FANUC系统设定参数实现刚性攻丝

合集下载

FANUC系统刚性攻丝功能详解

FANUC系统刚性攻丝功能详解

FANUC系统刚性攻丝功能详解首先,刚性攻丝功能是指机器人在进行攻丝操作时,能够保持稳定的力和位置控制。

这意味着机器人可以根据既定的程序在工件表面上产生高质量的螺纹。

这种功能对于需要精确控制螺纹深度、螺距和螺纹形状的应用非常重要。

刚性攻丝功能的实现主要依赖于FANUC系统的硬件和软件设计。

FANUC系统使用高性能的力传感器和位置传感器来实时监测机器人与工件之间的力和位置信息。

这些传感器能够提供高分辨率和高精度的测量结果,从而保证机器人的稳定性和准确性。

在软件方面,FANUC系统提供了一套完整的攻丝控制算法。

这些算法对机器人的运动进行实时的力和位置调整,以实现精确的攻丝操作。

例如,在攻丝过程中,系统可以根据传感器信息实时调整机器人的速度和力度,以适应工件表面的不均匀性和材料特性。

此外,FANUC系统还提供了丰富的控制参数和设置选项,以满足不同应用的需求。

用户可以根据具体的攻丝要求进行调整,包括螺纹深度、起刀点位置、进给速度等等。

这些参数的灵活调整使得FANUC系统能够适应各种不同的攻丝操作,从而提高生产效率和质量。

最后,FANUC系统的刚性攻丝功能还具备一定的智能化特性。

系统可以通过学习和优化算法,自动适应不同材料和工件的攻丝过程。

它能够根据历史数据分析出最佳的攻丝参数和路径,从而提高攻丝的效率和质量。

总结起来,FANUC系统的刚性攻丝功能通过高性能的传感器、智能化的控制算法以及灵活的参数调整,实现了高质量和高效率的攻丝操作。

这种功能对于提高机器人的应用范围和工作效果具有重要意义,为用户创造了更多的机会和价值。

FANUC OI 刚性攻丝参数

FANUC OI 刚性攻丝参数

刚性攻丝的参数NO.4002P00000001(不带外装编码器)NO.4002P00000010(带外装编码器)NO.4044P30NO.4045P20NO.4052P60NO.4065P3000NO.5202P00000001NO.5204P00000001NO.5211P10NO.5214P20000(可适当放大)NO.5241.P1000(刚性攻丝时主轴的最高转速,根据具体情况,可以进行调整)NO.5242.P1000NO.5243.P1000NO.5244.P1000NO.5261.P1000(主轴和攻丝轴的直线加减速时间常数, 根据具体情况,可以进行调整)NO.5262.P1000NO.5263.P1000NO.5271.P1000(回退时主轴和攻丝轴的直线加减速时间常数, 根2005年5月据具体情况,可以进行调整)NO.5272.P1000NO.5273.P1000NO.5280.P3000(刚性攻丝时主轴和攻丝轴的位置控制回路增益, 根据具体情况, 可以进行调整)NO.5281.P0NO.5282.P0NO.5283.P0NO.5291.P2000(刚性攻丝时主轴回路增益系数, 根据具体情况, 可以进行调整)NO.5300.P50NO.5301.P50NO.5310.P10000(可适当放大)NO.5311.P10000(可适当放大)NO.5312.P300NO.5313.P300NO.5314.P5000(可适当放大)NO.5321.P10试验程序:夞2005年5月。

FANUCOi 刚性攻牙参数

FANUCOi 刚性攻牙参数

FANUCOi 刚性攻牙参数FANUC Oi 系统开通刚性攻牙功能需要设定参数仅供参考。

将参数 No.5200#0 设置为 1,修改以下参数:攻丝最高主轴转速 N0.5241 - N0.5244 主轴与攻丝轴的时间常数 N0.5261 - No.5264 刚性攻丝轴回路增益 N0.5280 - N0.5284 刚性攻丝时攻丝轴移动位置偏差量的极限值N0.5310 刚性攻丝时主轴移动位置偏差量的极限值 N0.5311 刚性攻丝时的攻丝轴停止时的位置偏差量极限值 N0.5312 刚性攻丝时的主轴停止时的位置偏差量极限值 N0.5313 。

如下列: (1) 每分钟进给编程右螺纹G94;Z 轴每分钟进给M3Sl000;主轴正转(1000r/min) G9O G84X-300.Y-250.Z-150.R-120. P300 F1000;右螺纹攻丝 , 螺距 lmm 左螺纹G94; Z 轴每分钟进给M4Sl000; 主轴反转(1000r/min) G9O G74X-300.Y-250.Zl50.R-120.P300 F1000; 左螺纹攻丝 , 螺距 lmm (2) 每转 ( 主轴 ) 进给编程右螺纹G95; Z 轴进给 / 主轴每转M3S1000; 主轴正转 (1000r/min) G9O G84X-300.Y-250.Z-150.R-120. P300 F1.0; 右螺纹攻丝 , 螺距 1mm 右螺纹G95;Z 轴进给 / 主轴每转M4S1000;主轴反转 (1000r/min) G90 G74 X-300.Y-250.Z150.R-120. P300 F1.0; 左螺纹攻丝 , 螺距 l mm 以上刚性攻丝编程由于将参数 No.5200#0 设置为 1, 固定循环 G84/ 成为刚性攻丝的指令 , 所以它的编程格式就完全与原固定循环 G84/G74 普通攻丝是一样的。

FANUC设定参数实现刚性攻丝

FANUC设定参数实现刚性攻丝

FANUC设定参数实现刚性攻丝(大连机床集团有限责任公司黄贤鸿)1 两种攻丝方式的比较以前的加工中心为了攻丝, 一般都是根据所选用的丝锥和工艺要求, 在加工程序中编入一个主轴转速和正/ 反转指令, 然后再编人G84 /G74 固定循环, 在固定循环中给出有关的数据, 其中Z 轴的进给速度是根据F=丝锥螺距×主轴转速得出, 这样才能加工出需要的螺孔来。

虽然从表面上看主轴转速与进给速度是根据螺距配合运行的, 但是主轴的转动角度是不受控的, 而且主轴的角度位置与Z 轴的进给没有任何同步关系, 仅仅依靠恒定的主轴转速与进给速度的配合是不够的。

主轴的转速在攻丝的过程中需要经历一个停止-正转-停止-反转-停止的过程, 主轴要加速-制动-加速-制动, 再加上在切削过程中由于工件材质的不均匀, 主轴负载波动都会使主轴速度不可能恒定不变。

对于进给Z 轴, 它的进给速度和主轴也是相似的, 速度不会恒定, 所以两者不可能配合得天衣无缝。

这也就是当采用这种方式攻丝时, 必须配用带有弹簧伸缩装置的夹头, 用它来补偿Z 轴进给与主轴转角运动产生的螺距误差。

如果我们仔细观察上述攻丝过程, 就会明显地看到, 当攻丝到底,Z 轴停止了而主轴没有立即停住(惯量), 攻丝弹簧夹头被压缩一段距离, 而当Z 轴反向进给时, 主轴正在加速, 弹簧夹头被拉伸, 这种补偿弥补了控制方式不足造成的缺陷, 完成了攻丝的加工。

对于精度要求不高的螺纹孔用这种方法加工尚可以满足要求, 但对于螺纹精度要求较高,6H 或以上的螺纹以及被加工件的材质较软(铜或铝) 时, 螺纹精度将不能得到保证。

还有一点要注意的是, 当攻丝时主轴转速越高,Z 轴进给与螺距累积量之间的误差就越大, 弹簧夹头的伸缩范围也必须足够大, 由于夹头机械结构的限制, 用这种方式攻丝时, 主轴转速只能限制在600r/min 以下。

刚性攻丝就是针对上述方式的不足而提出的, 它在主轴上加装了位置编码器, 把主轴旋转的角度位置反馈给技控系统形成位置闭环, 同时与Z 轴进给建立同步关系, 这样就严格保证了主轴旋转角度和Z 轴进给尺寸的线生比例关系。

FANUC系统刚性攻丝功能详解

FANUC系统刚性攻丝功能详解

FANUC系统刚性攻丝功能详解常规的刚性攻丝刚性攻丝是指通过系统控制攻丝轴和主轴执行同步控制,取代传统的使用浮动卡头来进行的攻丝加工,因此可以实现高速攻丝。

刚性攻丝循环时,主轴的旋转和进给轴的进给之间总是保持同步。

也就是说,在刚性攻丝时,主轴的旋转不仅要实现速度控制,而且要实行位置的控制。

主轴的旋转和攻丝轴的进给要实现直线插补,在孔底加工时的加/减速仍要满足同步条件以提高刚性攻丝的精度。

在普通的攻丝循环时,主轴的旋转和攻丝轴的进给量是分别控制的,主轴和进给轴的加/减速也是独立处理的,所以不能够严格地保证同步关系,特别是攻丝轴到达孔的底部时,主轴和进给轴减速到停止,之后又加速反向旋转过程时,满足同步关系将更加困难。

所以,一般情况下,攻丝是通过在刀套内安装柔性弹簧补偿进给轴的进给来改善攻丝的精度的。

FSSB高速刚性攻丝不同于此前的0iD系统,0iF系统中主轴和伺服通讯方式都已采用FSSB光缆通讯,伺服侧可以更快的获取到主轴位置信息,实现同步性优异的刚性攻丝。

使用FSSB高速刚性攻丝,可以获得比普通刚性攻丝更快的效率,同时保证攻丝误差更低,精度更高。

智能刚性攻丝使用FSSB高速刚性攻丝相比常规的普通刚性攻丝,攻丝效率和攻丝质量可以得到较大幅度的提升。

如果针对攻丝效率还需要进一步提升的话,那么智能刚性攻丝将是较好的选择。

使用智能刚性攻丝,在主轴正反转加减速过程中,保持全功率输出,从而保证在所有速度范围内使用最大扭矩输出。

可以看到,借助主轴的加减速的提升,智能刚性攻丝在FSSB刚性攻丝的基础上进一步提升攻丝效率。

但同时也需看到,由于主轴的全功率输出,这使得加工过程的要求(刀具,主轴,切削液)更为苛刻。

刚性攻丝回退刚性攻丝是加工常用功能,在攻丝过程中,由于工件装卡精度或者加工程序编写等原因,断锥现象是比较常见的。

刚性攻丝回退功能可以在异常中断后(急停、复位、断电等),通过G代码指令,执行刚性攻丝回退动作,将攻丝轴退回到R 点位置,将刀具安全退出。

FANUC刚性攻丝参数调整

FANUC刚性攻丝参数调整

FANUC刚性攻丝参数调整刚性攻丝参数调整将参数5204#0=1后,可看以下诊断参数:诊断450的值主轴位置偏差(以脉冲为单位)诊断451的值主轴运动脉冲数(以脉冲为单位)诊断452的值为主轴和攻丝轴的瞬时同步误差(以%为单位),正值表示主轴超前于攻丝轴,负值相反。

诊断453的值为主轴和攻丝轴的最大同步误差(以%为单位)调整要点:1.先观察以上的攻丝诊断参数的误差;2.主轴与攻丝轴的位置环回路增益(参数号5280,5281,5282,5283)影响螺纹精度。

5271,5272,5273,3.加减速时间常数(参数号5261,5262,5263为切入时的时间常数,参数号52715274为回退时的时间常数)。

4.回退时出错,可以适当调整回退时间常数。

5.在调整参数过程中应观察诊断参数452,453的值,一般453的值应小于10,就可以了。

6.在调节参数之前,一定要将原参数记下,以便不对时可以修改回去。

7.刚性攻丝时主轴最高转数不能超过1000转,因为机床主轴驱动器已经将此参数设好。

8.以下为XH714G机床攻丝参数。

5200#2→1(刚性攻丝信号RGTAP为0之前解除)5201#0→1(刚性攻丝进行平滑处理)5201#2→0(刚性攻丝的切削时间常数,进/退刀时使用同样的时间参数NO.5261--5264)5202#0→1(启动刚性攻丝时,执行主轴定向)5204#0→1(在诊断画面上显示主轴和攻丝轴的偏差值诊断NO.452--453)5214→200(刚性攻丝同步误差宽幅的设定)5241→1000刚性攻丝中的主轴最高转速(第1齿轮)5242→1000刚性攻丝中的主轴最高转速(第2齿轮)5243→1000刚性攻丝中的主轴最高转速(第3齿轮)5244→1000刚性攻丝中的主轴最高转速(第4齿轮)5261→600刚性攻丝中各齿轮的加/减速时间常数(第1齿轮)5262→600刚性攻丝中各齿轮的加/减速时间常数(第2齿轮)5263→600刚性攻丝中各齿轮的加/减速时间常数(第3齿轮)5264→600刚性攻丝中各齿轮的加/减速时间常数(第4齿轮)5280→1000刚性攻丝中主轴和攻丝轴的位置控制的环路增益5291→3150刚性攻丝中主轴的环路增益乘数(第1档)5292→3150刚性攻丝中主轴的环路增益乘数(第2档)5293→3150刚性攻丝中主轴的环路增益乘数(第3档)5294→3150刚性攻丝中主轴的环路增益乘数(第4档)5300→20刚性攻丝时攻丝轴的到位宽度5301→20刚性攻丝时主轴的到位宽度5310→8000刚性攻丝时攻丝轴移动时位置偏差的极限值5311→8000刚性攻丝时主轴移动时位置偏差的极限值3705#5→1(具有恒线速控制功能或参数NO.3706#4GTT设为1时,对于S代码不输出SF) 3706#4→1(主轴齿轮换档方式为T型)5313→1000刚性攻丝中主轴停止时位置偏差的极限值3742→1000刚性攻丝中移动轴停止时位置偏差的极限值。

发那科FANUC系统刚性攻丝功能详解

发那科FANUC系统刚性攻丝功能详解

发那科FANUC系统刚性攻丝功能详解在刚性攻丝时,主轴旋转一转所对应钻孔轴的进给量必须和攻丝的螺距相等,即必须满足如下的条件:P= F/SP:攻丝的螺距(mm)F:攻丝轴的进给量(mm/min)S:主轴的速度(rpm)刚性攻丝循环的过程中主轴的旋转和进给轴的进给之间总是保持同步。

也就是说,在刚性攻丝时,主轴的旋转不仅要实现速度控制,而且要实行位置的控制。

主轴的旋转和攻丝轴的进给要实现直线插补,在孔底加工时的加/减速仍要满足以下的条件以提高刚性攻丝的精度。

在普通的攻丝循环时G74/G84 (M 系列), G84/G88 (T 系列),主轴的旋转和Z轴的进给量是分别控制的,主轴和进给轴的加/减速也是独立处理的,所以不能够严格地满足以上的条件,特别是攻丝到达孔的底部时,主轴和进给轴减速到停止,之后又加速反向旋转过程时,满足以上的条件将更加困难。

所以,一般情况下,攻丝是通过在刀套内安装柔性弹簧补偿进给轴的进给来改善攻丝的精度的。

1刚性攻丝的指令刚性攻丝可以通过以下的任何一种指令完成:1)刚性攻丝指令在G74/G84 (M series) 或G84/G88 (T series)之前指定,如:_ M29 S _____;G84(G88) X_C_(Z_C_) Z_(X_) R_ P_ F_ K_ ;2)刚性攻丝指令与攻丝指令G74/G84(M series) 或G84/G88 (T series)在同一程序段,如:G84(G88) X_C_(Z_C_) Z_(X_) R_ P_ F_ K_ M29 S_;3) G74/G84 (M series) 或G84/G88 (T series) 作为刚性攻丝指令G84X_Y_Z_R_P_F_K_;为标准攻丝循环指令G74X_Y_Z_R_P_F_K_;为反螺纹攻丝循环指令刚性攻丝有两种方式:每转进给刚性攻丝(G99)和每分进给刚性攻丝(G98)。

下例为每转进给刚性攻丝方式(G99)。

FANUC 钢性攻丝

FANUC 钢性攻丝

关于FANUC—Oi加工中心钢性攻丝肇庆汇隆(2000转以上)高速攻丝刚开始丛200转速以下可以攻丝,要一下提到2000转来攻丝。

一:钢性攻丝它的原理:P=F/SP:螺距F:z轴的进给S:主轴的转速丛以上的工式可以看出,在攻丝时P要恒定,关键是F和S的比一定要保持不变才能达到攻丝的要求。

所以也要z轴和主轴保持同步。

分析一下:只要主轴和z 轴都同时到达所要求的转速和进给速度的话,攻丝就没什么问题。

所以我们就着重围绕着他的参数来修改。

我们再来了解一下关于它的参数:NIZ=0 时不进行攻丝平滑处理NIZ= 1时进行攻丝平滑处理* TDR:钢性攻丝中的切削时间常数选择。

TDR =0时进退刀的时间常数用一样的参数(NO.5261~NO.5264)机床最终修改为TDR =0TDR=1时用进退刀时的时间常数用不一样的参数进刀时用(NO.5261~ NO.5264)退刀时用(NO.5271~ NO.5274)DGN=0时诊断453显示主轴和z轴的最大误差=1时诊断 450 显示主轴和z轴的同步误差NO.5310NO.5310=32767 :攻丝时位置偏差极限值。

在攻丝前放到最大。

有可能出现ALM 200NO.5261~~NO.5263:为进退刀加减速时间常数。

(在NO。

5201#2=0时)刚开始的参数都=100 (机床的出厂设置)NO.5261~~NO.5263=100:在这它等于100时没有试过,但它的出厂是按200转/分钟转速调攻丝的。

(会因转速过高而乱牙)它的最终调节为300插曲:FANUC公司来人用PC机跟踪同步脉冲调整它为NO.5261~~NO.5263=3000,所出现的问题是:例: 用程序1200转/分钟的主轴转速,攻M4*20的牙,主轴转速没有到1000就又开始减速了,攻丝的时间就变长了很多。

不过它的同步误差只有一两个脉冲。

调机一:开始马师傅就把NO.5300 z轴到位宽度 NO.5301主轴到位宽度都调到了20NO.5300和NO.5301它是一个精度的参数。

FANUC系统数控加工中心刚性攻丝时的参数设定

FANUC系统数控加工中心刚性攻丝时的参数设定
4 刚 性攻 丝时 的相 关参数 的设 定
在 FANUC 0i等数控 系统 中对刚性攻 丝 的处理 设置 了 3 种指令 模式 ,即 :①在 G84(攻丝 循环 )之前 由 M29 S X××X 指令 ;② 在 G84同一段 中 ,由 M29 S X×××指令 ;③不 用 M 代码 ,而直接 由 G84来指令 。但 不论 是哪种方式进行 刚性攻 丝 ,都必须具备最基本 的 3个 条件 :
(3)合 羽{凸 数。根据 主轴不 同传动结构 ,涉及刚性攻
【作者 简 介 】丁海萍(1979一),男,研究生,讲师,研究方向:机械制造及其自动化。 41
丝的参数是很多的。要合理设定这些参数 ,了解参 数的意义是 必要 的 ,并要抓住要害才能达到事半功倍 的效果 。本 文着重说 明各种参数 的具体含义 。
2010年 9月 第 9期 (总第 142期 )
广 西 轻 工 业 GUANGxIJ0uRNAL oF LIGHT lNDusTRY
机 械 与 电 气
F A N U C 系统 数 控加 工 中心 刚性 攻 丝 时的参 数设 定
丁 海 萍 ,杨 晶
(南通 职 业大学数 控 中心 ,江 苏 南通 226007)
【中图分类号 】TG659 【文献标识码 】 B
【文章编号 】 1003—2673(2010)09—41—02
1 引言 刚性攻丝功能 以高速高效 高精度 加工螺纹 而被越 来越多
的机 床用 户所青睐 ,因此调试好此功能 ,使其达 到高速高精度 的性 能 ,以满足用户广泛的 ̄JnY-需求是很有 必要 的,对于精度 要求高的深孔 ,应通过选用合适 的攻 丝方法和合理设置数控系 统参数等手段来实现。目前 刚性攻丝 已经成 为加工 中心不可缺 少 的一项主要功能。

FANUC系统设定参数实现刚性攻丝

FANUC系统设定参数实现刚性攻丝

仅供个人参考不得用于商业用途FANUC系统设定参数实现刚性攻丝两种攻丝方式的比较:以前的加工中心为了攻丝 , 一般都是根据所选用的丝锥和工艺要求 , 在加工程序中编入一个主轴转速和正 /反转指令 , 然后再编人 G84/G74 固定循环 , 在固定循环中给出有关的数据 , 其中 Z 轴的进给速度是根据 F =丝锥螺距×主轴转速得出 , 这样才能加工出需要的螺孔来。

虽然从表面上看主轴转速与进给速度是根据螺距配合运行的 , 但是主轴的转动角度是不受控的 , 而且主轴的角度位置与 Z 轴的进给没有任何同步关系 , 仅仅依靠恒定的主轴转速与进给速度的配合是不够的。

主轴的转速在攻丝的过程中需要经历一个停止-正转-停止-反转-停止的过程 , 主轴要加速-制动-加速-制动 , 再加上在切削过程中由于工件材质的不均匀 , 主轴负载波动都会使主轴速度不可能恒定不变。

对于进给 Z 轴 , 它的进给速度和主轴也是相似的 , 速度不会恒定 , 所以两者不可能配合得天衣无缝。

这也就是当采用这种方式攻丝时 , 必须配用带有弹簧伸缩装置的夹头 , 用它来补偿 Z 轴进给与主轴转角运动产生的螺距误差。

如果我们仔细观察上述攻丝过程 , 就会明显地看到 , 当攻丝到底 ,Z 轴停止了而主轴没有立即停住 ( 惯量 ), 攻丝弹簧夹头被压缩一段距离 , 而当 Z 轴反向进给时 , 主轴正在加速 , 弹簧夹头被拉伸 , 这种补偿弥补了控制方式不足造成的缺陷 , 完成了攻丝的加工。

对于精度要求不高的螺纹孔用这种方法加工尚可以满足要求 , 但对于螺纹精度要求较高 ,6H 或以上的螺纹以及被加工件的材质较软 ( 铜或铝 ) 时 , 螺纹精度将不能得到保证。

还有一点要注意的是 , 当攻丝时主轴转速越高 ,Z 轴进给与螺距累积量之间的误差就越大 , 弹簧夹头的伸缩范围也必须足够大 , 由于夹头机械结构的限制 , 用这种方式攻丝时 , 主轴转速只能限制在 600r/min 以下。

刚性攻丝

刚性攻丝

两种攻丝方式的比较以前的加工中心为了攻丝,一般都是根据所选用的丝锥和工艺要求,在加工程序中编入一个主轴转速和正/反转指令,然后再编人G84/G74固定循环,在固定循环中给出有关的数据,其中Z轴的进给速度是根据F=丝锥螺距×主轴转速得出,这样才能加工出需要的螺孔来。

虽然从表面上看主轴转速与进给速度是根据螺距配合运行的,但是主轴的转动角度是不受控的,而且主轴的角度位置与Z轴的进给没有任何同步关系,仅仅依靠恒定的主轴转速与进给速度的配合是不够的。

主轴的转速在攻丝的过程中需要经历一个停止-正转-停止-反转-停止的过程,主轴要加速-制动-加速-制动,再加上在切削过程中由于工件材质的不均匀,主轴负载波动都会使主轴速度不可能恒定不变。

对于进给Z轴,它的进给速度和主轴也是相似的,速度不会恒定,所以两者不可能配合得天衣无缝。

这也就是当采用这种方式攻丝时,必须配用带有弹簧伸缩装置的夹头,用它来补偿Z轴进给与主轴转角运动产生的螺距误差。

如果我们仔细观察上述攻丝过程,就会明显地看到,当攻丝到底,Z轴停止了而主轴没有立即停住(惯量),攻丝弹簧夹头被压缩一段距离,而当Z轴反向进给时,主轴正在加速,弹簧夹头被拉伸,这种补偿弥补了控制方式不足造成的缺陷,完成了攻丝的加工。

对于精度要求不高的螺纹孔用这种方法加工尚可以满足要求,但对于螺纹精度要求较高,6H或以上的螺纹以及被加工件的材质较软(铜或铝)时,螺纹精度将不能得到保证。

还有一点要注意的是,当攻丝时主轴转速越高,Z轴进给与螺距累积量之间的误差就越大,弹簧夹头的伸缩范围也必须足够大,由于夹头机械结构的限制,用这种方式攻丝时,主轴转速只能限制在600r/min以下。

刚性攻丝就是针对上述方式的不足而提出的,它在主轴上加装了位置编码器,把主轴旋转的角度位置反馈给技控系统形成位置闭环,同时与Z轴进给建立同步关系,这样就严格保证了主轴旋转角度和Z轴进给尺寸的线生比例关系。

因为有了这种同步关系,即使由于惯量、加减速时间常数不同、负载波动而造成的主轴转动的角度或Z轴移动的位置变化也不影响加工精度,因为主轴转角与Z轴进给是同步的,在攻丝中不论任何一方受干扰发生变化,则另一方也会相应变化,并永远维持线性比例关系。

FANUC系统刚性攻丝问题

FANUC系统刚性攻丝问题

(图一)刚性攻丝的实验参数,S=800,F=800,传动比为4:1。

SVGuide选择“XTYT”观测页面,主轴选择“SPEED”观测项目,攻丝轴选择“SYNC”观测项目,采样时间1ms,采样数据点8000~10000该图的左面有个小的凸台,这其实是主轴从速度环变为位置环时,主轴先执行了回零动作。

可以通过NO5202#0=0关闭这个回零的动作。

这个图形表明刚性攻丝的性能仍然不行,因为主轴转速没有达到指令转速,当S=800时,主轴电机转速应该是3200,很显然,图形的红色曲线表明主轴电机的转速大约2500左右,表明电机仍然在加速过程中。

需要减小加减速时间常数NO5241~5244,原值为2400ms,改为800ms后,得到(图二)的曲线。

(图二)该图形表明,已经取消了主轴回零这个动作,并且在刚性攻丝过程中,主轴电机转速已经达到3200RPM,主轴以S=800旋转,同时,主轴和攻丝轴Z轴的同步误差小于50个同步脉冲。

(图三)这是在机床高速档进行的刚性攻丝实验,主轴指令转速1500RPM,高速档传动比1:1,很显然主轴电机没有达到指令转速,修改加减速时间后,同步误差脉冲猛增(该图未保留),所以该机床高速档不宜进行刚性攻丝。

(图4)加大了主轴速度环比例增益NO4044,NO4045,以及积分增益4052,NO4053后,它们的初始化值为10,现在改为15,同步误差脉冲有降低。

一点补充,NO5280为攻丝轴Z轴的位置环增益,当NO5280的值不为零时,NO5281~5284无效,此时N05280要和主轴各档的位置环增益相同,即NO4065~4068每个值相等,与NO5280的值相同。

当NO5280为零时,NO5281~5284的值生效,并与NO4065~4068的值对应相等。

提高NO5280~5281以及NO4065~4068的值,可以提高刚性攻丝的精度。

在诊断参数DGN452的值不为零时,需要检查NO5280,NO5281~NO5284的值是否与NO4065~NO4068相等或者对应相等。

FANUC系统攻丝

FANUC系统攻丝

不用设计梯形图实现刚性攻丝 在 FANUC Oi 数控系统里 , 参数 N0.5200#0 如果被设定为 0, 那么刚性攻丝就需要用 M 代码指定。一般情况 下 , 我们都使用 M29, 而在梯形图中也必须设计与之相对应的顺序程序 , 这对初次尝试者来说还有一定的困难。 正常的情况下 , 没有特殊要求时 , 主轴参数初始化后把参数 No.5200#0 设定为 1, 其它有关参数基本不动 , 也不用增加任何新的控制程序 , 这样就简单多了。在运行调试中要根据机床本身的机械特性设置刚性攻丝必须的一组参数 (见表 l) 。参数设置好后就可以直接使用固定循环 G84/G74 指令编程 , 其格式举例如下 :
通过诊断452和453更为直接
其次可以通过修改4065~4068 标准值为1000
不要过小,不然攻丝时会没有力量.
FANUC 0IMD系统
F=S*螺距
比如功M10 底孔8.5 螺距1.5 (公制)
M03S100
M29 S150
G98 G90 G84 X0.0 Y0.0 Z-40. R2 Q2. F150 K0
三菱的系统比较简单,进给和主轴转速是随机的。
如:攻M10 底孔8.5 螺距1.5 (公制)
楼主提供的参数非常详细,只是这些参数要在实际的加工过程中根据实际情况具体设定.
如果要实现较好的螺纹切削精度,一定要在诊断画面里看452,453位置误差量的百分比是多少
应该控制在30以内,或者看诊断的455到457同步误差的量,尽量的小而相同.
5204#0 为0时可以看到455~457
5204#0 为1时可以看到452,453
M3 Sl000; 主轴正转(1000r/min)

FANUC 刚性攻丝功能

FANUC 刚性攻丝功能

CNC
主轴 位置编码器 齿轮或同步带 连接 1 :1 1 :2 1 :4 1 :8
位置反馈
名 称
图 号 提 出

01 年 9 月 10 日
设计

长合
北京发那科机电有限公司

2) 使用内装 MZ 传感器的主轴电机(包括使用内装主轴电机的场合)
主轴 放大器 模块 (SPM) JY2 内装 MZ 传感器 主轴电机
设计

长合
北京发那科机电有限公司

M29D R103.5 RGTAPM
SSTA F045.1
SFRA G070.5
SRVA G070.4
RGTCAN R120.1
RGTAPM R120.0
R120.0
RGTAPM R120.0 RGTAPM R120.0 RGTAPM R120.0 RTAP F076.3 RGTIN R121.2 RGTIN R121.2 RGENR R121.4 RST F001.1 SA RGTOFTM R121.1 SFRA G070.5 RGTAP G061.0 RGTONM R121.0 RGTOFTM R121.1 RGTIN R121.2 RGENR R121.4 RGEND R121.3 RGTCAN R120.1
TMRB SUB24
0001 300
TMRB SUB24 RGTAP G061.0 RGEND R121.3
0002 300
F000.6
ALMA F045.0 RGTCAN R120.1 M03R R100.3 SFRW R122.0 M04R R100.4 SRVW R122.1 M03R R100.3 M05R R100.5 RST F000.1 M29D R103.5 SRVW R122.1 M04R R100.4 M05R R100.5 RST F000.1 M29D R103.5 SFRW R122.0

FANUC系统数控机床调试参数

FANUC系统数控机床调试参数

FANUC系统数控机床调试参数FANUC数控机床调试参数系统第一次通电,必须把参数写保护打开(设定画面第一项PWE=1),否则参数无法写入。

在MDI方式下,按软键盘上的SYSTEM,在参数画面下将参数3190#6(CH2)设成1,断电重启,画面上的文字转换成中文。

注:无特殊情况下,第一次通电最好不要进行全清。

一、FSSB设定先把参数8130和1010的值设为3,表示3个轴;参数1023设成1;2;3,参数1902#0=0(当参数1902#1 ASE=1时,表示当选择FSSB自动设定方式时,自动设定完成)。

进入SYSTEM,按显示器下的键,画面进入伺服设定,初始化位设为0,将在表5中查得的电机代码输入(0i-Mate系列的Z轴电机代码要比X、Y两轴的代码大1)。

进入伺服调整画面,按照调试手册P15的图中设定X、Y、Z的各项,断电重启。

如果启动后不出现调试手册中P16表1的报警,则FSSB设定完成,否则重新设定FSSB(线路正常情况下)。

如果出现466号报警,将参数2165设为25、25、45(0i-Mate);45、45、45(0i-MC),复位即可消除此报警。

二、主轴设定在参数4133中输入主轴电机代码(表6中查得电机代码),把4019#7设定为1进行自动初始化。

断电重启,设定参数3736为4095,3741号参数为电机的最高转速(即主轴电机的额定转速)。

注:参数4020与3741的值必须一致,否则主轴的转速将与倍率开关的档位不对应三、各种功能对应的参数设定0i-Mate系列按照调试手册中P25-P26的AI先行控制中的参数设定;0i-MC 系列按P26-P27的AI轮廓控制中的参数设定。

其中参数1432为4000~10000、1620为150、1621为80。

四、其它参数的设定当以上的参数设好之后,如无出现报警现象,将下面参数输入。

参数如下:参数号功能设定值范围0020 I/O通道选择(同设定画面中的设定)0——RS2324——卡138#7=1 MDN=1:使用存储卡进行DNC操作有效1002#0 JAX=1:手动和回参考点同时控制轴数为3轴1006#5 ZMI=1:回零时停在负方向1020 各轴的编程名称X——88Y——89Z——901022 基本坐标系中各轴的属性X——1Y——2Z——31023 各轴的伺服轴号X——1Y——2Z——31241 第二参考点的设定1300#2 存储式行程检测切换信号EXLM有效LMS=11320 机床正向软限位1321 机床负向软限位1401#4 进给率为0时快速移动停止RF0=11410 空运行速度5000mm/min1420 各轴快速移动速度8000 mm/min1421 各轴快速移动倍率的F0速度500 mm/min1422 最大切削进给速度6000 mm/min1423 各轴手动连续(JOG)进给速度1000 mm/min1424 各轴手动快速移动速度3000 mm/min1425 各轴返回参考点减速后(FL)的速度300 mm/min1622 插补后切削进给时间常数150 ms1624 插补后JOG进给时间常数20 ms1800#1 位置控制就绪信号PRDY接通之前,速度控制就绪信号VRDY先接通时,不出现伺服报警CVR=11821 各轴的参考计数器容量80001825 各轴的伺服位置环增益3000~50001851 各轴反向间隙补偿量2022 电机旋转方向(根据实际情况调整正负值)X——-111Y——111Z——1113003#0 互锁无效ITL=13003#2 各轴互锁无效ITX=13003#3 各轴方向互锁无效DIT=13003#5 限位开关零点触头接常闭DEC=0限位开关零点触头接常开DEC=13105#0 MDI方式显示DPF=13105#2 实际主轴速度和T代码显示DPS=13108#7 显示手动连续进给速度JSP=13111#0 显示伺服设定画面SVS=1 #1 显示主轴调整画面SPS=1 #2 显示同步误差值是峰值SVP=13117#0 在程序检查画面显示打开或关闭主轴速度表和负载表SMS=13190#6 显示简体汉字CH2=13202#4 程序O9000~9999的编辑禁止(刀库用)NE9=13210加密3211解密3605#0 使用双向螺补功能BDP=13620~3627 螺距补偿的设定4077 主轴定位5001#5 刀具补偿用H代码TPH=1当5001#2 OFH=0时有效6071=6 当设为0时无效,M00不能调用9001~9009子程序6711加工零件数6712加工零件总数参数6711和6712的设定只有当6700#0 为0时有效7113 手轮进给倍率1008131#0 使用手轮进给HPG=1注:如果软键盘上的键值不对应,将参数3100#2置1,3100#3置0即可如果在手动和回参考点是不能同时控制3轴,将1002#0 JAX置1即可栅格量的调整:在诊断画面中,参数302号可以看到各轴的栅格量,最好应在4000~5000之间,栅格量的调整只要调整零点开关的位置当参数4020和3741不一致时,显示出来的主轴转速与主轴倍率选定的不对应攻丝参数设定5200#4(DOV)=1 刚性攻丝退刀时倍率有效(倍率值在参数NO.5211中设定)5200#5(PCP)=1 刚性攻丝不使用高速深孔攻丝循环5201#0(NIZ)=1 进行刚性攻丝的平滑处理5204#0(DGN)=1 在诊断画面上显示主轴和攻丝轴的偏差量的偏差值5210=29 指令刚性攻丝的M代码5211=200 刚性攻丝退刀时的倍率值5241=3000 刚性攻丝时主轴的最高转速(第1档)5242=3000 刚性攻丝时主轴的最高转速(第2档)5243=3000 刚性攻丝时主轴的最高转速(第3档)5261=2000 主轴和攻丝轴的直线加减速时间常数(第1档)5262=2000 主轴和攻丝轴的直线加减速时间常数(第2档)5263=2000 主轴和攻丝轴的直线加减速时间常数(第3档)5280=1000 刚性攻丝时主轴和攻丝轴的位置控制回路增益5300=20 刚性攻丝时攻丝轴的到位宽度5301=20 刚性攻丝时主轴的到位宽度5310=32000 刚性攻丝时攻丝轴移动时位置偏差的极限值5311=32000 刚性攻丝时主轴移动时位置偏差的极限值5312=800 刚性攻丝中攻丝轴停止时的位置偏差极限值5313=800 在刚性攻丝中主轴停止时的位置偏差极限值5314=32000 在刚性攻丝中攻丝轴移动时位置偏差的极限值。

发那科0I-MB系统刚性攻丝相关参数

发那科0I-MB系统刚性攻丝相关参数

0I-M B刚性攻丝相关参数3706#03706#1主轴与P O S I T I O N C O D E R齿比 0,01:15200#1主轴与P O S I T I O N C O D E R齿比设定0:N O.3706#1,01:N O.5221~5224,N O.5231~523405200#4攻丝旋出进给率设定 0无效5201#0平滑刚性攻丝 1有效5201#2攻入、旋出加减速时间设定0: N O.5261~52641:N O.5261~5264,N O.5271~527405201#3攻丝旋出进给率增量单位0:1%1:10%05202#0刚性攻丝前先做主轴定位 1有效5210刚性攻丝指令码 295211攻丝旋出进给率 100100%5221低档主轴侧齿数(G R10=1)05222中档主轴侧齿数(G R20=1)05223高档主轴侧齿数(G R30=1)05231低档马达侧齿数(G R10=1)05232中档马达侧齿数(G R20=1)05233高档马达侧齿数(G R30=1)05241(低档)5242(中档)5243(高档)刚性攻丝之主轴上限值 3000 5261低档攻入(旋出)加减速时间(G R10=1)12005262中档攻入(旋出)加减速时间(G R20=1)12005263高档攻入(旋出)加减速时间(G R30=1)12005271低档旋出加减速时间设定(G R10=1)05272中档旋出加减速时间设定(G R20=1)05273高档旋出加减速时间设定(G R30=1)05280Z轴位置回路增益 25005281低档位置回路增益(G R10=1)25005282中档位置回路增益(G R20=1)25005283高档位置回路增益(G R30=1)25005300Z轴检测宽度 305301主轴检测宽度 305310Z轴移动中位置偏移量 320005311主轴移动中位置偏移量 320005312Z轴停止中位置偏移量 5005313主轴停止中位置偏移量 5005321~5323刚性攻丝主轴背隙补偿 04000#0主轴和马达转动方向0:同向1:反向 04001#4主轴和主轴外部检出器转动方向0:同向1:反向 04002#3,2,1,0主轴外部检出器型式 0,0,0,1以马达速度检出器作位置回馈第 1页4003#0主轴定位方式 0P O S I T I O N C O D E R4003#3,#2主轴定位旋转方向皮带式:1,0齿轮式:1,11,0固定正转4003#7,6,5,4主轴外部检出器齿数 0,0,0,0256λ/r e v4004#2外部一回转信号 1使用4004#3外部一回转信号检出边缘设定 0上缘4006#1齿数比解析度选择 1*10004010#2,1,0主轴马达检出器型式 0,0,0M i s e n s o r4011#2,1,0主轴马达检出器齿数 0,1,0256λ/r e v4016#7位置控制模式(主轴定位)是否每次检查外部一回转信号 1每次检查4038主轴定位速度 1004044高档速度回路比例增益(C T H1A=0)20(10)4045低档速度回路比例增益(C T H1A=1)20(10)4052高档速度回路积分增益(C T H1A=0)100(10)4053低档速度回路积分增益(C T H1A=1)100(10)4056高档齿数比(C T H1A=0,C T H2A=0)7384057中高档齿数比(C T H1A=0,C T H2A=1)7384058中低档齿数比(C T H1A=1,C T H2A=0)7384059低档齿数比(C T H1A=1,C T H2A=1)7384060主轴定位之高档位置回路增益(C T H1A=0,C T H2A=0)10004061主轴定位之中高档位置回路增益(C T H1A=0,C T H2A=1)1000 4062主轴定位之中低档位置回路增益(C T H1A=1,C T H2A=0)1000 4063主轴定位之低档位置回路增益(C T H1A=1,C T H2A=1)10004065高档位置回路增益(C T H1A=0,C T H2A=0)25004066中高档位置回路增益(C T H1A=0,C T H2A=1)25004067中低档位置回路增益(C T H1A=1,C T H2A=0)25004068低档位置回路增益(C T H1A=1,C T H2A=1)25004085马达电压设定(%)(高速线圈用)704099马达激磁延迟时间 3004137马达电压设定(%)(低速线圈用)704171高档主轴侧齿数(C T H1A=0)484172高档马达侧齿数(C T H1A=0)654173低档主轴侧齿数(C T H1A=1)484174低档马达侧齿数(C T H1A=1)65备 注 :1.N O.4056~4059齿比设定错误时,主轴定位会有左右晃动或定位速度变慢现象。

机床大讲堂第42讲——FANUC0iD系统动力刀刚性攻丝功能的实现

机床大讲堂第42讲——FANUC0iD系统动力刀刚性攻丝功能的实现

机床大讲堂第42讲——FANUC0iD系统动力刀刚性攻丝功能的实现FANUC 0iD系统动力刀刚性攻丝功能的实现导读通过对车削复合中心的动力刀刚性攻丝动作原理分析,在对车削复合中心进行数控系统改造的过程中,用编制宏程序的方法来实现动力刀的刚性攻丝,满足工件的加工要求。

陕西航天某研究所,一台韩国产配置FANUC 21T系统的车削复合中心,连续使用了近20年系统严重老化,最后系统损坏严重,参数等数据丢失,由于之前系统没有做好数据备份工作,书面资料缺失严重,所以要恢复的可能性不大,考虑到系统等电气元件严重老化,为此进行电气系统改造,解决目前机床存在的问题。

1系统改造方案数控系统采用FANUC 0iTD系统代替21T系统。

该机床的X轴、Z轴、B轴现均采用日本FANUC公司生产的αif 系列交流伺服电动机。

B轴(系统第3轴)控制刀塔的旋转、动力刀的旋转或则作为CNC轴用于刚性攻丝时的丝锥旋转(B轴伺服电动机动力传给刀库旋转找刀及当前动力刀的旋转都有相应的机械切换装置);主轴控制部分采用αii系列主轴电动机,可以通过手动或自动方式实现主轴的旋转功能;主轴的位置反馈采用主轴上安装的BZi SENSOR反馈元件,因此主轴还可以根据需要切换成CS轴,编程时使用C(或H轴)。

车削复合中心的转塔刀架上,除了装有车削刀具外,还能装上铣刀、钻头和丝锥等旋转的动力刀具,机床主轴具有的数控精确分度的C轴功能,具备了C与Z轴或和C与X轴联动的功能。

这样一台车削中心不仅可以像普通数控车床那样能对回转体件的内外表面(含圆柱面、锥面、曲面等)、端面进行车削加工,还可以利用C-Z轴联动功能车螺纹,利用C轴分度功能和刀架的X或Z轴控制以及其上的动力旋转刀具进行偏离回转体件轴心线的铣削、钻孔和动力刀的刚性攻丝,从而大大地扩展了数控车床复合加工的能力。

2动力刀刚性攻丝动作原理分析相比较主轴的刚性攻丝,本车削复合中心动力刀的刚性攻丝的特点如下,车削复合中心的主轴具备CS功能,利用C轴的分度功能,使工件根据需要进行360°范围的定位,在工件的不同位置根据需要进行Z轴方向的动力刀刚性攻丝(端面刚性攻丝);进行X轴方向的动力刀刚性攻丝(侧面刚性攻丝)。

发那科系统培训课件

发那科系统培训课件
FANUC应用中心数控培训
——创世纪专场
目录 Contents
Part 1 加工问题 Part 2 效率问题 Part 3 维修专题
Part 1 加工问题
加工问题
振纹
圈纹 过渡不顺
接刀痕
高光
刚性攻丝 尺寸偏差
4
© BEIJING-FANUC MECHATRONICS CO., LTD.
您身边的数控专家
2、确认X/Y轴的参数No.2021、No.2335、No.1825、No.2043在下表设定 的范围内:
参数号 No.2021 No.2335 No.2043 No.1825 设定范围 512至768 300至400 45至70 8000至13000
3、将X/Y/Z三轴的反向间隙和背隙参数按下表设定:
振纹 Part1.1
1. 波浪纹 2. 明暗纹
5
© BEIJING-FANUC MECHATRONICS CO., LTD.
您身边的数控专家
Step1:案例描述
案例一:东莞市艾利五金制品有限公司
机台信息:T5A 系统配置:0i-MF+ais8/4000*2+ais12/4000+aiI2/20000; 加工问题:艾利现场有 4台机台加工苹果IPod播放器的侧面有振纹;
多面体纹
• 现象:手机边框等侧面和圆角加工时,在拐角处,出现一 棱一棱的现象,加工表面看起来像多面体
• 原因:软件生成的线段长度过长导致 • 解决方法:减小CAM公差,减小编程的线段长度
15
© BEIJING-FANUC MECHATRONICS CO., LTD.
您身边的数控专家
多面体纹处理方法
24
© BEIJING-FANUC MECHATRONICS CO., LTD.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

FANUC系统设定参数实现刚性攻丝
两种攻丝方式的比较:以前的加工中心为了攻丝 , 一般都是根据所选用的丝锥和工艺要求 , 在加工程序中编入一个主轴转速和正 /反转指令 , 然后再编人 G84/G74 固定循环 , 在固定循环中给出有关的数据 , 其中 Z 轴的进给速度是根据 F =丝锥螺距×主轴转速得出 , 这样才能加工出需要的螺孔来。

虽然从表面上看主轴转速与进给速度是根据螺距配合运行的 , 但是主轴的转动角度是不受控的 , 而且主轴的角度位置与 Z 轴的进给没有任何同步关系 , 仅仅依靠恒定的主轴转速与进给速度的配合是不够的。

主轴的转速在攻丝的过程中需要经历一个停止-正转-停止-反转-停止的过程 , 主轴要加速-制动
-加速-制动 , 再加上在切削过程中由于工件材质的不均匀 , 主轴负载波动都会使主轴速度不可能恒
定不变。

对于进给 Z 轴 , 它的进给速度和主轴也是相似的 , 速度不会恒定 , 所以两者不可能配合得天衣无缝。

这也就是当采用这种方式攻丝时 , 必须配用带有弹簧伸缩装置的夹头 , 用它来补偿 Z 轴进给与主轴转角运动产生的螺距误差。

如果我们仔细观察上述攻丝过程 , 就会明显地看到 , 当攻丝到底 ,Z 轴停止了而主轴没有立即停住 ( 惯量 ), 攻丝弹簧夹头被压缩一段距离 , 而当 Z 轴反向进给时 , 主轴正在加速 , 弹簧夹头被拉伸 , 这种补偿弥补了控制方式不足造成的缺陷 , 完成了攻丝的加工。

对于精度要求不高的螺纹孔用这种方法加工尚可以满足要求 , 但对于螺纹精度要求较高 ,6H 或以上的螺纹以及
被加工件的材质较软 ( 铜或铝 ) 时 , 螺纹精度将不能得到保证。

还有一点要注意的是 , 当攻丝时主轴转速越高 ,Z 轴进给与螺距累积量之间的误差就越大 , 弹簧夹头的伸缩范围也必须足够大 , 由于夹头
机械结构的限制 , 用这种方式攻丝时 , 主轴转速只能限制在 600r/min 以下。

刚性攻丝就是针对上述方式的不足而提出的 , 它在主轴上加装了位置编码器 , 把主轴旋转的角度位置反馈给技控系统形成位置闭环 , 同时与 Z 轴进给建立同步关系 , 这样就严格保证了主轴旋转角度和Z 轴进给尺寸的线生比例关系。

因为有了这种同步关系 , 即使由于惯量、加减速时间常数不同、负载波动而造成的主轴转动的角度或 Z 轴移动的位置变化也不影响加工精度 , 因为主轴转角与 Z 轴进给是同步的 , 在攻丝中不论任何一方受干扰发生变化 , 则另一方也会相应变化 , 并永远维持线性比例关系。

如果我们用刚性攻丝加工螺纹孔 , 可以很清楚地看到 , 当 Z 轴攻丝到达位置时 , 主轴转动与 Z 轴进给
是同时减速并同时停止的 , 主轴反转与 Z 轴反向进给同样保持一致。

正是有了同步关系 , 丝锥夹头就用普通的钻夹头或更简单的专用夹头就可以了 , 而且刚性攻丝时 , 只要刀具 ( 丝锥 ) 强度允许 , 主
轴的转速能提高很多 ,4 000r/min 的主轴速度已经不在话下。

加工效率提高 5 倍以上, 螺纹精度还得到保证 , 目前已经成为加工中心不可缺少的一项主要功能。

刚性攻丝功能的实现:从电气控制的角度来看 , 数控系统只要具有主轴角度位置控制和同步功能 , 机床就能进行刚性攻丝 , 当然还需在机床上加装反馈主轴角度的位置编码器。

要正确地反映主轴的角度位置 , 最好把编码器与主轴同轴联接 , 如果限于机械结构必需通过传动链联接时 , 要坚持 1:1 的传动
比 , 若用皮带 , 则非同步带不可。

还有一种可能 , 那就是机床主轴和主轴电动机之间是直连 , 可以借用主轴电动机本身带的内部编码器作主轴位置反馈 , 节省二项开支。

除去安装必要的硬件外 , 主要的工作是梯形图控制程序的设计调试。

市面上有多种数控系统 , 由于厂家不同 , 习惯各异 , 对刚性攻丝的信号安排和处理是完全不一样的。

我们曾经设计和调试过几种常用数控系统的刚性攻丝控制程序 , 都比较繁琐。

调试人员不易理解梯形图控制程序 , 特别是第一台样机调试周期长 , 不利于推广和使用。

尽管如此 , 加工中心有了该项功能 , 扩大了加工范围 , 受到用户的青睐。

相关文档
最新文档