、 关于x 的不等式0x b ->恰有两个负整数解,则b 的取值范围是( ) A.32?b -<<- B.32?b -<≤- C.32b -≤≤- D.32b -≤<- 【答案】 D【解析】 本题主要考查一元一次不等式及其解法。
北师大版八年级下册数学《2.1 不等关系》教案
![北师大版八年级下册数学《2.1 不等关系》教案](https://img.taocdn.com/s3/m/2d0dc97c443610661ed9ad51f01dc281e53a56d0.png)
北师大版八年级下册数学《2.1 不等关系》教案一. 教材分析北师大版八年级下册数学《2.1 不等关系》这一节主要介绍不等式的概念和基本性质。
通过这一节的学习,使学生了解不等式的定义,理解不等式中的基本概念如解、解集等,掌握不等式的基本性质,为后续的不等式计算和应用打下基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数、方程等基础知识,具备一定的逻辑思维能力和运算能力。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐渐理解和掌握。
三. 教学目标1.了解不等式的定义,理解不等式中的基本概念。
2.掌握不等式的基本性质,能运用不等式解决实际问题。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.不等式的定义和基本性质。
2.如何运用不等式解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实例和练习引导学生理解和掌握不等式的概念和性质,培养学生运用不等式解决实际问题的能力。
六. 教学准备1.准备相关的实例和练习题。
2.准备课件和教学素材。
七. 教学过程1.导入(5分钟)通过一个实际问题引入不等式的概念,如“小明比小红高,请问小明和小红的身高关系是什么?”引导学生思考和表达不等式。
2.呈现(10分钟)呈现不等式的定义和基本性质,通过课件和讲解使学生理解和掌握。
同时,给出相关的实例和练习题,让学生巩固所学知识。
3.操练(10分钟)让学生分组进行练习,解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)通过一些选择题和填空题,检验学生对不等式的理解和掌握程度。
5.拓展(5分钟)引导学生思考和探讨不等式在实际生活中的应用,如比较物品的价格、判断比赛的名次等。
6.小结(5分钟)对本节课的主要内容进行总结,强调不等式的定义和基本性质。
7.家庭作业(5分钟)布置一些相关的练习题,让学生课后巩固所学知识。
8.板书(5分钟)总结本节课的主要知识点,方便学生复习和记忆。
北师大版八年级数学下册2.2 不等式的基本性质
![北师大版八年级数学下册2.2 不等式的基本性质](https://img.taocdn.com/s3/m/a562a46291c69ec3d5bbfd0a79563c1ec4dad717.png)
导入新知
2、等式有哪些性质?你能分别用文字语言和符号语言表示吗?
文字语言
符号语言
性质1
等式两边同时加(或减) 同一个数(或式子),结 果仍是等式.
如果a=b, 那么a+c=b+c,
a-c=b-c
性质2
等式两边同时乘同一个 数,或除以同一个不为 0的数,结果仍是等式.
如果a=b, 那么ac=bc,
Hale Waihona Puke 4 l 2>l 2 , π
不等式的两边都除以l2,由不等式基本性质2,得
4 >1,
π
因为上式是恒等式,所以
l2 >l2
4π 16
也为恒等式.
巩固练习
变式训练
已知a<0,用“<”“>”填空:
(1)a+2 _<___2; (2)a-1 __<___-1;
(3)3a___<___0;
(4)
a 4
__>____0;
即
x>4.
(2)不等式的两边都除以-2,由不等式基本
性质3,得 x< 3 .
2
巩固练习
变式训练
将下列不等式化成“x>a” “x<a”的形式.
(1)x -7 < 8 ;
(2) 3x < 2x -3 .
解:(1) x -7 < 8,
不等式的两边都加上7,由不等式基本性质1,得
x -7+7 < 8+7,
用字母表示: 若a>b,则a+c >b+c(或a-c >b-c).
探究新知
探究二:已知2<3,完成下面填空:
题组一: 2×5<3×5;
2÷5 <3÷5;
2×1<3× 1 ; 22
北师大版八年级数学下册第二章2.1不等关系(教案)
![北师大版八年级数学下册第二章2.1不等关系(教案)](https://img.taocdn.com/s3/m/1192ce76cec789eb172ded630b1c59eef8c79abe.png)
1.培养学生逻辑推理能力:通过不等式的定义、性质和证明方法的学习,使学生能够运用逻辑推理分析、解决问题,提高其数学逻辑思维。
2.提升学生数学建模能力:学会将实际问题抽象为一元一次不等式(组),培养学生运用数学知识解决实际问题的能力。
3.增强学生数学运算能力:熟练掌握一元一次不等式的解法,提高运算速度和准确性。
-举例:若a>b,则a+3>b+3。
-一元一次不等式的解法:熟练掌握一元一次不等式的求解步骤,包括移项、合并同类项、系数化为1等。
-举例:解不等式2x-5>7。
-不等式的应用:能够将实际问题抽象为一元一次不等式,并求解得出实际问题的答案。
-举例:某商品打折后价格不低于原价的8折。
2.教学难点
-不等式的证明:理解并掌握不等式的证明方法,如比较法、分析法、综合法等。
4.培养学生空间想象能力:通过不等式在几何中的应用,使学生能够理解和把握几何图形的不等关系,培养空间想象力。
5.培养学生合作交流能力:在讨论、探究不等式的性质和应用过程中,鼓励学生积极参与,学会与人合作、交流,提高表达能力。
三、教学难点与重点
1.教学重点
-不等式的定义与性质:理解不等式的概念,掌握不等式的性质,并能运用性质进行简单的推理。
-难点解释:学生需要理解证明过程中的逻辑推理,以及如何选择合适的证明方法。
-不等式组的求解:对于含有多个不等式的组合,学生需要学会如何求解整个不等式组。
-难点解释:学生需要掌握如何将多个不等式综合起来考虑,以及如何确定解集的交集。
-不等式在几何中的应用:理解不等式在几何图形中的运用,如线段、角度的不等关系。
最后,我还计划在下一节课开始前,针对今天课堂上发现的问题,设计一些预习材料和问题,让学生提前思考,以便在课堂上能够更有针对性地解决他们的疑惑。通过这样的方式,我相信学生们能够更深入地理解和运用不等式的知识。
北师大版八年级下数学《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组研讨说课复习课件指导
![北师大版八年级下数学《一元一次不等式与一次函数》一元一次不等式和一元一次不等式组研讨说课复习课件指导](https://img.taocdn.com/s3/m/d9268e07dcccda38376baf1ffc4ffe473368fd3c.png)
连接中考
(2020•湘潭)如图,直线y=kx+b(k<0)经过点p(1,1),当
kx+b≥x时,则x的取值范围为( A )
A.x≤1
B.x≥1
C.x<1
D.x>1
课堂检测
基础巩固题
1.在一次函数y=-2x+8中,若y>0,则 ( B )
A.x>4
B.x<4
C.x>0
D.x<0
2. 如图,直线y=ax+b(a≠0)过点A,B,则不等式ax+b>0的解 集是 ( C )
探究新知
由上述讨论易知: “关于一次函数的值的问题” 可变换成 “关于一元一次
不等式的问题” ; 反过来,“关于一元一次不等式的问题”可变换成 “
关于一次函数的值的问题”.
因此,我们既可以运用函数图象解不等式 ,也可以运用 解不等式帮助研究函数问题 ,二者相互渗透 ,互相作用.
不等式与函数 、方程是紧密联系着的一个整体 .
课堂检测
基础巩固题
5.如图,直线l1:y1=2x+1与直线l2:y2=mx+4相交于点P(1,b). (1)求b和m的值.
(2)结合图象,直接写出当y1>y2时x的取值范围. 解:(1)对于直线y1=2x+1,当x=1时,y1=3, ∴P(1,3),b=3, 把P(1,3)代入y2=mx+4中,得3=m+4, 解得m=-1. (2)观察图象可知:当y1>y2时x的取值范围是x>1.
探究新知
所以当顾客每个月的通话时长等于100分钟时,选择甲 乙两种业务一样合算;如果通话时长大于100 分钟,选择甲 种业务比较合算;如果通话时长小于100 分钟,选择乙种业 务比较合算.
1.1 不等关系 课件9(北师大版八年级下)
![1.1 不等关系 课件9(北师大版八年级下)](https://img.taocdn.com/s3/m/58c09ef5770bf78a652954f6.png)
由此可见,“不相等”处处可见. 从今天起,我们开始学习一类新的数学知识:不等式.
问题一:如图,用两根长度均为l的绳子,分别 围成一个正方形和圆.
在上面的问题中,所围成的正方形的面积可以表 示为:
l 2 ( ) 4
圆的面积可以表示为:
l 2 ( ) 2
如图,用两根长度均为l的绳子,分别围成一个 正方形和圆。
1、如果要使正方形的面积不大于25平方厘米, 那么绳长l应满足怎样的关系式? 要使正方形的面积不大于25平方厘米,就是
l 2 ( ) 25 4 2 l 即 25 16
如图,用两根长度均为l的绳子,分别围成一个 正方形和圆。
2
2 2
4
4<5.1,
2
此时圆的面积大
当l=12时,正方形的面积为
12 2 11 . 5 ( cm ) 圆的面积为 4
12 2 9(cm ) 16
2
9<11.5, 此时圆的面积大
如图,用两根长度均为l的绳子,分别围成一个 正方形和圆。
4、你能得到什么猜想?改变你的取值再试一试. 我们可以猜想,用长度均为lcm的两根绳 子分别围成一个正方形和圆,无论l取何值, 圆的面积总是大于正方形的面积,即
新功的可能性比我们设想的要大。
[英国]培根
• 我没有什么特别的才能,不过喜欢 寻根刨底地追究问题罢了。
[美国]爱因斯坦
1 不等关系
你还记得小孩玩的翘翘板吗?你想过它的 工作原理吗? 其实,翘翘板就是靠不断改变两端的重量 对比来工作的.
看 一 看
1 不等关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 不 等 关 系
学习目标
1.理解不等式的意义,会判断一个式 子是不是不等式; 2.能根据条件列不等式; 3.体会不等式在实际生活中的应用。
1 不等关系 看 一 看
你还记得小孩玩的翘翘板吗?你想过它的 工作原理吗?
其实,翘翘板就是靠不断改变两端的重量 对比来工作的.
(((341)))xya的的的与一相Xa4半反+<的4与数0≤和0x是不的正是2倍数正的;数和(;2不) m小m与于23的2.差1小y32于32x; 3 2
11 不等关系
用适当的符号表示下列关系:
(1) a是非负数; a≥0
(2) 直角三角形斜边c比它的两直角边a,b都长;
c>a
c>b
(3) x与17的和比它的5倍小。 x+17<5x
①不大于 ①不小于
词 ②比…大 ②比…小 ②不超过 ②不低于
语
③至多 ③至少
不等号 >
<
≤
≥
文
表明数量的范围特征
字
语 a是正数 a是负数 a是非负数 a是非正数 言
符号 语言
a>0
பைடு நூலகம்
a<0
a≥0
a≤0
请你思考:生 活中如果没有 “不等关系” 会怎么样?
么共同特点?
(1)
l 4
2
≤ 25
(2)
l
2
2
≥100
(3)
l2 4
> l2 16
(4) 5+3x>240
(5)20x >10
一般地,用符号“<”(或“≤”),“>”(或 “≥”)
连接的式子叫做(in不eq等ua式li。ty)
1 练一练
1、用“<”或“>”号填空:
(1) -7__<__-5;
1 不等关系
看一看
A
A
B
B<A<C C
1 不等关系 不相等 处处可见
生产日期:2014.08.26 保质期: 6个月
1 不等关系
不相等 处处可见
警告!为了你的生命安全,燃
放时请及时转移至5米之外。
由此可见,“不相等”处处可见。 从今天起,我们开始学习一类新的数学知识:不等 式.
自学课本37页,完成下面问题
如下图,用两根长度均为 ℓ cm 的绳子,分别围 成一个 正方形和圆。
1、如果要使正方形的面积不大于25cm2,那么绳长
ℓ 应满足怎样的关系式?
2、如果要使圆的面积不小于100cm2,那么绳长
ℓ 应满足怎样的关系式? 3、当 ℓ = 8 时,正方形和圆的面积哪个大?
ℓ = 12 呢? 4、你能得到什么猜想?改变ℓ 的取值再试一试。
做一做
通过测量一棵树的树围(树干 的周长)可以计算出它的树龄, 通常规定以树干离地面1.5cm的地 方作为测量部位. 某树栽种时的树 围为3cm, 以后树围每年增加约3cm。 这棵树至少生长多少年其树围才能 超过 30cm?
P37
78 1 3
1 不等式的定义
观察由上述问题得到的如下关系式,它们有什
1 不等关系 不等关系符号
注:
“不大于” 指的是 “ 等于或小于
”,
通常用 符号 “
≤
” 表示。
例如,x 不大于10 可以表示为 x≤10(读作:“x小于或等于10”)。
类似地,“不小于”指的是“等于或大于”。 通常用符号“≥”表示。(读作:“大于或等于”)。
表明数量的不等关系
关 键
①大于
①小于
(2) (-3)4_=___34;
(3) (-4)2__>__(-3)2; (4) |-0.5|_<___|-1000|;
(5) 3+4__>__1+4; (6) 5+3__>__12-5; (7) 6×3__>__4×3; (8) 6×(-3)_<___4×(-3)
2、用适当的符号表示下列关系:
2