七年级上册数学第六章平面图形的认识一练习题附解析

合集下载

七上 平面图形的认识(一)全章 课时练习 含答案

七上 平面图形的认识(一)全章 课时练习 含答案

第六章平面图形的认识(一)第1节线段、射线、直线(1)一、填空题1.线段有_______个端点,射线有_______个端点,直线有_______个端点.2.图中共有_______条直线,是_______;有_______条线段,是______;以D点为端点的射线有_______条,是_______;线段_______,_______和射线_______相交于点B.3.比较下图中各组线段的长短.(1)_______(2)_______(3)_______(4)______4.如图,是某村的平面示意图,阴影部分是该村的道路,A处是住宅区,B处是村小学,其他部分都是麦田,每年一到冬季,学生们就在麦田里走出一条小路,请你用数学原理解释这一现象_______.5.已知线段AB=6cm,在直线AB上有一点C,且BC=2cm,则线段AC的长是_________.二、选择题6.下列说法正确的是( )A.线段AB和线段BA表示的是同一条线段B.射线AB和射线BA表示的是同一条射线C.直线AB和直线BA表示的是两条直线D.点M在直线AB上,则点M在射线AB上7.下列图形中,能够相交的是( )8.如图,点A、B、C是直线l上的三个点,图中共有线条数是( )A.1条B.2条C.3条D.4条9.下列说法中,正确的有( )①经过两点有且只有一条直线;②连结两点的线段叫做两点的距离;③两点之间,线段最短;④射线AB和射线BA是同一条射线;⑤射线比直线短.A.1个B.2个C.3个D.4个10.如图,AB=CD,则AC与BD的大小关系是( )A.AC>BD B.AC<BD C.AC=BD D.不能确定三、解答题11.已知平面上四点A、B、C、D,如图,(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连AC、BD相交于点F.12.已知数轴的原点为O,如图所示,若点A表示3,点B表示-52,问:(1)数轴是什么图形?(2)数轴在原点O左边的部分(包括原点)是什么图形?怎样表示?(3)射线OB上的点表示什么数?端点表示什么数?(4)数轴上表示不小于-,且不大于3的部分是什么图形?怎样表示?13.往返于A、B两个城市的火车有四个停靠点.问:(1)该火车有多少种不同的票价?(2)该火车上要准备多少种车票?14.观察图,回答下列问题,并探索规律.(1)若一条直线上有两点,则图①中有几条不同的线段?(2)若一条直线上有三点,则图②中有几条不同的线段?(3)若一条直线上有四点,则图③中有几条不同的线段?(4)你觉得上述问题中,其中一点能和另外的几个点连接成几条不同的线段?(5)根据以上的问题,请你探索一下:若一条直线上有n个点,则图中共有多少条不同的线段?15.如图,平面内有公共端点的六条射线OA,OB,OC,OD,OE,OF,从射线OA开始按逆时针方向依次在射线上写出数字1,2,3,4,5,6,7,….(1)“17”在射线______上;(2)请任意写出三条射线上数字的排列规律;(3)“2011”在哪条射线上?参考答案1.2,1,02.1,直线AC;6,线段BA、BD、BC、AD、AC、DC;2,射线DA、DC;AB,BC,DB 3.(1)a=b;(2)a>b;(3)a=b,(4)a=b4.两点之间线段最短5.8cm或4cm 6.A7.D8.C9.B10.C11.如图.12.(1)直线;(2)射线;射线OB;(3)负数;0;(4)线段;线段AB13.(1)有6种不同的票价(2)同一路段,往返时起点和终点正好相反,所以应准备12种车票14.(1)1条;(2)3条;(3)6条;(4)直线上若有n个点,其中一点可以和另外的点组成(n-1)条线段;(5)(1)2n n条15.(1) 在射线OE上(2)射线OA上数字的排列规律:6n-5,射线OB上数字的排列规律:6n-4……射线OF上数字的排列规律:6n.(3)在射线OA上第1节线段、射线、直线(2)一、填空题1.建房屋垒墙时,建筑工人都要在墙的两端固定绳子,其中道理是______.2.点B把线段AC分成两条相等的线段,点B就叫做线段AC的_______,这时,有AB=_______,AC=_______BC,AB=BC=_______AC.点B和点C把线段AD分成三条相等的线段,则点B和点C就叫做AD的_______.3.如图,线段AB=6cm,C是AB的中点,点D在CB上,DB=1 cm.线段CD=______cm.4.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是_______.5.如图,点C分AB为2:3两部分,点D分AB为1:4两部分,若AB为5cm,则AC=_______cm,BD______cm,CD=_______cm.二、选择题6.以下说法正确的是( )A.两条射线重叠在一起,就成了一条直线B.直线的长度是射线长度的两倍C.射线OA也可以称为射线AO D.射线不能延长,但可反向延长7.如图,点P是线段AB上的点,不能说明P是AB的中点的是( )A.AB=2AP B.AP=BP C.AP+BP=AB D.BP=12 AB8.如图,点C在线段AB上,D是AC的中点,E是BC的中点,若ED=6,则AB的长为( ) A.6 B.8 C.12 D.169.如图所示,B,C是线段AD上任意两点,M是AB中点,N是CD中点,若MN=a,BC =b,则AD的长是( )A.2a-b B.a-b C.a+b D.2(a-b)10.如果线段AB=5厘米,BC=3厘米,那么A,C两点的距离是( ) A.8厘米B.2厘米C.4厘米D.无法确定三、解答题11.如图,延长线段AB到C,使BC=2AB,取AC的中点D,已知BD=2cm,求AC的长.12.如图所示,点B、C在线段AD上,E是AB的中点,F是CD的中点,若EF=10,BC=3,求AD的长.13.已知:B、C两点把线段AD分成2:3:4三部分,M是AD的中点,CD=12,求(1)MC 的长;(2)AB:BM14.已知线段AB=10cm,直线AB上有一点C,且BC=2cm,点D是线段AB的中点,求线段DC的长.15.如图所示,沿江街AB段上有四处居民小区A、C、D、B,且有AC=CD=DB,为改善居民的购物环境,想在AB上建一家超市,每个小区的居民各执一词,难以定下具体的建设位置,高经理是超市负责人,从便民、获利的角度考虑,你觉得他会把超市建在哪儿?参考答案1.过两点有且只有一条直线.2.中点;BC;2;12;三等分点3.24.415.2:4:16.D7.C8.C9.A10.D11.12cm12.17 13.(1)MC=1.5.(2)AB:BM=4 :514.(1)当点C在线段AB的外部时DC=7(cm)(2)当点C在线段AB的内部时DC=3(cm)15.直建在线段CD的任何一点处.第2节角(1)一、填空题1.如图,用三种不同的表示方法表示这个角为______________.2.如图,图中共有_______个小于平角的角.3.(1)57.32°=______度_______分_______秒.(2)27°14'24"=_______度.4.如图是一块手表,早上8时的时针、分针的位置如图所示,那么分针与时针所成的角的度数是______.5.如图所示是教室四位学生的座位及讲台的示意图,设讲台为O,给每个学生标上一个字母,画出在讲台上观察每两个同学所成的角,数一数,共有_______个角.二、填空题6.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A.1个B.2个C.3个D.4个7.下列4个图形中,能用∠1,∠AOB,∠O三种方法表示同一角的图形是( )8.右图中,小于平角的角有( )A.5个B.6个C.7个D.8个9.有四个人在同一地点观察同一建筑物时所报出的方位分别如下,其中正确的是( )A.偏南20°B.北偏西110°C.南偏西70°D.东偏南160°10.用同一副三角板可画出的小于平角的角有( )A.7个B.9个C.11个D.12个三、解答题11.计算下列各题.(1)56°23'48'+16°35'43”;(2)90°-28°12'36";(3)12°34'×4;(4)40°40'÷6.12.如图:(1)用不同方法表示图中的两个角;(2)写出这两个角的边;(3)画出DA',使∠BDA'成平角,写出它的边;(4)以B为顶点的角有_______个,以DB为一边的角有_______个.13.如图,以B为顶点的角有几个?把它们表示出来,以D为顶点的角有几个?把它们表示出来.14.钟表上2时15分时,时针与分针所形成的锐角的度数是多少?15.如图,把作图用的三角板(含30°,60°的那块)从较长的直角边水平状态下开始,在平面上滚动一周,求B点转动的角度(在点的位置没有发生变化的情况下,一律看作点没有转动).参考答案1.∠AOB,∠a,∠O2.93.(1)57;19;12;(2)27.244.120°5.66.A 7.B8.D9.C10.C11.(1)73°59'31"(2)61°47'24".(3)50°16'(4)6°46'40".12.(1)以D为顶点的角:∠ADB,即∠D或∠1,以B为顶点的角:∠CBD,即∠B或∠2 (2)∠D的边是DA、DB,∠B的边是BD、BC(3)延长BD到A',则∠BDA'成平角,它的两条边为DB、DA';(4)1,2.13.以B为顶点的角有3个,分别是:∠ABD、∠ABC、∠DBC,以D为顶点的角有4个,分别是∠ADE、∠EDC、∠ADB、∠BDC.14.22.5°15.B点转动的角度为210°第2节角(2) 一、填空题1.如图,BD是∠ABC的平分线,则(1)∠_______=∠_______;(2)∠ABD=12∠______;(3)∠ABC=2∠______=2∠_______.2.如图,BD、CE是∠ABC和∠ACB的平分线,如果∠DBC=∠ECB,那么∠ABC______∠ACB (填“<”、“=”、“>”).3.如图,∠AOB是平角,OD是∠BOC的角平分线,OE是∠COA的角平分线.(1)若∠BOC=60°,则∠DOE=______;(2)若∠BOC=40°,则∠DOE=_______;(3)若∠BOC=70°,则∠DOE=_______.4.如图,∠AOB是直角,∠AOC=36°,∠BOD=12∠BOC,则∠COD=______.5.如图,∠BOC=5∠AOC,∠AOB=108°,则∠BOC=_______,∠AOC=_______.二、选择题6.已知OC是∠AOB的平分线,下列结论不正确的是( )A.∠AOB=12∠BOC B.∠AOC=12∠AOBC.∠AOC=∠BOC D.∠AOB=2∠AOC7.把一个平角分成三等份,两旁两个角的角平分线所成的角的度数为( ) A.150°B.120°C.900°D.60°8.利用一副三角板上已知度数的角,不能画出的角是( )A.15°B.135°C.165°D.140°9.如图,∠AOB=60°,OC是∠AOB的角平分线,OD是∠BOC的角平分线,则∠DOC等于( )A.30°B.45°C.15°D.10°10.如图所示,则在A,B两处观测到的C处的方位分别是( )A.北偏东25°,北偏西45°B.北偏东25°,北偏东45°C.北偏东65°,北偏西45°D.北偏东65°,北偏东45°三、解答题11.如图,∠ABC=90°,∠CBD=30°,BP平分∠ABD,求∠CBP的度数.12.如图,已知:∠BOC =2∠AOB ,OD 平分∠AOC ,∠BOD =14°,求∠AOB 的度数.13.如图,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE =20°,∠AOD =40°,求∠DOE 的度数.14.如图,BD 平分∠ABC ,BE 分∠ABC 为2:5两部分,∠DBE =21°,求∠ABC 的度数.15.如图.(1)已知∠AOB =90°,∠BOC =30°.OM 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数;(2)如果(1)中∠AOB =a ,其他条件不变,求∠MON 的度数;(3)如果(1)中∠BOC =p ,(p 为锐角),其他条件不变, 求∠MON 的度数;(4)从(1)(2)(3)的结果中能看出什么规律?参考答案1. (1)∠ABD =∠CBD (2)∠ABC (3)∠ABD ;∠CBD 2.=3.(1)90° (2)90° (3)90° 4.27° 5.90°;18° 6.A 7.B 8.D 9.C 10.D 11.30° 12.28° 13.60° 14.98° 15.(1)45° (2)2a(3)45° (4)从(1)(2)(3) 的结果可知∠MON 的大小总等于∠AOB 的一半,而与锐角∠BCC 的大小变化无关第3节余角、补角、对顶角一、填空题1.如图.直线AB、CD相交于点O,∠1=50°,则∠2=_______°.2.下列说法:①对顶角的角平分线在同一条直线上;②相等的角是对顶角;③一个角的邻补角只有一个;④补角即为邻补角,其中正确的有_______.3.如图,直线AB、CD交于点O,OE平分∠AOC,若∠AOD=50°,则∠BOE=______.4.如图,直线AB、EF相交于点D,∠ADC=90°,∠1的对顶角是_______;∠2的余角有_______.5.如图,直线AB、CD相交于点O,OE平分∠BOD,且∠AOC=∠AOD-80°,则∠AOE=______°.二、选择题6.下列叙述中,是对顶角的是( )A.两条直线相交所成的角B.有公共顶点且方向相反的两个角C.两条直线相交所成的角,且有一个公共顶点没有公共边D.有公共顶点并且相等的两个角7.如图,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个8.如图,已知直线AB,CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于( )A.30°B.35°C.20°D.40°9.下面4个命题中正确的是( )A.相等的两个角是对顶角B.和等于90°的两个角互为余角C.如果∠1+∠2+∠3=180°,那么∠1,∠2,∠3互为补角D.一个角的补角一定大于这个角10.如图,直线AB、CD、OE相交于一点O,那么构成的对顶角有( ) A.2对B.3对C.4对D.6对三、解答题11.如图,若∠1:∠2=2;7,求各角的度数.12.如图,AB、CD相交于O,OF是∠AOD的平分线,∠AOC=30°,求∠AOF的度数.13.如图,直线AB、CD相交于点O,∠AOC=70°,OE把∠BOD分成两部分,∠BOE:∠EOD=2:3,试求∠EOD的度数.14.如图,直线AB、CD、EF相交于点O,∠AOC=90°,OG平分∠AOE,∠FOD=28°,求∠AOG的度数.15.请根据所学知识,解答下列问题:(1)下表反映的是n(n为大于或等于2的正整数)条直线相交于一点时,对顶角的数量情况,填写下表:(2)请根据上表中反映出来的规律,猜想m与n、p与n之间的关系式.(3)2011条直线相交于一点时,有多少个小于平角的角,有多少对对顶角?参考答案1.502.①3.115°4.∠BDF,∠1,∠BDF5.1556.C7.A8.B9.B 10.A11.∠1=40°,∠2=140°,∠3=40°,∠4=140°12.75°13.42°14.59°15.(1)第4行:24,12;第5行:25,40,20(2)p=n2-n,m=2p=2(n2-n)=2n2-2n(3)有8084220个小于平角的角,有4042110对对顶角第4节平行一、填空题1.在同一平面内,_______的两条直线叫做平行线,我们通常用“∥”表示_______.2.经过直线外一点,_______一条直线与这条直线平行.3.对于同一平面内的直线a,b,c,如果a∥b,c与a相交,那么b与c的位置关系是_______.4.在同一平面内有三条直线,如果要使其中有两条且只有两条直线平行,那么这三条直线有且只有_______个交点.5.如图,将长方体沿着上下两个底面的对角线切开,所得的截面中互相平行的线段有_______组.二、选择题6.下列说法中,正确的个数是( )①两条不相交的直线是平行线;②过一点有且只有一条直线与已知直线平行;③同一平面内的三条直线,它们的交点个数可能是0或1或2或3;④在同一平面内,和第三条直线都不相交的两条直线平行;⑤过两条相交直线外一点A,能作一直线m与这两条直线都平行;⑥在同一平面内不相交的两条射线必平行.A.1个B.2个C.3个D.4个7.下列说法中,正确的个数有( )①同一平面内,不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④一条直线有无数条平行线;⑤过直线外一点可以作无数条直线与已知直线平行.A.0个B.1个C.2个D.3个8.下列说法中,错误的是( )A.直线a∥b,若c与a相交,则b与c也相交B.直线a与b相交,c与a相交,则b//cC.直线a//b,b//c,则a//cD.直线AB与CD平行,则AB上所有点都在CD同侧9.下列说法中,正确的个数是( )①不相交的两条直线互相平行;②如果a∥b,b∥c,那么a//c;③过一点有且只有一条直线与已知直线平行;④不相交的两条线段互相平行.A.1个B.2个C.3个D.4个10.在同一个平面内有三条直线,若要使其中有两条且只有两条平行,则它们( ) A.没有交点B.只有一个交点C.有两个交点D.有三个交点三、解答题11.如图,点C在∠PAQ内.(1)过点C画射线CB∥QA,与AP相交于点B;(2)过点C画射线CD∥PA,与AQ相交于点D.(3)猜想∠BCD与∠PAQ有什么关系?你能说出所得四边形的名称吗?12.(1)在图中按要求作图:①在△ABC在边AB上取中点D,过D画BC的平行线交AC于点E;②在△OMN的边MN上顺次取三等分点P、Q,分别过P、Q作OM的平行线,交ON于点S、T.(2)量出AE、EC的长,量出OS、ST、TN的长,你有什么发现?13.如图所示,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?(2)过点M画AB的平行线;(3)过点N画GH的平行线.14.如图,已知直线a、b、c在同一个平面内,a∥b,a与c相交于点A,那么b与c一定相交吗?为什么?15.平面内有若干条直线,当出现下列情形时,可将平面最多分成几部分.(1)有一条直线时,最多分成2部分;(2)有两条直线时,最多分成2+2部分;(3)有三条直线时,最多分成_______部分;……(4)有n条直线时,最多分成_______部分.参考答案1.不相交,平行2.有且只有3.相交4.两个5.26.B7.C8.B9.A 10.C11.(1)略(2)略(3)相等,平行四边形12.(1)作图略(2)AE=EC,OS=ST=TN.13.(1)AB∥CD(2)略(3)略14.一定相交.15.(3)7(4)()112n n++第5节垂直一、填空题1.如图,C点是直线AB外一点,过点C画CD⊥AB,垂足为D,M、N是AB上异于点D的两点,连结CM、CN,量出CD、CM,CN的长度,则_______最短.2.如图,AO⊥OC,DO⊥OB,∠AOD=50度,则∠BOC=_______.3.如图,AB⊥BC,BD⊥AC,垂足为D,BC=6cm,AB=8cm,AC=10cm,则点A到BC的距离是_______,点C到AB的距离是______.4.如图,点A,O,B在同一条直线上,∠1=35°,∠2=55°,则OC、OD的位置关系是______.5.如图,AB⊥BC,BD⊥AC,垂足为D,BC=3cm,AB=4cm,AC=5cm,则点A到BC的距离是_______,点C到AB的距离是_______;AB_______AC,AC_______BC(填“>”或“<”).二、选择题6.下列说法正确的个数是( )①两条直线相交,所成的四个角中有一个角是90°,那么这两条直线一定互相垂直;②两条直线的交点叫垂足;③直线AB⊥CD,也可以说成是CD⊥AB;④两条直线不是互相平行.就是互相垂直.A.1个B.2个C.3个D.4个7.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是( )A.2.5 B.3 C.4 D.58.下列说法中不正确的是( )A.同一平面内,经过一个已知点能画一条且只能画一条直线和已知直线垂直B.从直线外一点到这条直线的垂线段叫做点到直线的距离C.一条直线的垂线可以画无数条D.连结直线外一点与直线上各点的所有线段中,垂线段最短9.体育课上,老师测量某个同学的跳远成绩的依据是( )A.平行线间的距离相等B.两点之间线段最短C.垂线段最短D.两点确定一条直线10.如图,小明从A处出发沿北偏东606方向行走至B处,又沿北偏西20°方向行走至C处.此时需把方向调整到与出发时一致,则方向的调整应是( )A.右转80°B.左转80°C.右转100°D.左转100°三、解答题11.在如图所示的方格纸中,经过线段AB外一点C,不用量角器与三角尺,仅用直尺,画线段AB的垂线和平行线.12.如图,在灌溉时,要把河中的水引到农田P处,如何挖渠能使渠道最短?13.如图所示,直线AB、CD相交于点O,FO⊥CD于点O,且∠EOF=∠DOB.猜想∠EOB 的度数,并说明理由.14.如图,AO⊥BC,DO⊥OE,OF平分∠AOD,∠AOE=35°(1)求∠COD的度数;(2)求∠AOF的度数;(3)你能找出图中有关角的等量关系吗?(写出3个)15.如图所示,小河l同侧有M、N两个村子,小丽要从M村到N村去,怎样走最近?如果小丽想到河边去,怎样走最近?分别就上述情况画出路线图,并说明理由.参考答案1.CD2.50°3.8cm,6cm4.垂直5.4cm;3cm;<;>6.B7.A8.B 9.C10.A11.如图12.过点P向直线AB作垂线,交AB于点C,如图,则沿着PC方向挖渠能使渠道最短.13.∠EOB=90°14.(1)145°(2)27.5°(3)∠AOB=∠AOC,∠BOD=∠AOE,∠AOD=∠EOC(答案不唯一) 15.略。

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(含解析)

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(含解析)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、∠1=45゜24′,∠2=45.3゜,∠3=45゜18′,则()A.∠1=∠2B.∠2=∠3C.∠1=∠3D.以上都不对2、如图,OA⊥OC,OB⊥OD,四位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个.其中观点正确的有()A.甲、乙、丙B.甲、丙、丁C.乙、丙、丁D.甲、乙、丁3、12点15分,时针与分针所夹的小于平角的角为()A.90°B.67.5°C.82.5°D.60°4、已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,∠A+∠2=90°.求证:AB∥CD.证明:如图,∵∠1=∠B(已知)∴CE∥BF(同位角相等,两直线平行)______________∴∠AFC+∠2=90°(等式性质)∵∠A+∠2=90°(已知)∴∠AFC=∠A(同角或等角的余角相等)∴AB∥CD(内错角相等,两直线平行)请你仔细观察下列序号所代表的内容:①∴∠AOE=90°(垂直的定义)②∴∠AFB=90°(等量代换)③∵AF⊥CE(已知)④∵∠AFC+∠AFB+∠2=180°(平角的定义)⑤∴∠AOE=∠AFB(两直线平行,同位角相等)横线处应填写的过程,顺序正确的是()A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④5、如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BDB.CD= AB﹣BDC.AC+BD=BC+CDD.CD= AB6、如图,∠DOB=140°,OA⊥OB,则∠AOC=()A.40°B.45°C.50°D.55°7、如图,射线 AB,DC 交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠COM的度数为()A.30°B.40°C.50°D.60°8、如图,直线AC和直线BD相交于点0,若∠1+∠2=90°,则∠BOC的度数是()A.100°B.115°C.135°D.145°9、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能符合题意解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短 D.经过两点,有且仅有一条直线10、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为()A.2B.3C.4D.511、下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A.3个B.4个C.5个D.6个12、下列结论中,不正确的是()A.两点确定一条直线B.两点之间的所有连线中,线段最短C.对顶角相等D.过一点有且只有一条直线与已知直线平行13、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个14、在墙壁上固定一根横放的木条,则至少需要()枚钉子A.lB.2C.3D.随便多少枚15、修建高速公路时,经常将弯曲的道路改直,从而缩短路程,这样做的数学根据是()A.两点确定一条直线B.两点之间,线段最短C.垂线段最短D.同位角相等,两直线平行二、填空题(共10题,共计30分)16、请补充完成以下解答过程,并在括号内填写该步骤的理由.已知:如图,, , 平分,若,求的度数.解:因为,所以________ .因为________ ,所以.所以.(________)因为,所以.因为平分,所以________ ________°所以________°.17、如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=________°,∠3=________°.18、数轴上到表示数4的点的距离为5个单位长度的点表示的数是________.19、如图,已知从甲地到乙地共有四条路可走,你应选择第________ 路,所用的数学原理为:________20、如图,射线表示西北方向,若射线表示南偏西的方向,则锐角的大小是________度.21、下午3点30分时,钟面上时针与分针所成的角等于________°.22、若∠1+∠2=180°,∠1+∠3=180°,则∠2与∠3的关系是________.23、火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有________种不同的车票.24、以下说法:①两点确定一条直线;②两点之间直线最短;③若x=y,则= ;④若|a|=﹣a,则a<0;⑤若a,b互为相反数,那么a,b的商必定等于﹣1.其中正确的是________.(请填序号)25、如图,已知AE//CD,BC⊥CD于C,若∠A=28°,则∠ABC=________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则∠A的度数为多少?28、已知A、B、C.三点在同一直线上,DE⊥AB, ∠DBE=2∠EBC,求∠DBE的度数。

苏科版七年级上册数学第6章 平面图形的认识(一)含答案【备考题】

苏科版七年级上册数学第6章 平面图形的认识(一)含答案【备考题】

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图所示,若AO⊥OC,BO⊥DO,那么()A.∠1=∠3B.∠1=∠2C.∠2=∠3D.∠1=∠3=45°2、如图,在三角形中,若,于点,则下列线段的长度可以表示为点到直线距离的是()A. B. C. D.3、根据下图,下列说法中不正确的是()A.图①中直线经过点B.图②中直线,相交于点C.图③中点在线段上D.图④中射线与线段有公共点4、下列命题中,是真命题的是( )A.内错角相等B.对顶角相等C.若x 2=4,则 x=2D.若 a b,则 a 2 b 25、下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有()个.A.0B.1C.2D.36、下列说法错误的是()A.过一点有且只有一条直线与已知直线平行B.两条平行线的所有公垂线段都相等C.平行于同一条直线的两条直线平行D.垂线段最短7、如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.过一点有且只有一条直线和已知直线平行8、如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是()A. B. C. D.89、如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°10、如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则∠DOB的大小为()A.36°B.54°C.64°D.72°11、如图,点C、O、B在同一条直线上,∠AOB=90°,∠AOE=∠DOB,则下列结论:①∠EOD=90°;②∠COE=∠AOD;③∠COE=∠DOB;④∠COE+∠BOD=90°.其中正确的个数是()A.1B.2C.3D.412、以下五个条件中,能得到互相垂直关系的有()①对顶角的平分线;②邻补角的平分线;③平行线截得的一组同位角的平分线;④平行线截得的一组内错角的平分线;⑤平行线截得的一组同旁内角的平分线.A.1个B.2个C.3个D.4个13、如图,A是直线l外一点,点B,E,D,C在直线l上,且,D为垂足,如果量得,,,,则点A 到直线l的距离为()A.11 cmB.7 cmC.6 cmD.5 cm14、下列说法正确的是()A.有公共顶点且相等的两个角是对顶角B.已知线段AB=BC,则点B是线段AC的中点C.经过一点有且只有一条直线与已知直线平行D.在同一平面内,经过一点有且只有一条直线与已知直线垂直15、已知∠α=70°,则∠α的补角为()A.120°B.110°C.70°D.20°二、填空题(共10题,共计30分)16、若,则与的关系是________ ,理由是________17、如图,∠AOB=90°,OD平分∠BOC,∠DOE=45°,则∠AOE________∠COE(填“<”“>”或“=”号)18、如图,在△ABC中,AB=AC,∠BAC=90°,AE是经过A点的一条直线,且B,C在AE的两侧,BD⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为________.19、如图所示,直线,相交于点O,于点O,若,则的度数是________.20、一个角的余角是这个角的补角的三分之一,则这个角的度数是________ .21、如图,已知点C为两条相互平行的直线AB,ED之间一点,∠ABC和∠CDE 的角平分线相交于F,若∠BCD=∠BFD+60°,则∠BCD的度数为________.22、如图,甲船从A点出发向北偏东72°25′方向航行50km至点B,则钝角∠BAC的度数为________.23、如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=28°,则∠EOF的度数为________.24、如图,已知点C在线段AB上,AC=6,线段BC的长是线段AC长的两倍,点D是线段AB的中点,则线段CD的长是________.25、如图,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是________.三、解答题(共5题,共计25分)26、如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.27、如图,在中,是的角平分线,,交于点,,,求的度数28、如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.29、如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于点F,∠1+∠2=90°.试问直线AB,CD在位置上有什么关系?∠2与∠3在数量上有什么关系?并证明你的猜想.30、如图,已知,,且,求∠AOB的度数.参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、B6、A7、B8、B9、B10、B11、C12、B13、D14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(完整版)

苏科版七年级上册数学第6章 平面图形的认识(一)含答案(完整版)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图所示,∠α的度数是()A.10°B.20°C.30°D.40°2、下列说法正确的是()A.相等的两个角是对顶角B.同位角相等C.图形平移后的大小可以发生改变 D.两条直线相交所成的四个角都相等,则这两条直线互相垂直3、如图,∠AOC 和∠BOD都是直角,如果∠AOB=140◦则∠DOC的度数是( )A.30 ◦B.40 ◦C.50 ◦D. 60 ◦4、某街道分布示意图如图所示,一个居民从A处前往B处,若规定只能走从左到右或从上到下的方向,这样该居民共有可选择的不同路线条数是()A.5B.6C.7D.85、下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是()A.把弯曲的公路改直,就能缩短路程B.用两个钉子就可以把木条固定在墙上C.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线 D.利用圆规可以比较两条线段的大小关系6、下列哪种情况下,直线a与b不一定是平行线()A.a与b是不相交的两条直线B.a与b被直线c所截,且内错角互补 C.a与b都平行于直线c D.a与b被直线c所截,且同位角相等7、如果从甲船看乙船,乙船在甲船的南偏东40°方向,那么从乙船看甲船,甲船在乙船的()A.北偏东50°B.北偏西50C.北偏东40°D.北偏西40°8、下列定理中没有逆定理的是()A.内错角相等,两直线平行B.直角三角形中,两锐角互余C.等腰三角形两底角相等D.相反数的绝对值相等9、下列说法中,正确的是( )A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行10、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.点动成线;B.两点确定一条直线;C.垂线段最短;D.两点之间,线段最短;11、如图,直线l与直线a、b相交,且a b,∠1=80°,则∠2的度数是()A.60°B.80°C.100°D.120°12、下列说法正确是()A.相等的两个角是对顶角;B.过一点有且只有一条直线与已知直线平行; C.直线外一点与直线上各点连接的所有线中,垂线最短; D.平面内,过一点有且只有一条直线与已知直线垂直13、若数轴上点A表示的数是,则与它相距2个单位的点B表示的数是()A.±5B.-7或-3C.7D.-8或314、下列说法中正确的是A.过一点有且仅有一条直线与已知直线平行B.若,则点C是线段AB的中点C.两点之间的所有连线中,线段最短D.相等的角是对顶角15、下面4个图形中,∠1与∠2是对顶角的是( )A. B. C. D.二、填空题(共10题,共计30分)16、己知在纸面上有一数轴(如图所示)一般地,数轴上表示数m和数n的两点间距离可用|m﹣n|表示,|x﹣4|+|x﹣5|的最小值是________17、如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=________.18、已知∠A=55°,则∠A的余角等于________度.19、如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA垂直,则OB的方位角是________.20、如图,已知平分平分,,则________°.21、探究:如图①,,试说明.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解: ∵ .(已知)∴ .(________)同理可证,.∵ ,∴ .(________)应用:如图②,,点F在之间,与交于点M,与交于点N.若,,则的大小为________度.拓展:如图③,直线在直线之间,且,点分别在直线上,点Q是直线上的一个动点,且不在直线上,连结.若,则=________度.22、如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示138°的点在直线b上,则∠1=________°.23、已知一个角的余角为28°40′,则这个角的度数为________.24、直角三角形的一锐角为60°,则另一锐角为________25、如果一个角的补角是150°,那么这个角的余角的度数是________三、解答题(共5题,共计25分)26、一个角的余角比它的补角还多1°,求这个角.27、如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.28、如图,AB交CD于O,OE⊥AB.(1)若∠EOD=20°,求∠AOC的度数;(2)若∠AOC:∠BOC=1:2,求∠EOD的度数.29、如图,是平角,,,,分别是,的平分线,求的度数.30、下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.解:根据题意可画出图,∵∠AOC=∠BOA-∠BOC=70°-15°=55°,∴∠AOC=55°.若你是老师,会判小马虎满分吗?若会,说明理由.若不会,请将小马虎的的不符合题意指出,并给出你认为正确的解法.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、D6、B7、D8、D9、C10、B11、B12、D13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。

【完整版】苏科版七年级上册数学第6章 平面图形的认识(一)含答案

【完整版】苏科版七年级上册数学第6章 平面图形的认识(一)含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD中,AB=4,BC=8,P,Q分别是直线BC,AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF,PD,则PF+PD的最小值是()A. B. C. D.2、如图,已知OC平分∠AOB,CD//OB,若OD=3cm,则CD等于()A.1.5cmB.2cmC.3cmD.4cm3、如图,图中可以只用一个大写字母表示的角有()A.1个B.2个C.3个D.4个4、下面说法错误的是()A.过一点有且只有一条直线与已知直线垂直.B.在同一个平面内,任意三条直线相交,交点的个数最多有3个C.平行于同一直线的两条直线平行.D.两条平行线被第三条直线所截,一对内错角的平分线互相平行.5、如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于()A.26°B.32°C.25°D.36°6、如图,这是健健同学的小测试卷,他应该得到的分数是()A.40B.60C.80D.1007、已知数轴上三点A、B、C分别表示有理数x、1、﹣1,那么|x﹣1|表示()A.A、B两点的距离B.A、C两点的距离C.A、B两点到原点的距离之和D.A、C两点到原点的距离之和8、平行四边形中,若,则的度数为()A. B. C. D.9、一个角的余角比它的补角的一半少,则这个角的度数为()A. B. C. D.10、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.0.5B.2.5C.D.111、如图,点O在直线AB上,射线OC平分∠DOB,若∠DOC=35°,则∠AOD等于()A.35°B.70°C.110°D.145°12、下列说法错误的是().A.两个互余的角都是锐角;B.一个角的补角大于这个角本身;C.互为补角的两个角不可能都是锐角;D.互为补角的两个角不可能都是钝角13、点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm、PB=5cm、PC=2cm,则点P到直线l的距离()A.等于4cmB.等于2cmC.小于2cmD.不大于2cm14、如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°15、如图,已知OP平分∠AOB,∠AOB=, CP=,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A. B. C. D.二、填空题(共10题,共计30分)16、一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________°.17、一个角的余角等于这个角的补角的,则这个角为________.18、已知∠A的补角是它的余角的3倍还多10°,则∠A=________度.19、如图是一把剪刀,若∠AOB+∠COD=60°,则∠BOD=________°.20、如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为________ .21、如图,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜边为一边向右上方作正方形ABDE,连接CD,则CD的长为________.22、如图,∠PQR=138° ,SQ QR,QT PQ,则SQT=________23、如图,由泰山到青岛的往返列车,运行途中停靠的车站依次是:泰山﹣﹣济南﹣﹣淄博﹣﹣潍坊﹣﹣青岛,那么要为这次列车制作的火车票有________种,票价有________种24、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是________.25、如图,直线AB,CD相交于点O,EO⊥CD,垂足为O.若∠AOE=55°,则∠BOD的度数为________.三、解答题(共5题,共计25分)26、计算:180°﹣34°54′﹣21°33′.27、如图,已知△ABC,用直尺和圆规画出一条线段a,使a=AC+BC,然后比较a与AB的长短.28、如图,在中,,,线段CD和CE分别为的角平分线和高线.求、的大小.29、推理计算:已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF,求∠BEG 和∠DEG的度数.30、如图,∠COD=45°,∠BOD= ∠COD,OC是∠AOB的平分线,求∠AOD的度数.参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、A5、A6、B7、A8、B9、C10、B11、C13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

苏科版七年级数学上册第6章 平面图形的认识(一) 单元综合练习题【含答案】

苏科版七年级数学上册第6章  平面图形的认识(一) 单元综合练习题【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)单元综合练习题一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离2、如图所示,能用∠α,∠AOB,∠O表示同一个角的是()A.B.C.D.3、下图中,1∠和2∠是对顶角的是()A.B.C.D.4、下列图形中线段AD的长表示点A到直线BC距离的是()A.B.C.D.5、一个角的补角比这个角的余角大().A.70°B.80°C.90°D.100°6、已知α,β是两个钝角,有四位同学计算16(α+β)得出四种不同的答案分别是24°,48°,76°,86°,其中只有一个是正确的,则正确的答案是()A.86°B.76°C.48°D.24°7、如图,线段21AD cm=,点B在线段AD上,C为BD的中点,且13AB CD=,则BC的长度()A.8cm B.9cm C.6cm D.7cm 8、如图,C是AB的中点,D是BC的中点,则下列等式中正确的是()①32DB AD AB=-;②13CD AB=;③2DB AD AB=-;④CD AD CB=-.A.①②B.③④C.①④D.②③9、如图,直线AB,CD相交于点O,OE⊥AB于O,OF平分∠DOE,若∠AOC=32°,则∠AOF的度数为()A.119°B.121°C.122°D.124°10、下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个D.4个二、填空题11、用度、分、秒表示:37.68︒=______.12、如图,A 是线段BC 外一点,连接AB ,AC ,过点A 作线段BC 的垂线AH ,垂足为H .在AB 、AC 、AH 这三条线段中,AH 是最短的线段,依据是_______.(12题) (14题)13、某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.14、如图,直线AB ,CD 相交于点O ,135∠=︒,275∠=︒,则EOB ∠的度数为__________︒.15、如图,线段4AB cm =,延长线段AB 到C ,使1BC cm =,再反向延长AB 到D ,使3AD cm =,E 是AD中点,F 是CD 的中点.则EF 的长度为 cm .16、已知线段6cm AB =,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为________. 17、如图,直线AB 与直线CD 相交于点O ,:1:2BOC BOD ∠∠=,射线OE CD ⊥,则∠BOE 度数为___(17题) (18题)18、如图,在三角形ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为点D ,5AB =,12BC =,13AC =,下列结论正确的是 .(写出所有正确结论的序号)①90ADB ∠=︒;②A DBC ∠=∠;③点C 到直线BD 的距离为线段CB 的长度;④点B 到直线AC 的距离为6013. 三、解答题19、如图,在8×8的正方形网格中,每个小正方形的顶点称为格点,点A 、B 、C 均在格点上,按下述要求画图并标注相关字母.(1)画线段AB ,画射线BC ,画直线AC ;(2)过点B 画线段BD ⊥AC ,垂足为点D ;(3)取线段AB 的中点E ,过点E 画BD 的平行线,交AC 于点F .20、如图,C 为线段AD 上的一点,B 为线段CD 的中点,AD =12cm ,BD =3cm . (1)图中共有 条线段;(2)求线段AC 的长;(3)若点E 在线段AD 上,且BE =2cm ,求AE 的长.21、如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC ,OE 平分∠AOC .(1)若∠BOC =70°,求∠COD 和∠EOC 的度数;(2)写出∠COD 与∠EOC 具有的数量关系并说明理由.22、将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若∠AOD=35°,求∠BOC的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.23、如图,已知C、D两点将线段AB分成2:3:4三段,点E是BD的中点,点F是线段CD上一点,且=,求AB的长.EF cmCF DF2=,1224、如图,直线AB、CD相交于点O,OE平分BOD∠=︒.BOF∠,OF CD⊥,垂足为O,若38(1)求AOC∠的度数;(2)过点O作射线OG,使GOE BOF∠的度数.∠=∠,求FOG25、如图,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是“或“不是”)(2)若AB=24cm,点C是线段AB的巧点,求AC的长.26、已知O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=α,直接写出∠CON的度数(用含α的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,当∠AOC=3∠BON时,求∠AOM 的度数.答案一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离A【分析】根据公理“两点确定一条直线”来解答即可.解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.2、如图所示,能用∠α,∠AOB,∠O表示同一个角的是()A.B.C.D.【分析】角可以用一个大写字母表示,也可以用三个大写字母表示.角还可以用一个希腊字母表示,或用阿拉伯数字表示.【详解】解:能用∠α,∠AOB,∠O三种方法表示同一个角的图形是选项D中的图,选项B,C,D中的图都不能用∠α,∠AOB,∠O三种方法表示同一个角的图形,故选:D.3、下图中,1∠和2∠是对顶角的是()A.B.C.D.C【分析】根据对顶角的定义解答即可.【详解】解:A. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意;B. 1∠和2∠没有公共顶点,不是对顶角,故不符合题意;C. 1∠和2∠是对顶角,符合题意;D. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意.故选C.4、下列图形中线段AD的长表示点A到直线BC距离的是()A.B.C. D.A【分析】根据点到直线的距离,垂足在直线上,据此分析即可【详解】A. AD表示的是点A到直线BC距离,故该选项正确,符合题意;B. AD表示的是点D到直线AB距离,故该选项不正确,不符合题意;C. AD表示的是点D到直线AB距离,故该选项不正确,不符合题意;D. AD不能表示点到直线距离,故该选项不正确,不符合题意;故选A5、一个角的补角比这个角的余角大().A.70°B.80°C.90°D.100°C【分析】根据互补即两角的和为180°,互余的两角和为90°,设这个角为x ,即可求出答案.【详解】解:设这个角为x ,则这个角的补角为180°-x ,这个角的补角为90°-x ,根据题意得:180°-x -(90°-x )=90°,故选:C .6、已知α,β是两个钝角,有四位同学计算16(α+β)得出四种不同的答案分别是24°,48°,76°,86°,其中只有一个是正确的,则正确的答案是( )A .86°B .76°C .48°D .24°C 【分析】由α,β是两个钝角可得180°<α+β<360°,进一步即可求得16(α+β)的范围,从而可得答案. 【详解】解:因为α,β是两个钝角,所以90°<α<180°,90°<β<180°,所以180°<α+β<360°,所以30°<16(α+β)<60°, 在上述四个选项中,只有选项C 中48°在上述范围中,故选:C .7、如图,线段21AD cm =,点B 在线段AD 上,C 为BD 的中点,且13AB CD =,则BC 的长度( )A .8cmB .9cmC .6cmD .7cm【分析】设AB x =cm ,则3CD x =cm ,根据线段的中点可得3BC CD x ==cm ,再根据21AD cm =可得x ,进而可得答案.13AB CD =, ∴设AB x =cm ,则3CD x =cm ,C 为BD 的中点,3BC CD x ∴==cm ,3321x x x ∴++=,解得3x =,39BC x ∴==.故选:B .8、如图,C 是AB 的中点,D 是BC 的中点,则下列等式中正确的是( )①32DB AD AB =-;②13CD AB =;③2DB AD AB =-;④CD AD CB =-.A .①②B .③④C .①④D .②③【分析】根据线段中点的性质,可得1124CD BD BC AB ===,再根据线段的和差,可得答案.C 是AB 的中点,D 是BC 的中点,1124CD BD BC AB ∴===,288AB BD CD ∴==,44AB BD CD ==,39AD BD =,26AD BD =,3298AD AB BD BD BD ∴-=-=,故①正确,②不正确;642DB BD BD BD ∴≠-=,③不正确;32AD CB CD CD CD -=-=,④正确.正确的有:①④.故选:C .9、如图,直线AB ,CD 相交于点O ,OE ⊥AB 于O ,OF 平分∠DOE ,若∠AOC =32°,则∠AOF 的度数为( )A .119°B .121°C .122°D .124°A 【分析】根据OE ⊥AB 于O ,即可得出∠BOE =∠AOE =90°,进而求出∠DOE =58°,再利用OF 平分∠DOE ,即可求出∠EOF 的度数,再由∠AOF =∠AOE +∠EOF 即可求出∠AOF 的度数.【详解】解:∵OE ⊥AB 于O ,∴∠BOE =∠AOE =90°,∵∠AOC =32°,∴∠AOC =∠BOD =32°,∴∠DOE =∠BOE ﹣∠BOD =90°﹣32°=58°,∵OF 平分∠DOE ,∴∠EOF 12=∠DOE 1582=⨯︒=29°,∠AOF =∠AOE +∠EOF =90°+29°=119°.故选:A .10、下列说法正确的个数有( )①射线AB 与射线BA 表示同一条射线. ②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3. ③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A .1个B .2个C .3个D .4个【分析】根据射线的定义,同角的补角相等,角平分线的定义,两点之间的距离的定义,度分秒的换算以及余角的定义对各小题分析判断即可得解.解:①射线AB 与射线BA 不表示同一条射线,因为它们的端点不同,故本小题错误;②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,正确;③应为一条射线把一个角分成两个角相等的角,这条射线叫这个角的平分线,故本小题错误;④应为连结两点的线段的长度叫做两点之间的距离,故本小题错误;⑤40°50′≈40.83°,故本小题错误;⑥互余且相等的两个角都是45°,正确.综上所述,说法正确的有②⑥共2个.故选:B .二、填空题11、用度、分、秒表示:37.68︒=______.374048︒'"【分析】进行度、分、秒的转化运算,注意以60为进制.1=60'︒,1'=60''.【详解】解:'''''''37.6837+0.686037+40.837400.860374048374048'''︒=︒⨯=︒=︒++⨯=︒'=︒++故答案为374048︒'"12、如图,A 是线段BC 外一点,连接AB ,AC ,过点A 作线段BC 的垂线AH ,垂足为H .在AB 、AC 、AH 这三条线段中,AH 是最短的线段,依据是_______.垂线段最短【分析】根据垂线段最短的定义求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴依据是垂线段最短,故垂线段最短.13、某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.45°【分析】根据钟面平均分成12份,可得每份是30°,4点30分时,时针分针相差1.5格,根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:4:30时,时针与分针的夹角的度数是30°×1.5=45°,故45°.14、如图,直线AB ,CD 相交于点O ,135∠=︒,275∠=︒,则EOB ∠的度数为__________︒.110【分析】先根据对顶角相等求出∠DOB ,进而结合275∠=︒即可求出∠EOB .【详解】解:∵∠1=35°,∴∠DOB =∠1=35°,又∵∠2=75°,∴∠EOB =∠2+∠DOB =110°.故110.15、如图,线段4AB cm =,延长线段AB 到C ,使1BC cm =,再反向延长AB 到D ,使3AD cm =,E 是AD中点,F 是CD 的中点.则EF 的长度为 cm .【分析】结合图形和题意,利用线段的和差知CD AD AB BC =++,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF DF DE =-,即可求得EF 的长度.3418CD AD AB BC cm =++=++=;E 是AD 中点,F 是CD 的中点,118422DF CD cm ∴==⨯=,113 1.522DE AD cm ==⨯=. 4 1.5 2.5EF DF DE cm ∴=-=-=,故2.5.16、已知线段6cm AB =,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为________. 1cm 或2cm【分析】分两种情况考虑点M 是AB 的三等分点,求出AM 的长,由中点定义求出MN 即可.【详解】当M 是AB 的左三等分点,∵AB=6cm ,∴AM=11AB=6=233⨯cm , ∵N 是AM 的中点,∴AN=NM=11AM=2=122⨯,当M 是AB 的右三等分点,∵AB=6cm ,∴AM=22AB=6=433⨯cm , ∵N 是AM 的中点,∴AN=NM=11AM=4=222⨯,线段MN 的长度为1cm 或2cm .故1cm 或2cm .17、如图,直线AB 与直线CD 相交于点O ,:1:2BOC BOD ∠∠=,射线OE CD ⊥,则∠BOE 度数为___150︒或30【分析】根据条件求得∠COB 的度数,然后根据∠BOE =∠COE -∠COB 即可求解.【详解】解:如图,∵:1:2BOC BOD ∠∠= ∴11806012BOC ∠=⨯︒=︒+ ∵OE CD ⊥∴90COE ∠=︒∴∠BOE =∠COE -∠COB =90°-60°=30°同理,如图,当点E ′在EO 的延长线上时,∠BOE ′=180°-30°=150°故答案是:30°或150°.18、如图,在三角形ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为点D ,5AB =,12BC =,13AC =,下列结论正确的是 .(写出所有正确结论的序号)①90ADB ∠=︒;②A DBC ∠=∠;③点C 到直线BD 的距离为线段CB 的长度;④点B 到直线AC 的距离为6013.【分析】①根据垂直的定义即可求解;②根据余角的性质即可求解;③根据点到直线的距离的定义即可求解;④根据三角形面积公式即可求解.①BD AC⊥,90ADB∴∠=︒,故①正确;②90ABD A∠+∠=︒,90ABD DBC∠+∠=︒,A DBC∴∠=∠,故②正确;③点C到直线BD的距离为线段CD的长度,故③错误;④点B到直线AC的距离为160512213213⨯⨯⨯÷=,故④正确.故①②④.三、解答题19、如图,在8×8的正方形网格中,每个小正方形的顶点称为格点,点A、B、C均在格点上,按下述要求画图并标注相关字母.(1)画线段AB,画射线BC,画直线AC;(2)过点B画线段BD⊥AC,垂足为点D;(3)取线段AB的中点E,过点E画BD的平行线,交AC于点F.(1)如图所示,线段AB,射线BC,直线AC即为所求;见解析;(2)线段BD即为所求;见解析;(3)直线EF即为所求.见解析.(1)连接AB、以B为端点,作射线BC、过点A、C作直线即可;(2)根据网格结构,作过点B所在的小正方形对角线与直线AC相交于点D,即为所求;(3)根据网格结构,作过点E所在的小正方形对角线所在的射线与直线AC相交于点F,即为所求.【详解】(1)如图所示,线段AB,射线BC,直线AC即为所求;(2)线段BD即为所求;(3)直线EF即为所求.20、如图,C为线段AD上的一点,B为线段CD的中点,AD =12cm,BD =3cm.(1)图中共有条线段;(2)求线段AC的长;(3)若点E在线段AD上,且BE =2cm,求AE的长.(1)6;(2)6cm;(3)11cm或7cm【分析】(1)根据线段的定义找出线段即可;(2)先根据点B为CD的中点,BD=3cm求出线段CD的长,再根据AC=AD−CD即可得出结论;(3)根据E点位置的不同分情况讨论即可求解.【详解】解:(1)图中的线段有AC、AB、AD、BC、CD、BD,共有6条线段.故6;(2)∵点B为CD的中点.∴CD=2BD.∵BD=3cm,∴CD=6cm,BC=3cm,∵AC=AD−CD且AD=12cm,CD=6cm,∴AC=6cm;(3)如图,点E在B点的左侧,BE =2cm,∴CE=BC-CE=1 cm,∴AE=AC+CE=7 cm,如图,点E在B点的右侧,BE =2cm,∴AE=AC+BC+BE=6+3+2=11cm,∴AE 的长为11cm 或7cm .21、如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC ,OE 平分∠AOC .(1)若∠BOC =70°,求∠COD 和∠EOC 的度数;(2)写出∠COD 与∠EOC 具有的数量关系并说明理由.解:(1)∵OD 平分∠BOC ,∠BOC =70°,∴∠COD=21∠BOC=21×70°=35°, ∵∠BOC =70°,∴∠AOC =180°﹣∠BOC =180°﹣70°=110°,∵OE 平分∠AOC ,∴∠EOC=21∠AOC=21×110°=55°; (2)∠COD 与∠EOC 互余,理由如下:∵OD 平分∠BOC ,OE 平分∠AOC ,∴∠COD=21∠BOC ,∠EOC=21∠AOC , ∴∠COD+∠EOC=21(∠BOC+∠AOC )=21×180°=90°, ∴∠COD 与∠EOC 互余.22、将一副三角板叠放在一起,使直角顶点重合于点O .(1)如图1,若∠AOD =35°,求∠BOC 的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.【分析】(1)由于是两直角三角形板重叠,根据∠AOD的度数可得∠BOD,再根据∠DOC=90°可得∠BOC;(2)当分两种情况:∠AOB与∠DOC有重叠部分时和当∠AOB与∠DOC没有重叠部分时.【详解】解:(1)若∠AOD=35°,∵∠AOB=∠COD=90°,∴∠BOD=90°﹣35°=55°,∴∠BOC=90°﹣∠BOD=90°﹣55°=35°;(2)∠AOC与∠BOD互补.当∠AOB与∠DOC有重叠部分时,∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,当∠AOB与∠DOC没有重叠部分时,∠AOB+∠COD+∠AOC+∠BOD=360°,又∵∠AOC=∠BOD=90°,∴∠AOB+∠DOC=180°.23、如图,已知C 、D 两点将线段AB 分成2:3:4三段,点E 是BD 的中点,点F 是线段CD 上一点,且2CF DF =,12EF cm =,求AB 的长.【分析】首先设2AC xcm =,则线段3CD xcm =,4DB xcm =,然后根据E 是线段BD 的中点,2CF DF =,分别用x 表示出DE 、EF ,根据12EF cm =,求出x 的值,即可求出线段AB 的长是多少. 设2AC x =, C 、D 两点将线段AB 分成2:3:4三段,3CD x ∴=,4BD x =,2CF DF =,CD CF DF =+,DF x ∴=,点E 是BD 的中点,2DE x ∴=,3EF DF DE x ∴=+=,12EF cm =,4x cm ∴=,8AC cm ∴=,12CD cm =,16BD cm =,36AB AC CD BD cm ∴=++=.24、如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF CD ⊥,垂足为O ,若38BOF ∠=︒.(1)求AOC ∠的度数;(2)过点O 作射线OG ,使GOE BOF ∠=∠,求FOG ∠的度数.【分析】(1)由垂直可得,90DOF ∠=︒,由互余得BOD ∠的度数,再由对顶角相等,可得AOC ∠的度数;(2)射线OG 的位置不确定,需要分类讨论,当射线OG 在射线OE 上方时,当射线OG 在射线OE 下方时,分别求解.(1)如图,OF CD ⊥,垂足为O ,90DOF ∴∠=︒,38BOF ∠=︒,903852BOD DOF BOD ∴∠=∠-∠=︒-︒=︒,52AOC BOD ∴∠=∠=︒.(2)由(1)知,52BOD ∠=︒, OE 平分BOD ∠, 1262BOE DOE BOD ∴∠=∠=∠=︒, 382664EOF FOG GOE ∴∠=∠+∠=︒+︒=︒,38BOF ∠=︒,38EOG BOF ∴∠=∠=︒.当射线OG 在射线OE 上方时,如图1,643826FOG EOF EOG ∠=∠-∠=︒-︒=︒;当射线OG 在射线OE 下方时,如图2,6438102FOG EOF EOG ∠=∠+∠=︒+︒=︒.综上可知,FOG ∠的度数为26︒或102︒.25、如图,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是“或“不是”)(2)若AB=24cm,点C是线段AB的巧点,求AC的长.(1)是;(2)AC=8cm或12cm或16cm.【分析】(1)根据“巧点”的定义即可求解;(2)分BC=2AC,AB=2AC,AC=2BC三种情况讨论,分别求解即可.【详解】解:(1)当M是线段AB的中点,则AB=2AM,∴线段的中点是这条线段的“巧点”.故是;(2)∵AB=24cm,点C是线段AB的巧点,①BC=2AC,则AC=13AB=13×24=8(cm);②AB=2AC,则AC=12AB=12×24=12(cm);③AC=2BC,则AC=23AB=23×24=16(cm).∴AC=8cm或AC=12cm或AC=16cm.26、已知O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=α,直接写出∠CON的度数(用含α的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,当∠AOC=3∠BON时,求∠AOM 的度数.(1)15°;(2)12α;(3)144°【分析】(1)根据补角的定义可得∠BOM=150°,再由∠MON是直角,OC平分∠BOM,即可求解;(2)根据补角的定义可得∠BOM=180°﹣α,再由∠MON是直角,OC平分∠BOM,即可求解;(3)设∠AOM=x,则∠BOM=180°﹣x,根据OC平分∠BOM,可得∠MOC=90°﹣12x,从而得到∠AOC=∠AOM+∠MOC=90°+12x,再由∠MON=90°,可得到∠BON=∠MON﹣∠BOM=x﹣90°,然后根据∠AOC=3∠BON,可得到关于x的方程,即可求解.【详解】解:(1)由已知得∠BOM=180°﹣∠AOM=150°,∵∠MON是直角,OC平分∠BOM,∴∠CON=∠MON﹣12∠BOM=90°﹣12×150°=15°;(2)由已知得∠BOM=180°﹣∠AOM=180°﹣α,∵∠MON是直角,OC平分∠BOM,∴∠CON=∠MON﹣12∠BOM=90°﹣12×(180°﹣α)=12α;(3)设∠AOM=x,则∠BOM=180°﹣x,∵OC平分∠BOM,∴∠MOC=12∠BOM=12(180°﹣x)=90°﹣12x,∴∠AOC=∠AOM+∠MOC=x+90°﹣12x=90°+12x,∵∠MON=90°,∴∠BON=∠MON﹣∠BOM=90°﹣(180°﹣x)=x﹣90°,∵∠AOC=3∠BON,∴90°+1x=3(x﹣90°),解得x=144°,∴∠AOM=144°.2。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案(完美版)

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案(完美版)

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、图中∠1、∠2、∠3都是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1B.2C.3D.42、下列命题的逆命题不正确的是()A.平行四边形的对角线互相平分B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.对顶角相等3、已知点M(9,-5)、N(-3,-5),则直线MN与x轴、y轴的位置关系分别为( )A.相交、相交B.平行、平行C.垂直相交、平行D.平行、垂直相交4、平面内有三条直线,那么它们的交点个数有()A.0个或1个B.0个或2个C.0个或1个或2个D.0个或1个或2个或3个5、下列说法中,正确的是()A.在同一平面内,两条直线的位置关系只有相交,平行两种B.在同一平面内,不相交的两条线段互相平行C.在同一平面内,不相交的两条直线互相平行D.在同一平面内,不相交的两条射线互相平行6、若数轴上点A表示的数是 -3, 则与点A相距6个单位长度的点表示的数是()A.±6B.±3C.-9或3D.-3或97、两个锐角的和().A.必定是锐角;B.必定是钝角;C.必定是直角;D.可能是锐角,可能是直角,也可能是钝角8、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.垂线段最短C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短9、下列命题: (1)两直线平行,同旁内角互补(2) 同角的补角相等. (3) 直角三角形的两个锐角互余. (4) 同位角相等。

其中真命题的个数()A.1个B.2个C.3个D.4个10、如图,按照上北下南,左西右东的规定画出东南西北的十字线,其中点A 位于点O的( )A.北偏西65°方向B.北偏东65°方向C.南偏东35°方向D.南偏西65°方向11、下列命题是真命题的个数为()①两条直线被第三条直线所截,内错角相等.②三角形的内角和是180°.③在同一平面内平行于同一条直线的两条直线平行.④相等的角是对顶角.⑤两点之间,线段最短.A.2B.3C.4D.512、已知,为的余角,则()A. B. C. D.13、如图,直线a∥b,直线c与a、b分别交于A、B两点,若∠1=46°,则∠2=()A.44°B.46°C.134°D.54°14、如图所示,,,平分,则图中与相等的角有()个.A. B. C. D.15、如果一个角的度数为28°14′,那么它的余角的度数为()A. B. C. D.二、填空题(共10题,共计30分)16、68°30′的补角为________.17、如图,直线、交于点,于点,,则的度数为________.18、如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。

七年级数学上第六章平面图形的认识(一)练习题及答案

七年级数学上第六章平面图形的认识(一)练习题及答案

七年级数学上第六章平面图形的认识(一)练习题及答案盛年不重来,一日难再晨,及时当勉励,岁月不待人。

惜取时间认真对待七年级数学练习题。

为大家整理了七年级数学上第六章平面图形的认识(一)练习题,欢迎大家阅读!七年级数学上第六章平面图形的认识(一)习题1.已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AC 的中点,求线段AM的长.2.如图,B、C两点把线段AB分成2:3:4的三部分,M点AD的中点,CD=8,求MC的长.3.A车站到B车站之间还有3个车站,那么从A车站到B车站方向发出的车辆.一共有多少种不同的车票( )A.8B.9C.10D.114.如图,线段AB-4,点O是线段AB上一点,C、D分别是线段OA、OB的中点,小明据此很轻松地求得CD=2,但他在反思的过程中突发奇想:若点O运动到AB的延长线上时,原有的结论“CD=2”是否仍成立?请帮小明画出图形并说明理由.5.如图,A、B、C表示3个村庄,它们被三条河隔开,现在打算在每两个村庄之间都修一条笔直公路,则一共需架多少座桥?请你在图上用字母标明桥的位置.6.如图已知∠AOB+∠AOC=180°,OP、OQ分别平分∠AOB、∠AOC且∠POQ=50°.求∠AOB、∠AOC的度数.7.已知∠AOB=30°,又自∠AOB的顶点O引射线OC.若∠AOC:∠AOB=4:3,那么∠BOC= ( )A.10°B.40°C.45°D.70°或10°8.小明晚上6点多外出购物.看手表上时针与分针的夹角为110°,接近7点回到家,发现时针与分针的夹角又是110°,问小明外出时用了多少时间?9.考点办公室设在校园中心O点,带队老师休息室A位于O点的北偏东45°,某考室B位于O点南偏东60°,请在图中画出射线OA、OB,并计算∠AOB的度数.10.已知∠a与∠β之和的补角等于∠a与∠β之差的余角,则∠β=( )A.60°B.45°C.75°D.无法求出11.为了解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路,现已知四个村庄及电厂之间距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电A.19.5B.20.5C.21.5D.25.512.已知线段AB=6.(1)取线段AB的三等分点,这些点连同线段AB的两个端点可以组成多少条线段?求这些线段长度的和;(2)再在线段AB上取两种点:第一种是线段AB的四等分点;第二种是AB的六等分点,这些点连同(1)中的三等分点和线段AB的两个端点可以组成多少条线段?求这些线段长度的和.13.如图,已知∠AOB与∠BOC互为补角,OD是∠AOB的角平分线,OE在∠BOC内,∠BOE= ∠EOC,∠DOE=72°,求∠EOC的度数.14.如图所示,直线l与∠O的两边分别交于点A、B,则图中以O、A、B为端点的射线的条数总和为( )A.5B.6C.7D.815.如图所示,同一直线上有A、B、C、D四点,已知:AD:DB=5:9.AC:CB=9:5,且CD=4cm,求线段AB的长是多少?16.In the figure,Mon is a straight 1ive,If the angles α、β and γ ,satisfgβ:α=2:1,and γ:β=3:1,then the ang1e β=_______,(英汉小词典straight 1ive直线;ang1e角;satisfg满足)17.五位朋友,a、b、c、d、e在公园聚会,见面时握手致意问候,已知a握了4次,b握了1次,C握了3次,d握了2次,到目前为止,e握了( )次.A.1B.2C.3D.418.如图,已知B是线段AC上一点,M是线段AB的中点,N是线段AC的中点,P为NA的中点,Q为MA的中点,则MN:PQ等于( )A.1B.2C.3D.419.如图,某汽车公司所营运的公路AB段共有4个车站依次为A、C、D、B,且AC=CD=DB,现想在AB段建一个加油站M,要求使A、B、C、D站的各辆汽车到加油站M所花费的总时间最少,试找出M的位置.20.如图,B、C、D依次是线段AE上的三点,已知AE=8.9cm,BD=3cm 则图中以A、B、C、D、E这5个点为端点的所有线段长度的和为_______cm.21.如图是一个3×3的正方形,则图中∠1+∠2+∠3+…+∠9的度数(degree)是_______.23.电子跳蚤游戏盘为△ABC,AB=8a,AC=9a,BC=10a,如果电子跳蚤开始时在BC边上P0处,BP0=4a,第一步跳蚤跳到AC边上P1处且CP1=CP0;第二步跳蚤以P1跳到AB边上P2处,且AP2=AP1;第三步跳蚤跳到BC边上P3处,且BP3=BP2……跳蚤按上述规则跳下去,第2001次落到P2001,请计算P0与P2001之间的距离.24.如图,已知C是线段AB的中点D是线段AC的中点,且图中所有线段的长度和为2010,求线段AC的长度.25.设有甲、乙、丙三人,他们的步行速度相同,骑车速度也相同,骑车的速度为步行速度的3倍,现甲自A地去B地,乙、丙则从B地去A地,双方同时出发,出发时,甲、乙为步行,丙骑车,途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,三人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己又步行,三人仍按各自方向继续前进,问:三人之中谁最选到达自己的目的地?谁最后到达目的地?26.如图,∠A1OA11为一平角,∠A3OA2-∠A2OA1=∠A4OA3-∠A3OA2=…=∠A11OA10-∠A10OA9=2°.求七年级数学上第六章平面图形的认识(一)练习题参考答案1.3cm或9cm2.13.C4.25.共建5座桥,分别在M、N、P、Q、R五处(如图所示).6.140°.7.D8.40分钟.9.75°. 10.B11.B12.(1)6条,20;(2)36条,88. 13.72° 14.D15. cm. 16.40° 17.B18.B 19.M应选在CD段(包括C、D)任意一点均可. 20.41.6 21.405°22.共有四次23.a 24. 25.丙最先到达目的地,甲最后到达目的地.26.9°看了“七年级数学上第六章平面图形的认识(一)练习题”的人还看了:2.人教版七年级数学下单元达标试卷平面图形的认识3.七年级数学复习计划大全4.2017七年级数学复习计划5.北师大版七年级数学上册教学计划。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学第六章--平面图形的认识(一)练习题(附解析)
————————————————————————————————作者:————————————————————————————————日期:
苏科版七年级上册数学第六章平面图形的认识(一)练习题1、如图,已知AC∥ED,∠C=26°,∠CBE=37°,则∠BED的度数是 ( )
A.63°B.83°C.73°D.53°
2、如图,直线则的度数为( )
A.B.C.D.
3、下列说法正确的是:
A.不相交的两条直线是平行线.
B.如果线段AB与线段CD不相交,那么直线AB与直线CD平行.
C.同一平面内,不相交的两条射线叫做平行线.
D.同一平面内,没有公共点的两条直线是平行线.
4、如图,已知∠1=∠2,∠3=80O,则∠4=
A.80O B.70O
C.60O D.50O
5、如图,BC∥DE,∠1="105°," ∠AED="65°," 则∠A的大小是
A.25°B.35°C.40°D.60°
6、如图,由∠1=∠2,则可得出( )
A.AD∥BC B.AB∥CD
C.AD∥BC且AB∥CD D.∠3=∠4
7、如图,,点在的延长线上,若,则的度数为( )
A.B.C.D.
8、如图,已知:AB∥CD,BE平分∠ABC,CE平分∠BCD,则∠1+∠2=( )
A.920B.900C.870D.以上都不对。9、如图,AB∥DE,则下列说法中一定正确的是( )
A.B.
C.D.
10、两条直线被第三条所截,则( )
A.同位角相等B.内错角相等C.同旁内角互补D.以上都不对11、下列各图中,∠1与∠2是对顶角的是:
12、如图,∠AOC和∠BOD都是直角,如果∠AOB=140◦则∠DOC的度数是( )
A.30◦B.40◦C.50◦D.60◦
13、已知OA⊥OC,且∠AOB∶∠AOC=2∶3,则∠BOC的度数是( )
A.30 °B.150°C.30°或150°D.不能确定
14、将31. 62°化成度分秒表示,结果是( )
A.31°6′2″B.31°37′12″
C.31°37′2″D.31°37′
15、如果两条直线相交成,那么两条直线互相垂直.
16、如图,将三角尺的直角顶点放在直尺的一边上,∠1=,∠2=,则∠3=
_____.
17、如图,∥∥∠2=∠3=∠
1=_____.
18、如图,在△ABC中,∠ABC=90°,∠A=50°,BD∥AC,则∠CBD的度数是_________。
19、如图,直线被直线所截,若,,则
_________.
20、如图在四边形ABCD中,如果A+B=则_____ //
_____.
21、在同一平面内,若直线a∥c,b∥c,则a_____b。
22、由图填空:
⑴∠AOC=_________+___________;
⑵∠AOC-∠AOB=____;
⑶∠COD=∠AOD-___;
⑷∠BOC=____________-∠COD;
⑸∠AOB+∠COD=______________-______________
23、如图,在∠AOD的内部作射线OB,使∠AOB=∠COD,则图中还有哪些相等的角
____________________.
24、如图,∠COD为平角,AO⊥OE,∠AOC = 2∠DOE,则有∠AOC =____________。
25、一副三角板按如图所示的方式放置,则______度.
26、若,则的余角为_____度,的补角为_____度.
27、已知一个角的余角等于 ,则它的补角等于_____________。
28、1.25度= ________分; 123°角的补角是_________°.
29、按题目要求画图,并回答相关问题.
(1)画两条直线m,n,使m∥n,在直线m上任取两点A,B,分别过A,B作直线n
的垂线,垂足分别为C,D,量一量线段AC,BD的长,你发现了什么结论?
(2)如图,点P是∠AOB内一点,过点P作PM⊥OA,垂足为M,作PN⊥OB,垂足为N,量一量∠MPN和∠O,你发现了什么结论?
30、按照题目的要求,分别画出图形,并回答有关问题.
(1)画长3cm的线段AB,取AB的中点O,过O作线段AB的垂线,在上任取一点P,连接PA,PB,量一量线段PA,PB的长度,你发现什么结论?
(2)画一个∠ABC,作出∠ABC的角平分线BD,在BD上任取一点P(除B点外),过P分别作PM⊥BA,PN⊥BC,垂足分别是M,N,量一量线段PM,PN的长度,你发现什么结论?
31、如图,已知∥,点A, D在上,点B, C在上,试说明△EGO与△FHO面积相等。
32、在如图所示的方格纸上过点P画直线AB的平行
线.
33、请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.
34、如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD 呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?
35、马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用
量角器量一下其中出现的所有的角
度?
36、九点20分时,时钟上时钟与分钟的夹角a等于多少度?
37、分别确定四个城市相应钟表上时针与分钟所成的角的度
数.
38、任意画一个三角形,估计其中三个角的度数,再用量角器检验你的估计是否准确.
39、根据下列语句画图:
(1)画∠AOB=100°;
(2)在∠AOB的内部画射线OC,使∠BOC=50°;
(3)在∠AOB的外部画射线OD,使∠DOA=40°;
(4)在射线OD上取E点,在射线OA上取F,使∠OEF=90°.
40、判断题:
(1)在平面内,过直线外一点有且只有一条直线与已知直线垂直()
(2)过直线上一点不存在直线与已知直线垂直. ()
(3)过直线外一点A作的垂线,垂线的长度叫做点A到直线的距离.()(4)一条线段有无数条垂线. ()
(5)如图,线段AB与线段CD不可能互相垂直,因为它们不可能相交.()
(6)互相垂直的两条直线形成的四个角都等于90º. ()
试卷答案
1.A
2.C
3.D
4.A
5.C
6.B
7.A
8.B
9.B10.D11.C12.B13.C14.B
15.直角(填90º也对)
16.20°
17.50°
18.40°
19.60
20.AD ,BC
21.∥
22.⑴∠AOB,∠BOC;1分⑵∠BOC;1分⑶∠AOC;1分⑷∠BOD;1分⑸∠AOD,∠BOC;1分
23.∠AOC=∠BOD
24.60°
25.90;
26.30 ,120
27.132°35′
28.75 57
29.(1)见解析AC=BD (2)见解析∠MPN+∠O=180º
30.(1)见解析PA=PB (2)见解析PM=PN
31.证明见解析
32.如图
33.见解析
34.引1条射线有2+1=3个角;
引2条射线有3+2+1=6个角;
引3条射线有4+3+2+1=10个角;
引10条射线有11+10+9+……+3+2+1=66个角
35.见解析
36.160°
37.30°;0°;120°;90°
38.见解析
39.如图
40.(1)对(2)错(3)错(4)对(5)错(6)对。

相关文档
最新文档