气体的等温变化PPT教学课件

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)研究的是哪一部分气体?
(2)如何保证封闭气体的温度不变? 不能用手触摸玻璃管
(3)如何测 V ? 测量空气柱的长度 (4)如何测量p?如何改变 p ?
根据高度差
数据
探究结论:
在温度不变时,压强p 和体积V成反比。
玻意耳定律
一定质量的理想气体,在温度保 持不变的情况下,压强p与V成反 比,或压强P与体积V的乘积保持 不变,即:PV=常量
f (v) 4 (
m
)3
2
e
mv2 2 kT
v2
2 kT
f(v)
f (v)dv dN N
v
dv
f(v)
v2 f (v)dv N
v1
N
结论:
v
v1
v2
在麦克斯韦速率分布曲线下的任意一块面积在数 值上等于相应速率区间内分子数占总分子数的百分率。
7.4 气体分子热运动速率的三种统计平均值
(1) 最概然速率: d f (v) 0 dv
D
p=p0-h
探究方法: 控制变量法
控制变量法:在实验中研究三个物理量的关 系时,先保持一个量不变,研究另外两个 量的关系;然后再保持另一个量不变,研 究剩余两个量的关系,最后把研究结果结 合起来,这种方法叫做控制变量法
基础知识:
等温变化: 气体在温度不变的状态下,
发生的变化叫做等温变化。
猜想
讨论回答:
4.除需特别考虑外,不计分子所受到的重力。
4.3 理想气体压强公式及其意义
P 1 mnv2 3
§5 气体动理论温度公式
P
nkT
2 3
n t
结论:
t
3 2
kT
温度标志着物体内部分子热运动的剧
烈程度,它是大量分子热运动的平均平动 动能 t 的统计平均值的量度。
t
1 2
m v2
3 2
kT
方均根速率:
常见的一些现象:
1、一壶水开了,水变成了水蒸气。 2、温度降到0℃以下,液体的水变成了固体的冰块。 3、气体被压缩,产生压强。 4、物体被加热,物体的温度升高。
热现象
热学的研究方法:
1.宏观法. 最基本的实验规律逻辑推理(运用数学) ------称为热力学。
优点:可靠、普遍。 缺点:未揭示微观本质。 2.微观法.
vp
2kT m
2RT 1.41 RT
M mol
M mol
f(v)
v
vp
(2)平均速率:设:速率为v1的分子数为N1个; 速率为v2的分子数为个N2 ;…。
总分子数: N=N1+ N2 + …+ Nn
1、气体的等温变化
1、描述气体的状态参量有哪些?
温度( T )、体积( V )和压强( p )
2、如何确定气体的状态参量呢?
温度( T )----------温度计 体积( V )----------容器的容积 压强( p )-----------气压计
p
p0
h
p=p0-h
h
B
A
p=p0+h
h
C
J
v32
3RT3 330.9 m s1
M mol
§6 能量按自由度均分定理 理想气体的内能
6.1 运动自由度的概念气体分子运动的自由度
自由度: 决定某物体在空间的位置所需要的独立 坐标数目。
作直线运动的质点: 作平面运动的质点:
一个自由度 二个自由度
作空间运动的质点: 三个自由度
运动刚体的自由度:
解:
t
3 2
kT
t1 t2
T1 T2
P nkT n1 n2 , T1 T2
P1 P2
例题3:试求氮气分子的平均平动动能和均方根速 率。设(1)在温度t = 1000℃时;(2)t = 0℃时; (3)t = -150 ℃时。
解:
t1
3 2
k T1
3 1.381023 1273 2
RT
mN mNA
kNA T
NkT
理想气体物态方程:
P nkT
标准状态下的分子数密度:
洛喜密脱数: no 2.69 1025 (m 3 )
例3.1;3.2(p107-108)
§4 气体动理论压强公式
4.1 压强的成因 压强:气体作用于容器壁单位面积上的垂直作用力 分子数密度 31019 个分子/cm3 = 3千亿个亿;
物质的微观结构 + 统计方法 ------称为统计力学 其初级理论称为气体分子运动论(气体动理论) 优点:揭示了热现象的微观本质。 缺点:可靠性、普遍性差。
宏观法与微观法相辅相成。
气体动理论 §1 分子运动的基本概念
一.热力学系统 热力学研究的对象----热力学系统. 热力学系统以外的物体称为外界。 孤立系统:系统和外界完全隔绝的系统
单原子分子:
t
1 2
mv2
1 2
m vx2
1 2
m
v
2 y
1 2
m
v
2 z
3 2
kT
v
2 x
v
2 y
vz2
1 v2 3
1 2
m vx2
1 2
m
v
2 y
1 2
m
v
2 z
1 2
kT
能量均分定理:
在温度为T 的平衡态下,物质分子的每一个自 由度都具有相同的平均动能,其大小都等于kT/2。
分子平均能量: i kT “i”为刚性分子自由度
2.631020 J
v12
3RT1 M mol
3 8.311273 28 103
1064
m s1
t2
3 2
k
T2
3 1.381023 273 5.651021J 2
v22
3RT2 M mol
38.31 273 28 10 3
493
m s1
t3
3 2
kT3
2.55 10 21
3.2 理想气体 理想气体:在任何情况下都严格遵守“波-马定 律”、“盖-吕定律”以及“查理定律”的气体。 3.3 理想气体物态方程
P1V1 P2V2 恒量 (质量不变) T1 T2 P,V ,T Po ,Vo ,To (标准状态)
标准状态:
Vo
M M mol
Vmol
Po 1.01325 105 Pa
3.1 气体的实验规律 一.气体定律
P1V1 P2V2 恒量 (质量不变) T1 T2
二.阿伏伽德罗定律 在相同的温度和压强下,1摩尔的任何气体所占据的体积 都相同.在标准状态下,即压强P0=1atm、温度T0=273.15K 时, 1摩尔的任何气体的体积均为 v0=22.41L/mol
N A 6.022 1023 mol 1
四.平衡状态
平衡态: 在不受外界影响(即系统与外界没有物质和能
量的交换)的条件下,无论初始状态如何,系统的 宏观性质在经充分长时间后不再发生变化的状态。 准静态过程:如果状态变化过程进行得非常缓慢,以 至过程中的每一个中间状态都近似于平衡态,这样的 过程称为“准静态过程 ”,又称“平衡过程 ”。
§3 理想气体物态方程
例:若汽缸内气体为系统,其它为外界
二.系统状态的描述 微观量:分子的质量、速度、动量、能量等。
在宏观上不能直接进行测量和观察。 宏观量: 温度、压强、体积等。
在宏观上能够直接进行测量和观察。 宏观量与微观量的关系: 宏观量与微观量的内在联系表现在大量分子杂乱无章 的热运动遵从一定的统计规律性上。在实验中,所测 量到的宏观量只是大量分子热运动的统计平均值。
知识与技能 过程与方法
一种控方制通法变过:量本法 节通课到过分 会猜析 实的哪想验学些探总设究习?结计情的在 培,你实过感体探 养验程都态究 合,体度的作与过精会价程神值中和观
一个规律: 玻意耳定律
掌握实验探究严的谨方认真的科学

态度。
热物理学
热学是研究与热现象有关的规律的科学。 热现象是物质中大量分子无规则运动的集体表现。 大量分子的无规则运动称为热运动。
m1
M mol pV RT1
, m2
M mol pV RT2
M mol 2 103 kg mol 1
m1
m2
M mol pV R
1 ( T1
1 T2
)
2103 5.07 106 10103 ( 1 1 )
8.31
280 290
1.50103(kg)
例题2.两瓶不同种类的气体,其分子平均平动动能 相等,但分子数密度不同。问:它们的温度是否相 同?压强是否相同?
平均能量:
(t r 2s) 1 kT
2
6.3 理想气体的内能
一、内能的概念
内能:系统处在一定的状态应具有一定的能量,它是 状态的单值函数。
在热力学中,它是分子热运动的动能和分子间的势能, 用E表示。
二、理想气体的内能
理想气体的内能: E M i RT M mol 2
§7 气体分子热运动的速率分布规律
v2 3kT m
k kNA R m m N A M mol
方均根速率:
v2 3kT 3RT
m
M mol
例1. 体积为10 l 的瓶内贮有氢气.在温度为280K时气压计读数为
5.07×106Pa.过了些时候,温度增为290K,但因开关漏气,气压
计读数仍没有变化.问漏去了多少氢气?
解: 设瓶内原有的氢气质量为m1,后来变为m2.
单个分子速率不可预知,大量分子的速率分布是遵 循统计规律,是确定的,这个规律也叫麦克斯韦速 率分布律。
7.1 速率分布概念 设有N=100个分子,速率范围:0 300 ms-1
v 0 100m s1 100 200m s1 200 300m s1
N 20
50
30
N
0.2 N
0.5
0.3
7.2速率分布函数
1.1mmHg=133.3Pa 2.标准大气压(atm)
1atm 760mmHg 1.013105 Pa
三、温度 t , T 反映系统内部大量分子作无规则剧烈运动程度
1.摄氏温标( t ) [单位:℃]
2.热力学温标( T ) [单位:K]
两者换算关系: T=273.15+t 状态参量:表征气体有关特性的物理量 如P、V、T等
To 273.15 K
Vmol 22.4 103 m3
PV PoVo M PoVmol
T
To M mol To
其中: M 为气体的总质量。
M mol为气体的摩尔质量。
令: R PoVmol 8.31 (J mol 1 K 1) To
R 称为“普适气体常数 ”
代入: PV PoVo M PoVmol
分子之间有一定的间隙,有一定的作用力; 分子热运动的平均速率约 v = 500m/s ; 分子的平均碰撞次数约 z = 1010 次/秒 。
4.2 理想气体的微观模型: 1.分子线度与分子间距相比较可忽略,分子看作质点。
2.除了分子碰撞的瞬间外,忽略分子间的相互作用。
3.气体分子在运动中遵守经典力学规律,假设碰撞为 弹性碰撞;
y
y′
cos2 cos2 cos2 1
结论: 自由刚体有六个自由度
C
x′
z′
三个平动自由度
x
z
三个转动自由度
单原子分子:一个原子构成一个分子
氦、氩等
三个自由度
双原子分子:两个原子构成一个分子
氢、氧、氮等
五个自由度
三原子分子:三个原子构成一个分子
水蒸汽、甲烷等
六个自由度
6.2 能量按自由度均分定理
2
单原子分子: i 3
3 kT
2
双原子分子: i 5 多原子分子: i 6
5 kT
2
6 kT
2
非刚性双原子分子除平动能、转动能,还有振动能:
振动
1 mr2 2
1 kr2 2
振动自由度 s=1
每个振动自由度分配平均能 2 倍 1 kT 2
设平动自由度 t ,转动自由度 r,振动自由度 s,
气体等温变化的p-v图像
p
t2 t1
0
V
例题:
一定质量气体的体积是20L时, 压强为1×105Pa。当气体的体积 减小到16L时,压强为多大?设 气体的温度保持不变。
答案: 1.25×10 5Pa
利用玻意耳定律解题的基本思路
(1)明确研究对象; (2)分析过程特点,判断为等温过程; (3)列出初、末状态的p、V值; (4)根据p1V1=p2V2列式求解; (5)讨论结果。
T
To
M mol To
理想气体物态方程: PV M RT M mol
阿伏伽德罗常数: N A 6.022 1023 mol 1
玻耳兹曼常数: k R 1.38 1023 (J K 1) NA
设:分子质量为 m,气体分子数为N,分子数密度 n。
M mN
M mol mNA
PV
M M mol
单位速率区间内分子数占总分子数的百分比:
N

Nv
v
速率分布函数:
(几率密度)
一般来说,它是和f(v)成正比
f
(v)
lim
N Nv
ห้องสมุดไป่ตู้1 N
dN dv
v 0
物理意义:
f (v)dv dN N
速率在 v附近,单位速率区间内分子数占总分子数 的百分比。
显然 f (v)dv 1 归一化条件
0
7.3 麦克斯韦速率分布定律
三.基本原理: 1.自然界中一切物体都是由大量不连续的、彼此间有
一定距离的微粒所组成,这种微粒称为分子. 2.分子间有相互作用力.
3.分子永不停息地作无规则的运动.
§2 气体的状态参量 平衡态
一、体积V 气体分子所能达到的空间范围. [单位: m3]
二、压强P 气体作用于容器壁单位面积的垂直作用力. [单位:Pa] 1Pa=1N/ m2
相关文档
最新文档