机械优化设计_经典实例
机械优化设计实例
机械优化设计作业一、优化设计问题的提出预制一无盖水槽,现有一块长为4m,宽为3m的长方形铁板作为原材料,想在这块铁板的四个角处剪去相等的正方形以制成无盖水槽,问如何剪法使水槽的底面积最大?二、建立问题的数学模型为了建成此无盖水槽,可设在这块铁板的四个角处剪去相等的正方形的边长为X,所建造水槽的底面积为S,分析问题有次问题变成在约束条件:X≥04-2X≥03-2X≥0限制下,求目标函数:S(X)=(4-2X)(3-2X)=4-14X+12的最大值。
由此可得此问题的数学模型为:Min S(X)=4约束条件:( =-X ≤0 ( = -(4-2X )≤0( =-(3-2X )≤0 算法为黄金分割法。
四、外推法确定最优解的搜索区间用外推法确定函数S (X )=4 索区间。
设初始点 , =S( )=12; = +h=0+1=1, =S( )=2;比较 和 ,因为 < h=2h=2x1=2, = +h=1+2=3, 比较 和 ,因为 > ,面,故搜索区间可定为[a,b]=[1,3]。
五、算法框图六、算法程序#include <math.h>#include <stdio.h>double obfunc(double x){double ff;ff=4*X*X-14*X+12;return(ff);}void jts(double x0,double h0,double s[],int n,double a[],double b[]) {int i;double x[3],h,f1,f2,f3;h=h0;for(i=0;i<n;i++)x[0]=x0;f1=obfunc(x[0]);for(i=0;i<n;i++) x[1]=x[0]+h*s[i];f2=obfunc(x[1]);if(f2>=f1){h=-h0;for(i=0;i<n;i++)x[2]=x[0];f3=f1;for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}for(;;){h=2.0*h;for(i=0;i<n;i++)x[2]=x[1]+h*s[i];f3=obfunc(x[2]);if(f2<f3)break;else{for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}}if(h<0)for(i=0;i<n;i++){a[i]=x[2];b[i]=x[0];}elsefor(i=0;i<n;i++){a[i]=x[0];b[i]=x[2];}printf("%4d",n);}double gold(double a[],double b[],double eps,int n,double xx) double f1,f2,ff,q,w;double x[3];for(i=0;i<n;i++){x[0]=a[i]+0.618*(b[i]-a[i]);x[1]=a[i]+0.382*(b[i]-a[i]);}f1=obfunc(x[0]); f2=obfunc(x[1]);do{if(f1>f2){for(i=0;i<n;i++){b[i]=x[0];x[0]=x[1];}f1=f2;for(i=0;i<n;i++)x[1]=a[i]+0.382*(b[i]-a[i]);f2=obfunc(x[1]);}else{for(i=0;i<n;i++){a[i]=x[1];x[1]=x[0];}f2=f1;for(i=0;i<n;i++)x[0]=a[i]+0.618*(b[i]-a[i]);f1=obfunc(x[0]);}q=0;for(i=0;i<n;i++)q=q+(b[i]-a[i])*(b[i]-a[i]);w=sqrt(q);}while(w>eps);for(i=0;i<n;i++)xx=0.5*(a[i]+b[i]);ff=obfunc(xx);printf("xx=ff=%5.2f,,,,%5.2f",xx,ff);return(ff);}void main(){int n=1;double a[1],b[1],xx;double s[]={1},x0=0;double eps1=0.001,h0=0.1;jts(x0,h0,s,n,a,b);gold(a,b,eps1,n,xx);七、程序运行结果与分析(1)程序运行结果(截屏)(2)结果分析、对与函数S(X)=(4-2X)(3-2X)=4-14X+12,令(X)=8X-14=0可解的X=1.75,说明程序运行结果正确。
机械优化设计实例
机械优化设计实例压杆的最优化设计压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的尺寸限制值,求在p一定时d i d2和l分别取何值时管状压杆的体积或重量最小?(内外直径分别为d i、d2)两端承向轴向压力,并会因轴向压力达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。
尺=耍解:根据欧拉压杆公式,两端钱支的压杆,其临界载荷为:」I ——材料的惯性矩,EI为抗弯刚度1、设计变量现以管状压杆的内径d i、外径d2和长度l作为设计变量2、目标函数以其体积或重量作为目标函数3、约束条件以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型:min/㈤=ixiu F(4,电」)=-由,),2)2、目标函数於—=逗―-㈤2。
4g 芋(元)=日芋(d1)=次11111n _d]w 0公6)=日式%)=. -41DCK —。
3)方3 = £式内)=刈2TM宫巾(幻~ & (义)二% - a 2JHK - U8⑶= &•) =『小 心(兀)=心*)='-温=。
罚函数:+ min[ OSiF -Fnun[ 0,瓯]2 +min[ 0J]3 + 一}传递扭矩的等截面轴的优化设计目式力=gKMH )=尸—名-JT - --------- 5 ----- = r - ---------------------- ----------产 M?矶为应上卅)二二伺-4J ) E +产{[皿[0g ]-4P我矛一期]^[0, - -p]解:1、设计变量:片二出巡/=同"3、约束条件:T = —<[r]1)要求扭矩应力小于许用扭转应力,即:-二,,Mr式中: ——轴所传递的最大扭矩其* d自、 —一二 一一抗扭截面系数。
对实心轴16冬(芍二0⑻二3粤-㈤2)要求扭转变形小于许用变形。
机械优化设计案例
机械优化设计案例
本文介绍一例机械优化设计的案例,该设计案例为某企业生产线上的装配设备,其主
要用途是在生产过程中将多个零件装配成成品。
由于生产线需要高效稳定地运作,因此装
配设备的性能和稳定性是至关重要的。
首先,设计团队进行了材料优化。
在原设备中,一些结构件采用了热轧钢板材质,但
该材料的加工难度较大,且易受到氧化和腐蚀的影响;同时,另一些结构件则采用了不锈
钢材质,但该材料的成本较高,不利于大规模生产。
在进行材料优化的过程中,设计团队
选择采用合适的合金材料代替热轧钢板,以提高其耐腐蚀性和加工性能,同时采用优质的
碳钢代替不锈钢,以保证成本控制和机械性能的平衡。
其次,设计团队进行了结构优化。
在原设备中,一些结构件的结构设计存在一定缺陷,容易出现开裂、变形等问题,加快设备的寿命和维修周期。
在进行结构优化的过程中,设
计团队采用了有限元分析方法对结构进行了模拟和优化,对结构件的强度和刚度进行了增强,避免了设计缺陷所导致的问题,并进一步提高了设备的使用寿命和稳定性。
最后,设计团队进行了功能优化。
在原设备中,一些功能配置相对独立,使得设备的
整体效率和操作便利性受到了一定的影响。
在进行功能优化的过程中,设计团队对关键功
能进行了整合和完善,使得设备的不同功能之间实现了无缝衔接,其具有了更高的效益和
操作性,同时增强了设备的全面性和自适应性。
总之,通过对材料、结构和功能等方面的优化设计,该装配设备可具备更高的性能和
稳定性,进一步提高了生产线的整体效率和安全性,为企业节约了成本和获得了更好的生
产效益。
机械优化设计实例(人字架优化)
机械优化设计实例(人字架优化)第1页共5页人字架的优化设计一、问题描述如图1所示的人字架由两个钢管组成,其顶点受外力2F=3×105N 。
已知人字架跨度2B=152 cm,钢管壁厚T=0.25cm,钢管材料的弹性模量E=2.1510? MPa ,材料密度p=7.8×103 kg /m ,许用压应力δy =420 MPa 。
求钢管压应力δ不超过许用压应力δy 和失稳临界应力δc 的条件下,人字架的高h 和钢管平均直径D 使钢管总质量m 为最小。
二、分析设计变量:平均直径D 、高度h三、数学建模所设计的空心传动轴应满足以下条件:(1)强度约束条件即δ≤??????y δ 经整理得()[]y hTDhB F δπ≤+2122(2)稳定性约束条件:[]c δδ≤()()()***-*****28h B D T E hTDhB F ++≤+ππ (3)取值范围:第2页共5页*****≤≤D ***-*****≤≤h则目标函数为:()2*****__.122min x x xf +?=-约束条件为:***-*****00106)(212241≤-+?=x Tx x X g π()***-*****5.*****.***-********-*****)(2 221212242≤++-+?=X x x x Tx x g π010)(13≤-=x X g0120)(14≤-=x X g 0200)(25≤-=x X g01000)(26≤-=x X g四、优化方法、编程及结果分析1优化方法综合上述分析可得优化数学模型为:()Tx x X 21,=;)(min x f ;()0..≤x g t s i 。
考察该模型,它是一个具有2个设计变量,6个约束条件的有约束非线性的单目标最优化问题,属于小型优化设计,故采用SUMT 惩罚函数内点法求解。
2方法原理内点惩罚函数法简称内点法,这种方法将新目标函数定义于可行域内,序列迭代点在可行域内逐步逼近约束边界上的最优点。
第十章-结构优化例子-机械
( D , h ) y ——为起作用约束
D * 6 .43 cm
h* 76 cm
m*=8.47kg
五. 讨论
若将许用应力
(虚线—强度曲线) * * T T 解析法得到: x1 [ D , h ] [3 .84 cm ,76 cm ]
y由420提高到703Mpa,可行域变化
——等值线与强度曲 线的交点,但不是最 优解 (不满足稳定约 束条件) 实际最优点 x1* [ D * , h * ]T
[ 4.75cm,513cm ] (两约束交点处) * m1 5.45 kg
(过x1点的等值线)
T
最优点的三种情况
1. 最优点的等值线在可行域内中心点 ——约束不起作用(无约束问题) 2.最优点在可行域边界与等值线切点处 ——一个起作用约束 3.多个约束交点处 ——多个起作用约束
x2 1
x3 1
x2 x3 6
x2 x3 4
最终得到最优方案: x 4.1286
* 2 * x3 2.3325
f * 0.0156
二. 薄板包装箱的优化设计
设计一个体积为5m3的薄板包装箱,如图所示,其中 一边的长度不小于 4m,要求使薄板材料消耗最少,试确 定包装箱的尺寸参数,即确定包装箱的长、宽和高。
曲柄摇杆机构的优化数学模型
x x2
minT
x3 R 2
f ( x) f ( x2 , x3 ) ( i ji ) 2
i 0
s
i 0,1, 2......s
s.t.
x x 2x2 x3 cos135 36 0
2 2 2 3
2 2 x2 x3 2x2 x3 cos 45 16 0
机械优化设计范例 实例 mathcad:下料问题等
例题:用一批长度为4m的圆钢,下长度为698mm的零件4000个和长度为518mm的零件3600个。
如何下料才能使消耗的圆钢数量最少?解:(一) 建立机械优化设计数学模型(设计变量、目标函数、约束条件)设698mm的零件记为①,518mm的零件记为②。
对本例题,若只用4m长的圆钢,则总共有6种下料方案:下5个零件①,0个零件②,利用率87% (%87%10040005698=⨯⨯) 方案一 下0个零件①,7个零件②,利用率91% (%91%10040007518=⨯⨯) 方案二 下4个零件①,2个零件②,利用率96% (%96%100400025184698=⨯⨯+⨯) 方案三 下3个零件①,3个零件②,利用率91% (%91%100400035183698=⨯⨯+⨯) 方案四 (1) 下2个零件①,5个零件②,利用率99% (%99%100400055182698=⨯⨯+⨯) 方案五 下1个零件①,6个零件②,利用率95% (%95%100400065181698=⨯⨯+⨯) 方案六 从式(1)可知,用4m长的圆钢总共有6种下料方法。
现用1X 、2X 、3X 、4X 、5X 、6X 分别表示按这种方式下料所需的圆钢数量,则下料方案可用表1表示。
表1 下料方案Tab.1 Cutting material plan 原钢种类(m )数量零件① 零件② 方 案 4 1X5 0 方案一 4 2X0 7 方案二 4 3X 4 2 方案三 4 4X 3 3 方案四 4 5X 2 5 方案五 46X16方案六表示为数学模型就是Min 654321654321),,,,,(X X X X X X X X X X X X f +++++= (2)51X +43X +34X +25X +6X ≥4000 (3) 72X +23X +43X +55X +66X ≥3600 (4) X1≥0,X2≥0,X3≥0,X4≥0,X5≥0,X6≥0 (5)式(2)称为目标函数,式(3)、式(4)和式(5)都称为约束条件。
机械优化设计范例
1 / 8例题:用一批长度为4m的圆钢,下长度为698mm的零件4000个和长度为518mm的零件3600个。
如何下料才能使消耗的圆钢数量最少?解:(一) 建立机械优化设计数学模型(设计变量、目标函数、约束条件)设698mm的零件记为①,518mm的零件记为②。
对本例题,若只用4m长的圆钢,则总共有6种下料方案:下5个零件①,0个零件②,利用率87% (%87%10040005698=⨯⨯) 方案一 下0个零件①,7个零件②,利用率91% (%91%10040007518=⨯⨯) 方案二下4个零件①,2个零件②,利用率96% (%96%100400025184698=⨯⨯+⨯) 方案三下3个零件①,3个零件②,利用率91% ( %91%100400035183698=⨯⨯+⨯) 方案四 (1)下2个零件①,5个零件②,利用率99% (%99%100400055182698=⨯⨯+⨯) 方案五下1个零件①,6个零件②,利用率95% (%95%100400065181698=⨯⨯+⨯) 方案六从式(1)可知,用4m长的圆钢总共有6种下料方法。
现用1X 、2X 、3X 、4X 、5X 、6X 分别表示按这种方式下料所需的圆钢数量,则下料方案可用表1表示。
2 / 8表1 下料方案Tab.1 Cutting material plan 原钢种类(m )数量零件① 零件② 方 案 4 1X5 0 方案一 4 2X0 7 方案二 4 3X 4 2 方案三 4 4X 3 3 方案四 4 5X 2 5 方案五 46X16方案六表示为数学模型就是Min 654321654321),,,,,(X X X X X X X X X X X X f +++++= (2)51X +43X +34X +25X +6X ≥4000 (3) 72X +23X +43X +55X +66X ≥3600 (4) X1≥0,X2≥0,X3≥0,X4≥0,X5≥0,X6≥0 (5)3 / 8式(2)称为目标函数,式(3)、式(4)和式(5)都称为约束条件。
机械优化设计经典实例
机械优化设计经典实例机械优化设计是指通过对机械结构和工艺的改进,提高机械产品的性能和技术指标的一种设计方法。
机械优化设计可以在保持原产品功能和形式不变的前提下,提高产品的可靠性、工作效率、耐久性和经济性。
本文将介绍几个经典的机械优化设计实例。
第一个实例是汽车发动机的优化设计。
汽车发动机是汽车的核心部件,其性能的提升对汽车整体性能有着重要影响。
一种常见的汽车发动机优化设计方法是通过提高燃烧效率来提高功率和燃油经济性。
例如,通过优化进气和排气系统设计,改善燃烧室结构,提高燃烧效率和燃油的利用率。
此外,采用新材料和制造工艺,减轻发动机重量,提高动力性能和燃油经济性也是重要的优化方向。
第二个实例是飞机机翼的优化设计。
飞机机翼是飞机气动设计中的关键部件,直接影响飞机的飞行性能、起降性能和燃油经济性。
机翼的优化设计中,常采用的方法是通过减小机翼的阻力和提高升力来提高飞机性能。
例如,优化机翼的气动外形,减小阻力和气动失速的风险;采用新材料和结构设计,降低机翼重量,提高飞机的载重能力和燃油经济性;优化翼尖设计,减小湍流损失,提高升力系数。
第三个实例是电机的优化设计。
电机是广泛应用于各种机械设备和电子产品中的核心动力装置。
电机的性能优化设计可以通过提高效率、减小体积、降低噪音等方面来实现。
例如,采用优化电磁设计和轴承设计,减小电机的损耗和噪音,提高效率;通过采用新材料和工艺,减小电机的尺寸和重量,实现体积紧凑和轻量化设计。
总之,机械优化设计在提高机械产品性能和技术指标方面有着重要应用。
通过针对不同机械产品的特点和需求,优化设计可以提高机械产品的可靠性、工作效率、耐久性和经济性。
这些经典实例为我们提供了有效的设计思路和方法,帮助我们在实际设计中充分发挥机械优化设计的优势和潜力。
机械优化设计三个案例
机械优化设计案例11. 题目对一对单级圆柱齿轮减速器,以体积最小为目标进行优化设计。
2。
已知条件已知数输入功p=58kw ,输入转速n 1=1000r/min ,齿数比u=5,齿轮的许用应力[δ]H =550Mpa ,许用弯曲应力[δ]F =400Mpa 。
3.建立优化模型3。
1问题分析及设计变量的确定由已知条件得求在满足零件刚度和强度条件下,使减速器体积最小的各项设计参数。
由于齿轮和轴的尺寸(即壳体内的零件)是决定减速器体积的依据,故可按它们的体积之和最小的原则建立目标函数.单机圆柱齿轮减速器的齿轮和轴的体积可近似的表示为:]3228)6.110(05.005.2)10(8.0[25.087)(25.0))((25.0)(25.0)(25.0222122212221222212212122221222120222222222121z z z z z z z z z z z g g z z d d l d d m u mz b bd m u mz b b d b u z m b d b z m d d d d l c d d D c b d d b d d b v +++---+---+-=++++-----+-=πππππππ 式中符号意义由结构图给出,其计算公式为b c d m umz d d d mumz D mz d mz d z z g g 2.0)6.110(25.0,6.110,21022122211=--==-===由上式知,齿数比给定之后,体积取决于b 、z 1 、m 、l 、d z1 和d z2 六个参数,则设计变量可取为T z z T d d l m z b x x x x x x x ][][211654321== 3。
2目标函数为min )32286.18.092.0858575.4(785398.0)(2625262425246316321251261231232123221→++++-+-+-+=x x x x x x x x x x x x x x x x x x x x x x x x x x f3.3约束条件的建立1)为避免发生根切,应有min z z ≥17=,得017)(21≤-=x x g2 )齿宽应满足max min ϕϕ≤≤d b ,min ϕ和max ϕ为齿宽系数d ϕ的最大值和最小值,一般取min ϕ=0。
机械优化设计实例(人字架优化) (1)
人字架的优化设计一、问题描述如图1所示的人字架由两个钢管组成,其顶点受外力2F=3×105N 。
已知人字架跨度2B=152 cm,钢管壁厚T=0.25cm,钢管材料的弹性模量E=2.1510⨯ MPa ,材料密度p=7.8×103 kg /m ,许用压应力δy =420 MPa 。
求钢管压应力δ不超过许用压应力 δy 和失稳临界应力 δc 的条件下,人字架的高h 和钢管平均直径D 使钢管总质量m 为最小。
二、分析设计变量:平均直径D 、高度h三、数学建模所设计的空心传动轴应满足以下条件: (1) 强度约束条件 即δ≤⎥⎦⎤⎢⎣⎡y δ 经整理得()[]y hTDh B F δπ≤+2122(2) 稳定性约束条件:[]c δδ≤()()()2222221228hB D T E hTDh B F ++≤+ππ (3)取值范围:12010≤≤D 1000200≤≤h则目标函数为:()2213577600105224.122min x x xf +⨯=-约束条件为:0420577600106)(212241≤-+⨯=x Tx x X g π()057760025.63272.259078577600106)(2221212242≤++-+⨯=X x x x Tx x g π010)(13≤-=x X g0120)(14≤-=x X g 0200)(25≤-=x X g01000)(26≤-=x X g四、优化方法、编程及结果分析1优化方法综合上述分析可得优化数学模型为:()Tx x X 21,=;)(min x f ;()0..≤x g t s i 。
考察该模型,它是一个具有2个设计变量,6个约束条件的有约束非线性的单目标最优化问题,属于小型优化设计,故采用SUMT 惩罚函数内点法求解。
2方法原理内点惩罚函数法简称内点法,这种方法将新目标函数定义于可行域内,序列迭代点在可行域内逐步逼近约束边界上的最优点。
第八章机械优化设计实例
机械与材料学院
×
2、目标函数: 、目标函数:
考虑主轴最轻, 考虑主轴最轻,所以机床主轴优化设计的 目标函数为
材料的密度
机械与材料学院
×
3、约束条件: 、约束条件:
1)刚度约束条件:由于主轴刚度是一个重要 )刚度约束条件: 的性能指标,其外伸端的挠度y不得超过规定值 不得超过规定值y 的性能指标,其外伸端的挠度 不得超过规定值 0 所以可依此建立性能约束: 所以可依此建立性能约束:
例子
机械与材料学院
×
尺度变换前的等值线图
尺度变换后的等值线图
机械与材料学院
×
2、设计变量的尺度变换 、 ——对设计变量进行重新标度,使它们称 对设计变量进行重新标度, 对设计变量进行重新标度 为无量纲和规格化的设计变量。 为无量纲和规格化的设计变量。 方法: 方法:
原 设 计 变 量 新 设 计 变 量
机械与材料学院
×
2、目标函数的确定 、
目标函数——一项设计所追求的指标的数学反映 一项设计所追求的指标的数学反映 目标函数 要求: 要求: 能够用来评价设计的优劣 必须是设计变量的可计算函数
机械与材料学院
×
1)、优化目标的选择: )、优化目标的选择: )、优化目标的选择
应当对所追求的各项指标进行细致分析, 应当对所追求的各项指标进行细致分析,从 中选择最重要、 中选择最重要、最具代表性的指标作为优化 目标
机械与材料学院
×
•在性能约束中,又有复杂和简单之分 在性能约束中, 在性能约束中 约束函数有的很简单,可以表示成显式形式, 约束函数有的很简单,可以表示成显式形式, 即反映设计变量之间明显的函数关系,这类约束叫 即反映设计变量之间明显的函数关系, 显式约束。 做显式约束。例如设计曲柄连杆机构时的曲柄存在 约束条件 有的只能表示成隐式形式,例如复杂结构的性 有的只能表示成隐式形式, 能约束函数(变形、应力、频率等) 能约束函数(变形、应力、频率等),需要通过有 限元或动力学计算求得,机构的运动误差要用数值 限元或动力学计算求得, 积分来计算,这类约束叫做隐式约束 隐式约束。 积分来计算,这类约束叫做隐式约束。
机械优化设计实例
机械优化设计作业一、优化设计问题的提出预制一无盖水槽,现有一块长为4m,宽为3m的长方形铁板作为原材料,想在这块铁板的四个角处剪去相等的正方形以制成无盖水槽,问如何剪法使水槽的底面积最大?二、建立问题的数学模型为了建成此无盖水槽,可设在这块铁板的四个角处剪去相等的正方形的边长为X,所建造水槽的底面积为S,分析问题有次问题变成在约束条件:X≥04-2X≥03-2X≥0限制下,求目标函数:S(X)=(4-2X)(3-2X)=4-14X+12的最大值。
由此可得此问题的数学模型为:Min S(X)=4约束条件:( =-X ≤0 ( = -(4-2X )≤0( =-(3-2X )≤0 算法为黄金分割法。
四、外推法确定最优解的搜索区间用外推法确定函数S (X )=4 索区间。
设初始点 , =S( )=12; = +h=0+1=1, =S( )=2;比较 和 ,因为 < h=2h=2x1=2, = +h=1+2=3, 比较 和 ,因为 > ,面,故搜索区间可定为[a,b]=[1,3]。
五、算法框图六、算法程序#include <math.h>#include <stdio.h>double obfunc(double x){double ff;ff=4*X*X-14*X+12;return(ff);}void jts(double x0,double h0,double s[],int n,double a[],double b[]) {int i;double x[3],h,f1,f2,f3;h=h0;for(i=0;i<n;i++)x[0]=x0;f1=obfunc(x[0]);for(i=0;i<n;i++) x[1]=x[0]+h*s[i];f2=obfunc(x[1]);if(f2>=f1){h=-h0;for(i=0;i<n;i++)x[2]=x[0];f3=f1;for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}for(;;){h=2.0*h;for(i=0;i<n;i++)x[2]=x[1]+h*s[i];f3=obfunc(x[2]);if(f2<f3)break;else{for(i=0;i<n;i++){x[0]=x[1];x[1]=x[2];}f1=f2;f2=f3;}}if(h<0)for(i=0;i<n;i++){a[i]=x[2];b[i]=x[0];}elsefor(i=0;i<n;i++){a[i]=x[0];b[i]=x[2];}printf("%4d",n);}double gold(double a[],double b[],double eps,int n,double xx) double f1,f2,ff,q,w;double x[3];for(i=0;i<n;i++){x[0]=a[i]+0.618*(b[i]-a[i]);x[1]=a[i]+0.382*(b[i]-a[i]);}f1=obfunc(x[0]); f2=obfunc(x[1]);do{if(f1>f2){for(i=0;i<n;i++){b[i]=x[0];x[0]=x[1];}f1=f2;for(i=0;i<n;i++)x[1]=a[i]+0.382*(b[i]-a[i]);f2=obfunc(x[1]);}else{for(i=0;i<n;i++){a[i]=x[1];x[1]=x[0];}f2=f1;for(i=0;i<n;i++)x[0]=a[i]+0.618*(b[i]-a[i]);f1=obfunc(x[0]);}q=0;for(i=0;i<n;i++)q=q+(b[i]-a[i])*(b[i]-a[i]);w=sqrt(q);}while(w>eps);for(i=0;i<n;i++)xx=0.5*(a[i]+b[i]);ff=obfunc(xx);printf("xx=ff=%5.2f,,,,%5.2f",xx,ff);return(ff);}void main(){int n=1;double a[1],b[1],xx;double s[]={1},x0=0;double eps1=0.001,h0=0.1;jts(x0,h0,s,n,a,b);gold(a,b,eps1,n,xx);七、程序运行结果与分析(1)程序运行结果(截屏)(2)结果分析、对与函数S(X)=(4-2X)(3-2X)=4-14X+12,令(X)=8X-14=0可解的X=1.75,说明程序运行结果正确。
机械优化设计-经典实例
函数名用标识符表示。
1.3 数组
行向量、列向量、矩阵 1.3.1 创建数组的常用方法
1)直接列表定义数组 例如:
x=[1 2 3 4 5 6 7 8 9 0] y=[1,2,3,4,5,6,7,8,9,0] z=[1,2,3,4,5;2,3,4,5,6,7]
建立数学模型的基本原则
1)设计变量的选择: 尽量减少设计变量数目 设计变量应当相互独立
2)目标函数的确定: 选择最重要指标作为设计追求目标
3)约束条件的确定: 性能约束和边界约束
设计实例1:
试设计一重量最轻的空心传动轴。空心传动轴 的D、d分别为轴的外径和内径。轴的长度不得 小于3m。轴的材料为45钢,密度为7.8×10-6㎏ /㎜,弹性模量E=2×105MPa,许用切应力
( ) arccosl12 l22 l32 l42 2l1l4 cos
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos
设计实例2:
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )
Dd D
3/ 2
0
(3)结构尺寸
l l min d 0
Dd 0
设计实例1:
设:
x1
D
x2
d
x3
l
则数学模型为:
min f () 6.12(D2 d 2 )l 10 6
6.12(x12 x22 )x3 106
设计实例1:
g1 ( X ) d 4 D 4 1.27 D 10 5 x2 4 x14 1.27 10 5 0
机械优化设计经典实例PPT课件
x1
x2 x1
3/ 2
0
g3 (X ) 3 l 3 x3 0
g4 (X ) d x2 0
g5 ( X ) D d x1 x2 0
设计实例2: 平面连杆机构优化设计
一曲柄摇杆机构, M为连秆BC上一点, mm为预期的运动 轨迹,要求设计该 曲柄摇杆机构的有 关参数,使连杆上 点M在曲柄转动一 周中,其运动轨迹 (即连杆曲线)MM 最佳地逼近预期轨 迹mm。
6.12(x12 x22 )x3 106
设计实例1:
g1 ( X ) d 4 D 4 1.27 D 10 5 x2 4 x14 1.27 10 5 0
g2 ()
154.34D D4 d 4
Dd D
3/ 2
154.34x1 x14 x2 4
设计实例2:
设计一再现预期轨迹mm的曲柄摇杆机构。已知xA= 67mm,yA=10mm,等分数s=12,对应的轨迹mm 上12个点的坐标值见表,许用传动角[γ]=300。
设计实例2:
一、建立优化设计的数学模型
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )
( ) arccosl12 l22 l32 l42 2l1l4 cos
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos
设计实例2:
点M的坐标: xM xA l1 cos( ) l5 cos( ) yM yA l1 sin( ) l5 sin( )
机械优化设计实例
机械优化设计实例以汽车制造过程中的发动机设计优化为例,该实例涉及程序和算法框图。
1.现状分析:首先,我们需要分析目前使用的发动机设计的性能和问题,这可以通过实验数据和模拟结果来获取。
通过这些数据,我们可以确定哪些方面需要进行优化。
2.目标设定:在优化设计之前,我们需要设定设计目标,例如提高燃烧效率、减少排放、提高动力输出等。
3.参数选择:根据设计目标,我们需要选择一些关键参数进行调整,例如燃烧室形状、进气道设计、气缸布置等。
这些参数的选择可以基于经验或者通过试验和模拟得到。
4.方案设计:通过调整参数,我们可以设计若干不同的发动机构型。
这些构型可以通过CAD软件进行绘制和设计。
5.程序编写:为了评估不同构型的性能,我们需要编写相应的计算程序。
该程序可以基于数值模拟和实验数据,根据给定的输入参数计算发动机的性能指标,例如动力输出、燃油消耗等。
6.算法框图:以下是一个简化的算法框图,描述了发动机设计优化的步骤:开始->现状分析->目标设定->参数选择->方案设计->程序编写->性能计算->评估结果->是否满足设计目标?->是->结束;否->调整参数->重新方案设计->重新程序编写->重新性能计算->重新评估结果->…在这个框图中,我们可以看到,如果评估结果不满足设计目标,我们需要调整参数,并重新进行方案设计、程序编写和性能计算。
这个过程可以循环进行,直到满足设计目标为止。
总结:通过以上步骤,我们可以进行机械优化设计实例,特别是发动机设计优化。
通过分析现状、设定目标、调整参数、设计方案和编写程序,我们可以评估不同设计的性能,并通过循环优化的方式不断改进设计,以达到更好的性能和效果。
机械优化设计实例
机械优化设计实例压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的尺寸限制值,求在p 一定时d i、d2和丨分别取何值时管状压杆的体积或重量最小?(内外直径分别为d i、d2)两端承向轴向压力,并会因轴向压力达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。
解:根据欧拉压杆公式,两端铰支的压杆,其临界载荷为:I ――材料的惯性矩,EI为抗弯刚度1、设计变量现以管状压杆的内径d i、外径d2和长度l作为设计变量2、目标函数以其体积或重量作为目标函数3、约束条件以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型:2)min = oiia F(兀屯小=扌一材)「压杆的最优化设计也㈤皿也2亟刍-皿。
4勿(忙)=韵佃1 dJ = P -卩匕型—瘩辽(茁—町)I2~M?嵐二(工)==止皿_£]玉o血(兀)=呂.SJ =右 ~ ^lmax —°3) .3 ■■' -J」j -工—二.g$ (光)~ & (£) —^2 2JHK—"」^W = ^W = U-/^ogO劭刘罚函数:反耐皿上严)二7寓-町)f +円{[诡[o,[cr]- + mm[ Q/]『+nun[ Q 鶴『+min[ 0,?]3 + ■■■)传递扭矩的等截面轴的优化设计2、目标函数?r 讪(為4-d「)―^—胡解:1、设计变量:冈区I以轴的重量 最轻作为目标函数:3、约束条件:T = —<[r]1)要求扭矩应力小于许用扭转应力,即:-匕式中: ' --------- 轴所传递的最大扭矩一「一一抗扭截面系数。
对实心轴 疋勿(匿)二內⑴二兰拿-罔空J7EZ2)要求扭转变形小于许用变形。
即:式中:G ――材料的剪切弹性模数32M T 13)结构尺寸要求的约束条件:若轴中间还要承受一个集中载荷,则约束条件中要考虑:根据弯矩联合作用得出的强度与 扭转约束条件、弯曲刚度的约束条件、对于较重要的和转速较高可能引起疲劳损坏的轴, 疲劳强度校核的安全系数法,增加一项疲劳强度不低于许用值的约束条件。
第8章_机械优化设计实例
第8章_机械优化设计实例1.引言机械优化设计是用于提高机械系统性能的重要方法之一、本章将介绍两个机械优化设计实例,分别是电动车的电动机设计和汽车发动机排气系统设计。
通过对这两个实例的分析和优化,可以了解到机械优化设计的基本原理和方法。
2.电动车的电动机设计电动车的电动机是其动力系统的核心部件,其设计和性能直接影响到电动车的续航里程、加速性能和整车效率等。
在进行电动机设计时,需要考虑功率、转速范围、效率等因素。
在优化设计电动机时,首先需要确定其电机类型,常见的有直流电机(DC motor)、异步电机(Asynchronous motor)和同步电机(Synchronous motor)等。
根据电动车的使用条件和要求,选择合适的电机类型。
其次,需要确定电动机的参数,如磁极数、线圈匝数、齿槽数等。
通过改变这些参数,可以改变电动机的转速范围和功率输出等性能。
同时,还需要优化电动机的效率,提高其能量利用率。
最后,还需要对电动机进行热设计,确保其工作时不会过热。
通过合理的散热设计和冷却系统,可以有效降低电动机的温度,提高其稳定性和寿命。
3.汽车发动机排气系统设计汽车发动机排气系统是排放控制和动力性能的重要组成部分,其设计直接影响到发动机的功率输出和排放性能。
在进行排气系统设计时,需要考虑排气阻力和噪声等因素。
优化排气系统设计的方法之一是通过改变排气管的形状和长度来降低排气阻力。
通过数值模拟和实验测试,可以确定最佳的排气管尺寸和形状,以提高发动机的功率输出和燃烧效率。
另一方面,还可以通过改变排气系统的消声器和消音器等部件来降低排气噪声。
通过优化消声器的结构和材料,可以有效降低排气系统的噪声水平,提高车辆的驾驶舒适度。
此外,还需要考虑排气系统对发动机的冷却效果。
通过合理设计排气系统的散热器和风道等部件,可以提高发动机的冷却效果,降低发动机的温度,提高整车的性能和可靠性。
4.结论机械优化设计是提高机械系统性能的重要手段之一、通过上述两个机械优化设计实例的分析,可以看出在机械优化设计中需要考虑多个方面的因素,如功率、效率、排气阻力、噪声等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1D544.3d4D4 DDd3/2 0
(3)结构尺寸
l l min d 0 Dd0
实用文档
设计实例1:
设:
x1
D
x
2
d
x
3
l
则数学模型为:
mf(i ) n 6 .1(D 2 2 d 2 )l 1 6 0
6.1(2 x12x22)x31 0 6
实用文档
设计实例1:
[τ]=60MPa。轴所受扭矩为
M=1.5×106N·mm。
分析
设计变量:外径D、内径d、长度l
设计要求:满足强度,稳定性和结构尺寸要
求外,还应达到重量最轻目的。
实用文档
设计实例1:
所设计的空心传动轴应满足以下条件: (1)扭转强度
空心传动轴的扭转切应力不得超过许用值,即
空心传动轴的扭转切应力:
将曲柄一周转角分为s等分,要求连秆曲线最佳地逼近预 期轨迹mm,具体可由连杆曲线上的s个点M最佳地逼近 预期轨迹上的s个点m予以实现。由此可按点距和最小的 原则建立如下目标函数:
s
f(x) (xM ixm )2 i(yM iym )2 i
i 1
实用文档
设计实例2:
3)确定约束条件
(1)由曲柄存在条件,可得:
g1(x) l1 l2 l3 l4 0 g2(x) l1 l3 l2 l4 0 g3(x) l1 l4 l2 l3 0
(2)由杆长必须大于零及曲柄1为最短杆,可得:
g4(x)el10
实用文档
设计实例2:
(3)由满足传动角条件γ>[γ],可得:
g5(x)
[]arccol22sl32 (l4
2l2l3
g 1 ( X ) d 4 D 4 1 . 2 D 1 7 5 x 2 0 4 x 1 4 1 . 2 1 5 7 0 0 g 2 ( ) 1 D 4 . 3 5 d D 44 4 D D d 3 /2 1 x 1 4. 3 5 x 2 x 4 1 4 4 x 1 x 1 x 2 3 /2 0
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos 0 ' 其中'将由设计实用的文档已知条件 出给 。
设计实例2:
该问题有8个设计变量,记为:
x x1, x2 , , x8 T
l1 ,l2,l3 ,l4,l5 ,
,
,
T 0
实用文档
设计实例2:
2)确定目标函数
l1)2
0
g6(x)
[][18。 0arccol22sl32 (l4
2l2l3
l1)2
]0
实用文档
优化设计工具
实用文档
优化设计工具
第1部分 MATLAB基础 第2部分 优化计算工具
实用文档
第1部分 MATLAB基础
1.1 MATLAB环境简介 1.2 数据表示 1.3 数组 1.4 源文件(M-文件)
( ) arccosl12 l22 l32 l42 2l1l4 cos
2l2 l12 l42 2l1l4 cos arctg l1 sin
l4 l1 cos
实用文档
设计实例2:
点M的坐标: xMxAl1cos()l5cos () yMyAl1si n ()l5sin()
( ) arccosl12 l22 l32 l42 2l1l4 cos
实用文档
1.1 MATLAB窗口
启动MATLAB 其窗口如右
1、Command Window (命令窗口)
2、Workspace (工作区)
实用文档
1.2 数据表示
1、变量 变量用标识符表示(字母打头、字母、数
字、下划线组成,长度≤19)。可以合法出 现而定义。 区分大小写字母,以当前值定义其类型。 2、函数名
g 3(X ) 3 l 3 x 3 0
g4(X)dx20
g 5 (X ) D d x 1 x 2 0
实用文档
设计实例2: 平面连杆机构优化设计
一曲柄摇杆机构, M为连秆BC上一点, mm为预期的运动 轨迹,要求设计该 曲柄摇杆机构的有 关参数,使连杆上 点M在曲柄转动一 周中,其运动轨迹 (即连杆曲线)MM 最佳地逼近预期轨 迹mm。
函数名用标识符表示。
实用文档
1.3 数组
行向量、列向量、矩阵 1.3.1 创建数组的常用方法
1)直接列表定义数组
例如:
x=[1 2 3 4 5 6 7 8 9 0] y=[1,2,3,4,5,6,7,8,9,0] z=[1,2,3,4,5;2,3,4,5,6,7]
实用文档
1.3 数组
2)域表定义数组 变量=初值:增量:终值|初值:终值 变量=(初值:增量:终值)*常数 例如: x=0:0.02:10 y=1:80
实用文档
建立数学模型的基本原则
1)设计变量的选择: 尽量减少设计变量数目 设计变量应当相互独立
2)目标函数的确定: 选择最重要指标作为设计追求目标
3)约束条件的确定: 性能约束和边界约束
实用文档
设计实例1:
试设计一重量最轻的空心传动轴。空心传动轴 的D、d分别为轴的外径和内径。轴的长度不得 小于3m。轴的材料为45钢,密度为7.8×10-6 ㎏/㎜,弹性模量E=2×105MPa,许用切应力
16D (D4 d4)
实用文档
设计实例1:
空心传动轴的扭切应力:
16D (D4 d4)
经整理得:
d4D41.2 稳定性 扭转切应力不得超过扭转稳定得临界切应力:
'
空心传动轴的扭转稳定的临界切应力为:
' 0.7E(Dd)3/2
2D
实用文档
设计实例1:
实用文档
设计实例2:
设计一再现预期轨迹mm的曲柄摇杆机构。已知xA= 67mm,yA=10mm,等分数s=12,对应的轨迹mm 上12个点的坐标值见表,许用传动角[γ]=300。
实用文档
设计实例2:
一、建立优化设计的数学模型
点M的坐标: xMxAl1cos()l5cos () yMyAl1si n ()l5sin()
机械优化设计实例 及matlab优化工
具
实用文档
机械优化设计实例
➢ 机械优化设计的一般过程 ➢ 建立数学模型的基本原则 ➢ 机械优化设计实例
实用文档
机械优化设计的一般过程
机械优化设计全过程一般可分为:
1)建立优化设计的数学模型。 2)选择适当的优化方法。 3)编写计算机程序。 4)准备必要的初始数据并上机计算。 5)对计算机求得的结果进行必要的分析。