初中数学知识点总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学知识点总结

第一篇数与代数

第一节数与式

一、实数

1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.

如:-3,

,0.231,0.737373…,

,

等;无限不环循小数叫做无理数.

如:π,

,0.1010010001…(两个1之间依次多1个0)等.有理数和无理数统称为实数.

2. 数轴:规定了原点、正方向和单位长度的直线叫数轴。实数和数轴上的点一一对应。

3. 绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作

∣a∣。正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。如:丨-

_丨=

;丨3.14-π丨=π-3.14.

4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数。a的相反数是-a,0的相反数是0。

5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.

6. 科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.

7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂。

9. 平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根)一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.

10.开平方:求一个数a的平方根的运算,叫做开平方.

11.算术平方根:一个正数a的正的平方根叫做数a的算术平方根,0的算

术平方根是0.

12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.

13.开立方:求一个数a的立方根的运算叫做开立方.

14.平方根易错点:(1)平方根与算术平方根不分,如 64的平方根为士8,易丢掉-8,而求为64的算术平方根;(2)

的平方根是士

,误认为

平方根为士 2,应知道

=2.

15. 二次根式:定义:式子

(a≥0)叫做二次根式.

16.二次根式的化简

(3)

=a(a≥0);(4)

=|a|

17.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽方的因数或因式.(2)被开方数中不含分母. (3)分母中不含根号.

18.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.

19. 二次根式的乘、除法公式

20..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;

③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.

21.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.

22.有理数减法法则:减去一个数,等于加上这个数的相反数.

23.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.

24.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.

25.有理数的混合运算法则:先算乘方开方,再算乘除,最后算加减;如果有括号,先算括号里面的.

二.代数式:

(1)用运算符号把数和表示数的字母连接而成的式子叫做代数式。单独一个数或一个字母也是代数式。

(2)同类项:是指所含字母相同,并且相同字母的指数也相同的项。合并同类项的法则:系数相加作系数,字母和字母的指数不变。

三.整式

1.幂的运算性质:1. 同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即

(m、n为正整数);

2. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即

(a≠0,m、n为正整数,m>n);

3.幂的乘方法则:幂的乘方,底数不变,指数相乘,即(am)n=amn(m、n

为正整数);4.积的乘方法则:积的乘方,等于积中每个因式分别乘方,即

(n为正整数);

5.零指数:

(a≠0);

6.负整数指数: a

= (a≠0,n为正整数);

2.整式的乘除法:

①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘

除.

②单项式乘以多项式,用单项式乘以多项式的每一个

项.

③多项式乘以多项式,用一个多项式的每一项分别乘以另一个多项式的每一项.

④多项式除以单项式,将多项式的每一项分别除以这个单项式.

⑤平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即

⑥完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即

3.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.

4.分解因式的方法:

⑴提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.

⑵运用公式法:公式

5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.

6.分解因式时常见的思维误区:

⑴ 提公因式时,其公因式应找字母指数最低的,而不是以首项为准.

⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.

⑶ 分解不彻底,如保留中括号形式,还能继续分解等

四.分式

相关文档
最新文档