(波普解析)有机化合物波谱解析

合集下载

有机化合物波谱解析第三章 核磁共振(NMR)

有机化合物波谱解析第三章  核磁共振(NMR)
第三章 核磁共振(NMR)
• 目的要求 • 1. 掌握核的能级跃迁与电子屏蔽效应的关系以及
影响化学位移的主要因素,能根据化学位移值初步 推断氢或碳核的类型 • 2. 掌握磁不等同的氢或碳核、1H-NMR谱裂分情况、 偶合常数
• 3. 掌握低级偶合中相邻基团的结构特征,并能初 步识别高级偶合系统
• 4. 掌握常见13C-NMR谱的类型及其特征 • 5. 熟悉发生核磁共振的必要条件及其用于有机化
合物结构测定的基本原理
• 6. 了解脉冲傅立叶变换核磁共振测定方法的原理 • 7. 了解1H-NMR及13C-NMR的测定条件以及简化图谱
的方法,并能综合应用图谱提供的各种信息初步判 断化合物的正确结构
主要内容
• 1. 核磁共振原理 • 2. 核磁共振仪器 • 3. 氢核磁共振(1H-NMR) • 碳核磁共振(13C-NMR) •
然而,要给出尖锐的NMR峰,以提高分 辨率,需要驰豫时间长,互相矛盾,最佳 半衰期范围在0.1-1秒,相应的谱线宽度为 1cps。
4)核的进动与核的共振
质子在外加磁场作用下,产生怎样的动力方式呢? E=μHB0
ΔE0
E=-μHB0 HB00 陀螺在与重力作用方向吸偏差时,就产生摇头动力, 称为进动。核磁矩在静磁场环境中围绕B0以ω角频 率进动,称之为拉摩尔(Larmor)进动.
• BN = B0 - ·B0
• BN = B0·(1 - ) • 氢核外围电子云密度的大小,与其相邻
原子或原子团的亲电能力有关,与化学 键 子 高 ·B的 云 场0亦类密;小C型度H;有大3-共关,O,振。·氢吸B如0核收大CH外出,3-围现共Si电振在,子吸低氢云收场核密出。外度现围小在电,
B0
二、产生核磁共振的必要条件

有机化合物的波谱分析

有机化合物的波谱分析

第七章有机化合物的波谱分析(一)概述研究或鉴圧一个有机化合物的结构,需对该化合物进行结构表征。

其基本程序如下: 分离提纯一物理常数测左一元素分析一确立分子式一确泄其可能的构适式(结构表 征(参见 P11-12)(1)结构表征的方法传统方法:(化学法)① 元素左性.泄量分析及相对分子质量测泄 —— 分子式:② 官能团试验及衍生物制备——分子中所含官能团及部分结构片断: ③ 将部分结构片断拼凑 —— 完整结构; ④ 查阅文献,对照标准样,验证分析结果。

特点:需要较多试样(半微量分析,用样虽为10-100mg ),大虽:的时间(吗啡碱,1805- 1952年).熟练的实验技巧,高超的智慧和坚韧不拔的精神。

缺点:①分子有时重排,导致错误结论;② P 及一C=C 一的构型确定困难。

波谱法:① 质谱(最好用元素分析仪验证)——分子式:② 各种谱图(UV 、IR 、NMR. MS ) —— 官能团及部分结构片断; ③ 拼凑——完整结构; ④ 标准谱图——确认。

特点:样品用量少(v30mg ),不损坏样品(质谱除外),分析速度快,对'C 及一C=C 一的 构型确左比较方便。

光谱法已成为有机结构分析的常规方法。

但是化学方法仍不可少,它与光谱法相辅相成, 相互补充,互为佐证。

(2)波谱过程分子运动:平动、振动、转动、核外电子运动等9量子化的(能量变化秘续)A 每个分子中只能存在一定数量的转? 动.振动、电子跃迁能级波谱过程可表示为:有机分子+电磁波选择性吸收 仪器记录用电磁波照射有机分子时, 分子便会吸收那些与分子内 的能级差相当的电磁波,引 起分子振动、转动或电子运 动能级跃迁,即分子可选择 性地吸收电磁波使分子内能 提高用仪器记录分子对不 同波长的电磁波的吸收情 况,就可得到光谱。

不饱和度亦称为分子中的环加双键数、缺氢指数、双键等价值等。

其定义为: 当一个化合物衍变为相应的绘后,与其同碳的饱和开链桂比较,每缺少2个氢为 1个不饱和度。

有机化合物波谱综合解析详解

有机化合物波谱综合解析详解
有机化合物波谱综合解析
波谱综合解析的含义:利用各种波谱分
析方法获得尽可能多的结构信息,通过 对各种波谱分析信息之间的相互对比、 印证,从而获得被分析化合物准确结构 的定性分析方法。 不同波谱分析方法在功能上既有重叠部 分,也有互补部分,在综合解吸时应该 充分发挥各自优势。 在条件允许的情况下,要充分关注 1HNMR和13CNMR,因为NMR提供数据 最丰富,可靠性最高。
MS裂解机理
例题2:UV(甲醇):λmax=236 nm,(ε=8200), 300 nm(ε=3500), 1NMR, 13CNMR, IR, MS如下,推测结构:
主要依靠NMR,特别关注偶合常数关系,
积分关系,充分利用二维NMR,以及其 他特殊NMR技术,如DEPT, 结合IR, MS, UV-Vis等数据,将可能的碎 片合理连接。 最后充分利用所有波谱分析数据对可能 结构进行确证,排除所有不合理结构。
1.
例题1:根据提 供的IR, HNMR, 13CNMR和MS 推测结构
解:设MS中m/z250为M+峰,因该峰与相邻碎片离子峰 m/z 206(M-44).m/z 178(M-72)之间关系合理,故m /z 250为分子离子峰。分子量250为偶数,说明化合 物不含氮或偶数个氮。MS中无明显含S、F、C1、Br、I 的特征碎片离子峰存在。
13C
NMR谱中有12种化学环境不同的碳,由峰的相对强 度判断,分子中应含有14个碳。1H NMR谱中积分简比 (由低场至高场)为3:2:1:2:3:4:3,简比数字之 和为18.表明分子中至少含有18个H。由以上分析可知, 当N=0时,O=4,可能分子式为C14H18O14,当N=2 时.O=2.5.不合理应舍去,故该化合物的分子式为 C14H18O14,因UN=6,所以分子中可能有苯基存在。

有机化合物波谱解析智慧树知到答案章节测试2023年重庆医科大学

有机化合物波谱解析智慧树知到答案章节测试2023年重庆医科大学

绪论单元测试1.本课程学习的四大谱主要是哪四类?A:质谱 (Mass Spectra, 简称MS)B:核磁共振谱 (Nuclear Magnetic Resonance Spectra,简称NMR)C:紫外-可见光谱(Ultraviolet-visible Absorption Spectra,简称UV)D:红外光谱(Infrared Spectra, 简称IR )答案:ABCD2.凡是合成、半合成药物或者是由天然产物中提取的单体或组分中的主要组分,都必须确证其化学结构。

A:错B:对答案:B3.确证结构的方法主要有两种:第一,可以采用经典的理化分析和元素分析方法;第二,目前国内外普遍使用的红外、紫外、核磁和质谱四大谱解析,必要时还应增加其他方法,如圆二色散、X光衍射、热分析等。

A:错B:对答案:B4.红外光谱特别适用于分子中功能基的鉴定。

A:错B:对答案:B5.核磁共振谱对有机化合物结构的解析非常有用,应用在四大谱中最为广泛。

A:对B:错答案:A第一章测试1.在关于紫外光谱正确的是()。

A:紫外光谱也叫振-转光谱B:紫外光谱是电子能级跃迁,不涉及振动能级和转动能级的跃迁C:紫外光谱能级跃迁需要吸收0.5―1eV能量D:紫外光谱属于电子光谱答案:D2.丙酮的紫外-可见光区中,对于吸收波长最大的那个吸收峰,在下列四种溶剂中吸收波长最短的是哪一个()。

A:水B:甲醇C:乙醚D:环己烷答案:A3.分子的紫外-可见吸收光谱呈带状光谱,其原因是什么()。

A:分子电子能级的跃迁伴随着振动、转动能级的跃迁B:分子中价电子运动的离域性质C:分子中价电子能级的相互作用D:分子振动能级的跃迁伴随着转动能级的跃迁答案:A4.在下列化合物中,哪一个在近紫外光区产生两个吸收带()。

A:丁二烯B:环己烷C:丙烯醛D:丙烯答案:C5.在化合物的紫外吸收光谱中K带是指()。

A:共轭非封闭体系π→π的跃迁B:σ→σ跃迁C:n→σ跃迁D:共轭非封闭体系n→π的跃迁答案:A6.紫外光谱一般都用样品的溶液测定,溶剂在所测定的紫外光谱区必须透明,以下溶剂可适用于210 nm的是()A:乙醇B:环己烷C:丙酮D:正己烷答案:B7.某化合物在正己烷中测得λmax = 305 nm,在乙醇中测得λmax = 307 nm,请指出该吸收是由下述哪一类跃迁类型所引起的?()A:n→π*B:n→σ*C:σ→σ*D:π→π*答案:D8.在环状体系中,分子中非共轭的两个发色团因为空间位置上的接近, 发生轨道间的交盖作用, 使得吸收带长移, 同时吸光强度增强。

IR1

IR1

分子能级图
E电 =1 ~ 20ev λ = 0.06 ~1.25m 紫外 可见吸收光谱 E振 = 0.05 ~1ev λ = 25 ~1.25m 红外吸收光谱 E转 = 0.005 ~ 0.05ev λ = 250 ~ 25m 远红外吸收光谱
红外光区划分
近红外(泛频) 近红外 泛频) 泛频 (0.75~2.5 m) 红外光谱 (0.75~1000m) 中红外(振动区) 中红外(振动区) 振动区 (2.5~25 m) 远红外(转动区 远红外 转动区) 转动区 (25-1000 m) 分区及波长范围
1.样品要求: 纯度>98% 。 样品应不含水分。 2.测定方法: 测定IR光谱的样品可以是液、固、气状态。 固态样品:常用压片法、糊剂法或薄膜法制样测定。 液态样品:液态样品可注入吸收池内测定。 气态样品:一般灌入特制的气体池内测定。
红外光谱特点
1)红外吸收只有振-转跃迁,能量低; 红外吸收只有振-转跃迁,能量低; 应用范围广:除单原子分子及单核分子外, 2)应用范围广:除单原子分子及单核分子外,几乎 所有有机物均有红外吸收; 所有有机物均有红外吸收; 分子结构更为精细的表征: 谱的波数位置、 3)分子结构更为精细的表征:通过IR谱的波数位置、 波峰数目及强度确定分子基团、分子结构; 波峰数目及强度确定分子基团、分子结构; 定量分析; 4)定量分析; 气态样均可用,且用量少、不破坏样品; 5)固、液、气态样均可用,且用量少、不破坏样品; 分析速度快; 6)分析速度快; 与色谱等联用(GC具有强大的定性功能。 7)与色谱等联用(GC-FTIR)具有强大的定性功能。
弯曲振动
– 对称弯曲振动 – 不对称弯曲振动
所以,多原子分子的振动类型可分为两大类:
伸缩振动(υ) 弯曲振动(δ) 面内弯曲振动(δi. p) 剪式振动(以δs表示) 平面摇摆(以ρ表示) 面外弯曲振动(δo.o.p) 非平面摇摆(以ω表示) 扭曲振动(以τ表示) 对称与不对称弯曲振动 其中,以对称伸缩、不对称伸缩、剪式振动、 其中,以对称伸缩、不对称伸缩、剪式振动、非平面摇摆 出现较多。 对称伸缩(以υs表示) 不对称伸缩(以υas表示)

有机化合物波谱解析智慧树知到答案章节测试2023年哈尔滨医科大学

有机化合物波谱解析智慧树知到答案章节测试2023年哈尔滨医科大学

绪论单元测试1.有机化合物波谱解析主要学习哪些波谱学方法()。

A:紫外光谱B:核磁共振谱C: 质谱D:红外光谱答案:ABCD第一章测试1.以下波长最长的是()。

A:近紫外区B:远紫外区C:近红外区D:可见区答案:C2.紫外-可见光谱的产生是由外层价电子能级跃迁所致,其能级差的大小决定了()。

A:吸收峰的位置B:吸收峰的强度C:吸收峰的数目答案:A3.助色团对吸收峰的影响是使吸收峰()。

A:波长变短B:谱带蓝移C:波长变长D:波长不变答案:C4.在紫外光的照射下,CH3Cl分子中电子能级跃迁的类型有σ→σ和n→σ跃迁。

()A:对B:错答案:A5.跨环效应是共轭基团间的相互作用。

()A:错B:对答案:A6.利用紫外光谱可以确定乙酰乙酸乙酯的互变异构现象。

()A:错B:对答案:B7.π→π共轭作用使_跃迁及_跃迁峰均发生红移。

答案:8.远紫外区指波长范围_nm,近紫外区是指波长范围_nm。

答案:9.请解释什么是红移和蓝移。

答案:10.下列两个异构体,能否用紫外光谱区别?答案:第二章测试1.红外光谱是由()跃迁产生的。

A:中子B:分子振动能级-转动能级C:原子核D:外层电子能级答案:B2.在红外光谱中,各个化合物在结构上的微小差异在指纹区都会得到反映。

指纹区的范围是()。

A:1333-400cm-1B: 1475-1300cm-1C: 1000-650cm-1D: 4000-1333cm-1答案:A3.在红外光谱中,氢键的形成通常使(),峰强增加。

A:峰位向低波数移动,峰变宽。

B:峰位向高波数移动,峰变宽。

C:峰位向低波数移动,峰变窄。

D:峰位向高波数移动,峰变窄。

答案:A4.化学键两端连接的原子,电负性相差越大,键的力常数越大。

()A:错B:对答案:B5.红外光谱中,形成分子内氢键后,羰基的伸缩振动吸收峰波数基本不变。

()A:错B:对答案:A6.对映异构体的左旋体和右旋体的红外光谱图形是可以区分的。

()A:错B:对答案:A7.影响红外光谱的峰强两大因素为_和_。

有机化合物波谱分析

有机化合物波谱分析
其中,M1、M2是原子量,K为力常数。
化学键伸缩振动频率只与化学键有关,是化学键的一个特征常数;
化学键的伸缩振动是在不停进行的,有三个显著特点:
伸缩振动能是量子化的,不连续的,因此就形成了 不同的能级。
单击此处添加大标题内容
伸缩振动的能级差 ,相当于红外光的能量 因此,用红外光照射有机样品时,化学键就会吸收一份能 量,实现振动能级的要跃迁。即: ν=ν。 即意味着:化学键以多大的频率振动就吸收多大频率的光, 在此频率处就形成一个吸收峰(表现为吸收带)。
4000-1400cm-1区域又叫官能团区. 该区域出现的吸 收峰,较为稀疏,容易辨认. 1400-400cm-1区域又叫指纹区. 这一区域主要是: C-C、C-N、C-O 等单键和各种弯曲振动的 吸收峰,其特点是谱带密集、难以辨认。(p299页表8-2)
1000 700 500 Y Y O单键 H面内弯曲振动 H弯曲振动
8.1 分子吸收光谱和分子结构
微粒性:可用光量子的能量来描述:
按量子力学,其关系为:
1
与E,v 成反比,即 ↓,v↑(每秒的振动次数↑),E↑。
3
2
在分子光谱中,根据电磁波的波长 ()划分为几个不同的区域,如下图所示:
上式表明:分子吸收电磁波,从低能级跃迁到高能级,其吸收光的频率与吸收能量的关系。
注意:
只有偶极矩(μ)发生变化的,才能有红外吸收。 如:H2、O2、N2 电荷分布均匀,振动不能引起红外吸收。 H―C≡C―H、R―C≡C―R,其C≡C(三键)振动 也不能引起红外吸收。 化学键极性越强,振动时偶极矩变化越大,吸收峰越强.
分子的振动方式
1
伸缩振动:
2
伸缩振动的特征及规律
吸收峰

有机化合物波谱解析教案

有机化合物波谱解析教案

有机化合物波谱解析教案一、教学目标1. 理解有机化合物波谱解析的基本概念和方法。

2. 学会使用红外光谱、核磁共振谱、质谱等波谱进行分析。

3. 能够解析有机化合物的结构based on the information from the spectra.二、教学内容1. 红外光谱(IR)基本原理谱图解析功能团振动频率与结构的关系2. 核磁共振谱(NMR)基本原理谱图解析化学位移、耦合常数与结构的关系三、教学方法1. 讲授:讲解基本原理、概念和谱图解析方法。

2. 示例分析:分析具体化合物的红外光谱、核磁共振谱和质谱。

3. 练习:学生自行分析给定的谱图,得出结构结论。

四、教学准备1. 教学PPT:包含基本原理、概念、谱图解析方法和示例。

2. 谱图数据:用于示例分析和学生练习。

五、教学过程1. 导入:介绍有机化合物波谱解析的重要性。

2. 红外光谱(IR)讲解基本原理和谱图解析方法。

分析示例谱图,引导学生理解谱图与结构的关系。

3. 核磁共振谱(NMR)讲解基本原理和谱图解析方法。

分析示例谱图,引导学生理解谱图与结构的关系。

4. 练习:学生分析给定的谱图,得出结构结论。

教学反思:在课后,教师应反思教学效果,根据学生的反馈和练习情况,调整教学方法和难度,以便更好地达到教学目标。

六、质谱(MS)1. 基本原理介绍质谱仪的工作原理和质谱图的获取。

解释质谱图中的峰代表分子离子、碎片离子等。

2. 谱图解析讲解质谱图的解析方法,包括分子离子峰的确定、碎片离子的识别等。

引导学生理解质谱图与分子结构的关系。

七、紫外光谱(UV)1. 基本原理介绍紫外光谱的产生原理,如π-π、n-π等电子跃迁。

解释紫外光谱图中的吸收峰与分子结构的关系。

2. 谱图解析讲解紫外光谱图的解析方法,包括吸收峰的位置、强度和形状等。

引导学生理解紫外光谱图与分子结构的关系。

八、圆二色光谱(CD)1. 基本原理介绍圆二色光谱的产生原理,如手性分子的CD光谱。

有机化合物波谱分析

有机化合物波谱分析

记忆方法 取代基 供电基团 o m p 之和
-OH(或-OCH3)
-R 吸电基团 -COR
-0.5
-0.2 +0.6
-0.1
-0.1 +0.1
-0.4
-0.2 +0.3
-1.0
-0.5 +1.0
35
一、1H-NMR(氢核磁共振) 2、峰面积与氢核数目
36
一、1H-NMR(氢核磁共振) 3、峰的裂分与偶合常数
38
化学等价核
通过对成操作(绕对称轴旋转、通过对称面、对称中 心反映,绕更迭对称轴旋转)或快速机制,位置可以互换, 这些核称为化学位移等价核。 1、等位质子; 2、对映异位质子; 3、非对映异位质子;
磁等价(磁等同)核
在化学等价基础上,若它们对偶合系统内其它任何一个 原子以相同大小偶合(空间结构),则为磁等价核。
uC=O 1675cm-1
uOH 3365cm-1
15
影响IR吸收的因素 二、空间效应(steric effect)
(4)环张力
16
影响IR吸收的因素 二、空间效应(steric effect)
(4)环张力
17
影响IR吸收的因素
三、氢键效应(hydrogen bond effect)
形成分子内氢键,谱带变宽,波数降低,但强度基本不增。 ∵形成氢键,使-O—H+键拉长,偶极矩增增加
123.9
117.7 115.7
123.0
65
化合物 3
66
67
68
6.80(1H,d,J=8.4Hz) 7.02(1H,d,J=8.4Hz)
10.13(1H,s)
9.37(1H,s)

有机波谱解析

有机波谱解析

有机波谱解析有机波谱解析是一门利用谱学技术来解析有机化合物结构的科学。

其中,质谱、红外光谱、核磁共振氢谱和核磁共振碳谱是最常用的几种方法。

本文将分别介绍这几种方法的基本原理和解析方法。

1.质谱解析质谱是一种通过离子化样品并测量其质量-电荷比来分析样品分子质量的谱学技术。

在质谱解析中,样品通常经过离子化(如电子轰击、化学电离等),生成不同质荷比的离子。

然后,这些离子根据其质量-电荷比被分离和检测。

通过测量不同质荷比的离子数量,可以得到样品的分子质量和分子结构信息。

质谱解析的关键步骤包括:(1)选择合适的离子化方法,以产生具有代表性的离子;(2)选择合适的分离和检测方法,以获得高质量的质谱数据;(3)通过比对已知的分子质量标准,确定样品的分子质量;(4)通过解析样品的质谱数据,推断样品的分子结构。

2.红外光谱解析红外光谱是一种通过测量样品在红外光区的吸收或透射光强度来分析样品分子结构和化学键信息的谱学技术。

在红外光谱解析中,样品与一束红外光相互作用,不同的化学键和官能团会吸收不同波长的红外光。

通过测量样品在不同波长下的吸收或透射光强度,可以获得样品的红外光谱。

红外光谱解析的关键步骤包括:(1)选择合适的样品制备方法,以获得均匀、透明的样品;(2)选择合适的扫描范围和分辨率,以获得高质量的红外光谱数据;(3)通过比对已知的红外光谱标准,确定样品的化学键和官能团;(4)通过解析样品的红外光谱数据,推断样品的分子结构和化学键信息。

3.核磁共振氢谱解析核磁共振氢谱是一种通过测量样品中氢原子核的自旋磁矩来分析样品分子结构的技术。

在核磁共振氢谱解析中,样品被置于强磁场中,氢原子核在磁场中发生自旋并产生磁矩。

通过施加射频脉冲,氢原子核发生共振并释放出射频信号。

通过测量这些信号的频率和强度,可以获得样品的核磁共振氢谱。

核磁共振氢谱解析的关键步骤包括:(1)选择合适的溶剂和样品浓度,以获得高质量的核磁共振氢谱数据;(2)选择合适的射频脉冲序列和扫描参数,以获得清晰的核磁共振信号;(3)通过比对已知的核磁共振氢谱标准,确定样品中氢原子的化学环境;(4)通过解析样品的核磁共振氢谱数据,推断样品的分子结构和化学键信息。

(波普解析)有机化合物波谱解析

(波普解析)有机化合物波谱解析
15
总论
5、单晶X射线衍射(X-ray diffraction by asingle crystal ) 单晶X射线衍射分析是一种独立的结构分析方法,不需要
借助其它波谱学方法即可独立的完成被测样品的结构分析工作。
优点:定量给出分子立体结构参数,还能够完成化合物分子相 对构型与分子绝对构型的测定,特别是在有机化合物分子立体结 构中的构型确定、构象分析,以及固体化合物样品的晶型与分子 排列规律,有机分子的异构体(如手性化合物)及其含量测定。
• 红外光谱在天然有机产物的结构研究中除了可用于鉴别化合物 的异同和光学异构体(大多数对映体和外消旋体的固相红外光 谱是不同的)外,它在立体化学研究和官能团的确定中发挥着 重要作用。
如:芳香环: ν1600~1480cm-1
OH:ν>3000 cm-1
C=O : ν1700 cm-1
IR相同者为同一化合物
缺点:要求样品本身能获得晶型良好的单晶。
16
总论
5、单晶X射线衍射 (X-ray diffraction by asingle crystal )
17
第一章 紫外光谱 Ultraviolet Spectra
18
第一章 紫外光谱 Ultraviolet Spectra
第一节、吸收光谱的基础知识 第二节、UV的基础知识 第三节、UV与分子结构间的关系 第四节、UV在有机化合物结构研究中的应用
1H-NMR
• 基本参数:化学位移()用于判断H的类型

偶合常数(J)
7
化学位移
1H-NMR
谱图提供的信息:
1)质子个数(积分数目)
2)由J值可知质子与质子的相互关系
3)由值可知质子所处的化学环境及磁环境

有机化学--第七章 有机化合物的波谱分析

有机化学--第七章 有机化合物的波谱分析

子垂直于化学键的振动,键角发生变化,键长不变。以亚甲基为例,
几种振动方式如图7–1所示。
图中“+”和“-” 号表示与纸面垂直 但方向相反的运动。
*分子的振动方式很多,但不是所有的振动都引起红外吸收, 只有偶极矩发生变化的振动,才能在红外光谱中出现相应的吸收峰。 无偶极矩变化的振动,为红外非活性振动,在红外光谱中不出现吸 收峰。如对称炔烃(RC≡CR)的C≡C伸缩振动无偶极矩变化,不引 起红外吸收。偶极矩变化大的振动,吸收峰强,如C=O伸缩振动。 综上所述,产生红外光谱的两个必要条件是: ν红外= ν振动;振动 过程中有偶极矩变化。
例2 化合物的分子式为C6H10,红外光谱如图7–3所示,
试推测该化合物的可能结构。
解: 由分子式计算不饱和度Ω=2,可能存在C=C、环或C≡C。观
察4000~1300cm-1区域光谱:3030cm-1处有强不饱和C—H伸缩振动 吸收,与1658cm-1 处的弱C=C伸缩振动吸收对应,表明有烯键存 在,且对称性强;~1380cm-1 处无吸收,表明不存在甲基。1300 cm-1以下区域的光谱:715 cm-1处的面外弯曲振动吸收,表明烯烃 为顺式构型。
m=I, I-1, …, -I
1 H的自旋量子数I为1/2,它在磁场中有两种取向,与磁
场方向相同的,用+1/2表示,为低能级;与磁场方向相
反的,用-1/2表示,为高能级。两个能级之差为△E,见
图7–4。
△E与外加磁场强度(H0)成正比,其关系式如下:
式中:γ 称为磁旋比,是物质的特征常数,对于质子其量值为 2.675×108A· 2·-1·-1; h为Plank常量; ν为无线电波的频率。 m J s
峰面积大小与质子数成正比,可由阶梯式积分曲线求

《有机化合物波谱解析》教学大纲

《有机化合物波谱解析》教学大纲

有机化合物波谱解析一、课程说明课程编号:240205Z10课程名称(中/英文):有机化合物波谱解析(Spectroscopy of Organic Compounds)课程类别:专业基础课学时/学分:总48学时,其中理论36学时,实验12学时;学分3先修课程:有机化学、物理化学、分析化学适用专业:药学教材:《有机化合物波谱解析》(第三版),中国医药科技出版社,吴立军,2009。

教学参考书:《有机化合物波谱解析》(第一版),人民卫生出版社,孔令义,2016。

《有机化合物结构鉴定与有机波谱学》(第三版),科学出版社,宁永成,2016。

《有机化合物的波谱解析》,华东理工大学出版社,药明康德新药开发有限公司分析部译,秦川校,2007年二、课程设置的目的意义本课程是运用紫外光谱(UV)、红外光谱(IR)、核磁共振波谱(NMR)、质谱(MS)等现代物理手段研究有机化合物化学结构的一门学科,是现代有机化合物结构测定最主要的手段。

本课程为药学、制药工程等专业本科生开设的专业基础课,培养学生利用这四种波谱技术综合解决大多数有机化合物结构研究问题的能力,为进一步学习药物化学、天然药物化学、药物分析等专业课奠定基础。

三、课程的基本要求掌握紫外光谱(UV)、红外光谱(IR)、核磁共振波谱(NMR)、质谱(MS)等的基础知识及其解析方法,熟悉旋光谱和圆二色谱的基本解析,学会综合运用上述多种谱图所提供的结构信息解决化合物的结构问题。

四、教学内容、重点难点及教学设计注:实践包括实验、上机等五、实践教学内容和基本要求对乙酰氨基酚的红外光谱测定与解析。

掌握红外光谱分析中固体样品制备技术(KBr压片)与图谱解析,熟悉红外光谱仪的操作。

六、考核方式及成绩评定七、大纲主撰人:大纲审核人:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lambert-Beer 定律应用?
30
第二节 紫外光谱的基本知识 一、 分子轨道
分子轨道是由组成分子的原子轨道相互作用形成的。 分子成键轨道; 分子反键轨道
33
34
分子轨道的种类
(1) 原子A和B的s轨道相互作用,形成的分子轨道
(2)原子A和B的p轨道相互作用形成的分子轨道
35
(3)原子A的s轨道和原子B的p轨道相互作用形成的分子轨道
• 吸收光谱特征: 吸收峰→λmax 吸收谷→λmin 肩峰→λsh 末端吸收
43
(2)数据表示法
例如λ 溶m剂a2x 37nm(ε104) 或λ 2溶m3剂a7xnm(lgε4.0)
常用术语
生色团(发色团):分子结构中含有π电子的基团 产生π→ π* 跃迁和(或)n→ π*跃迁 跃迁,E较低
例: C=C;C=O;C=N;—N=N— ; —NO2
物质对电磁辐射的吸收性质常用吸收曲线来描述,即考察 物质对不同波长的单色光吸收的情况。
溶液对单色光的吸收程度遵守Lambert-Beer 定律。
A = acl
A 为吸光度(光密度), a为吸光系数, l 为吸收池厚度, c 为溶液的浓度。
29
•若溶液的浓度以mol L-1为单位时, Lambert-Beer 定律的吸 收系数(a) 表示,单位为L mol-1 cm-1,即摩尔吸光系数。 •对于相对分子质量未知的物质,常采用质量百分比浓度 (g/100ml),相应的系数称为百分吸收系数,以E1%1cm表示。 •以摩尔吸收系数 用得最普遍。
三甲基胺n →σ*跃迁的λ分别为173nm、183nm和227nm。
39
第二节 紫外光谱的基本知识
二、 电子跃迁类型
(3) π→ π*跃迁
➢ 不饱和基团(-C=C-, -C≡C ) ➢ E较小,λ~ 200nm(远紫外区),摩尔吸光系数εmax一般在
104L·mol-1·cm-1以上,属于强吸收。不饱和烃、共轭烯烃和芳香 烃类均可发生该类跃迁。如: 乙烯π→π*跃迁的λ为162 nm,εmax 为104L·mol-1·cm-1 。 ➢ 体系共轭,E更小,λ更大。
40
第二节 紫外光谱的基本知识
二、 电子跃迁类型
(4) n→ π*跃迁
含杂原子不饱和基团(-C≡N ,C=O ) E最小,λ 200~400nm(近紫外区),摩尔吸光系数一般为 10~100 L·mol-1·cm-1,吸收谱带强度较弱。丙酮n →π*跃迁 的λ为275nm εmax为22 L·mol-1·cm-1 (溶剂环己烷)。
注:当出现几个发色团共轭,则几个发色团所产生的吸收带将消失, 代之出现新的共轭吸收带,其波长将比单个发色团的吸收波长长, 强度也增强
44
助色团:含非成键n电子的杂原子饱和基团本身在紫外可见光 范围内不产生吸收,但可以使生色团吸收峰加强,同 时使吸收峰长移的基团。 例:—OH,—OR,—NH—,—NR2—,—X
红移和蓝移: 由于化合物结构变化(共轭、引入助色团取代 基)或采用不同溶剂后吸收峰位置向长波方向的 移动,叫红移(长移)。 吸收峰位置向短波方向 移动,叫蓝移(紫移,短移)
45
增色效应和减色效应 增色效应:吸收强度增强的效应 减色效应:吸收强度减小的效应
强带和弱带: εmax>104 → 强带 εmin<103 → 弱带
2
总论
光即电磁波,根据波长的增加,电磁波分为不同区域
3
总论
3、核磁共振谱(NMR spectroscopy,NMR) 在外加磁场的作用下,核由低能级跃迁到高能级,发生自旋能 级跃迁,实现核磁共振。 1D-NMR: 1H-NMR, 13C-NMR 2D-NMR:1H-1H COSY, HMQC, HMBC, NOESY
积分数目
8
总论
3、核磁共振谱(NMR spectroscopy,NMR) 13C-NMR • 基本参数:化学位移()
9
13C-NMR
根据化学位移,确定碳的类型
• sp3: = –20~100 (CH3,CH2,CH,C) • sp2: = 95~220 (C=C,C=N,C=O) • sp: = 70~130 (C≡C)
6
总论
3、核磁共振谱(NMR spectroscopy,NMR)
Байду номын сангаас
1H-NMR
• 基本参数:化学位移()用于判断H的类型

偶合常数(J)
7
化学位移
1H-NMR
谱图提供的信息:
1)质子个数(积分数目)
2)由J值可知质子与质子的相互关系
3)由值可知质子所处的化学环境及磁环境
即氢的类型
化学位移差值×兆周数=J (偶合常数)
15
总论
5、单晶X射线衍射(X-ray diffraction by asingle crystal ) 单晶X射线衍射分析是一种独立的结构分析方法,不需要
借助其它波谱学方法即可独立的完成被测样品的结构分析工作。
优点:定量给出分子立体结构参数,还能够完成化合物分子相 对构型与分子绝对构型的测定,特别是在有机化合物分子立体结 构中的构型确定、构象分析,以及固体化合物样品的晶型与分子 排列规律,有机分子的异构体(如手性化合物)及其含量测定。
46
第二节 紫外光谱的基本知识
四、 吸收带
• R带:由含杂原子的不饱和基团的n →π*跃迁产生 的吸收带。 以德文 Radikal(基团)得名。 C=O;C=N;—N=N— ΔE小,λmax250~400nm,εmax<100 溶剂极性↑,λmax↓ → 蓝移(短移)
47
• K带:由共轭双键的π→ π*跃迁产生的吸收带。 以德文 Konjugierte(共轭作用)得名。 (—CH=CH—)n,—CH=C—CO— ΔE小, λmax 210-250nm,εmax>104 共轭体系增长,λmax↑→红移,εmax↑
48
• B带:苯环的π→ π*跃迁产生吸收带。 从英文Benzenoid(苯的)得名。 芳香族化合物的主要特征吸收带。 230~270nm,λmax =256nm, εmax≈220 宽峰,具有精细结构;
极性溶剂中,或苯环连有取代基,其精细结构消失
49
• E带:苯环中稀键π 电子π→ π*跃迁产生吸收带。
37
第二节 紫外光谱的基本知识
紫外吸收光谱的产生:紫外吸收光谱是由 于分子中价电子的跃迁而产生的,因此分 子中价电子的分布和结合情况决定了紫外 吸收光谱。分子价电子通常是处于基态 的,当分子吸收一定能量E的紫外光后, 这些价电子将跃迁到较高的能级(激发 态),此时产生的吸收光谱叫紫外吸收光 谱。
38
19
第一节 吸收光谱的基础知识
一、电磁波的基本性质与分类
光是一种电磁波,是一种以巨大速度通过空间而不需要任何 介质作为传媒的光子流。光具有波粒二相性。 它的频率和波长之间存在如下关系:
波动性
C =1/λ
C光速,其值( 31010 cm/s) 频率, s-1或Hz 波长, 紫外可见光区常用nm为单位,
第二节 紫外光谱的基本知识
二、 电子跃迁类型
(1)σ→ σ*跃迁 ➢ 饱和烃(甲烷,乙烷) ➢ E很高,λ<150nm(远紫外区), 如甲烷的λmax为125nm, 乙
烷λmax为135nm。 (2) n → σ*跃迁 ➢ 含杂原子饱和基团(—OH,—NH2) ➢ E较大,λ150~250nm(真空紫外区),如一氯甲烷、甲醇、
36
(4) 原子上未成键电子对形成的分子轨道
在分子轨道中,未与另一原子轨道相互起作用的原子轨道(即 未成键电子对所占有的轨道),在分子轨道能级图上的能量大 小等同于其在原子轨道中的能量,这种类型的分子轨道称为 非成键(non-bonding)分子轨道,亦称n轨道。n轨道是非成 键的分子轨道,所以没有反键轨道。
13
总论
3、核磁共振谱(NMR spectroscopy,NMR)
O
B
AC
O
OO
14
总论
4、质谱(mass spectra:MS) 质谱中不伴随电磁辐射的吸收或发射,因此不属于光谱。 根据分子离子或碎片离子进行结构推导,属于能量谱 给出分子量(M+),计算分子式(HR-MS); MS图一致(同一型号仪器,同一条件)一般为同一化合物; 碎片峰: 给出基团或片段信息; EI-MS: 糖苷不能给出分子离子峰; FD-MS,FAB-MS,ESI-MS 用于糖苷、肽、 核酸类,可 定分子量。
缺点:要求样品本身能获得晶型良好的单晶。
16
总论
5、单晶X射线衍射 (X-ray diffraction by asingle crystal )
17
第一章 紫外光谱 Ultraviolet Spectra
18
第一章 紫外光谱 Ultraviolet Spectra
第一节、吸收光谱的基础知识 第二节、UV的基础知识 第三节、UV与分子结构间的关系 第四节、UV在有机化合物结构研究中的应用
有机化合物波谱解析
药化与天然药物化学教研室 药学院610室
1
总论
确定有机化合物结构的方法
1、紫外光谱 (ultraviolet spectra, UV) 2、红外光谱 (infrared spectra,IR) 3、核磁共振谱 (nuclear magnetic resonance spectroscopy, NMR) 4、质谱(mass spectra:MS) 5、单晶X射线衍射(X-ray diffraction by asingle crystal )
21
吸收光谱的产生
一个原子或分子吸收一定的电磁辐射能()时,就由一种 稳定的状态(基态)跃迁到另一种状态(激发态),从而产生 吸收光谱。
相关文档
最新文档