三角函数恒等变换含答案及高考题

合集下载

高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析

高一数学三角恒等变换试题答案及解析1.(12分)(1)求的值.(2)若,,,求的值.【答案】(1)1(2)【解析】(1)原式……6分(2),①②①-②得,. ……12分【考点】本小题主要考查利用和差角公式、同角三角函数基本关系式等求三角函数值,考查学生的运算求解能力.点评:解决给值求值问题时,要尽量用已知角来表示未知角.2.设-3π<α<-,则化简的结果是()A.sin B.cosC.-cos D.-sin【答案】C【解析】∵-3π<α<-π,∴-π<<-π,∴cos<0,∴原式==|cos|=-cos.3.已知cos2α-cos2β=a,那么sin(α+β)·sin(α-β)等于()A.-B.C.-a D.a【答案】C【解析】法一:sin(α+β)sin(α-β)=(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)=sin2αcos2β-cos2αsin2β=(1-cos2α)cos2β-cos2α(1-cos2β)=cos2β-cos2α=-a,故选C.法二:原式=-(cos2α-cos2β)=-(2cos2α-1-2cos2β+1)=cos2β-cos2α=-a.4.若cos2α=m(m≠0),则tan=________.【答案】【解析】∵cos2α=m,∴sin2α=±,∴tan===.5.求sin42°-cos12°+sin54°的值.【答案】【解析】sin42°-cos12°+sin54°=sin42°-sin78°+sin54°=-2cos60°sin18°+sin54°=sin54°-sin18°=2cos36°sin18°=====.6.给出下列三个等式f(xy)=f(x)+f(y),f(x+y)=f(x)·f(y),f(x+y)=,下列函数中不满足其中任何一个等式的是()A.f(x)=3x B.f(x)=sin xC.f(x)=logx D.f(x)=tan x2【答案】B【解析】对选项A,满足f(x+y)=f(x)·f(y),对选项C,满足f(xy)=f(x)+f(y),对选项D,满足f(x+y)=,故选B.7.的值为()A.2+B.C.2-D.【答案】C【解析】sin6°=sin(15°-9°)=sin15°cos9°-cos15°sin9°,cos6°=cos(15°-9°)=cos15°cos9°+sin15°sin9°,∴原式=tan15°=tan(45°-30°)==2-,故选C.8.已知α、β为锐角,cosα=,tan(α-β)=-,则tanβ的值为()A.B.C.D.【答案】B【解析】∵α是锐角,cosα=,故sinα=,tanα=∴tanβ=tan[α-(α-β)]==.9.已知sinα=,α为第二象限角,且tan(α+β)=1,则tanβ的值是() A.-7B.7C.-D.【答案】B【解析】由sinα=,α为第二象限角,得cosα=-,则tanα=-.∴tanβ=tan[(α+β)-α]===7.10.若a=tan20°,b=tan60°,c=tan100°,则++=()A.-1B.1C.-D.【答案】B【解析】∵tan(20°+100°)=,∴tan20°+tan100°=-tan60°(1-tan20°tan100°),即tan20°+tan60°+tan100°=tan20°·tan60°·tan100°,∴=1,∴++=1,选B.11.如果tan=2010,那么+tan2α=______.【答案】2010【解析】∵tan=2010,∴+tan2α=+====tan=2010.12.若π<α<,化简+.【答案】-cos【解析】∵π<α<,∴<<,∴cos<0,sin>0.∴原式=+=+=-+=-cos.13. cos75°cos15°-sin255°sin15°的值是()A.0B.C.D.-【答案】B【解析】原式=cos75°·cos15°+sin75°sin15°=cos(75°-15°)=cos60°=.14.已知0<α<<β<π,cosα=,sin(α+β)=-,则cosβ的值为() A.-1B.-1或-C.-D.±【答案】C【解析】∵0<α<, <β<π,∴<α+β<π,∴sinα=,cos(α+β)=-,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=×+×=-,故选C.15. cos+sin的值为()A.-B.C.D.【答案】B【解析】∵cos+sin=2=2=2cos=2cos=.16.=________.【答案】【解析】=cos cos-sin sin=cos cos+sin sin=cos=cos=.17.已知α、β为锐角,且tanα=,tanβ=,则sin(α+β)=________.【答案】【解析】∵α为锐角,tanα=,∴sinα=,cosα=,同理可由tanβ=得,sinβ=,cosβ=.∴sin(α+β)=sinαcosβ+cosαsinβ=×+×=.18.函数y=cos x+cos的最大值是________.【答案】【解析】法一:y=cos+cos=cos·cos+sin sin+cos=cos+sin==cos=cos≤.法二:y=cos x+cos x cos-sin x sin=cos x-sin x==cos,当cos=1时,y=.max19.已知<β<α<,cos(α-β)=,sin(α+β)=-,求sin2α的值.【答案】-.【解析】∵<β<α<,∴π<α+β<,0<α-β<.∴sin(α-β)===.∴cos(α+β)=-=-=-.则sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=×+×=-.20.在△ABC中,若sin A=,cos B=,求cos C.【答案】【解析】∵0<cos B=<,且0<B<π.∴<B<,且sin B=.又∵0<sin A<<,且0<A<π,∴0<A<或π<A<π.若π<A<π,则有π<A+B<π,与已知条件矛盾,∴0<A<,且cos A=.∴cos C=cos[π-(A+B)]=-cos(A+B)=sin A sin B-cos A cos B=×-×=.[点评]本题易忽视对角范围的讨论,直接由sin A=得出cos A=±,导致错误结论cos C=或.。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。

五年2018-2022高考数学真题按知识点分类汇编7-三角恒等变换(含解析)

五年2018-2022高考数学真题按知识点分类汇编7-三角恒等变换(含解析)

五年2018-2022高考数学真题按知识点分类汇编7-三角恒等变换(含解析)一、单选题1.(2022·北京·统考高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递减B .()f x 在,412ππ⎛⎫- ⎪⎝⎭上单调递增C .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减D .()f x 在7,412ππ⎛⎫⎪⎝⎭上单调递增2.(2022·北京·统考高考真题)在ABC 中,3,4,90AC BC C ==∠=︒.P 为ABC 所在平面内的动点,且1PC =,则PA PB ⋅的取值范围是( ) A .[5,3]-B .[3,5]-C .[6,4]-D .[4,6]-3.(2022·全国·统考高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ-=B .()tan 1αβ+=C .()tan 1αβ-=-D .()tan 1αβ+=-4.(2021·北京·统考高考真题)函数()cos cos2f x x x =-是 A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为985.(2021·全国·统考高考真题)22π5πcoscos 1212-=( )A .12B C 2D 6.(2021·浙江·统考高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( )A .0B .1C .2D .37.(2021·全国·高考真题)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=( )A B C D 8.(2021·全国·统考高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A ,C 两点到水平面A B C '''的高度差AA CC ''-约为(3 1.732≈)( )A .346B .373C .446D .4739.(2021·全国·统考高考真题)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A .3π2B .3π和2C .6π2D .6π和210.(2021·全国·统考高考真题)若tan 2θ=-,则()sin 1sin 2sin cos θθθθ+=+( )A .65-B .25-C .25D .6511.(2020·山东·统考高考真题)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若222sin a b c ab C +=+,且sin cos +a B C 2sin cos c B A =,则tan A 等于( ) A .3B .13-C .3或13- D .-3或1312.(2018·全国·高考真题)若1sin 3α=,则cos2α= A .89B .79C .79-D .89-13.(2018·全国·高考真题)函数()2tan 1tan xf x x=+的最小正周期为A .4πB .2π C .πD .2π14.(2018·全国·高考真题)已知函数()222cos sin 2f x x x =-+,则A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为415.(2018·全国·高考真题)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos23α=,则a b -= A .15BCD .116.(2019·全国·高考真题)已知α ∈(0,π2),2sin2α=cos2α+1,则sinα=A .15BCD二、多选题17.(2022·全国·统考高考真题)双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )AB .32CD18.(2021·全国·统考高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP = B .12AP AP = C .312OA OP OP OP ⋅=⋅ D .123OA OP OP OP ⋅=⋅三、填空题19.(2022·浙江·统考高考真题)若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.20.(2020·北京·统考高考真题)若函数()sin()cos f x x x ϕ=++的最大值为2,则常数ϕ的一个取值为________.21.(2018·全国·高考真题)已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________. 22.(2018·全国·高考真题)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+__________.23.(2019·江苏·高考真题)已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是_____.四、解答题24.(2022·天津·统考高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.25.(2022·北京·统考高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.26.(2022·全国·统考高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+27.(2021·天津·统考高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.28.(2021·浙江·统考高考真题)设函数()sin cos (R)f x x x x =+∈.(1)求函数22y fx π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦的最小正周期;(2)求函数()4y f x f x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上的最大值.29.(2020·浙江·统考高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.30.(2018·北京·高考真题)在ABC 中,17,8,cos 7a b B ===-.(1)求A ∠;(2)求AC 边上的高.31.(2018·浙江·高考真题)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P (3455--,). (Ⅰ)求sin (α+π)的值; (Ⅱ)若角β满足sin (α+β)=513,求cos β的值.32.(2018·北京·高考真题)已知函数()2sin cos f x x x x =.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若()f x 在区间,3m π⎡⎤-⎢⎥⎣⎦上的最大值为32,求m 的最小值.33.(2018·江苏·高考真题)已知,αβ为锐角,4tan 3α=,cos()αβ+=(1)求cos2α的值;(2)求tan()αβ-的值.34.(2019·江苏·高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b cos B =23,求c 的值;(2)若sin cos 2A B a b =,求sin()2B π+的值. 35.(2019·全国·高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .36.(2019·全国·统考高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 37.(2019·北京·高考真题)在△ABC 中,a =3,b −c =2,cos B =12-.(Ⅰ)求b ,c 的值; (Ⅱ)求sin (B –C )的值.38.(2019·天津·高考真题) 在ABC 中,内角A B C ,,所对的边分别为,,a b c .已知2b c a +=,3sin 4sin c B a C =.(Ⅰ)求cos B 的值;(Ⅱ)求sin 26B π⎛⎫+ ⎪⎝⎭的值.五、双空题39.(2022·北京·统考高考真题)若函数()sin f x A x x =的一个零点为3π,则A =________;12f π⎛⎫= ⎪⎝⎭________.参考答案:1.C【分析】化简得出()cos2f x x =,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为()22cos sin cos2f x x x x =-=.对于A 选项,当26x ππ-<<-时,23x ππ-<<-,则()f x 在,26ππ⎛⎫-- ⎪⎝⎭上单调递增,A 错;对于B 选项,当412x ππ-<<时,226x ππ-<<,则()f x 在,412ππ⎛⎫- ⎪⎝⎭上不单调,B 错;对于C 选项,当03x π<<时,2023x π<<,则()f x 在0,3π⎛⎫⎪⎝⎭上单调递减,C 对;对于D 选项,当7412x ππ<<时,7226x ππ<<,则()f x 在7,412ππ⎛⎫⎪⎝⎭上不单调,D 错.故选:C. 2.D【分析】依题意建立平面直角坐标系,设()cos ,sin P θθ,表示出PA ,PB ,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【详解】解:依题意如图建立平面直角坐标系,则()0,0C ,()3,0A ,()0,4B ,因为1PC =,所以P 在以C 为圆心,1为半径的圆上运动, 设()cos ,sin P θθ,[]0,2θπ∈,所以()3cos ,sin PA θθ=--,()cos ,4sin PB θθ=--, 所以()()()()cos 3cos 4sin sin PA PB θθθθ⋅=-⨯-+-⨯- 22cos 3cos 4sin sin θθθθ=--+13cos 4sin θθ=--()15sin θϕ=-+,其中3sin 5ϕ=,4cos 5ϕ=,因为()1sin 1θϕ-≤+≤,所以()415sin 6θϕ-≤-+≤,即[]4,6PA PB ⋅∈-; 故选:D3.C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解. 【详解】[方法一]:直接法由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=, 即:()()sin cos 0αβαβ-+-= 所以()tan 1αβ-=- 故选:C[方法二]:特殊值排除法解法一:设β=0则sinα +cosα =0,取=2πα,排除A, B ;再取α=0则sinβ +cosβ= 2sinβ,取β=4π,排除D ;选C. [方法三]:三角恒等变换sin()cos()]44cos sin sin 444ππαβαβαβαβπππαβαβαβ+++=+++++++=+(()()()()cos sin 44ππαβαβ+=+()() sin cos cos sin =044ππαβαβ+-+()()即sin=04παβ+-()sin =sin cos cos sin =0444πππαβαβαβαβαβ∴-+-+--+-()()()()()sin =cos αβαβαβ∴----()()即tan()=-1,故选:C. 4.D【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【详解】由题意,()()()()cos cos 2cos cos2f x x x x x f x -=---=-=,所以该函数为偶函数,又2219()cos cos 22cos cos 12cos 48f x x x x x x ⎛⎫=-=-++=--+ ⎪⎝⎭,所以当1cos 4x =时,()f x 取最大值98. 故选:D. 5.D【分析】由题意结合诱导公式可得22225cos cos cos sin 12121212ππππ-=-,再由二倍角公式即可得解.【详解】由题意,2222225cos cos cos cos cos sin 1212122121212πππππππ⎛⎫-=--=- ⎪⎝⎭cos6π==故选:D. 6.C【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则1111sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向. 7.A【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解. 【详解】cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--, 0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,cos α∴==sin tan cos ααα∴==故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出8.B【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案.【详解】过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB 为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 30-︒=︒-︒=︒︒-︒︒=所以210042''100(31)27362A B ⨯==≈-,所以''''100373AA CC A B -=+≈. 故选:B .【点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.【分析】利用辅助角公式化简()f x,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,()sin cos3s3323234x x x xf xxπ=+=+⎛+⎫⎪⎝⎭,所以()f x的最小正周期为2613T故选:C.10.C【分析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(221sin cosθθ=+),进行齐次化处理,化为正切的表达式,代入tan2θ=-即可得到结果.【详解】将式子进行齐次化处理得:()()()22sin sin cos2sin cossin1sin2sin sin cossin cos sin cosθθθθθθθθθθθθθθ+++==+++()2222sin sin cos tan tan422sin cos1tan145θθθθθθθθ++-====+++.故选:C.【点睛】易错点睛:本题如果利用tan2θ=-,求出sin,cosθθ的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.11.A【分析】利用余弦定理求出tan2C=,并进一步判断4Cπ>,由正弦定理可得sin()sinA C B+==【详解】222sincos tan222a b c CC Cab+-==⇒=,4Cπ∴>,2sin sin sina b cRAB C===,sin sin cos sin sin cosA B C C B AB∴⋅⋅+⋅⋅=,sin()sin22A C B∴+=⇒=4Bπ∴=,tan1B∴=,∴tan tan tan tan()31tan tan B CA B C B C+=-+=-=-⋅,故选:A. 12.B【详解】分析:由公式2cos2α12sin α=-可得结果. 详解:227cos2α12199sin α=-=-= 故选B.点睛:本题主要考查二倍角公式,属于基础题. 13.C【详解】分析:将函数()2f 1tanxtan xx =+进行化简即可详解:由已知得()221f sin2,1221()sinxtanx cosx sinxcosx x x k k Z sinx tan x c x osxππ⎛⎫====≠+∈ ⎪+⎝⎭+ ()f x 的最小正周期2T π2π== 故选C.点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题 14.B【分析】首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为()35cos222f x x =+,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 【详解】根据题意有()1cos2x 35cos212cos2222f x x x -=+-+=+, 所以函数()f x 的最小正周期为22T ππ==, 且最大值为()max 35422f x =+=,故选B. 【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 15.B【分析】首先根据两点都在角的终边上,得到2b a =,利用2cos23α=,利用倍角公式以及余弦函数的定义式,求得215a =,从而得到a =,再结合2b a =,从而得到2a b a a -=-,从而确定选项. 【详解】由,,O A B 三点共线,从而得到2b a =, 因为222cos22cos 1213αα⎛⎫=-=⋅-=,解得215a =,即a =所以2a b a a -=-=B. 【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果. 16.B【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案. 【详解】2sin 2cos21α=α+,24sin cos 2cos .0,,cos 02π⎛⎫∴α⋅α=αα∈∴α> ⎪⎝⎭.sin 0,2sin cos α>∴α=α,又22sin cos 1αα+=,2215sin 1,sin 5∴α=α=,又sin 0α>,sin α∴=B . 【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉. 17.AC【分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,利用正弦定理结合三角变换、双曲线的定义得到23b a =或2a b =,即可得解,注意就,M N 在双支上还是在单支上分类讨论.【详解】[方法一]:几何法,双曲线定义的应用情况一M 、N 在双曲线的同一支,依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为B , 所以1OB F N ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的左支, OB a =,1OF c =, 1FB b =,设12F NF α∠=,由即3cos 5α=,则4sin 5α, 235NA NF 22a a ==, 21NF NF 2a -=532222a a b a ⎛⎫--= ⎪⎝⎭, 52b e 2a =∴=, 选A 情况二若M 、N 在双曲线的两支,因为123cos 05F NF ∠=>,所以N 在双曲线的右支, 所以OB a =,1OF c =, 1FB b =,设12F NF α∠=, 由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α,235NA NF 22a a ==, 12NF NF 2a -= 352222a b a a +-=, 所以23b a =,即32b a =,所以双曲线的离心率c e a ==选C[方法二]:答案回代法A e =选项特值双曲线())22121,F ,F 4x y -=∴,过1F 且与圆相切的一条直线为(y 2x =,两交点都在左支,N ⎛∴ ⎝,2112NF 5,NF 1,FF ∴===则123cos 5F NF ∠=,C e =选项特值双曲线())2212x y 1,F ,F 49-=∴,过1F 且与圆相切的一条直线为(2y x 3=,两交点在左右两支,N 在右支,N ∴,2112NF 5,NF 9,FF ∴===则123cos 5F NF ∠=,[方法三]:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G , 若,M N 分别在左右支,因为1OG NF ⊥,且123cos 05F NF ∠=>,所以N 在双曲线的右支, 又OG a =,1OF c =,1GF b =, 设12F NF α∠=,21F F N β∠=, 在12F NF △中,有()212sin sin sin NF NF cβαβα==+, 故()122sin sin sin NF NF cαββα-=+-即()sin sin sin a c αββα=+-,所以sin cos cos sin sin sin a cαβαββα=+-,而3cos 5α=,sin ac β=,cos b cβ=,故4sin 5α, 代入整理得到23b a =,即32b a =, 所以双曲线的离心率221312c b e a a ==+=若,M N 均在左支上,同理有()212sin sin sin NF NF c βαβα==+,其中β为钝角,故cos bc β=-, 故()212sin sin sin NF NF cβαβα-=-+即sin sin cos cos sin sin a c βαβαβα=--,代入3cos 5α=,sin ac β=,4sin 5α,整理得到:1424a b a , 故2a b =,故251b e a ⎛⎫=+= ⎪⎝⎭故选:AC. 18.AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+=,222||(cos )(sin )1OP ββ=+-=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC19.45【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β. 【详解】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos αα-=αα⎫=⎪⎪⎭sin θ=,cos θ=()αθ-∴22k k Z παθπ-=+∈,,即22k παθπ=++,∴sin sin 2cos 2k παθπθ⎛⎫=++== ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.45. [方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos αα-=又22sin cos 1αα+=,将cos 3sin αα=210sin 90αα-+=,解得sin α=, 则224cos 22cos 12sin 15ββα=-=-=.45.20.2π(2,2k k Z ππ+∈均可)【分析】根据两角和的正弦公式以及辅助角公式即可求得()()f x x θ=+2,即可解出. 【详解】因为()()()cos sin sin 1cos f x x x x ϕϕθ=++=+,2=,解得sin 1ϕ=,故可取2ϕπ=. 故答案为:2π(2,2k k Z ππ+∈均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题. 21.32【分析】方法一:利用两角差的正切公式展开,解方程可得3tan 2α=. 【详解】[方法一]:直接使用两角差的正切公式展开因为5tantan tan 1444ππππ⎛⎫=+== ⎪⎝⎭,所以5tan tan5tan 114tan 541tan 51tan tan 4παπααπαα--⎛⎫-=== ⎪+⎝⎭+,解之得3tan 2α=. 故答案为:32.[方法二]:整体思想+两角和的正切公式551tan tan 1553445tan tan 15544211tan tan 544ππαππααππα⎛⎫-++ ⎪⎡⎤⎛⎫⎝⎭=-+=== ⎪⎢⎥⎛⎫⎝⎭⎣⎦--- ⎪⎝⎭. 故答案为:32.[方法三]:换元法+两角和的正切公式 令54πθα=-,则1tan 5θ=,且54παθ=+.151tan tan5354tan tan 51421tan tan 145πθπαθπθ++⎛⎫=+=== ⎪⎝⎭--.故答案为:32.【整体点评】方法一:直接利用两角差的正切公式展开,解方程,思路直接; 方法二:利用整体思想利用两角和的正切公式求出;方法三:通过换元法结合两角和的正切公式求出,是给值求值问题的常用解决方式. 22.12-【分析】方法一:将两式平方相加即可解出. 【详解】[方法一]:【最优解】两式两边平方相加得22sin()1αβ++=,1in()s 2αβ+=-.[方法二]: 利用方程思想直接解出sin 1cos ,cos sin αβαβ=-=-,两式两边平方相加得1cos 2β=,则1sin 2α=.又cos sin αβ⎧=⎪⎪⎨⎪=⎪⎩或cos sin αβ⎧=⎪⎪⎨⎪=⎪⎩,所以1in()s 2αβ+=-.[方法三]: 诱导公式+二倍角公式由cos sin 0αβ+=,可得3sin cos sin 2πβαα⎛⎫=-=+ ⎪⎝⎭,则322k πβπα=++或32()2k k πβππα⎛⎫=+-+∈ ⎪⎝⎭Z .若32()2k k πβπα=++∈Z ,代入得sin cos 2sin 1αβα+==,即2131sin ,sin()sin 22cos22sin 1222k πααβπααα⎛⎫=+=++=-=-=- ⎪⎝⎭.若2()2k k πβπα=--∈Z ,代入得sin cos 0αβ+=,与题设矛盾.综上所述,1in()s 2αβ+=-.[方法四]:平方关系+诱导公式由2222cos sin (1sin )(cos )22sin 1ββααα+=-+-=-=,得1sin 2α=. 又sin 1cos tan tan tan cos sin 22αβββααβ-⎛⎫===-=- ⎪-⎝⎭,()2k k βαπ=-∈Z ,即22k απβ=-,则2()k k αβπα+=-∈Z .从而1sin()sin(2)sin 2k αβπαα+=-=-=-.[方法五]:和差化积公式的应用由已知得1(sin cos )(cos sin )(sin 2sin 2)cos()2αβαβαβαβ++=++-sin()cos()cos()0αβαβαβ=+-+-=,则cos()0αβ-=或sin()1αβ+=-.若cos()0αβ-=,则()2k k παβπ-=+∈Z ,即()2k k παβπ=++∈Z .当k 为偶数时,sin cos αβ=,由sin cos 1αβ+=,得1sin cos 2αβ==,又23cos sin 0,cos sin sin 4αβαββ+==-=-,所以131sin()sin cos cos sin 442αβαβαβ+=+=-=-.当k 为奇数时,sin cos αβ=-,得sin cos 0αβ+=,这与已知矛盾. 若sin()1αβ+=-,则2()2k k παβπ+=-∈Z .则sin sin 2cos 2k παπββ⎛⎫=--=- ⎪⎝⎭,得sin cos 0αβ+=,这与已知矛盾.综上所述,1in()s 2αβ+=-.【整体点评】方法一:结合两角和的正弦公式,将两式两边平方相加解出,是该题的最优解; 方法二:通过平方关系利用方程思想直接求出四个三角函数值,进而解出; 方法三:利用诱导公式寻求角度之间的关系,从而解出; 方法四:基本原理同方法三,只是寻找角度关系的方式不同;方法五:将两式相乘,利用和差化积公式找出角度关系,再一一验证即可解出,该法稍显麻烦. 23. 【分析】由题意首先求得tan α的值,然后利用两角和差正余弦公式和二倍角公式将原问题转化为齐次式求值的问题,最后切化弦求得三角函数式的值即可.【详解】由()tan 1tan tan tan 2tan 1tan 13tan 1tan 4αααααπααα-===-++⎛⎫+ ⎪-⎝⎭, 得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.sin 2sin 2cos cos 2sin 444πππααα⎛⎫+=+ ⎪⎝⎭)22222sin cos cos sin sin 2cos 2sin cos αααααααα⎫+-+⎪+⎝⎭222tan 1tan tan 1ααα⎫+-⎪+⎝⎭, 当tan 2α=时,上式22221221⎫⨯+-⎪+⎝⎭ 当1tan 3α=-时,上式22112133113⎛⎫⎛⎫⎛⎫⨯-+--⎪ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭综上,sin 2410πα⎛⎫+=⎪⎝⎭【点睛】本题考查三角函数的化简求值,渗透了逻辑推理和数学运算素养.采取转化法,利用分类讨论和转化与化归思想解题. 24.(1)1c =(2)sin B =(3)sin(2)A B -=【分析】(1)根据余弦定理2222cos a b c bc A =+-以及2b c =解方程组即可求出; (2)由(1)可求出2b =,再根据正弦定理即可解出;(3)先根据二倍角公式求出sin 2,cos 2A A ,再根据两角差的正弦公式即可求出.【详解】(1)因为2222cos a b c bc A =+-,即22162b c bc =++,而2b c =,代入得22264c c c =++,解得:1c =.(2)由(1)可求出2b =,而0πA <<,所以sin A =sin sin a b A B =,所以2sin sin b A B a===.(3)因为1cos 4A =-,所以ππ2A <<,故π02B <<,又sin A =,所以1sin 22sin cos 24A A A ⎛⎫==⨯-= ⎪⎝⎭,217cos 22cos 121168A A =-=⨯-=-,而sin B =cos B ==故7sin(2)sin 2cos cos 2sin 8A B A B A B ⎛-=-=+= ⎝⎭. 25.(1)6π(2)663【分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值;(2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABCS ab C a ===,解得a =由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=. 26.(1)5π8; (2)证明见解析.【分析】(1)根据题意可得,()sin sin C C A =-,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再根据正弦定理,余弦定理化简即可证出.【详解】(1)由2A B =,()()sin sin sin sin C A B B C A -=-可得,()sin sin sin sin C B B C A =-,而π02B <<,所以()sin 0,1B ∈,即有()sin sin 0C C A =->,而0π,0πC C A <<<-<,显然C C A ≠-,所以,πC C A +-=,而2A B =,πA B C ++=,所以5π8C =.(2)由()()sin sin sin sin C A B B C A -=-可得,()()sin sin cos cos sin sin sin cos cos sin C A B A B B C A C A -=-,再由正弦定理可得,cos cos cos cos ac B bc A bc A ab C -=-,然后根据余弦定理可知,()()()()22222222222211112222a cb bc a b c a a b c +--+-=+--+-,化简得: 2222a b c =+,故原等式成立.27.(I )(II )34;(III【分析】(I )由正弦定理可得::2a b c = (II )由余弦定理即可计算;(III )利用二倍角公式求出2C 的正弦值和余弦值,再由两角差的正弦公式即可求出.【详解】(I )因为sin :sin :sin 2A B C =::2a b c =2b =,2a c ∴==;(II )由余弦定理可得2223cos24a b c C ab +-===;(III )3cos 4C =,sin C ∴=,3sin 22sin cos 24C C C ∴===,291cos 22cos 121168C C =-=⨯-=,所以sin 2sin 2cos cos 2sin 666C C C πππ⎛⎫-=- ⎪⎝⎭1182=⨯=.28.(1)π;(2)1. 【分析】(1)由题意结合三角恒等变换可得1sin 2y x =-,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得sin 24y x π⎛⎫=- ⎪⎝⎭,再由三角函数的图象与性质即可得解.【详解】(1)由辅助角公式得()sin cos 4f x x x x π⎛⎫=+=+⎪⎝⎭,则2223332sin 1cos 21sin 22442y fx x x x x ππππ⎡⎤⎤⎛⎫⎛⎫⎛⎫=+=+=+=-+=- ⎪ ⎪⎪⎢⎥⎥⎝⎭⎝⎭⎝⎭⎣⎦⎛⎫⎪⎭⎦⎝, 所以该函数的最小正周期22T ππ==;(2)由题意,()2sin sin 444y f x f x x x x x πππ⎛⎫⎛⎫⎛⎫=-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭22sin cos x x x x x x ⎫=⋅+=⎪⎪⎝⎭1cos 2222sin 224x x x x x π-⎛⎫=- ⎪⎝⎭, 由0,2x π⎡⎤∈⎢⎥⎣⎦可得32,444x πππ⎡⎤-∈-⎢⎥⎣⎦,所以当242x ππ-=即38x π=时,函数取最大值129.(I )3B π=;(II )32⎤⎥⎝⎦ 【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I ) [方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc +-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=, 即444222222220a b c a c a b b c +++--=, 即44422222222222a b c a c a b b c a c +++--=, 即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->, ∴222a c b ac +-=,所以2221cos 22a cb B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II ) [方法一]:余弦定理基本不等式 因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤. 由临界状态(不妨取2A π=)可知a cb+=而ABC为锐角三角形,所以a cb+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++,222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质 结合(1)的结论有: 12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 22A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin 6A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,13sin 622A π⎤⎛⎫++∈⎥ ⎪⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是313,22⎛⎤+ ⎥ ⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解. 30.(1)∠A =π3;(2)AC 边上的高为332.【分析】(1)方法一:先根据平方关系求sin B ,再根据正弦定理求sin A ,即得A ∠; (2)方法一:利用诱导公式以及两角和正弦公式求sin C ,即可解得AC 边上的高. 【详解】(1)[方法一]:平方关系+正弦定理在ABC 中,∵21π43cos ,,π,sin 1cos 727B B B B ⎛⎫=-∴∈∴=-=⎪⎝⎭.由正弦定理得 783ππ,sin .,π,0,,.sin sin sin 2223437a b A B A A A B A π⎛⎫⎛⎫=⇒=∴=∈∴∈∴∠= ⎪ ⎪⎝⎭⎝⎭[方法二]:余弦定理的应用由余弦定理知2222cos b a c ac B =+-.因为17,8,cos 7a b B ===-,代入上式可得3c =或5c =-(舍).所以2221cos 22b c a A bc +-==,又(0,π)A ∈,所以π3A =. (2)[方法一]:两角和的正弦公式+锐角三角函数的定义 在△ABC 中,∵sin sin()sin cos sin cos C A B A B B A =+=+=311432727⎛⎫⨯-+⨯ ⎪⎝⎭=3314.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=33337142⨯=, ∴AC 边上的高为332.[方法二]:解直角三角形+锐角三角函数的定义如图1,由(1)得1cos 842AD AC A =∠=⨯=,则14737AB =-⨯=.作BE AC ⊥,垂足为E ,则333sin 322BE AB A =∠=⨯=,故AC 边上的高为332.[方法三]:等面积法由(1)得60A ∠=︒,易求43CD =1,作CD AB ⊥,易得4=AD ,即3AB =.所以根据等积法有11sin 22AC BE AB AC A ⋅⋅=⋅⋅⋅,即33BE =所以AC 33【整体点评】(1)方法一:已知两边及一边对角,利用正弦定理求出;方法二:已知两边及一边对角,先利用余弦定理求出第三边,再根据余弦定理求出角; (2)方法一:利用两角和的正弦公式求出第三个角,再根据锐角三角函数的定义求出; 方法二:利用初中平面几何知识,通过锐角三角函数定义解直角三角形求出; 方法三:利用初中平面几何知识,通过等面积法求出. 31.(Ⅰ)45;(Ⅱ)5665- 或1665.【分析】分析:(Ⅰ)先根据三角函数定义得sin α,再根据诱导公式得结果,(Ⅱ)先根据三角函数定义得cos α,再根据同角三角函数关系得()cos αβ+,最后根据()βαβα=+-,利用两角差的余弦公式求结果.【详解】详解:(Ⅰ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得4sin 5α=-,所以()4sin πsin 5αα+=-=.(Ⅱ)由角α的终边过点34,55P ⎛⎫-- ⎪⎝⎭得3cos 5α=-,由()5sin 13αβ+=得()12cos 13αβ+=±.由()βαβα=+-得()()cos cos cos sin sin βαβααβα=+++, 所以56cos 65β=-或16cos 65β=. 点睛:三角函数求值的两种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数. (2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异. ①一般可以适当变换已知式,求得另外函数式的值,以备应用; ②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的. 32.(Ⅰ)π ;(Ⅱ)π3.【分析】(I )将()f x 化简整理成()sin()f x A x ωϕ=+的形式,利用公式2||T πω=可求最小正周期;(II )根据[,]3x m π∈-,可求26x π-的范围,结合函数图象的性质,可得参数m 的取值范围.【详解】(Ⅰ)()1cos211π1cos2sin 222262x f x x x x x -⎛⎫==-+=-+ ⎪⎝⎭, 所以()f x 的最小正周期为2ππ2T ==. (Ⅱ)由(Ⅰ)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭.因为π,3x m ⎡⎤∈-⎢⎥⎣⎦,所以π5ππ2,2666x m ⎡⎤-∈--⎢⎥⎣⎦.要使得()f x 在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在π,3m ⎡⎤-⎢⎥⎣⎦上的最大值为1.所以ππ262m -≥,即π3m ≥. 所以m 的最小值为π3.点睛:本题主要考查三角函数的有关知识,解题时要注意利用二倍角公式及辅助角公式将函数化简,化简时要注意特殊角三角函数值记忆的准确性,及公式中符号的正负. 33.(1)725-;(2)211-【详解】分析:先根据同角三角函数关系得2cos α,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得tan2α,再利用两角差的正切公式得结果.详解:解:(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=. 因为22sin cos 1αα+=,所以29cos 25α=, 因此,27cos22cos 125αα=-=-. (2)因为,αβ为锐角,所以()0,παβ+∈.又因为()cos αβ+=()sin αβ+==因此()tan 2αβ+=-. 因为4tan 3α=,所以22tan 24tan21tan 7ααα==--,因此,()()()()tan2tan 2tan tan 21+tan2tan 11ααβαβααβααβ-+⎡⎤-=-+==-⎣⎦+. 点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.34.(1)c =(2. 【分析】(1)由题意结合余弦定理得到关于c 的方程,解方程可得边长c 的值;(2)由题意结合正弦定理和同角三角函数基本关系首先求得cos B 的值,然后由诱导公式可得sin()2B π+的值.【详解】(1)因为23,3a cb B ===,由余弦定理222cos 2a c b B ac +-=,得23=,即213c =.所以c =(2)因为sin cos 2A Ba b=, 由正弦定理sin sin a bA B=,得cos sin 2B B b b =,所以cos 2sin B B =.从而22cos (2sin )B B =,即()22cos 41cos B B =-,故24cos 5B =.因为sin 0B >,所以cos 2sin 0B B =>,从而cos B =.因此πsin cos 2B B ⎛⎫+= ⎪⎝⎭【点睛】本题主要考查正弦定理、余弦定理、同角三角函数关系、诱导公式等基础知识,考查运算求解能力.35.(1)3A π=;(2)sin C =【分析】(1)利用正弦定理化简已知边角关系式可得:222b c a bc +-=,从而可整理出cos A ,根据()0,A π∈可求得结果;(2)[方法一]由题意利用正弦定理边化角,然后结合三角形内角和可得1cos 2C C -=,然后结合辅助角公式可得64ππC =+,据此由两角和差正余弦公式可得sin C =【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C -=-+=-, 即:222sin sin sin sin sin B C A B C +-=, 由正弦定理可得:222b c a bc +-=, 2221cos 22b c a A bc +-∴==,()0,A π∈,3A π∴=.(2)[方法一]正弦定理+两角和差正余弦由(1)知,23B C π+=2b c +=,2sin 2sin 3πA C C ⎛⎫+-= ⎪⎝⎭,1cos 2C C -sin 6C π⎛⎫-= ⎪⎝⎭. 又20,,,3662C C ππππ⎛⎫⎛⎫∈-∈- ⎪ ⎪⎝⎭⎝⎭,所以64C ππ-=,即64ππC =+,则sin sin 64ππC ⎛⎫=+= ⎪⎝⎭[方法二]正弦定理+方程思想2b c +=,得sin 2sin B C A ==2sin C , 代入22(sin sin )sin sin sin B C A B C -=-,得23sin 2sin sin 4C C C ⎛⎛=- ⎝⎭⎝⎭,整理得24sin 10C C -+=,则sin C =由sin 2sin 0B C =>,得sin C >,所以sin C =[方法三]余弦定理令c t a=.由2,b c b c a =+>,得t >将2b c =代入222b c a bc +-=中,可得2230c a -+=,即2310t -+=,解得t =t =.所以sin sin c C t a A ===,从而sin C =[方法四]摄影定理因为2c b =+,所以1cos 45cos 602c b a b ︒=+=+︒, 由射影定理得()180456075C ∠=︒-︒+︒=︒,所以sin sin 75C ︒=. 【整体点评】方法一:首先由正弦定理边化角,然后由两角和差正余弦公式求解sin C 的值; 方法二:首先由正弦定理边化角,然后结合题意列方程,求解方程可得sin C 的值; 方法三:利用余弦定理求得ct a=的值,然后结合正弦定理可得sin C 的值; 方法四:利用摄影定理求得C ∠的值,然后由两角和差正余弦公式求解sin C 的值; 【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.36.(1) 3B π=;(2). 【分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABCS ac B =⋅,又根据正弦定理和1c =得到ABCS 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABCSC 的值域.【详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】 由三角形的内角和定理得222A C Bπ+=-, 此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭. 由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==, 此时就有sin cossin sin 2B A A B =,即cos sin 2BB =, 再由二倍角的正弦公式得sin2sin cos 222B B B =,解得3B π=.[方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】 由解法1得sin sin 2A CB +=, 两边平方得22sinsin 2A C B +=,即21cos()sin 2A CB -+=. 又180A BC ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=, 进一步整理得22cos cos 10B B +-=, 解得1cos 2B =,因此3B π=. [方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】 根据题意sinsin 2A Ca b A +=,由正弦定理得sin sin sin sin 2A C A B A +=, 因为0A π<<,故sin 0A >, 消去sin A 得sinsin 2A CB +=.。

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析)

高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知中,那么角=【答案】π/4【解析】略2.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos(α-)=,求f(α)的值.【答案】(1)f(α)==-cosα.(2)∵α是第三象限角,且cos(α-)=-sinα=,∴sinα=-,∴cosα=-=-,∴f(α)=-cosα=.【解析】略3.已知函数为奇函数,且,其中(1)求的值;(2)若,求的值.【答案】(1) , ;(2)【解析】(1)由为奇函数,可得,函数化为,又根据可求;(2)由(1)可得,由得又因为,所以,再根据两角和的正弦可求试题解析:因为为奇函数,所以,,则(2),因为,即又因为,所以,【考点】函数的奇偶性,三角函数的性质4.设命题函数是奇函数;命题函数的图象关于直线对称.则下列判断正确的是()A.为真B.为假C.为假D.为真【答案】C【解析】因为是偶函数,所以命题是假命题,由余弦函数的性质可知命题是假命题,选项C正确.【考点】1.三角函数性质;2.逻辑联结词与命题.5.(本小题满分12分)某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:5-5(1)请将上表数据补充完整,并直接写出函数的解析式;(2)若函数的图像向左平移个单位后对应的函数为,求的图像离原点最近的对称中心.【答案】(1);(2).【解析】第一问结合三角函数的性质,确定出对应的值,完善表格,从而确定出函数解析式,第二问利用图形的平移变换,将函数的解析式求出来,利用函数的性质,找出函数图像的对称中心,给赋值,比较从而确定出离原点最近的对称中心.试题解析:(1)根据表中已知数据,解得数据补全如下表:050-50函数表达式为(2)函数图像向左平移个单位后对应的函数是,其对称中心的横坐标满足,所以离原点最近的对称中心是.【考点】三角函数的性质,图像的变换.6.(本小题满分10分)已知函数.(1)求的最小正周期;(2)设,求的值域和单调递减区间.【答案】(1);(2)【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据x的范围求得,再结合正弦函数的性质可得到函数f(x)的值域,求得单调递减区间.试题解析:(1)(2)∵,,的值域为.的递减区间为.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性7.(本小题满分12分)在中,角的对边分别为,已知,向量,且∥.(1)求角的大小;(2)若成等差数列,求边的大小.【答案】(1);(2)【解析】(1)利用数量积运算、正弦定理即可得出;(2)由成等差数列,可得,或,即2a=b.再利用直角三角形的边角关系、余弦定理即可得出.试题解析:(1)∥,得,由正弦定理可得,(2)成等差,所以化简整理得:即或得或若若【考点】正弦定理;平面向量数量积运算8.在中,角所对的边为.已知,且.(1)求的值;(2)当时,求的面积.【答案】(1);(2).【解析】(1)根据已知条件中的式子,结合正弦定理,将其化为的方程,即可求解;(2)利用已知条件,结合余弦定理,可求得,的值,再利用三角形面积计算公式即可求得的值.试题解析:(1)∵,∴①,又∵,∴②,联立①②,即可求得,;(2)由(1)结合余弦定理可知,或,由已知易得,∴,∴,.【考点】1.正余弦定理解三角形;2.三角恒等变形.9.(本题满分12分)已知,,函数.(1)求的最小正周期,并求其图像对称中心的坐标;(2)当时,求函数的值域.【答案】(1)的最小正周期为,其对称中心的坐标为()();(2)的值域为.【解析】(1)先用降幂公式和辅助角公式,将进行化简整理得到,然后根据正弦函数的周期公式可得函数的最小正周期,进而求出函数的零点,即为函数的图像对称中心的坐标;(2)根据可得到,最后结合正弦函数的图像与性质可得函数的值域.试题解析:(1)因为=,所以的最小正周期为,令,得,∴故所求对称中心的坐标为()().(2)∵,∴,∴,即的值域为.【考点】1、三角函数中的恒等变换;2、三角函数的周期性及其求法;3、正弦函数的图像及其性质.【方法点晴】本题考查了三角函数中的恒等变换、三角函数的周期性及其求法和正弦函数的图像及其性质,重点考查学生对三角函数的基本概念、基本性质和基本原理,属中档题.解决这类问题最关键的一步是运用降幂公式、倍角公式及三角函数的和差公式等将函数的表达式化简为同角的正弦或余弦形式.因此需要大家应熟练掌握相关公式并结合三角函数的图像及其性质进行求解.10.若函数在上单调递减,且在上的最大值为,则的值为()A.B.C.D.【答案】A【解析】由题意得:,解得,选A.【考点】正切函数性质11.(本小题满分12分)已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求当时,的取值范围.【答案】(1);(2).【解析】(1)平方关系和商数关系式中的角都是同一个角,且商数关系式中,利用,得出,把转化为的式子,从而求解;(2)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如化为,研究函数的性质由的取值范围确定的取值范围,再确定的取值范围.试题解析:(1),,,(2)由正弦定理得,得或,,因此,,即.【考点】1、同角三角函数的基本关系;2、三角函数的化简;3、求三角函数的值域.12.(2012秋•泰安期中)已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.【答案】(Ⅰ)1;(Ⅱ)见解析;(Ⅲ)﹣.【解析】(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;(III)由f(a)=,可得sin(2a+)=,根据sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1,即可求得结论.解:(I)∵f(x)=2sinωxcosωx﹣2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+)∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,∴函数的最小正周期为π∴=π∴ω=1;(II)由(I)知,f(x)=2sin(2x+)∴﹣+2kπ≤2x+≤+2kπ,k∈Z∴﹣+kπ≤x≤+kπ,k∈Z∴函数f(x)的单调增区间为[﹣+kπ,+kπ],k∈Z;(III)∵f(a)=,∴sin(2a+)=∴sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1=﹣.【考点】三角函数中的恒等变换应用;由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.13.已知向量,且函数在时取得最小值.(Ⅰ)求的值;(Ⅱ)在中,分别是内角的对边,若,,,求的值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,求的值;(Ⅱ)先求出,再利用正弦定理,即可求的值.试题解析:(Ⅰ)由于(Ⅱ)由上知,于是由正弦定理得:【考点】正弦定理,余弦定理,两角和与差的三角函数,向量的数量积14.已知,函数在单调递减,则的取值范围是.【答案】【解析】,,由题意,所以,由于,所以只有,.【考点】三角函数的单调性.【名师】求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反).15.(2015秋•南京校级期中)将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.【答案】【解析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得m的最小值.解:将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)﹣]=2sin(2x+2m﹣)的图象.∵所得的图象关于直线x=对称,∴2•+2m﹣=kπ+,k∈Z,即 m=+,k∈Z,则m的最小值为,故答案为:.【考点】函数y=Asin(ωx+φ)的图象变换.16.(2015秋•昌平区期末)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)的单调递减区间.【答案】(Ⅰ);(Ⅱ)函数f(x)的单调递减区间是.)【解析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期;(Ⅱ)利用三角函数的单调性即可求函数f(x)的单调递减区间.解:(Ⅰ)==所以最小正周期.(Ⅱ)由,得.所以函数f(x)的单调递减区间是.)【考点】三角函数中的恒等变换应用;正弦函数的图象.17.已知函数.(1)求的最小正周期和在上的单调递减区间;(2)若为第四象限角,且,求的值.【答案】(1);(2).【解析】(1)对的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得的值后即可求解.试题解析:(1)由已知,所以最小正周期,由,得,故函数在上的单调递减区间;(2)因为为第四象限角,且,所以,所以.【考点】三角函数综合.18.已知是第二象限角,且,则()A.B.C.D.【答案】C【解析】由,得,又∵是第二象限角,∴,∴原式=;故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.19.在中,角所对的边分别为,且,则的最大值为_____.【答案】【解析】由及正弦定理得,又因为,于是可得,所以,所以,则的最大值为,故答案填.【考点】1、正弦定理;2、两角和与差的三角函数;3、基本不等式.20.将函数图象上各点的横坐标伸长到原来的倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.C.D.【答案】D【解析】将函数图象上各点的横坐标伸长到原来的倍,得,再向左平移个单位,得,令,解得,令,得,即所得函数图象的一条对称轴的方程是,故选D.【考点】三角函数的图象变换与三角函数的性质.21.设平面向量.(1)若,求的值;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)先利用向量数量积的坐标表示求出,利用商数关系求出得值,再利用二倍角公式求出的值,最后代入到的展开式即可求得;(2)欲求,先求出,再根据求的范围,从而可得的取值范围.试题解析:(1)因为,所以,∴,∴.(2),,.【考点】1、向量数量积的坐标表示;2、二倍角公式;3、三角函数;4、商数关系;5、向量的模.22.设中的内角所对的边长分别为,且.(1)当时,求角的度数;(2)求面积的最大值.【答案】(1);(2).【解析】(1)求出,再由正弦定理求出,求出角;(2)求三角形面积的最大值,即求的最大值,由,,求出,就可以求出面积的最大值.试题解析:解:(1)因为,所以.因为,由正弦定理可得.因为,所以是锐角,所以.(2)因为的面积,所以当最大时,的面积最大.因为,所以.因为,所以,所以(当时等号成立).所以面积的最大值为.【考点】1.正弦定理;2.余弦定理;3.重要不等式.23.在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.【答案】(1);(2).【解析】根据正弦定理可得,根据内角和定理和两角和的正弦公式整理可得,即得角的值;(2)由的面积为,求得的值,根据余弦定理表示构造的另一个方程,解方程组即可求得.试题解析:(1)∵,∴,∴,即,∴,∴,又∵是三角形的内角,∴(2)∵,∴,∴,又∵,∴,∴,∴【考点】正余弦定理解三角形.24.的三个内角满足:,则()A.B.C.D.或【答案】B【解析】由已知条件以及正弦定理可得:,即,再由余弦定理可得,所以,故选B.【考点】正弦定理、余弦定理.25.在中,角,,的对边分别是,,,已知,.(I)求的值;(II)若角为锐角,求的值及的面积.【答案】(I);(II)【解析】(I)根据题意和正弦定理求出a的值;(II)由二倍角的余弦公式变形求出sin2A,由A 的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.试题解析:(I)因为,且,所以.因为,由正弦定理,得.(II)由得.由余弦定理,得.解得或(舍负).所以.【考点】正弦定理;余弦定理26.如图所示的是函数和函数的部分图象,则函数的解析式是()A.B.C.D.【答案】C.【解析】由题意得,,故排除B,D;又∵,故排除A,故选C.【考点】三角函数的图象和性质.27.已知,则=()A.B.C.D.【答案】A【解析】,故选A.【考点】和差倍半的三角函数.28.在中,角所对的边分别为,.(Ⅰ)求的值;(Ⅱ)若,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)先根据正弦定理将边统一成角:,再利用三角形内角关系、诱导公式、两角和正弦公式将三角统一成两角:,最后根据同角三角函数关系将弦化切:(Ⅱ)由(Ⅰ)易得,已知两角一对边,根据正弦定理求另一边:,利用三角形内角关系求第三角的正弦值:,最后根据面积公式求面积:试题解析:解:(Ⅰ)由及正弦定理得.所以,所以.(Ⅱ),所以, ,,所以的面积为.【考点】正弦定理,弦化切【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.29.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.30.若函数的最大值为5,则常数______.【答案】【解析】,其中,故函数的最大值为,由已知得,,解得.【考点】三角函数的图象和性质.【名师】解决三角函数性质问题的基本思路是通过化简得到,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.31.定义在区间[0,]上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以故两函数图象的交点个数是7.【考点】三角函数图象【名师】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.32.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A)(B)(C)2 (D)3【答案】D【解析】由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!33.将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x–)D.y=2sin(2x–)【答案】D【解析】函数的周期为,将函数的图像向右平移个周期即个单位,所得图像对应的函数为,故选D.【考点】三角函数图像的平移【名师】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x而言的,不要忘记乘以系数.34.如图,在Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=.【答案】5【解析】,,所以,.【考点】解三角形.【名师】在解直角三角形时,直角三角形中的三角函数定义是解题的桥梁,利用它可以很方便地建立边与角之间的关系.35.设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为()A.B.C.D.【答案】C【解析】因为直线是它的一条对称轴,排除B,D,因为图象过点,排除选项A,选C.【考点】三角函数图象与性质.36.在中,角,,的对边分别为,,,且满足,则角等于()A.B.C.D.【答案】A【解析】由正弦定理可得,即,由余弦定理可得,所以,故应选A。

三角恒等变形难题高考加竞赛(有答案)

三角恒等变形难题高考加竞赛(有答案)

三角恒等变形竞赛三角恒等变形涉及范围广泛,包括三角式的化简、求值、恒等式的证明、三角级数的求和、三角不等式的证明等,其变形的主要途径如下:1.两角和与差的三角函数βαβαβαsin cos cos sin )sin(±=± βαβαβαsin sin cos cos )cos( =± βαααβαtan tan 1tan tan )tan( ±=±2.倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=3.半角公式2cos 12sinαα-±= 2cos 12cosαα+±= αααααααcos 1sin sin cos 1cos 1cos 12tan+=-=+-±=4.和化和差公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+=)]cos()[cos(21cos cos βαβαβα-++=)]cos()[cos(21sin sin βαβαβα--+-=5.和差化积公式2cos2sin2sin sin βαβαβα-+=+2sin2cos2sin sin βαβαβα-+=-2cos2cos 2cos cos βαβαβα-+=+ 2sin2sin 2cos cos βαβαβα-+-=- 6.万能公式设t =2tan α,则.12tan ,11cos ,12sin 2222t tt t t t -=+-=+=ααα 7.三倍角公式ααααααcos 3cos 43cos sin 4sin 33sin 33-=-=8.)sin(cos sin 22ϕ++=+x b a x b x a ,其中).2,2(,tan ππθθ-∈=a b 解题示范例1:求下列各式的值。

2023年高考数学总复习第7讲:三角函数及其恒等变换(附答案解析)

2023年高考数学总复习第7讲:三角函数及其恒等变换(附答案解析)

2023年高考数学总复习第7讲:三角函数及其恒等变换一.选择题(共10小题,满分50分,每小题5分)
1.(5分)(2022春•江西期中)扇形的弧长为12,面积为24,则圆心角的弧度数为()A.4B.3C.2D.1
2.(5分)(2022春•钦州期末)930°=()
A .
B .
C .
D .
3.(5分)(2022春•温州期末)已知,且,则cosα﹣sinα=()
A .
B .
C .
D .
4.(5分)(2022
春•温州期末)已知,则sinθ﹣cosθ
=()
A .
B .
C .
D .
5.(5分)(2022春•开福区校级月考)若角α的终边过点P(8m,﹣3),且,则m 的值为()
A .
B .
C .
D .
6.(5分)(2007秋•海曙区校级期中)已知定义在R上的奇函数f(x)在区间(0,+∞)上单调递增,若内角A满足f(cos A)<0,则A的取值范围是()A .B .
C
.D

7.(5分)(2022春•房山区期中)若sinθ<0且tanθ<0,则角θ所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(5分)(2019秋•清远期末)sin195°sin465°=()
A .
B .
C .D
.﹣
9.(5分)(2021秋•佛山期末)已知sin (+α)
=,α∈(﹣,0),则tanα等于()
A
.﹣B .C
.﹣D .
第1页(共39页)。

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1..【答案】【解析】故答案为:.【考点】两角和与差的三角公式.2.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;3.函数在内是()A.增函数B.减函数C.有增有减D.不能确定【答案】A【解析】函数,可得,所以函数在内是增函数.故选:A.【考点】利用导数研究函数的单调性.4.(12分).已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若,求sinA·sinC的值.【答案】(1);(2)【解析】(Ⅰ)已知等式左边利用同角三角函数间的基本关系化简,整理后根据sinC不为0求出cosB的值,即可确定出B的度数;(Ⅱ)已知等式去分母整理后得到关系式,利用余弦定理列出关系式,把得出关系式及cosB的值代入,并利用正弦定理化简,即可求出sinAsinC的值试题解析:(Ⅰ)已知等式变形得:sinAcosA+sinBcosB=2sinCcosA,去分母得:sinAcosB+sinBcosA=2sinCcosB,即sin(A+B)=2sinCcosB=sinC,∵sinC≠0,∴cosB=12,则B=60°;(Ⅱ)由,整理得:,∵cosB=12,∴,由正弦定理得:sin2B=2sinA·sinC=,则sinA·sinC=【考点】1.同角间三角函数关系;2.正弦定理5.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.6.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系7.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.【答案】(1);(2)【解析】(1)由题意切化弦,同分可得,整理可得,即可求得;(2)根据已知式子同分可得,由余弦定理得到,再结合正弦定理即可得到试题解析:(1)由题意可得:因为,所以,又因为,所以(2)有题意可得:即由余弦定理可得:,得到有正弦定理:【考点】1.正余弦定理;2.化简求值8.(本题满分11分)若的内角所对的边分别为,且满足(1)求;(2)当时,求的面积.【答案】(1);(2).【解析】(1)因为正弦定理,所以化为,因为三角形内角有,所以即,所以;(2)由余弦定理,得,而,,得,即,因为三角形的边,所以,则.试题解析:(1)因为由正弦定理,得,又,从而,由于所以(2)解法一:由余弦定理,得,而,,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由知,所以故,所以面积为.【考点】1.正弦定理与余弦定理;2.三角形的面积公式.9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.(本小题满分10分)在△ABC中,是方程的一个根,(1)求;(2)当时,求△ABC周长的最小值.【答案】(1)(2)【解析】(1)解一元二次方程得到方程的根,结合三角函数有界性得到的值,从而求得大小;(2)由三角形余弦定理结合,可将转化为的表达式,从而求得其最小值,得到周长的最小值试题解析:(1)又是方程的一个根(2)由余弦定理可得:则:当时,c最小且,此时△ABC周长的最小值为.【考点】1.余弦定理解三角形;2.一元二次方程的根11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_____【答案】【解析】由正弦定理可将已知条件转化为【考点】正弦定理与三角函数基本公式12.在△ABC中,cosA=,sinB=,则cosC的值为.【答案】【解析】由cosA=,sinB=得【考点】三角函数基本公式13.在△ABC中,如果,且为锐角,试判断此三角形的形状.【答案】等腰直角三角形.【解析】判定三角形的形状由三角形的三边长或三个角来确定.由可确定.根据正弦定理,可确定角,从而确定三角形的形状.试题解析:因为,所以,又为锐角,所以.,.由正弦定理得:,即展开得:,即,则,所以△ABC是等腰直角三角形.【考点】1.三角形形状;2.正弦定理;14.在△中,分别为角所对的边,若,则此三角形一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【答案】C【解析】,三角形为等腰三角形【考点】1.正弦定理解三角形;2.三角函数基本公式15.在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.【答案】(1);(2)不存在【解析】(1)由正弦定理将变形可得到关于角C的关系式,进而求得角C的大小;(2)结合角C的大小将变形求解A角,若A角存在则三角形存在试题解析:(1)由正弦定理,得因为由则(2)由(1)知,于是=这样的三角形不存在。

训练【四】三角函数及其恒等变换

训练【四】三角函数及其恒等变换

【高考冲刺】三角函数及其恒等变换参考答案与试题解析一、选择题(共20小题)1.已知为第二象限角,则tan(α+)=()A.B.C.3D.﹣3考点:两角和与差的正切函数;同角三角函数间的基本关系.2361035专题:计算题.分析:由α为第二象限角,根据cosα的值,利用同角三角函数间的基本关系求出sinα的值,再利用同角三角函数间的基本关系弦化切求出tanα的值,然后把所求的式子利用两角和与差的正切函数公式及特殊角的三角函数值化简后,将tanα的值代入即可求出值.解答:解:∵α为第二象限角,cosα=﹣,∴sinα==,∴tanα==﹣2,则tan(α+)===﹣.故选A点评:此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.2.已知sin()=,则cos(π﹣2θ)等于()A.B.C.D.考点:二倍角的余弦;运用诱导公式化简求值.2361035专题:三角函数的求值.分析:利用诱导公式化简已知的等式,求出cosθ的值,将所求式子利用诱导公式变形后,再利用二倍角的余弦函数公式化简,把cosθ的值代入计算,即可求出值.解答:解:∵sin(+θ)=cosθ=,∴cos(π﹣2θ)=﹣cos2θ=1﹣2cos2θ=1﹣2×()2=.故选D点评:此题考查了二倍角的余弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.3.曲线和直线在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,…,则|P2P6|=()A.πB.2πC.3πD.4π考点:两角和与差的正弦函数;两角和与差的余弦函数;三角函数的周期性及其求法.2361035专题:计算题.分析:将y=2sin(x+)cos(x﹣)的解析式利用诱导公式,二倍角的余弦函数公式化简得y=sin2x+1,令y=,解得x=kπ+±(k∈N),代入易得|P2P6|的值.解答:解:∵y=2sin(x+)cos(x﹣)=2sin(x﹣+)cos(x﹣)=2cos(x﹣)cos(x﹣)=cos[2(x﹣)]+1=cos(2x﹣)+1=sin2x+1,若y=2sin(x+)cos(x﹣)=,∴2x=2kπ+±(k∈N),即x=kπ+±(k∈N),则|P2P6|=2π.故选B点评:此题考查了诱导公式,二倍角的余弦函数公式,直线与曲线的相交的性质,求两个函数图象的交点间的距离,关键是要求出交点的坐标,然后根据两点间的距离求法进行求解.4.已知α、β为锐角,2tanα+3sinβ=7,tanα﹣6sinβ=1,则sinα的值是()A.B.C.D.考点:同角三角函数间的基本关系.2361035分析:根据题中所给方程组可求出tanα的值,再根据三角函数定义和角的范围可直接得答案.解答:解:∵2tanα+3sinβ=7,tanα﹣6sinβ=1,∴tanα=3∵tanα=,sin2α+cos2α=1∴∵α为锐角∴故选C.点评:本题主要考查同角三角函数的基本关系,属基础题.这里注意角的取值范围影响三角函数的符号.5.sin71°cos26°﹣sin19°sin26°的值为()D.A.B.1C.﹣考点:两角和与差的正弦函数.2361035专题:计算题.分析:把sin71°化为cos19°,利用两角差的余弦公式,把要求的式子化为cos(19°+26°),从而求得式子的值.解答:解:sin71°cos26°﹣sin19°sin26°=cos19°cos26°﹣sin19°sin26°=cos(19°+26°)=cos45°=. 故选:D .点评: 本题主要考查诱导公式、两角和差的余弦公式的应用,把要求的式子化为cos (19°+26°),是解题的关键.6.已知﹣π<α<0,且,则=( )A .B .C .D .考点: 二倍角的正弦;两角和与差的正弦函数.2361035 专题: 计算题.分析: 利用两角和与差的正切函数公式及特殊角的三角函数值将已知等式化简,求出tanα的值,由α的范围,得出sinα小于0,cosα大于0,利用同角三角函数间的基本关系求出sinα的值,将所求式子分子第二项利用二倍角的正弦函数公式化简,分子提取2sinα,分母利用两角和与差的余弦函数公式及特殊角的三角函数值化简,约分后把sinα的值代入即可求出值.解答: 解:∵tan (α+)==,∴tanα=﹣<0,∵﹣π<α<0,∴cosα==,∴sinα=﹣,则==2sinα=﹣.故选C点评: 此题考查了二倍角的正弦函数公式,两角和与差的正切、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.7.函数是( ) A . 周期为π的奇函数 B . 周期为π的偶函数 C . 周期为2π的奇函数 D . 周期为2π的偶函数考点: 诱导公式一;三角函数的周期性及其求法.2361035 专题: 计算题.分析: 利用诱导公式化简函数解析式后,找出ω的值,代入周期公式求出函数的最小正周期,再根据余弦函数为偶函数,即可得到正确的选项. 解答: 解:y=sin (﹣2x )=cos2x ,∵ω=2,∴T==π,又余弦函数为偶函数,则原函数是周期为π的偶函数.故选B点评:此题考查了三角函数的周期性及其求法,以及函数的奇偶性,其中利用诱导公式将函数解析式化为一个角的余弦函数是解本题的关键.8.平面直角坐标系中,点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,则t的值为()A.±6或±1 B.6或1 C.6D.1考点:两角和与差的正切函数;任意角的三角函数的定义.2361035专题:综合题.分析:根据任意角的三角函数定义分别求出tanα和tan(α+45°),然后利用两角和与差的正切函数公式及特殊角的三角函数值得到一个关于t的方程,求出t的值,然后利用α和α+45°是始边为x轴的非负半轴的角,得到满足题意t的值即可.解答:解:由题意得tanα=,tan(α+45°)==而tan(α+45°)===,化简得:t2+5t﹣6=0即(t﹣1)(t+6)=0,解得t=1,t=﹣6因为点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,所以t=﹣6舍去则t的值为1故选D点评:此题考查学生掌握任意角的三角函数的定义,灵活运用两角和与差的正切函数公式化简求值,是一道中档题.9.若,则sinx•cosx的值为()A.B.C.D.考点:诱导公式的作用;二倍角的正弦.2361035专题:计算题.分析:利用诱导公式化简方程,方程两边平方,即可求出sinx•cosx的值.解答:解:因为,所以﹣cosx+sinx=,则,所以sinx•cosx=;故选A.点评:本题考查三角方程的解法,正确利用诱导公式是解题的前提,利用平方求出结果是关键,考查计算能力.10.已知A为三角形的一个内角,且sinAcosA=﹣,则cosA﹣sinA的值为()A.﹣B.±C.±D.﹣考点:同角三角函数间的基本关系.2361035专题:计算题.分析:由A为三角形的内角且sinAcosA=﹣可知sinA>0,cosA<0即cosA﹣sinA<0,而(cosA﹣sinA)2=1﹣2siAcosA,代入可求解答:解:由A为三角形的内角且sinAcosA=﹣可知sinA>0,cosA<0∴cosA﹣sinA<0而(cosA﹣sinA)2=1﹣2siAcosA=∴故选:D点评:本题主要考查了三角函数中同角平方关系的应用,解题的关键是根据已知判断出sinA,cosA 的符号,在结合由A为三角形的(cosA﹣sinA)2=1﹣2siAcosA进行求解,本题容易漏掉对sinA﹣cosA的符号的判断错选成C11.(1+tan25°)(1+tan20°)的值是()A.﹣2 B.2C.1D.﹣1考点:同角三角函数基本关系的运用.2361035专题:计算题.分析:观察可知25°+20°=45°,先根据两角和的正切函数公式得到对等式两边取正切得到一个关系式,然后利用多项式的乘法法则化简原式,整体代入可得值.解答:解:因为1=tan45°=tan(25°+20°)=,所以tan25°+tan20°=1﹣tan25°tan20°,则(1+tan25°)(1+tan20°)=1+tan250+tan200+tan250tan200=1+1﹣tan250tan200+tan250tan200=2故选B点评:此题为一道基础题,要求学生灵活运用两角和的正切函数公式.本题的关键点是45°=25°+20°角度的变换.12.如果,则=()A.B.C.4019 D.﹣4019考点:三角函数中的恒等变换应用.2361035专题:计算题.分析:将分式转化为整式,利用和、差角的正弦公式展开进行合并整理是解决本题的关键,注意正弦、余弦、正切之间的转化问题,注意切化弦的方法和整体思想的运用.解答:解:由题意可得2010sinαcosβ﹣2010cosαsinβ=2009sinαcosβ+2009cosαsinβ,∴sinαcosβ=4019cosαsinβ,得tanα=4019tanβ,∴.故选C.点评:本题考查三角恒等变换的基本知识,考查了两角和与差的正弦公式,主要寻找角之间的关系和函数名称之间的关系,考查同角三角函数的基本关系式,注意整体思想的运用.考查转化与化归思想的应用.13.函数对任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2﹣x1|的最小值为()A.B.1C.2D.4考点:三角函数的恒等变换及化简求值;三角函数的周期性及其求法.2361035专题:计算题;函数的性质及应用.分析:先将函数写出分段函数,再确定|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值,由此可得结论.解答:解:由题意可得,f(x)=,f(x1)为函数的最小值,f(x2)为函数的最大值.|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值由于x=时,函数取得最大值2,x=时,sinπx=cosπx=﹣,函数取得最小值∴|x2﹣x1|的最小值为﹣=,故选A.点评:本题考查绝对值函数,考查三角函数的性质,确定|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值是关键,属于中档题.14.=()A.B.C.D.考点:两角和与差的正弦函数;运用诱导公式化简求值.2361035专题:计算题.分析:由于sin(α+)+cosα=sin(α+)=,可求得sin(α+)=,利用诱导公式即可求得sin(α+).解答:解:∵sin(α+)+cosα=sinα+cosα+cosα=sinα+cosα=sin(α+)=,∴sin(α+)=.∴sin(α+)=﹣sin(α+)=﹣.故选C.点评:本题考查两角和与差的正弦函数,考查诱导公式在化简求值中的应用,属于中档题.15.若对所有实数x,均有sinkx•sinkx+coskx•coskx=cosk2x,则k=()A.6B.5C.4D.3考点:三角函数恒等式的证明;函数恒成立问题.2361035专题:计算题.分析:记f(x)=sinkx•sinkx+coskx•coskx﹣cosk2x,则由条件f(x)恒为0,取,得k为奇数,设k=2n﹣1,上式成为,因此n为偶数,令n=2m,则k=4m﹣1.解答:解:记f(x)=sinkx•sinkx+coskx•coskx﹣cosk2x,则由条件f(x)恒为0,取,得,则k为奇数.设k=2n﹣1,上式成为,因此n为偶数,令n=2m,则k=4m﹣1,故选择支中只有k=3满足题意,故选D.点评:本题考查函数的恒成立问题,体现了特殊值的思想,得到k为奇数,设k=2n﹣1,在得到n为偶数,这是解题的难点.16.已知,则sinα•cosα=()A.B.C.D.考点:二倍角的正弦;两角和与差的正切函数.2361035专题:计算题.分析:解法一:利用两角和与差的正切函数公式及特殊角的三角函数值化简已知的等式,得到关于tanα的方程,求出方程的解得出tanα的值,然后把所求的式子分母“1”根据同角三角函数间的基本关系变形为sin2α+cos2α,分子分母同时除以cos2α,利用同角三角函数间的基本关系弦化切后,将tanα的值代入即可求出值;解法二:利用两角和与差的正切函数公式及特殊角的三角函数值化简已知的等式,得到关于tanα的方程,求出方程的解得出tanα的值,然后把所求的式子利用二倍角的正弦函数公式化简后,再利用万能公式变形,将tanα的值代入即可求出值.解答:解:法一:由tan(+α)==﹣3,整理得:1+tanα=﹣3+3tanα,解得:tanα=2,则sinα•cosα====;法二:由tan(+α)==﹣3,整理得:1+tanα=﹣3+3t anα,解得:tanα=2,则sinα•cosα=sin2α=×==.故选A点评:此题考查了两角和与差的正切函数公式,同角三角函数间的基本关系,万能公式,以及特殊角的三角函数值,熟练掌握公式及基本关系是解本题的关键.17.若,则tanβ=()A.10 B.5C.D.﹣8考点:角的变换、收缩变换.2361035专题:计算题.分析:利用两角和的正切公式求出tan(β﹣)=tan[(β﹣α)+(α﹣)]的值,再由tan(β﹣)=求出tanβ 的值.解答:解:∵,∴tan(β﹣)=tan[(β﹣α)+(α﹣)]===,故=,∴tanβ=﹣8.故选:D.点评:本题主要考查两角和差的正切公式的应用,角的变换是解题的关键,属于中档题.18.设,则()A.b<a<c B.b<c<a C.a<b<c D.c<a<b考点:二倍角的余弦;余弦函数的单调性.2361035专题:计算题.分析:把a利用特殊角的三角函数值及两角和与差的余弦函数公式化简为一个余弦值,b利用二倍角的余弦函数公式也化为一个余弦值,c利用特殊角的三角函数值化为一个余弦值,根据余弦函数在(0,90°]为减函数,且根据角度的大小即可得到三个余弦值的大小,从而得到a,b及c的大小关系.解答:解:化简得:a=(sin17°+cos17°)=cos45°cos17°+sin45°sin17°=cos(45°﹣17°)=cos28°,b=2cos213°﹣1=cos26°,c==cos30°,∵余弦函数y=cosx在(0,90°]为减函数,且26°<28°<30°,∴cos26°>cos28°>cos30°则c<a<b.故选D点评:此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,特殊角的三角函数值,以及余弦函数的单调性,利用三角函数的恒等变形把a,b及c分别变为一个角的余弦值是解本题的关键.19.已知sin+cos=,且cosα<0,那么tanα等于()A.B.﹣C.D.﹣考点:二倍角的正弦;任意角的三角函数的定义;同角三角函数间的基本关系.2361035专题:三角函数的求值.分析:将已知等式左右两边平方,利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,求出sinα的值,再由cosα的值小于0,利用同角三角函数间的基本关系求出cosα的值,即可确定出tanα的值.解答:解:将已知等式左右两边平方得:(sin+cos)2=,即1+sinα=,可得sinα=﹣,∵cosα<0,∴cosα=﹣=﹣,则tanα==.故选C点评:此题考查了二倍角的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.20.本式的值是()A.1B.﹣1 C.D.考点:运用诱导公式化简求值.2361035专题:计算题.分析:利用诱导公式及三角函数的奇偶性化简可得值.解答:解:原式=sin(4π﹣)﹣cos(4π+)+tan(4π+)=﹣sin﹣cos+tan=﹣+×+×=1故选A点评:此题为一道基础题,要求学生会灵活运用诱导公式化简求值,掌握三角函数的奇偶性.化简时学生应注意细心做题,注意符号的选取.二、填空题(共1小题)(除非特别说明,请填准确值)21.已知扇形的周长为10,求此扇形的半径r与面积S之间的函数关系式及其定义域.考点:扇形面积公式.2361035专题:计算题.分析:求出扇形的弧长,利用扇形面积公式表示二者关系,求出定义域即可.解答:解:扇形的周长为10,扇形的半径r,扇形弧长为10﹣2r所以s==5r﹣r2,r∈(0,5)定义域(0,5).点评:本题考查扇形面积公式,考查计算能力,是基础题.。

高三数学三角恒等变换试题答案及解析

高三数学三角恒等变换试题答案及解析

高三数学三角恒等变换试题答案及解析1.已知,则()A.B.C.D.【答案】B【解析】将两边平方得,,可得,故选B.【考点】同角基本关系以及二倍角公式.2.已知cos(α-)+sinα=,则sin(α+)的值是()A.-B.C.-D.【答案】C【解析】cos(α-)+sinα=⇒sinα+cosα=⇒sin(α+)=,所以sin(α+)=-sin(α+)=-.3.已知函数f(x)=cos2ωx+sinωxcosωx-(ω>0)的最小正周期为π.(1)求ω值及f(x)的单调递增区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f()=,求角C 的大小.【答案】(1)增区间为[kπ-,kπ+](k∈Z)(2)当B=时,C=π--=;当B=时,C=π--=.【解析】解:(1)f(x)=+sin2ωx-=sin(2ωx+).∵T=π,∴ω=1,∴f(x)=sin(2x+),增区间为[kπ-,kπ+](k∈Z).(2)∵f()=sin(A+)=,角A为△ABC的内角且a<b,∴A=.又a=1,b=,∴由正弦定理得=,也就是sinB==×=.∵b>a,∴B=或B=,当B=时,C=π--=;当B=时,C=π--=.4.已知α,β∈(0,),满足tan(α+β)=4tanβ,则tanα的最大值是()A.B.C.D.【答案】B【解析】tanα=tan[(α+β)-β]==≤=,当且仅当tanβ=时等号成立.5.在中,若分别为的对边,且,则有()A.a、c、b成等比数列B.a、c、b成等差数列C.a、b、c成等差数列D.a、b、c成等比数列【答案】D【解析】由已知得,,故,又,而,故,所以,故,从而a、b、c成等比数列.【考点】1、两角和与差的余弦公式;2、二倍角公式;3、正弦定理.6.在△ABC中,角A,B,C的对边分别为a,b,c,已知,b sin=a+c sin,则C= .【答案】【解析】由已知得,所以,由,应用正弦定理,得,.整理得,即,由于,从而,又,故.【考点】1正弦定理;2正弦两角和差公式。

2023年高考数学二轮复习热点重点难点专练——三角函数定义与三角函数恒等变换(含答案解析)

2023年高考数学二轮复习热点重点难点专练——三角函数定义与三角函数恒等变换(含答案解析)

重难点10三角函数定义与三角函数恒等变换1.三角函数的定义中常见的三种题型及解决方法(1)已知角α的终边上的一点P的坐标,求角α的三角函数值.方法:先求出点P到原点的距离,再利用三角函数的定义求解.(2)已知角α的一个三角函数值和终边上一点P的横坐标或纵坐标,求与角α有关的三角函数值.方法:先求出点P到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题.(3)已知角α的终边所在的直线方程(y=kx,k≠0),求角α的三角函数值.方法:先设出终边上一点P(a,ka),a≠0,求出点P到原点的距离(注意a的符号,对a 分类讨论),再利用三角函数的定义求解.2.对sinα,cosα,tanα的知一求二问题(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用sinαcosα=tanα可以实现角α的弦切互化.(2)由一个角的任意一个三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.3.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤任意负角的三角函数――――――→利用诱导公式三或一任意正角的三角函数――――――――→利用诱导公式一0~2π的角的三角函数――――――――→利用诱导公式二或四或五锐角三角函数也就是:“负化正,大化小,化到锐角就好了”.4.三角函数式化简的原则和方向(1)切化弦,统一名.(2)用诱导公式,统一角.(3)用因式分解将式子变形,化为最简.也就是:“统一名,统一角,同角名少为终了”.5.三角函数式求值的三种题型(1)给角求值:该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.(2)给值求值:一般是给出某些角的三角函数值,求另外一些角的三角函数值,解题的关键在于“变角”,使相关角相同或具有某种关系.(3)给值求角:实质上可转化为“给值求值”,即通过求角的某一个三角函数值来求角.在选取函数时,遵循以下原则:①已知正切函数值,选正切函数.②已知正弦、余弦函数值,若角的范围是0,π2,选正弦、余弦函数皆可,若角的范围是(0,π),选余弦函数,若角的范围是-π2,π2,选正弦函数.2023年高考仍将重点考查同角三角函数基本关系及三角恒等变换,同时要注意三角函数定义的复习,题型仍为选择题或填空题,难度为基础题或中档题.(建议用时:40分钟)一、单选题1.sin 20cos 70sin10sin 50︒︒+︒︒的值是()A .14B .32C .12D .342.设θ是第二象限的角,则必有()A .tancot 22θθ>B .tancot22θθ<C .sincos22θθ>D .sincos22θθ<3.已知2sin 23α=,(0,)απ∈,则sin cos αα+=()A .153B .153-C .53D .53-4.已知2sin 23α=,则2cos 4πα⎛⎫+ ⎪⎝⎭=()A .16B .15C .14D .135.函数2cos 3cos 2y x x =-+的最小值为()A .2B .0C .14-D .66.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .33C .23D .227.已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .28.已知α为第二象限角,3sin 5α=,则sin 2α=.A .2425-B .1225-C .1225D .24259.已知4sin cos 3αα-=,则sin 2α=.A .79-B .29-C .29D .7910.已知θ是第三象限的角,且445sin cos 9+=θθ,那么sin 2θ的值为A .223B .223-C .23D .23-11.4cos50°﹣tan40°=()A .2B .232+C .3D .221-12.已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=()A .35-B .45-C .23D .34二、填空题13.如果12cos 13θ=-,3π,π2θ⎛⎫∈ ⎪⎝⎭,那么πcos 4θ⎛⎫+ ⎪⎝⎭=_______.14.已知2sin ()4πα+=23,则sin 2α的值是____.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.16.若3sin sin 10,2παβαβ-=+=,则sin α=__________,cos 2β=_________.三、解答题17.已知A 、B 、C 是ABC 三内角,向量(1,3),(cos ,sin )m n A A =-= ,且1m n ⋅=.(1)求角A ;(2)若221sin 23cos sin BB B+=--,求tan C .18.已知函数()2sin cos cos 2f x x x x =+.(1)求π4f ⎛⎫⎪⎝⎭的值;(2)设2(0,π),22f αα⎛⎫∈= ⎪⎝⎭,求sin α的值.重难点10三角函数定义与三角函数恒等变换1.三角函数的定义中常见的三种题型及解决方法(1)已知角α的终边上的一点P 的坐标,求角α的三角函数值.方法:先求出点P 到原点的距离,再利用三角函数的定义求解.(2)已知角α的一个三角函数值和终边上一点P 的横坐标或纵坐标,求与角α有关的三角函数值.方法:先求出点P到原点的距离(带参数),根据已知三角函数值及三角函数的定义建立方程,求出未知数,从而求解问题.(3)已知角α的终边所在的直线方程(y=kx,k≠0),求角α的三角函数值.方法:先设出终边上一点P(a,ka),a≠0,求出点P到原点的距离(注意a的符号,对a 分类讨论),再利用三角函数的定义求解.2.对sinα,cosα,tanα的知一求二问题(1)利用sin2α+cos2α=1可实现α的正弦、余弦的互化,利用sinαcosα=tanα可以实现角α的弦切互化.(2)由一个角的任意一个三角函数值可求出这个角的另外两个三角函数值,因为利用“平方关系”公式求平方根,会出现两解,需根据角所在的象限判断符号,当角所在的象限不明确时,要进行分类讨论.3.利用诱导公式把任意角的三角函数转化为锐角三角函数的步骤任意负角的三角函数――――――→利用诱导公式三或一任意正角的三角函数――――――――→利用诱导公式一0~2π的角的三角函数――――――――→利用诱导公式二或四或五锐角三角函数也就是:“负化正,大化小,化到锐角就好了”.4.三角函数式化简的原则和方向(1)切化弦,统一名.(2)用诱导公式,统一角.(3)用因式分解将式子变形,化为最简.也就是:“统一名,统一角,同角名少为终了”.5.三角函数式求值的三种题型(1)给角求值:该类问题中给出的角一般都不是特殊角,需要通过三角恒等变换将其变为特殊角,或者能够正负相消,或者能够约分相消,最后得到具体的值.(2)给值求值:一般是给出某些角的三角函数值,求另外一些角的三角函数值,解题的关键在于“变角”,使相关角相同或具有某种关系.(3)给值求角:实质上可转化为“给值求值”,即通过求角的某一个三角函数值来求角.在选取函数时,遵循以下原则:①已知正切函数值,选正切函数.②已知正弦、余弦函数值,若角的范围是0,π2,选正弦、余弦函数皆可,若角的范围是(0,π),选余弦函数,若角的范围是-π2,π2,选正弦函数.2023年高考仍将重点考查同角三角函数基本关系及三角恒等变换,同时要注意三角函数定义的复习,题型仍为选择题或填空题,难度为基础题或中档题.(建议用时:40分钟)一、单选题1.sin 20cos 70sin10sin 50︒︒+︒︒的值是()A .14B .32C .12D .34【答案】A【解析】()()11sin 20cos70sin10sin 50sin 90sin 50cos60cos 4022︒︒+︒︒=︒+-︒-︒+-︒⎡⎤⎡⎤⎣⎦⎣⎦1111sin 50cos 402242=-︒-+︒111cos 40cos 40422=-︒+︒14=.故选:A.2.设θ是第二象限的角,则必有()A .tancot 22θθ>B .tancot22θθ<C .sincos22θθ>D .sincos22θθ<【答案】A【解析】22sin cos sin cos cos 22222tancot122tan cossincos sin sin 22222θθθθθθθθθθθθθ---=-===- θ是第二象限的角,tan 0,sin 0,cos 0θθθ∴<><,即2tancot 022tan θθθ-=->,tancot 22θθ∴>,A 正确,B 错误;θ是第二象限的角,即(2,2)(),2k k k Z πθπππ∈++∈(,)()242k k k Z θππππ∴∈++∈当(2,2)()242k k k Z θππππ∈++∈时,22sin cos cos 022θθθ-=->,可得sin cos 022θθ>>,D 错误;当53(2,2)()242k k k Z θππππ∈++∈时,22sin cos cos 022θθθ-=->,可得sincos 022θθ<<,C 错误;故选:A.3.已知2sin 23α=,(0,)απ∈,则sin cos αα+=()A .153B .153-C .53D .53-【答案】A【解析】由2sin 22sin cos 03ααα==>,又(0,)απ∈,所以π(0,)2α∈,所以sin cos 0αα+>,又()25sin cos 12sin cos 3αααα+=+=,所以3sin co 5s 1αα+=或3sin cos 15αα+=-(舍去),所以3sin co 5s 1αα+=.故选:A .4.已知2sin 23α=,则2cos 4πα⎛⎫+ ⎪⎝⎭=()A .16B .15C .14D .13【答案】A 【解析】21cos(2)2cos ()42παπα+++==1sin 22α-=2132-=16,故选A.5.函数2cos 3cos 2y x x =-+的最小值为()A .2B .0C .14-D .6【答案】B【解析】因为2cos 3cos 2y x x =-+,设cos t x =,则()223132()1124y t t t t =-+=---≤≤,由二次函数性质可得当[]1,1t ∈-上单调递减,所以当1t =,()23211y t t t =-+-≤≤取最小值,最小值为0,故当2,Zx k k π=∈时,函数2cos 3cos 2y x x =-+取最小值,最小值为0,故选:B.6.已知πsin sin =31θθ⎛⎫++ ⎪⎝⎭,则πsin =6θ⎛⎫+ ⎪⎝⎭()A .12B .33C .23D .22【答案】B【解析】由题意可得:13sin sin cos 122θθθ++=,则:33sin cos 122θθ+=,313sin cos 223θθ+=,从而有:3sin coscos sin663ππθθ+=,即3sin 63πθ⎛⎫+= ⎪⎝⎭.故选:B.7.已知2tan θ–tan(θ+π4)=7,则tan θ=()A .–2B .–1C .1D .2【答案】D【解析】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭ ,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D.8.已知α为第二象限角,3sin 5α=,则sin 2α=.A .2425-B .1225-C .1225D .2425【答案】A【解析】因为α为第二象限,所以cos 0α<,即24cos 1sin 5αα=--=-,所以4324sin 22sin cos 25525ααα==-⨯⨯=-,选A.9.已知4sin cos 3αα-=,则sin 2α=.A .79-B .29-C .29D .79【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A.10.已知θ是第三象限的角,且445sin cos 9+=θθ,那么sin 2θ的值为A .223B .223-C .23D .23-【答案】A【解析】∵22sin cos 1θθ+=,∴4422sin cos 2sin cos 1θθθθ++=,∵445sin cos 9+=θθ,∴2242sin cos 9θθ=,∵角是第三象限角即322,2k k k Z ππθππ+<<+∈,∴24234,k k k Z ππθππ+<<+∈,∴22sin 23θ=,故选A .11.4cos50°﹣tan40°=()A .2B .232+C .3D .221-【答案】C【解析】4cos50°﹣tan40°=4sin40°﹣tan40°======.故选C12.已知角θ的顶点与原点重合,始边与横轴的正半轴重合,终边在直线y=2x 上,则cos 2θ=()A .35-B .45-C .23D .34【答案】A【解析】找θ角终边上一点(1,2),则25sin 5θ=,5cos 5θ=,所以223cos 2cos sin 5θθθ=-=-故选A.二、填空题(共0分)13.如果12cos 13θ=-,3π,π2θ⎛⎫∈ ⎪⎝⎭,那么πcos 4θ⎛⎫+ ⎪⎝⎭=_______.【答案】7226-【解析】因12cos 13θ=-,3π,π2θ⎛⎫∈ ⎪⎝⎭,则25sin 1cos 13θθ=--=-,所以πππ122527cos cos cos sin sin 244413213226θθθ⎛⎫⎛⎫+=-=-⨯--⨯=- ⎪ ⎪⎝⎭⎝⎭.故答案为:7226-14.已知2sin ()4πα+=23,则sin 2α的值是____.【答案】13【解析】22221sin ()(cos sin )(1sin 2)4222παααα+=+=+Q 121(1sin 2)sin 2233αα∴+=∴=故答案为:1315.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.【答案】79-【解析】试题分析:因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,22cos cos 3αβ=-=(或22cos cos 3βα=-=),所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-.16.若3sin sin 10,2παβαβ-=+=,则sin α=__________,cos 2β=_________.【答案】3101045【解析】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos 10αα-=,即3101010sin cos 101010αα⎛⎫-= ⎪ ⎪⎝⎭,令10sin 10θ=,310cos 10θ=,则()10sin 10αθ-=,∴22k k Z παθπ-=+∈,,即22k παθπ=++,∴310sin sin 2cos 210k παθπθ⎛⎫=++== ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.故答案为:31010;45.[方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos 10αα-=,又22sin cos 1αα+=,将cos 3sin 10αα=-代入得210sin 610sin 90αα-+=,解得310sin 10α=,则224cos 22cos 12sin 15ββα=-=-=.故答案为:31010;45.三、解答题17.已知A 、B 、C 是ABC 三内角,向量(1,3),(cos ,sin )m n A A =-= ,且1m n ⋅= .(1)求角A ;(2)若221sin 23cos sin B B B+=--,求tan C .【答案】(1)π3A =;(2)853tan 11C +=.【解析】(1)∵1m n ⋅= ,∴(1,3)(cos ,sin )1A A -⋅=,即cos 3sin 1A A -+=,312(sin cos )122A A -=,1sin()62A π-=,∵0πx <<,ππ5π666A -<-<,∴ππ66A -=,∴π3A =;(2)由题知:2212sin cos 3cos sinB B B B +=--,所以()2222sin cos 2sin cos 3cos sin B B B B B B ++=--整理得22sin sin cos 2cos 0B B B B --=,∴cos 0B ≠,∴2tan tan 20B B --=,∴tan 2B =或tan 1B =-,而tan 1B =-时,22cos sin 0B B -=,与已知矛盾,舍去,∴tan 2B =,∴tan tan 23853tan tan[()]tan()1tan tan 11123A B C A B A B A B π+++=-+=-+=-=-=--.18.已知函数()2sin cos cos 2f x x x x =+.(1)求π4f ⎛⎫ ⎪⎝⎭的值;(2)设2(0,π),22f αα⎛⎫∈= ⎪⎝⎭,求sin α的值.【答案】(1)1(2)264+【解析】(1)由已知,函数()2sin cos cos 2sin 2cos 2f x x x x x x =+=+,所以πππsin cos 101422f ⎛⎫=+=+= ⎪⎝⎭.(2)π()sin 2cos 22sin 24f x x x x ⎛⎫=+=+ ⎪⎝⎭,所以π2π12sin sin 24242f ααα⎛⎫⎛⎫⎛⎫=+=⇒+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为()0,πα∈,所以ππ5π,444α⎛⎫+∈ ⎪⎝⎭,所以2ππ3cos 1sin 442αα⎛⎫⎛⎫+=±-+=± ⎪ ⎪⎝⎭⎝⎭,①当π3cos 42α⎛⎫+= ⎪⎝⎭时,ππππππ26sin sin sin cos cos sin 4444444αααα⎡⎤-⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦而当()0,πα∈时,sin 0α>,所以此种情况不成立;②当π3cos 42α⎛⎫+=- ⎪⎝⎭时,ππππππ26sin sin sin cos cos sin 4444444αααα⎡⎤+⎛⎫⎛⎫⎛⎫=+-=+-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.所以sin α的值为264+.。

高考数学真题08 三角恒等变换问题(教师版)

高考数学真题08 三角恒等变换问题(教师版)

专题08 三角恒等变换问题【高考真题】1.(2022·新高考Ⅱ)若sin(α+β)+cos(α+β)=22cos(α+π4)sin β,则( )A .tan(α-β)=1B .tan(α+β)=1C .tan(α-β)=-1D .tan(α+β)=-11.答案 C 解析 由已知得,sin αcos β+cos αsin β+cos αcos β+sin αsin β=2(cos α-sin α)sin β,即sin αcos β +cos αsin β+cos αcos β+sin αsin β=0,即sin(α-β)+cos(α-β)=0.所以tan(α-β)=-1.故选C . 2.(2022·浙江)若3sin α-sin β=10,α+β=π2,则sin α=__________,cos2β=__________.2.答案31010 45 解析 α+β=π2,∴sin β=cos α,即3sin α-cos α=10,即10(31010sin α-1010cos α) =10,令sin θ=1010,cos θ=31010,则10sin(α-θ)=10,∴α-θ=π2+2k π,k ∈Z ,即α=θ+π2+2k π,∴sin α=sin(θ+π2+2k π)=cos θ=31010,则cos2β=2cos 2β-1=2sin 2α-1=45.故答案为31010与45.【知识总结】1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1⇒sin α=±1-cos 2α. (2)商的关系:sin αcos α=tan α⎝⎛⎭⎫α≠k π+π2(k ∈Z ). 2.三角函数的诱导公式3.三角恒等变换 (1) 和角差角公式:cos(α+β)=cos αcos β-sin αsin β,cos(α-β)=cos αcos β+sin αsin β, sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β, tan(α+β)=tan α+tan β1-tan αtan β,tan(α-β)=tan α-tan β1+tan αtan β.(2)二倍角公式: sin 2α=2sin αcos α,cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,tan 2α=2tan α1-tan 2α.(3)降幂公式:sin 2α=1-cos 2α2,cos 2α=1+cos 2α2.(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),其中tan φ=ba .【同类问题】 题型一 给角求值 1.tan 105°等于( )A .2-3B .-2-3C .3-2D .-31.答案 B 解析 tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°·tan 45°=3+11-3=(3+1)2(1-3)(1+3)=4+23-2=-2-3.2.sin 10°1-3tan 10°等于( ) A .1 B .14 C .12 D .322.答案 B 解析sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10°=2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.3.化简tan 27.5°+1tan 27.5°-7sin 27.5°+cos 27.5°等于( )A .33 B .233C . 3D .2 3.答案 B 解析 原式=tan 27.5°+1tan 27.5°-8sin 27.5°+1=sin 27.5°+cos 27.5°sin 27.5°-8sin 27.5°cos 27.5°+cos 27.5°=11-2sin 215°= 1cos 30°=233. 4.sin 40°(tan 10°-3)等于( )A .2B .-2C .1D .-14.答案 D 解析 sin 40°·(tan 10°-3)=sin 40°·⎝⎛⎭⎫sin 10°cos 10°-3=sin 40°·sin 10°-3cos 10°cos 10°=sin 40°·2⎝⎛⎭⎫12sin 10°-32cos 10°cos 10°=sin 40°·2(cos 60°·sin 10°-sin 60°·cos 10°)cos 10°=sin 40°·2sin (10°-60°)cos 10°=sin40°·-2sin 50°cos 10°=-2sin 40°·cos 40°cos 10°=-sin 80°cos 10°=-1.5.cos 20°·cos 40°·cos 100°= .5.答案 -18解析 cos 20°·cos 40°·cos 100°=-cos 20°·cos 40°·cos 80°=-sin 20°·cos 20°·cos 40°·cos 80°sin 20°=-12sin 40°·cos 40°·cos 80°sin 20°=-14sin 80°·cos 80°sin 20°=-18sin 160°sin 20°=-18sin 20°sin 20°=-18.6.cos 40°cos 25°1-sin 40°的值为( ) A .1 B .3 C . 2 D .2 6.答案 C 解析 原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25°=2cos 25°cos 25°=2.7.tan 67.5°-1tan 67.5°的值为( )A .1B .2C .2D .47.答案 C 解析 tan 67.5°-1tan 67.5°=sin 67.5°cos 67.5°-1sin 67.5°cos 67.5°=sin 67.5°cos 67.5°-cos 67.5°sin 67.5°=sin 267.5°-cos 267.5°sin 67.5°cos 67.5°=-cos 135°12sin 135°=2.8.求值:3-tan 12°(2cos 212°-1)sin 12°= . 8.答案 8 解析 原式=3-sin 12°cos 12°cos 24°sin 12°=3cos 12°-sin 12°cos 24°sin 12°cos 12°=2sin (60°-12°)14sin 48°=2sin 48°14sin 48°=8.9.已知m =2sin 18°,若m 2+n =4,则1-2cos 2153°m n等于( )A .-14B .-12C .14D .129.答案 B 解析 因为m =2sin 18°,m 2+n =4,所以n =4-m 2=4-4sin 218°=4cos 218°,因此 1-2cos 2153°m n =-cos 306°2sin 18°·2cos 18°=-cos 54°2sin 36°=-sin 36°2sin 36°=-12. 10.(多选)下列各式中,值为12的是( )A .cos 2π12-sin 2π12 B .tan 22.5°1-tan 222.5°C .2sin 195°cos 195°D .1+cosπ6210.答案 BC 解析 cos 2π12-sin 2π12=cos ⎝⎛⎭⎫2×π12=cos π6=32,故A 错误;tan 22.5°1-tan 222.5°=12·2tan 22.5°1-tan 222.5= 12tan 45°=12,故B 正确;2sin 195°cos 195°=2sin(180°+15°)cos(180°+15°)=2sin 15°cos 15°=sin 30°=12,故C 正确;1+cosπ62=2+34=2+32≠12,故D 错误. 题型二 给值求值11.(2021·全国乙)cos 2π12-cos 25π12等于( )A .12B .33C .22D .3211.答案 D 解析 因为cos 5π12=sin ⎝⎛⎭⎫π2-5π12=sin π12,所以cos 2π12-cos 25π12=cos 2π12-sin 2π12=cos ⎝⎛⎭⎫2×π12 =cos π6=32.12.(2020·全国Ⅰ)已知α∈(0,π),且3cos 2α-8cos α=5,则sin α等于( )A .53 B .23 C .13 D .5912.答案 A 解析 由3cos 2α-8cos α=5,得3(2cos 2α-1)-8cos α=5,即3cos 2α-4cos α-4=0,解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α>0,所以sin α=1-cos 2α=1-⎝⎛⎭⎫-232=53. 13.(2019·全国Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α等于( ) A .15 B .55 C .33 D .25513.答案 B 解析 由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin 2α+1,即2sin αcos α=1-sin 2α.因为α∈⎝⎛⎭⎫0,π2,所以cos α=1-sin 2α,所以2sin α1-sin 2α=1-sin 2α,解得sin α=55. 14.(2021·全国甲)若α∈⎝⎛⎭⎫0,π2,tan 2α=cos α2-sin α,则tan α等于( ) A .1515 B .55 C .53 D .15314.答案 A 解析 方法一 因为tan 2α=sin 2αcos 2α=2sin αcos α1-2sin 2α,且tan 2α=cos α2-sin α,所以2sin αcos α1-2sin 2α= cos α2-sin α,解得sin α=14.因为α∈⎝⎛⎭⎫0,π2,所以cos α=154,tan α=sin αcos α=1515. 方法二 因为tan 2α=2tan α1-tan 2α=2sin αcos α1-sin 2αcos 2α=2sin αcos αcos 2α-sin 2α=2sin αcos α1-2sin 2α,且tan 2α=cos α2-sin α,所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14.因为α∈⎝⎛⎭⎫0,π2,所以cos α=154,tan α=sin αcos α=1515. 15.若cos ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭⎫2π3+2α等于( )A .29B .-29C .79D .-7915.答案 C 解析 ∵cos ⎝⎛⎭⎫π6-α=13.∴cos ⎝⎛⎭⎫π6-α=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=sin ⎝⎛⎭⎫π3+α=13,∴cos ⎝⎛⎭⎫2π3+2α=1 -2sin 2⎝⎛⎭⎫π3+α=1-29=79. 16.已知sin ⎝⎛⎭⎫α-π3+3cos α=13,则sin ⎝⎛⎭⎫2α+π6等于( ) A .23 B .29 C .-19 D .-7916.答案 D 解析 ∵sin ⎝⎛⎭⎫α-π3+3cos α=13,∴sin αcos π3-cos αsin π3+3cos α=13,∴12sin α-32cos α +3cos α=13,∴12sin α+32cos α=13,∴cos ⎝⎛⎭⎫α-π6=13,∴sin ⎝⎛⎭⎫2α+π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α-π6+π2=cos 2⎝⎛⎭⎫α-π6=2cos 2⎝⎛⎭⎫α-π6-1=2×⎝⎛⎭⎫132-1=-79. 17.已知cos ⎝⎛⎭⎫π2-α=2cos(π-α),则tan ⎝⎛⎭⎫π4+α等于( ) A .-3 B .13 C .-13D .317.答案 C 解析 由cos ⎝⎛⎭⎫π2-α=2cos(π-α)得sin α=-2cos α,即tan α=-2,∴tan ⎝⎛⎭⎫π4+α= tan π4+tan α1-tan π4tan α=1-21-1×(-2)=-13. 18.已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4= . 18.答案 -5665 解析 因为α,β∈⎝⎛⎭⎫3π4,π,所以3π2<α+β<2π,π2<β-π4<3π4,因为sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4 =1213,所以cos(α+β)=45,cos ⎝⎛⎭⎫β-π4=-513,所以cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤α+β-⎝⎛⎭⎫β-π4=cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4=45×⎝⎛⎭⎫-513+⎝⎛⎭⎫-35×1213=-5665. 19.已知cos ⎝⎛⎭⎫θ+π4=1010,θ∈⎝⎛⎭⎫0,π2,则sin ⎝⎛⎭⎫2θ-π3= . 19.答案 4-3310 解析 由题意可得cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=110,cos ⎝⎛⎭⎫2θ+π2=-sin 2θ=-45,即 sin 2θ=45.因为cos ⎝⎛⎭⎫θ+π4=1010>0,θ∈⎝⎛⎭⎫0,π2,所以0<θ<π4,2θ∈⎝⎛⎭⎫0,π2,根据同角三角函数基本关系式,可得cos 2θ=35,由两角差的正弦公式,可得sin ⎝⎛⎭⎫2θ-π3=sin 2θcos π3-cos 2θsin π3=45×12-35×32=4-3310.20.设α,β∈(0,π),sin(α+β)=513,tan α2=12,则cos β=________.20.答案 -1665 解析 因为tan α2=12,所以sin α=2sin α2cos α2=2sin α2cos α2sin 2α2+cos 2α2=2tanα21+tan 2α2=45,cos α=cos 2α2-sin 2α2=cos 2α2-sin 2α2cos 2α2+sin 2α2=1-tan 2α21+tan2α2=35∈⎝⎛⎭⎫12,22.又α∈(0,π),所以a ∈⎝⎛⎭⎫π4,π3,又β∈(0,π),所以α+β∈⎝⎛⎭⎫π4,4π3.又sin(α+β)=513∈⎝⎛⎭⎫0,12,所以α+β∈⎝⎛⎭⎫56π,π,所以cos(α+β)=-1213,所以cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-1665.题型三 给值求角与多选题21.已知A ,B 均为钝角,且sin 2A 2+cos ⎝⎛⎭⎫A +π3=5-1510,sin B =1010,则A +B 等于( ) A .3π4 B .5π4 C .7π4 D .7π621.答案 C 解析 因为sin 2A 2+cos ⎝⎛⎭⎫A +π3=5-1510,所以1-cos A 2+12cos A -32sin A =5-1510,即12- 32sin A =5-1510,解得sin A =55,因为A 为钝角,所以cos A =-1-sin 2A =-1-⎝⎛⎭⎫552=-255.由sin B =1010,且B 为钝角,得cos B =-1-sin 2B =-1-⎝⎛⎭⎫10102=-31010.所以cos(A+B )=cos A cos B -sin A sin B =⎝⎛⎭⎫-255×⎝⎛⎭⎫-31010-55×1010=22.又A ,B 都为钝角,即A ,B ∈⎝⎛⎭⎫π2,π,所以A +B ∈(π,2π),所以A +B =7π4.22.已知α,β均为锐角,cos α=277,sin β=3314,则cos 2α= ,2α-β= .22.答案 17 π3 解析 因为cos α=277,所以cos 2α=2cos 2α-1=17.又因为α,β均为锐角,sin β=3314,所以sin α=217,cos β=1314,因此sin 2α=2sin αcos α=437,所以sin(2α-β)=sin 2αcos β-cos 2αsin β=437×1314-17×3314=32.因为α为锐角,所以0<2α<π.又cos 2α>0,所以0<2α<π2,又β为锐角,所以-π2<2α-β<π2,又sin(2α-β)=32,所以2α-β=π3.23.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为 .23.答案 -3π4 解析 ∵tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,且α∈(0,π),∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0,∴0<2α<π2.∵tan β=-17<0,β∈(0,π),∴π2<β<π,∴-π<2α-β<0.∵tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1,∴2α-β=-3π4.24.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于( ) A .3π4 B .π4或3π4 C .π4 D .2k π+π4(k ∈Z )24.答案 C 解析 由sin α=55,cos β=31010,且α,β为锐角,可知cos α=255,sin β=1010,故cos(α +β)=cos αcos β-sin αsin β=255×31010-55×1010=22,又0<α+β<π,故α+β=π4.25.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝⎛⎭⎫-π2,π2,则α+β= .25.答案 -3π4 解析 依题意有⎩⎪⎨⎪⎧tan α+tan β=-3a ,tan α·tan β=3a +1,所以tan(α+β)=tan α+tan β1-tan α·tan β=-3a 1-3a +1=1.又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0,所以tan α<0且tan β<0,所以-π2<α<0且-π2<β<0,即-π<α+β<0,结合tan(α+β)=1,得α+β=-3π4.26.设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为 . 26.答案 [-1,1] 解析 由sin αcos β-cos αsin β=1,得sin(α-β)=1,又α,β∈[0,π],∴-π≤α-β≤π,∴α-β=π2,∴⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π,∴sin(2α-β)+sin(α-2β)=sin ⎝⎛⎭⎫2α-α+π2+sin(α-2α+π)=cos α+sin α=2sin ⎝⎛⎭⎫α+π4.∵π2≤α≤π,∴3π4≤α+π4≤5π4,∴-1≤2sin ⎝⎛⎭⎫α+π4≤1,即sin(2α-β)+sin(α-2β)的取值范围为[-1,1].27.已知x ,y ∈⎝⎛⎭⎫0,π2,sin(x +y )=2sin(x -y ),则x -y 的最大值为( ) A .π3 B .π6 C .π4 D .π827.答案 B 解析 由sin(x +y )=2sin(x -y )得sin x cos y +cos x sin y =2sin x cos y -2cos x sin y ,则tan x =3tan y ,所以tan(x -y )=tan x -tan y 1+tan x tan y =2tan y 1+3tan 2y=21tan y+3tan y ≤33,当且仅当tan y =33时等号成立,由于f (x )=tan x 在x ∈⎝⎛⎭⎫0,π2上单调递增,又x ,y ∈⎝⎛⎭⎫0,π2,则x -y 的最大值为π6. 28.(多选)下列四个选项中,化简正确的是( ) A .cos(-15°)=6-24B .cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C .cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12D .sin 14°cos 16°+sin 76°cos 74°=1228.答案 BCD 解析 对于A ,方法一 原式=cos(30°-45°)=cos 30°·cos 45°+sin 30°sin 45°=32×22+12×22=6+24. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24,A 错误.对于B ,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B 正确.对于C ,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12,C 正确.对于D ,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=12,D 正确.29.(多选)已知cos(α+β)=-55,cos 2α=-513,其中α,β为锐角,以下判断正确的是( ) A .sin 2α=1213 B .cos(α-β)=19565 C .cos αcos β=8565 D .tan αtan β=11829.答案 AC 解析 因为cos(α+β)=-55,cos 2α=-513,其中α,β为锐角,所以sin 2α=1-cos 22α =1213,故A 正确;因为sin(α+β)=255,所以cos(α-β)=cos [2α-(α+β)]=cos 2αcos(α+β)+sin 2αsin(α+β)=⎝⎛⎭⎫-513×⎝⎛⎭⎫-55+1213×255=29565,故B 错误;cos αcos β=12[cos(α+β)+cos(α-β)]=12⎝⎛⎭⎫-55+29565=8565,故C 正确;sin αsin β=12[cos(α-β)-cos(α+β)]=12⎣⎡⎦⎤29565-⎝⎛⎭⎫-55=21565,所以tan αtan β=218,故D 错误.30.(多选)下列结论正确的是( )A .sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=-cos(α-γ)B .315sin x +35cos x =35sin ⎝⎛⎭⎫x +π6C .f (x )=sin x 2+cos x2的最大值为2D .tan 12°+tan 33°+tan 12°tan 33°=130.答案 AD 解析 对于A ,左边=-[cos(α-β)cos(β-γ)-sin(α-β)·sin(β-γ)]=-cos[(α-β)+(β-γ)]=-cos(α-γ),故A 正确;对于B ,315sin x +35cos x =65⎝⎛⎭⎫32sin x +12cos x =65sin ⎝⎛⎭⎫x +π6,故B 错误;对于C ,f (x )=sin x 2+cos x2=2sin ⎝⎛⎭⎫x 2+π4,所以f (x )的最大值为2,故C 错误;对于D ,tan 12°+tan 33°+tan 12°tan 33°=tan(12°+33°)·(1-tan 12°tan 33°)+tan 12°tan 33°=1,故D 正确.。

新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

新高考数学(理)之三角函数与解三角形 专题04 三角恒等变换(解析版)

新高考数学(理)三角函数与平面向量04 三角恒等变换一、具本目标:1.两角和与差的三角函数公式 (1)会用向量的数量积推导出两角差的余弦公式;(2)能利用两角差的余弦公式导出两角差的正弦、正切公式;(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;2.简单的三角恒等变换:能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆)3.(1) 已知两角的正余弦,会求和差角的正弦、余弦、正切值. (2) 会求类似于15°,75°,105°等特殊角的正、余弦、正切值. (3) 用和差角的正弦、余弦、正切公式化简求值. (4)逆用和差角的正弦、余弦、正切公式化简求值. (5) 会配凑、变形、拆角等方法进行化简与求值. 二、知识概述:知识点一 两角和与差的正弦、余弦、正切公式两角和与差的正弦公式: ()sin sin cos cos sin α+β=αβ+αβ,()sin sin cos cos sin α-β=αβ-αβ.两角和与差的余弦公式:()cos cos cos sin sin α+β=αβ-αβ, ()cos cos cos sin sin α-β=αβ+αβ. 两角和与差的正切公式:()tan tan tan 1tan tan α+βα+β=-αβ,【考点讲解】()tan tan tan 1tan tan α-βα-β=+αβ.【特别提醒】公式的条件:1. 两角和与差的正弦、余弦公式中的两个角α、β为任意角.2.两角和与差的正切公式中两个角有如下的条件:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈知识点二 公式的变用1. 两角和与差的正弦公式的逆用与辅助角公式:()22sin cos sin a x b x a b x +=++ϕ(其中φ角所在的象限由a,b 的符号确定,φ的值由tan baϕ=确定),在求最值、化简时起着重要的作用. 2. ()tan tan tan 1tan tan α+βα+β=-αβ变形为()()tan tan tan 1tan tan α+β=α+β-αβ,()tan tan tan 1tan tan α+βα+β=-αβ变形为()tan tan tan tan 1tan α+βαβ=-α+β.()tan tan tan 1tan tan α-βα-β=+αβ变形为()()tan tan tan 1tan tan α-β=α-β+αβ,()tan tan tan 1tan tan α-βα-β=+αβ变形为()tan tan tan tan 1tan α-βαβ=-α-β来使用. 条件为:(),,,.2222k k k k k z ππππα+β≠π+α-β≠π+α≠π+β≠π+∈ 知识点三 二倍角公式: 1.22tan sin 22sin cos 1tan ααααα==+ 2222221tan cos 2cos sin 2cos 112sin 1tan ααααααα-=-=-=-=+ 22tan tan 21tan ααα=-2. 常见变形:(1)22cos 1sin 2αα-=,22cos 1cos 2αα+=(2)()2cos sin 2sin 1ααα+=+,()2cos sin 2sin 1ααα-=-;(3)αα2cos 22cos 1=+,αα2sin 22cos 1=-.3.半角公式:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan+-±=,αααααsin cos 1cos 1sin 2tan-=+=.1.【2019年高考全国Ⅱ卷文理】已知a ∈(0,π2),2sin2α=cos2α+1,则sin α=( ) A .15B .55 C .33D .255【解析】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查.2sin 2cos21αα=+Q ,24sin cos 2cos .0,,cos 02αααααπ⎛⎫∴⋅=∈∴> ⎪⎝⎭Q ,sin 0,α>2sin cos αα∴=,又22sin cos 1αα+=,2215sin 1,sin 5αα∴==,又sin 0α>,5sin 5α∴=,故选B . 【答案】B2.【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2B .3C .4D .5【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=,得sin 0x =或cos 1x =,[]0,2πx ∈Q ,0π2πx ∴=、或.()f x ∴在[]0,2π的零点个数是3,故选B .【答案】B3.【2018年高考全国Ⅰ卷文数】已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为 4【真题分析】【解析】本题考查的是二倍角公式及余弦型函数的周期及最值问题.根据题意有()135cos 21(1cos 2)2cos 2222f x x x x =+--+=+,所以函数()f x 的最小正周期为2ππ2T ==,且最大值为()max 35422f x =+=,故选B. 【答案】B4.【2018年高考全国Ⅰ卷】若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89-【解析】本题主要考查二倍角公式及求三角函数的值.2217cos 212sin 12()39αα=-=-⨯=.故选B. 【答案】B5.【2018年高考全国Ⅰ卷文数】已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15 B .55 C .255D .1 【解析】本题主要考查任意角的三角函数和三角恒等变換根据条件,可知,,O A B 三点共线,从而得到2b a =,因为22212cos22cos 12131a ⎛⎫=-=⋅-= ⎪+⎝⎭αα,解得215a =,即55a =,所以525a b a a -=-=. 【答案】B6.【2017年高考全国Ⅰ卷文数】已知4sin cos 3αα-=,则sin 2α=( ) A .79-B .29-C .29D .79【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A. 【答案】A7.【2019年高考全国Ⅰ卷文数】函数3π()sin(2)3cos 2f x x x =+-的最小值为___________. 【解析】23π()sin(2)3cos cos 23cos 2cos 3cos 12f x x x x x x x =+-=--=--+23172(cos )48x =-++, 1cos 1x -≤≤Q ,∴当cos 1x =时,min ()4f x =-,故函数()f x 的最小值为4-.【答案】4-8.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________.【解析】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,函数()2sin 2f x x ==1cos 42x -,周期为π2. 【答案】π29.【2019年高考江苏卷】已知tan 2π3tan 4αα=-⎛⎫+ ⎪⎝⎭,则πsin 24α⎛⎫+ ⎪⎝⎭的值是 . 【解析】由()tan 1tan tan tan 2tan 1πtan 13tan 1tan 4αααααααα-===-++⎛⎫+ ⎪-⎝⎭,得23tan 5tan 20αα--=, 解得tan 2α=,或1tan 3α=-.πππsin 2sin 2cos cos 2sin 444ααα⎛⎫+=+ ⎪⎝⎭()2222222sin cos cos sin sin 2cos 2=22sin cos αααααααα⎛⎫+-=+ ⎪+⎝⎭2222tan 1tan =2tan 1ααα⎛⎫+- ⎪+⎝⎭, 当tan 2α=时,上式22222122==22110⎛⎫⨯+-⨯ ⎪+⎝⎭; 当1tan 3α=-时,上式=22112()1()2233[]=1210()13⨯-+--⨯-+. 综上,π2sin 2.410α⎛⎫+= ⎪⎝⎭ 【答案】21010.【2018年高考全国Ⅰ卷文数】已知5π1tan()45-=α,则tan =α__________. 【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα--⎛⎫-=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 【答案】3211.【2018年高考全国Ⅱ理数】已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 【解析】本题主要考查三角恒等变换.因为sin cos 1+=αβ,cos sin 0+=αβ,所以()()221sin cos 1,-+-=αα所以11sin ,cos 22==αβ, 因此()22111111sin sin cos cos sin cos 1sin 1.224442+=+=⨯-=-+=-+=-αβαβαβαα【答案】12-12.【2017年高考江苏卷】若π1tan(),46-=α则tan =α .【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【答案】7513.【2018年高考全国Ⅰ理数】已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.【解析】()()212cos 2cos 24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫'=+=+-=+-⎪⎝⎭, 所以当1cos 2x <时函数单调递减,当1cos 2x >时函数单调递增,从而得到函数的递减区间为()5ππ2π,2π33k k k ⎡⎤--∈⎢⎥⎣⎦Z ,函数的递增区间为()ππ2π,2π33k k k ⎡⎤-+∈⎢⎥⎣⎦Z , 所以当π2π,3x k k =-∈Z 时,函数()f x 取得最小值,此时33sin ,sin222x x =-=-, 所以()min 33332222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是332-.【答案】332-14.【2017年高考全国Ⅱ理数】函数()23sin 3cos 4f x x x =+-(π0,2x ⎡⎤∈⎢⎥⎣⎦)的最大值是 . 【解析】本题主要考查的是三角函数式的化简及三角函数的问题转化为二次函数的问题,二次函数、二次方程与二次不等式统称“三个二次”化简三角函数的解析式的综合考查.()2223131cos 3cos cos 3cos cos 1442f x x x x x x ⎛⎫=-+-=-++=--+ ⎪ ⎪⎝⎭,由自变量的范围:π0,2x ⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,当3cos 2x =时,函数()f x 取得最大值1.【答案】115.【2019年高考浙江卷】设函数()sin ,f x x x =∈R .(1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124y f x f x ππ=+++的值域. 【解析】本题主要考查三角函数及其恒等变换等基础知识.(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+,故2sin cos 0x θ=,所以cos 0θ=. 又[0,2π)θ∈,因此π2θ=或3π2. (2)2222ππππsin sin 124124y fx f x x x ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ππ1cos 21cos 2133621cos 2sin 222222x x x x ⎛⎫⎛⎫-+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭=+=-- ⎪ ⎪⎝⎭3π1cos 223x ⎛⎫=-+ ⎪⎝⎭. 因此,函数的值域是33[1,1]22-+. 【答案】(1)π2θ=或3π2;(2)33[1,1]22-+. 16.【2018年高考北京卷文数】已知函数2()sin 3sin cos f x x x x =+.(1)求()f x 的最小正周期; (2)若()f x 在区间[,]3m π-上的最大值为32,求m 的最小值. 【解析】本题主要考查二倍角公式、辅助角公式、正弦函数的性质. (1)1cos 23311π1()sin 2sin 2cos 2sin(2)2222262x f x x x x x -=+=-+=-+, 所以()f x 的最小正周期为2ππ2T ==. (2)由(1)知π1()sin(2)62f x x =-+.因为π[,]3x m ∈-,所以π5ππ2[,2]666x m -∈--.要使得()f x 在π[,]3m -上的最大值为32,即πsin(2)6x -在π[,]3m -上的最大值为1. 所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.【答案】(1)π;(2)π3.1. sin15°sin105°的值是( ) A .14 B .14-C .34D .34-【解析】本题的考点二倍角的正弦和诱导公式:sin15°sin105°=sin15°cos15°=12sin30°=14,故选A . 【答案】A2.已知sin2α=13,则cos 2(π4α-)=( ) A .34 B .23 C .45 D .56【解析】本题考点二倍角的余弦,三角函数的化简求值.∵sin2α=13,∴cos 2(π4α-)=π11cos 211sin 22232223αα⎛⎫+-+⎪+⎝⎭===.故选B . 【答案】B3.已知sin α=45-,α∈(π,3π2),则tan 2α等于( ) A .-2 B .12 C .12-或2 D .-2或12【解析】∵sin α=45-,α∈(π,3π2),∴cos α=35-,∴tan α=43.∵α∈(π,3π2),∴2α∈(π2,3π4),∴tan 2α<0. tan α=22tan21tan 2αα- =43,即2tan 22α+ 3tan2α-2=0,解得tan2α=-2,或tan2α=12(舍去),故选A .【答案】A【模拟考场】4.设π0,2α⎛⎫∈ ⎪⎝⎭,π0,4β⎛⎫∈ ⎪⎝⎭,且tan α=1sin 2cos 2ββ+,则下列结论中正确的是( ) A .2π4αβ-=B .π24αβ+=C .π4αβ-=D .π4αβ+= 【解析】本题的考点二倍角的余弦,二倍角的正弦..tan α=()222sin cos 1sin 2sin cos 1tan cos 2cos sin cos sin 1tan ββββββββββββ++++===---πtan 4β⎛⎫=+ ⎪⎝⎭ 因为π0,2α⎛⎫∈ ⎪⎝⎭,πππ,442β⎛⎫+∈ ⎪⎝⎭,所以π4αβ-=.故选C . 【答案】C5.已知角αβ,均为锐角,且cos α=35,tan (α−β)=−13,tan β=( ) A .13 B .913 C .139D .3【解析】∵角α,β均为锐角,且cos α=35,∴sin α=21cos α- =45,tan α=43,又tan (α−β)=tan tan 1+tan tan αβαβ-=4tan 341+tan 3ββ-=−13, ∴tan β=3,故选D .【答案】D6.设α为锐角,若π3cos()65α+=,则πsin()12α-=( ) A .210 B .210- C .45 D .45- 【解析】因为α为锐角,所以ππ2π,663α⎛⎫+∈ ⎪⎝⎭,因为π3cos()65α+=,所以π4sin()65α+=,故πππππsin()sin sin cos 126464ααα⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππ2432cos sin 6425510α⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭.故选A.【答案】A7.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期( )A .与b 有关,且与c 有关B .与b 有关,但与c 无关C .与b 无关,且与c 无关D .与b 无关,但与c 有关【解析】本题考查的是二倍角的降幂公式与三角函数的最小正周期,先利用三角恒等变换(降幂公式)化简函数()f x ,再判断b 和c 的取值是否影响函数()f x 的最小正周期.21cos 2cos 21()sin sin sin sin 222-=++=++=-+++x x f x x b x c b x c b x c ,其中当0=b 时,cos 21()22=-++x f x c ,此时周期是π;当0≠b 时,周期为2π,而c 不影响周期.故选B . 【答案】B8.已知34cos sin =-αα,则=α2sin ( ) A .97- B .92- C .92 D .97【解析】本题的考点是二倍角的正弦正逆用,将34cos sin =-αα两边平方()2234cos sin ⎪⎭⎫ ⎝⎛=-αα, 化简后可得916cos sin 2cos sin 22=-+αααα即=α2sin 97-.【答案】A 9.函数()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 的最大值为( ) A .56B .1C .53D .51【解析】将()⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=6cos 3sin 51ππx x x f 化简,利用两角和、差的正余弦公式及辅助角公式,三角函数 最值的性质可以求得函数最大值.由()6sin sin 6cos cos 3sin cos 3cos sin 51ππππx x x x x f ++⎪⎭⎫ ⎝⎛+= x x x x sin 21cos 23cos 103sin 101+++=⎪⎪⎭⎫ ⎝⎛+=+=x x x x cos 23sin 2156cos 533sin 53⎪⎭⎫ ⎝⎛+=3sin 56πx , 因为13sin 1≤⎪⎭⎫ ⎝⎛+≤-πx ,所以函数的最大值为56.【答案】A10.若tan 2tan 5πα=,则3cos()10sin()5παπα-=-( ) A.1 B.2 C.3 D.4【解析】本题考点是两角和与差的正弦(余弦)公式,同角间的三角函数关系,三角函数的恒等变换. 三角恒等变换的主要是求值,在求值时只要根据求解目标的需要,结合已知条件选用合适的公式计算.本例应用两角和与差的正弦(余弦)公式化简所求式子,利用同角关系式求出使已知条件可代入的值,然后再化简,求解过程中注意公式的顺用和逆用.3cos()10sin()5παπα-=-33cos cos sin sin 1010sin cos cos sin 55ππααππαα+-33cos tan sin 1010tan cos sin 55ππαππα+=-33cos 2tan sin 105102tan cos sin 555ππππππ+=- 33cos cos 2sin sin 510510sin cos 55ππππππ+==333cos cos sin sin sin sin 510510510sin cos 55ππππππππ++ =333cos cos sin 5101010sin cos 55ππππππ⎛⎫-+ ⎪⎝⎭=13cos sin 1025sin cos 55ππππ+1cos cos 10210sin cos 55ππππ+=1cos cos 1021014sin 210πππ+= 3cos103cos 10ππ==.【答案】C11.已知向量a r =(sin θ,2-),b r =(1,cos θ),且a r ⊥b r ,则sin 2θ+cos 2θ的值为( )A .1B .2C .12D .3 【解析】本题考点是三角函数的恒等变换及化简求值,数量积判断两个平面向量的垂直关系.由题意可得a r ·b r =sin θ-2cos θ=0,即tan θ=2.∴sin 2θ+cos 2θ=2222sin cos +cos cos +sin θθθθθ=22tan +11+tan θθ=1,故选A . 【答案】A12.已知cos θ=-725,θ∈(-π,0),则sin 2θ+cos 2θ=( )A .125B .15±C .15D .15- 【解析】∵cos θ=-725,θ∈(-π,0), ∴cos 22θ-sin 22θ=(cos 2θ+sin 2θ)(cos 2θ-sin 2θ)<0,2θ∈(π2-,0), ∴sin 2θ+cos 2θ<0,cos 2θ-sin 2θ>0,∵(sin 2θ+cos 2θ)2=1+sin θ=1-491625-=125,∴sin 2θ+cos 2θ=15-.故选D .【答案】D13. =+οο75sin 15sin .【解析】本题考查的是三角恒等变换及特殊角的三角函数值的求解. 法一、6sin15sin 75sin15cos152sin(1545)2+=+=+=o o o o o o . 法二、6sin15sin 75sin(4530)sin(4530)2sin 45cos302+=-++==o o o o o o o o . 法三、62626sin15sin 75442-++=+=o o . 【答案】62. 14.在锐角三角形ABC 中,若sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【解析】本题考查的是三角恒等变换及正切的性质,本题要求会利用三角形中隐含的边角关系作为消元依据,同时要记住斜三角形ABC 中恒有tan tan tan tan tan tan A B C A B C =++,sin sin(B C)2sin sin tan tan 2tan tan A B C B C B C =+=⇒+=,因此tan tan tan tan tan tan tan 2tan tan 22tan tan tan tan tan tan 8A B C A B C A B C A B C A B C =++=+≥⇒≥,即最小值为8.【答案】8.15.【2018江苏卷16】已知,αβ为锐角,4tan 3α=,5cos()5αβ+=-. (1)求cos2α的值;(2)求tan()αβ-的值.【解析】(1)因为,,所以. 4tan 3α=sin tan cos ααα=4sin cos 3αα=因为,所以, 因此,. (2)因为为锐角,所以.又因为,所以, 因此.因为,所以, 因此,. 16.【2016高考山东理数】在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知tan tan 2(tan tan ).cos cos A B A B B A +=+ (Ⅰ)证明:a +b =2c ;(Ⅱ)求cos C 的最小值.【解析】试题分析:(Ⅰ)根据两角和的正弦公式、正切公式、正弦定理即可证明;(Ⅱ)根据余弦定理公式表示出cosC ,由基本不等式求cos C 的最小值.试题解析:()I 由题意知sin sin sin sin 2cos cos cos cos cos cos A B A B A B A B A B ⎛⎫+=+ ⎪⎝⎭, 化简得()2sin cos sin cos sin sin A B B A A B +=+,即()2sin sin sin A B A B +=+.因为A B C π++=,所以()()sin sin sin A B C C π+=-=.从而sin sin =2sin A B C +.由正弦定理得2a b c +=.()∏由()I 知2a b c +=, 所以 2222222cos 22a b a b a b c C ab ab +⎛⎫+- ⎪+-⎝⎭==311842b a a b ⎛⎫=+-≥ ⎪⎝⎭, 当且仅当a b =时,等号成立.故 cos C 的最小值为12. 17.已知函数()22sin sin 6f x x x π⎛⎫=-- ⎪⎝⎭,R x ∈ 22sin cos 1αα+=29cos 25α=27cos22cos 125αα=-=-,αβ(0,π)αβ+∈5cos()5αβ+=-225sin()1cos ()5αβαβ+=-+=tan()2αβ+=-4tan 3α=22tan 24tan 21tan 7ααα==--tan 2tan()2tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+(I)求()f x 最小正周期;(II)求()f x 在区间[,]34p p -上的最大值和最小值. 【解析】本题考点两角和与差的正余弦公式、二倍角的正余弦公式、三角函数的图象与性质.综合运用三角 知识,从正确求函数解析式出发,考查最小正周期的求法与函数单调性的应用,从而求出函数的最大值与最小值,体现数学思想与方法的应用.(I) 由已知,有1cos 21cos211313()cos2sin 2cos2222222x x f x x x x π⎛⎫-- ⎪⎛⎫-⎝⎭=-=+- ⎪⎝⎭ 311sin 2cos2sin 24426x x x π⎛⎫--=- ⎪⎝⎭. 所以()f x 的最小正周期22T ππ==. (II)因为()f x 在区间[,]36p p --上是减函数,在区间[,]64p p -上是增函数, 113(),(),()346244f f f πππ-=--=-=,所以()f x 在区间[,]34p p -上的最大值为34,最小值为12-. 【答案】(I)π; (II) max 3()4f x =,min 1()2f x =-.。

2012_2022年高考数学真题分类汇编05三角恒等变换与三角函数(含答案)

2012_2022年高考数学真题分类汇编05三角恒等变换与三角函数(含答案)

2012_2022年高考数学真题分类汇编:三角恒等变换与三角函数一、选择题1.(2021年高考全国甲卷理科)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α= ( )A .1515B .55C .53D .153【答案】A 解析:cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=, 215cos 1sin 4αα∴=-=,sin 15tan cos 15ααα∴==. 故选:A .【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.2.(2021年高考全国乙卷理科)魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB = ( )( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 解析:如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A .【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出. 3.(2021年高考全国乙卷理科)把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =( )A .7sin 212x x ⎛⎫- ⎪⎝⎭ B .sin 212x π⎛⎫+ ⎪⎝⎭ C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭【答案】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A . 7sin 212x x ⎛⎫-⎪⎝⎭B . sin 212x π⎛⎫+ ⎪⎝⎭ C . 7sin 212x π⎛⎫-⎪⎝⎭D . sin 212x π⎛⎫+ ⎪⎝⎭ 4.(2021年高考全国甲卷理科)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A .B .C 三点,且A .B .C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A .C 两点到水平面A B C '''的高度差AA CC ''-约为(3 1.732≈)( )A .346B .373C .446D .473【答案】B 解析:过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB △为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 304-︒=︒-︒=︒︒-︒︒=, 所以210042''100(31)27362A B ⨯⨯==+≈-, 所以''''100373AA CC A B -=+≈. 故选:B .【点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.5.(2020年高考数学课标Ⅰ卷理科)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为 ( )( )A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω=== 故选:C【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.6.(2020年高考数学课标Ⅱ卷理科)若α为第四象限角,则 ( )A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0【答案】D解析:方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D . 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D .7.(2020年高考数学课标Ⅰ卷理科)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α= ( )AB .23C .13D【答案】A【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴==故选:A .8.(2020年高考数学课标Ⅲ卷理科)已知2tan θ–tan(θ+π4)=7,则tan θ= ( ) A .–2 B .–1C .1D .2【答案】D 解析:2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D .【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题. 9.(2020年高考数学课标Ⅲ卷理科)在△ABC 中,cos C =23,AC =4,BC =3,则cos B = ( ) A .19B .13C .12D .23【答案】A 解析:在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB =,即3AB =由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A .10.(2019年高考数学课标Ⅲ卷理科)设函数()sin()5f x x ωπ=+(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在0,2π)(有且仅有3个极大值点②()f x 在0,2π)(有且仅有2个极小值点③()f x 在(0,)10π单调递增④ω的取值范围是1229[)510, 其中所有正确结论的编号是 ( )A .①④B .②③C .①②③D .①③④【答案】D【解析】()f x 在0,2π)(有且仅有3个极大值点,分别对应59=,,5222x ππππω+,故①正确.()f x 在0,2π)(有2个或3个极小值点,分别对应37=,522x πππω+和3711=,5222x ππππω+,,故②不正确.因为当[0,2]x ∈π时,2555x πππω+ωπ+≤≤,由()f x 在[0,2]π有且仅有5个零点.则265x ππω+<π5≤,解得1229[)510ω∈,,故④正确.由1229[)510ω∈,,得[0.44,0.49)105ππω+∈ππ,10.492π<π,所以()f x 在(0,)10π单调递增,故③正确. 综上所述,本题选D .11.(2019年高考数学课标全国Ⅱ卷理科)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα=+,则sin α= ( )A .15B C D 【答案】B【解析】∵2sin 2cos21α=α+,∴24sin cos 2cos α⋅α=α.0,2πα⎛⎫∈ ⎪⎝⎭,∴cos 0α>,sin 0α>,∴2sin cos α=α,又22sin cos 1αα+=,∴25sin 1α=,21sin 5α=,又sin 0α>,∴sin α=,故选B . 12.(2019年高考数学课标全国Ⅱ卷理科)下列函数中,以2π为周期且在区间,42ππ⎛⎫⎪⎝⎭单调递增的是()( )A .()cos2f x x =B .()sin 2f x x =C .()cos f x x =D .()sin f x x =【答案】A【解析】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间,42ππ⎛⎫ ⎪⎝⎭单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间,42ππ⎛⎫⎪⎝⎭单调递减,排除B ,故选A.【点评】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;③函数2()()y f x f x ==函数公式法求三角函数的周期,例如,21cos 4cos 2cos 22xy x x +===,所以周期242T ππ==. 13.(2019年高考数学课标全国Ⅰ卷理科)关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 ③()f x 在[,]ππ-有4个零点④()f x 的最大值为2 其中所有正确结论的编号是( )A .①②④B .②④C .①④D .①③【答案】C解析:作出函数sin ,sin ,sin sin y x y x y x x ===+的图象如图所示,由图可知,()f x 是偶函数,①正确,()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递减,②错误,ABC△的面积为2224a b c +-,则C =( )A .π2B .π3C .π4D .π6【答案】C解析:由余弦定理可得2222cos a b c ab C +-=, 所以由222112cos sin sin 2424ABCa b c ab C S ab C ab C +-==⇒=△ 所以tan 1C =,而()0,πC ∈,所以π4C =,故选C . 15.(2018年高考数学课标Ⅲ卷(理))若1sin 3α=,则cos2α= ( )A .89B .79C .79-D .89-【答案】B解析:2217cos 212sin 1239αα⎛⎫=-=-⨯= ⎪⎝⎭,故选B .16.(2018年高考数学课标Ⅱ卷(理))若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π【答案】A解析:由已知()sin cos 0f x x x '=--≤,得sin cos 0≥x x +,即04)≥x π+,解得322,()44≤≤k x k k Z ππππ-++∈,即[]3,,44a a ππ⎡⎤-⊂-⎢⎥⎣⎦,所以434≥≤a a a a ππ⎧⎪-<⎪⎪--⎨⎪⎪⎪⎩,得04≤a π<,所以a 的最大值是4π,故选A .17.(2018年高考数学课标Ⅱ卷(理))在ABC △中,cos2C =1BC =,5AC =,则AB = ( )A.BCD.【答案】A解析:因为223cos 2cos 12125C C =-=⨯-=-, 所以22232cos 125215()325AB BC AC BC AC C =+-⨯⨯=+-⨯⨯⨯-=,所以AB =故选A .18.(2017年高考数学新课标Ⅰ卷理科)已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin 2cos 2cos 23326C y x x x ⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移π12个单位得到2C ,故选D .19.(2017年高考数学课标Ⅲ卷理科)设函数()cos 3f x x π⎛⎫=+⎪⎝⎭,则下列结论错误的是( )A .()f x 的一个周期为2π-B .()y f x =的图像关于直线83x π=对称 C .()f x π+的一个零点为6x π= D .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减 【答案】D【解析】函数()f x 的周期为2n π,n Z ∈,故A 正确;又函数()f x 的对称轴为,3x k k Z ππ+=∈,即3x k ππ=-,k Z ∈,当3k =时,得83x π=,故B 正确;由()0cos 03f x x π⎛⎫=⇒+= ⎪⎝⎭32x k πππ⇒+=+,所以函数()f x 的零点为,6x k k Z ππ=+∈,当0k =时,6x π=,故C 正确;由223k x k ππππ≤+≤+,解得22233k x k ππππ-≤≤+,所以函数()f x 的单调递减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,而2,2,2233k k ππππππ⎛⎫⎡⎤⊄-+ ⎪⎢⎥⎝⎭⎣⎦,故D 错误. 【考点】函数()cos y A x ωϕ=+的性质20.(2016高考数学课标Ⅲ卷理科)在△ABC 中,4B π=,BC 边上的高等于13BC ,则cos A = ( )ABC. D.【答案】C 【解析】设BC 边上的高线为AD ,则3BC AD =,所以AC =,AB =.由余弦定理,知222222cos 210AB AC BC A AB AC +-===-⋅,故选C. 21.(2016高考数学课标Ⅲ卷理科)若3tan 4α=,则2cos 2sin 2αα+= ( ) A .6425B .4825C .1D .1625【答案】A【解析】由3tan 4α=,得3sin 5α=,4cos 5α=或3sin 5α=-,4cos 5α=- 所以2161264cos 2sin 24252525αα+=+⨯=,故选A. 22.(2016高考数学课标Ⅱ卷理科)若π3cos 45α⎛⎫-=⎪⎝⎭,则sin 2α=( ) A .725B .15C .15-D .725-【答案】C【解析】∵3cos 45πα⎛⎫-=⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D . 23.(2016高考数学课标Ⅱ卷理科)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈【答案】B24.(2016高考数学课标Ⅰ卷理科)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( )(A)11(B)9(C)7(D)5【答案】B 【解析】由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩,则21k ω=+,其中k ∈Z()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减故选B .25.(2015高考数学新课标1理科)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),k 44k k ππ-+∈Z B .13(2,2),k 44k k ππ-+∈Z C .13(,),k 44k k -+∈ZD .13(2,2),k 44k k -+∈Z【答案】D解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D . 考点:三角函数图像与性质26.(2015高考数学新课标1理科)sin 20cos10cos160sin10︒︒-︒︒= ( )A.2-B.2C .12-D .12【答案】D解析:原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D . 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 27.(2014高考数学课标2理科)设函数xf x m()sinπ=.若存在f x ()的极值点x 0满足x f x m 22200[()]+<,则m 的取值范围是 ( )A .(,6)(6,)-∞-⋃+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-⋃+∞D .(,1)(4,)-∞-⋃+∞【答案】C28.(2014高考数学课标2理科)钝角三角形ABC 的面积是12,AB=1,AC= ( ) A .5 BC .2D .1【答案】B解析:有面积公式得:112sin 22B,解得2sin 2B ,因为钝角三角形,所以0135B ,由余弦定理得:21222cos1355AC,所以5AC ,选B 。

2024年高考数学专项三角恒等变换4种常见考法归类(解析版)

2024年高考数学专项三角恒等变换4种常见考法归类(解析版)

三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1 2024年高考数学专项三角恒等变换4种常见考法归类(解析版)T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sinα1+cosα=1-cosαsinα,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin2α2=1-cosα2,cos2α2=1+cosα2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos-75°的值是A.6-22B.6+22C.6-24D.6+2415(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.116(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.17(2023·全国·高三专题练习)sin220°-cos220°sin45°cos155°1-sin40°=.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sinα=23,cosβ=-75,则cos(α-β)=()A.-115B.-1315C.-41415D.2141519(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cosα=13,cosα-β=223,则cosβ=()A.89B.79C.429D.020(2023·陕西榆林·统考模拟预测)若tanα+π4=15,则tanα=()A.-23B.23C.-13D.1321(山西省晋中市2023届高三三模数学试题(A卷))已知α,β为锐角,且tanα=2,sinα+β= 22,则cosβ=()A.-31010B.31010C.-1010D.101022(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tanαtanβ=2,cosα+β=-15,则cosα-β=()A.35B.-35C.115D.-11523(2023·全国·高三专题练习)若α∈π2,3π4,cosα-π4=210,则sinα+π3=24【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sinα=13,cos(α+β)=-223,下列选项正确的有()A.sin(α+β)=±13B.cosβ=-79C.cos2β=-1781D.sin(α-β)=-232725(2023·陕西商洛·统考三模)已知tan(α+β)=3,tanα+π4=-3,则tanβ=()A.-15B.15C.-17D.1726(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sinα=2sinβ,2cosα=cosβ,则sinα-β=.(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cosα=17,cos(α+β)=-1114,则β=.28(2023·全国·高三专题练习)已知cosα=17,cos(α-β)=1314,若0<β<α<π2,则β=.29(2023·河南·校联考模拟预测)设tanα,tanβ是方程x2+33x+4=0的两根,且α,β∈-π2 ,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π330(2023·全国·高三专题练习)已知cosα=255,sinβ=1010,且α∈0,π2,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π431【多选】(2023·全国·高三专题练习)若tan α+tan β=3-3tan αtan β,则α+β的值可能为()A.π3 B.π6C.-2π3D.-5π632(2023·全国·高三专题练习)已知0<α<π2,cos α+π4 =13.(1)求sin α的值;(2)若-π2<β<0,cos β2-π4=33,求α-β的值.33(2023·全国·高三专题练习)已知角α为锐角,π2<β-α<π,且满足tan α2=13,sin β-α =7210(1)证明:0<α<π4;(2)求β.34(2023·全国·高三专题练习)已知sin π4-α=-55,sin 3π4+β =1010,且α∈π4,3π4,β∈0,π4,求α-β的值为.(四)三角函数式的化简35(2023·福建厦门·统考模拟预测)已知sin α+sin α+2π3=sin π3-α ,则sin α=()A.0B.±217C.±22D.±3236(2023春·山西·高三校联考阶段练习)已知2sin θ+π4 =3cos θ,则sin θsin θ-cos θ=.37(2023·湖北·校联考模拟预测)已知sin x +π4 =-35,3π4<x <5π4,则sin x 1-tan x =()A.21100B.-21100C.7280D.-728038(2023·全国·高三专题练习)已知θ≠k π+π4k ∈Z ,且cos2θcos 3π2-θ=cos θ-sin θ,则tan θ-π4-tan2π2-θ =()A.83B.53C.-13D.-13339(2023·湖南长沙·长郡中学校考一模)已知α,β∈0,π2,sin (2α+β)=2sin β ,则tan β的最大值为()A.12B.33C.22D.3240(河南省部分学校2023届高三高考仿真适应性测试理科数学试题)已知向量a=2cos75°,2sin75°,b =cos15°,-sin15° ,且(2a +b )⊥(a -λb ),则实数λ的值为()A.8B.-8C.4D.-441(2023·陕西·统考一模)在△ABC 中,点D 是边BC 上一点,且AB =4,BD =2.cos B =1116,cos C =64,则DC =.42【多选】(2023·江苏南通·模拟预测)重庆荣昌折扇是中国四大名扇之一,其精雅宜士人,其华灿宜艳女,深受各阶层人民喜爱.古人曾有诗赞曰:“开合清风纸半张,随机舒卷岂寻常;金环并束龙腰细,玉栅齐编凤翅长”.荣昌折扇平面图为下图的扇形COD ,其中∠COD =2π3,OC =3OA =3,动点P 在CD 上(含端点),连结OP 交扇形OAB 的弧AB 于点Q ,且OQ =xOC +yOD,则下列说法正确的是()A.若y =x ,则x +y =23B.若y =2x ,则OA ⋅OP=0C.AB ⋅PQ≥-2D.PA ⋅PB ≥11243(广东省潮州市2023届高三二模数学试题)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3tan A tan C =tan A +tan C +3.(1)求角B 的大小;(2)求cos A +cos C 的取值范围.考点二二倍角公式(一)给角求值44【多选】(2023·全国·高三专题练习)下列等式成立的是()A.sin275°-cos275°=32B.12sin15°+32cos15°=22C.sin75°cos75°=14D.1-tan15°1+tan15°=3345(2023·河南开封·开封高中校考模拟预测)4sin40°-tan40°sin75°-cos75°sin75°+cos75°的值为()A.66B.12C.63D.146(2023·重庆·统考模拟预测)式子2sin18°3cos29°-sin29°-1cos6°+3sin6°化简的结果为()A.12B.1C.2sin9°D.247(2023·全国·高三专题练习)公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为m=2sin18°,若m2+n=4,m n2cos227°-1 =.48(2023·全国·高三专题练习)若λsin160°+tan20°=3,则实数λ的值为()A.4B.43C.23D.433(二)给值(式)求值49【多选】(2023·山西·校联考模拟预测)已知sin x=35,其中x∈π2,π,则()A.tan x=-43B.cos x2=1010C.sin2x=-2425D.cos x-π4=-21050(2023·福建泉州·校考模拟预测)已知cosα=-35,π2≤α≤π,则cos2α+π4=.51(2023秋·湖南衡阳·高三衡阳市一中校考期中)已知sinα-cosα=-23,则sin2α=.52【多选】(2023·全国·高三专题练习)已知cosα+β=-55,cos2α=-45,其中α,β为锐角,则以下命题正确的是()A.sin2α=35B.cosα-β=-2255C.cosαcosβ=510D.tanαtanβ=1353(2023春·山西太原·高三山西大附中校考阶段练习)已知α∈0,π,cosα=-35,则cos2α2+π4=.54(2023秋·辽宁葫芦岛·高三统考期末)已知α∈0,π2,sin2α=cosπ4-α,则cos2α的值为()A.0B.12C.32D.-3255(2023·全国·高三专题练习)已知sinαsinπ3-α=3cosαsinα+π6,则cos2α+π3=()A.-32B.-1 C.12D.3256(2023·全国·高三专题练习)已知cos2π4+α=45,则sin2α=()A.35B.-35C.15D.-15(三)给值求角57(2023·全国·高三专题练习)已知tan α=13,tan β=-17,且α,β∈(0,π),则2α-β=()A.π4B.-π4C.-3π4D.-3π4或π458(2023·全国·高三专题练习)若α∈0,π ,cos2α=sin 2α2-cos 2α2,则α=.(四)与同角三角函数的基本关系综合59(2023·全国·高三专题练习)已知α∈π4,π2,且sin2α=45,则3sin α-cos α4sin α+2cos α=60(2023·海南·校联考模拟预测)已知tan α=2,则1-3cos 2αsin2α=.61(2023秋·四川成都·高三四川省成都市玉林中学校考阶段练习)已知tan α=2,则sin2αsin 2α+sin αcos α-cos2α-1的值为()A.12B.1C.2D.-1(五)与诱导公式的综合62(2023春·江西南昌·高三统考开学考试)已知tan (π-α)=22,则sin2α=()A.429B.229C.-229D.-42963(2023·全国·高三专题练习)若cos π3-2x =-78,则sin x +π3的值为( ).A.14B.78C.±14D.±7864(2023·河北·统考模拟预测)已知sinα-π6=-25,则cos2α+5π3=()A.825B.1725C.255D.5565(2023·湖北武汉·统考二模)已知sinα+π3=35,则sin2α+π6=()A.2425B.-2425C.725D.-725(六)利用二倍角公式化简求值66(2023·全国·高三专题练习)已知tanα=3,则sinα-π4cosα+π4sin2α=.67(2023·全国·高三专题练习)若sinθ1-cosθ=2,则1+2sin2θ+3cos2θ1-2sin2θ+3cos2θ=()A.5B.43C.2D.468(2023·全国·高三专题练习)已知函数f x =sin2x+cos2x-2sinπ-xcosπ+xsin9π2-x-cos13π2+x.(1)求fπ12的值;(2)已知fα =23,求sin2α的值.考点三辅助角公式的应用69(2023·全国·高三专题练习)函数y =cos x +cos x -π3x ∈R 的最大值为,最小值为.70(2023·陕西铜川·统考二模)已知函数f x =cos x +π2 cos x +π4,若x ∈-π4,π4,则函数f x 的值域为.71(2023·山东泰安·统考二模)已知sin α+3cos α=233,则sin 5π6-2α =.72(2023·湖北荆门·荆门市龙泉中学校联考模拟预测)若sin 2α+π6+cos2α=-3,则tan α=.73(2023·辽宁丹东·统考二模)若cos α≠0,2(sin2α+5cos α)=1+cos2α,则tan2α=()A.-43B.-34C.34D.4374(2023秋·福建莆田·高三校考期中)已知函数f (x )=23sin x cos x -2cos 2x +1.(1)求函数f (x )的最小正周期及单调递增区间;(2)求函数f (x )在区间-5π12,π6的值域;考点四简单的三角恒等变换(一)半角公式的应用75(2023秋·河北石家庄·高三统考期末)已知1+cos θsin θ=33,则tan θ2=.76(2023·全国·高三专题练习)若α∈0,π2 ,sin α2-cos α=tan α2,则tan α=( ).A.33B.3C.34D.6277(2023·全国·高三专题练习)若cos α=-45,α是第三象限的角,则1-tan α21+tan α2=()A.2B.12C.-2D.-1278(2023·浙江·校联考二模)数学里有一种证明方法叫做Pr oofwithoutwords ,也被称为无字证明,是指仅用图象而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证时被认为比严格的数学证明更为优雅与有条理.如下图,点C 为半圆O 上一点,CH ⊥AB ,垂足为H ,记∠COB =θ,则由tan ∠BCH =BHCH可以直接证明的三角函数公式是()A.tanθ2=sin θ1-cos θB.tanθ2=sin θ1+cos θC.tanθ2=1-cos θsin θD.tanθ2=1+cos θsin θ(二)三角恒等式的证明79(2023·全国·高三专题练习)已知α,β∈0,π2 ,且满足sin βsin α=cos α+β .(1)证明:tan β=sin αcos α1+sin 2α;(2)求tan β的最大值.80(2023·高三课时练习)小明在一次研究性学习中发现,以下五个式子的值都等于同一个常数.①sin213°+cos217°-sin13°cos17°;②sin215°+cos215°-sin15°cos15°;③sin218°+cos212°-sin18°cos12°;④sin2-18°cos48°;+cos248°-sin-18°⑤sin2-25°+cos255°-sin-25°cos55°.(1)请依据②式求出这个常数;(2)相据(1)的计算结果,将小明的发现推广为三角恒等式,并证明你的结论.81(2023春·江苏宿迁·高三校考阶段练习)已知△ABC为斜三角形.(1)证明:tan A+tan B+tan C=tan A tan B tan C;(2)若△ABC为锐角三角形,sin C=2sin A sin B,求tan A+tan B+tan C的最小值.(三)三角恒等变换的综合问题82(2023春·北京·高三清华附中校考期中)已知函数f x =sin x +cos x 2-2sin 2x .(1)求函数f x 的最小正周期和单调递增区间;(2)求函数f x 在区间0,π2上的最大值和最小值,并求相应的x 的值.83(2023·上海浦东新·统考三模)已知向量a =3sin x ,cos x ,b =sin x +π2,cos x .设f x =a ⋅b .(1)求函数y =f x 的最小正周期;(2)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .若f A =1,b =4,三角形ABC 的面积为23,求边a 的长.84(2023·浙江绍兴·统考模拟预测)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且满足a +b +c a +b -c =3ab .(1)求角C 的大小;(2)若△ABC 是锐角三角形,求a +2bc的取值范围.85(2023春·四川成都·高三成都外国语学校校考期中)已知向量a =sin x +π6,cos 2x ,b =cos x ,-1 .设函数f x =2a ⋅b +12,x ∈R .(1)求函数f x 的解析式及其单调减区间;(2)若将y =f x 的图像上的所有点向左平移π4个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数h x 的图像.当x ∈m ,m +π2(其中m ∈0,π2 )时,记函数h x 的最大值与最小值分别为h x max 与h x min ,设φm =h x max -h x min ,且使对∀m ∈0,π2都有k ≥φm 成立,求实数k 的最小值.86(2023春·四川成都·高三成都市锦江区嘉祥外国语高级中学校联考期中)嘉祥教育秉承“为生活美好、社会吉祥而努力”的企业理念及“坚韧不拔、创造第一”的企业精神,经过30年的发展和积累,目前已建设成为具有高度文明素质和良好社会信誉的综合性教育集团.某市有一块三角形地块,因发展所需,当地政府现划拨该地块为教育用地,希望嘉祥集团能帮助打造一所新的教育品牌学校.为更好地利用好这块土地,集团公司决定在高三年级学生中征集解决方案.如图所示,AB=BC=AC=2km,D是BC中点,E、F分别在AB、AC上,△CDF拟建成办公区,四边形AEDF拟建成教学区,△BDE拟建成生活区,DE和DF拟建成专用通道,∠EDF=90°,记∠CDF=θ.(1)若θ=30°,求教学区所在四边形AEDF的面积;(2)当θ取何值时,可使快速通道E-D-F的路程最短?最短路程是多少?三角恒等变换4种常见考法归类高频考点考点一两角和与差的正弦、余弦和正切公式(一)给角求值(二)给值(式)求值(三)给值求角(四)三角函数式的化简(五)两角和与差的正弦、余弦、正切公式的综合应用考点二二倍角公式(一)给角求值(二)给值(式)求值(三)给值求角(四)与同角三角函数的基本关系综合(五)与诱导公式的综合(六)利用二倍角公式化简求值考点三辅助角公式的应用考点四简单的三角恒等变换(一)半角公式的应用(二)三角恒等式的证明(三) 三角恒等变换的综合问题解题策略1.两角和与差的正弦、余弦和正切公式(1)两角和与差的正弦、余弦和正切公式(和角、差角公式)C(α-β)cos(α-β)=cosαcosβ+sinαsinβC(α+β)cos(α+β)=cos_αcos_β-sin_αsin_β记忆口诀:1、余余正正符号反2、同名相乘、加减相反3、谐音:“吃吃睡睡,颠倒黑白”S(α-β)sin(α-β)=sin_αcos_β-cos_αsin_β(异名相乘、加减一致)S(α+β)sin(α+β)=sin_αcos_β+cos_αsin_β(异名相乘、加减一致)记忆口诀:1、正余余正符号同2、异名相乘、加减一致3、谐音:“上错厕所,一一对应”T (α-β)tan(α-β)=tanα-tanβ1+tanαtanβ;(两式相除、上同下异).变形:①tanα-tanβ=tan(α-β)(1+tanαtanβ)②tanα·tanβ=tanα-tanβtan(α-β)-1T (α+β)tan (α+β)=tan α+tan β1-tan αtan β;(两式相除、上同下异).变形:①tan α+tan β=tan (α+β)(1-tan αtan β)②tan α·tan β=1-tan α+tan βtan (α+β)(2)二倍角的正弦、余弦、正切公式(倍角公式)二倍角是相对的,如:α2是α4的2倍,3α是3α2的2倍.S 2αsin 2α=2sin _αcos _α;变形:sin αcos α=12sin2α,cos α=sin2α2sin α,⇒1±sin2α=sin 2α+cos 2α±2sin αcos α=(sin α±cos α)2C 2αcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;变形:cos 2α=1+cos2α2,sin 2α=1-cos2α2T 2αtan 2α=2tan α1-tan 2α(α≠k π+π2且α≠k π2+π4,k ∈Z )2.简单的三角恒等变换(1)降幂公式sin 2α=1-cos2α2.cos 2α=1+cos2α2.sin αcos α=12sin2α.(2)升幂公式1+cos α=2cos 2α2. 1-cos α=2sin 2α2. 1+sin α=sin α2+cos α2 2. 1-sin α=sin α2-cos α22.注:1+cos2α=2cos 2α;1−cos2α=2sin 2α;1+sin2α=(sin α+cos α)2;1−sin2α=(sin α−cos α)2(3)万能公式sin α=2tan α21+tan 2α2,cos α=1-tan 2α21+tan 2α2,tan α=2tan α21-tan 2α2(4)其他常用变式sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α;cos2α=cos 2α−sin 2αsin 2α+cos 2α=1−tan 2α1+tan 2α;cos 4x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )=cos2x 3.辅助角公式(同角异名1次)a sin α+b cos α=a 2+b 2sin (α+φ),其中cos φ=a a 2+b 2,sin φ=b a 2+b 2,或tan φ=ba . 其中φ称为辅助角,它的终边所在象限由点(a ,b )决定.4.半角的正弦、余弦、正切公式(1)sin α2=±1-cos α2.(2)cosα2=±1+cosα2.(3)tanα2=±1-cosα1+cosα=sinα1+cosα=1-cosαsinα.5.常用的拆角、拼角技巧(1)15°=45°-30°=60°-45°=30°2.(2)β=α-a-β,α=(α+β)-β=β-(β-α),2α=(α+β)+(α-β),α=12[(α+β)+(α-β)]β=α+β2-α-β2=(α+2β)-(α+β). α-β=(α-γ)+(γ-β)(3)π3-α=π2-π6+α,π6-α=π2-π3+α,π3+α=π-2π3-α,π4+α=π-3π4-α. π4+α=π2-π4-α6. 应用和、差、倍角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”;(2)注意与同角三角函数基本关系、诱导公式的综合应用;(3)注意配方法、因式分解和整体代换思想的应用. 7. 和、差、倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;(2)和差角公式变形:sinαsinβ+cos(α+β)=cosαcosβ;cosαsinβ+sin(α-β)=sinαcosβ;tanα±tanβ=tan(α±β)·(1∓tanα·tanβ);(3)倍角公式变形:降幂公式.(4)tanαtanβ,tanα+tanβ(或tanα-tanβ),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题. 8. 解决非特殊角求值问题的基本思路有:①化非特殊角为特殊角;②化为正负相消的项,消去后求值;③化分子、分母使之出现公约数,进行约分求值;④当有α,2α,3α,4α同时出现在一个式子中时,一般将α向2α,3α(或4α)向2α转化,再求关于2α式子的值.9.三角函数式的化简要遵循“三看”原则注:三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等. 10. 给值(式)求值的解题策略(1)已知某些角的三角函数值,求另外一些角的三角函数值,要注意观察已知角与所求表达式中角的关系,即拆角与凑角.(2)由于和、差角与单角是相对的,因此解题过程中根据需要灵活地进行拆角或凑角的变换.常见角的变换有:①α=(α-β)+β;②α=α+β2+α-β2;③2α=(α+β)+(α-β);④2β=(α+β)-(α-β).(3)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式.(4)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.(5)给值求值型恒等变换问题,重在对所给条件进行挖掘,如由某角正弦值可得其余弦、正切值,由所给值的符号判断角所在的象限等. 必要时还要进行估算,如锐角α的余弦值为35,由12<35<22,及余弦函数在0,π2上单调递减可知45°<α<60°,从而2α∈(90°,120°),或3α∈(135°,180°)等. 另外,注意三种主要变换:①变角,通常是“配凑”,常用的角的拆拼有2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β等;②变名,通过变换函数名称达到减少函数种类的目的,其手段通常有“切化弦”“升幂与降幂”等;③变式,根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手段通常有:“常值代换”如1=tan π4,1=sin 2α+cos 2α“逆用变换公式”“通分约分”“分解与组合”“配方与平方”等. 其中角的变换居核心地位.11. 已知三角函数值求角的解题步骤(1)界定角的范围,根据条件确定所求角的范围.(在给值求角时,一般地选择一个适当的三角函数,根据题设确定所求角的范围,利用三角函数的单调性求出角. 确定角的范围是关键,一定要使所选的函数在此范围内是单调的,必要时,还需根据已知三角函数值缩小角的范围.)(2)求所求角的某种三角函数值.为防止增解最好选取在范围内单调的三角函数(已知三角函数值求角,选三角函数时可按下列规则:(i )已知正切值,常选正切函数;(ii )已知正、余弦值,常选正弦或余弦函数;(iii )若角的范围是0,π2 ,π,3π2 ,常选正、余弦函数;(iv )若角的范围是π2,3π2 或-π2,π2 ,常选正弦函数;(v )若角的范围是(0,π)或(π,2π),常选余弦函数. )(3)结合三角函数值及角的范围求角.12. 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算.13. 三角恒等式证明的常用方法(1)执因索果法:证明的形式一般是化繁为简.(2)左右归一法:证明左右两边都等于同一个式子.(3)拼凑法:针对题设和结论之间的差异,有针对性地变形,以消除它们之间的差异,简言之,即化异求同.(4)比较法:设法证明“左边-右边=0”或“左边/右边=1”.(5)分析法:从被证明的等式出发,逐步地探求使等式成立的条件,直到已知条件或明显的事实为止,就可以断定原等式成立.考点精析考点一两角和与差的正弦、余弦和正切公式(一)给角求值14(2023·全国·高三专题练习)cos -75° 的值是A.6-22B.6+22C.6-24D.6+24【答案】C【解析】变形cos -75° =cos 45°-120° 后,根据两角差的余弦公式计算可得答案.【详解】cos -75° =cos 45°-120° =cos45°⋅cos120°+sin45°sin120°=22×-12+22×32=6-24,故选:C .【点睛】本题考查了两角差的余弦公式,属于基础题.15(2023·全国·模拟预测)sin20°cos40°+sin70°sin40°=()A.32B.12C.22D.1【答案】A【分析】根据诱导公式及三角恒等变换化简求值即可.【详解】已知可化为:sin20°cos40°+cos20°sin40°=sin 20°+40° =32.故选:A16(2023·广东湛江·统考一模)cos70°-cos20°cos65°=.【答案】-2【分析】根据三角函数的诱导公式和两角和的余弦公式,准确化简,即可求解.【详解】由三角函数的诱导公式和两角和的余弦公式,可得:cos70°-cos20°cos65°=cos (90°-20°)-cos20°cos65°=sin20°-cos20°cos 45°+20°=sin20°-cos20°cos45°cos20°-sin45°sin20°=- 2.故答案为:- 2.17(2023·全国·高三专题练习)sin 220°-cos 220°sin45°cos155°1-sin40°=.【答案】2【分析】根据三角恒等变换公式化简求值即可.【详解】因为sin 220°-cos 220°=sin20°-cos20° sin20°+cos20° ,cos155°=-cos25°=-cos 45°-20° ,1-sin40°=cos 220°+sin 220°-2sin20°cos20°=cos20°-sin20° =cos20°-sin20°,所以sin 220°-cos 220°sin45°cos155°1-sin40°=cos20°+sin20°22cos 45°-20° =cos20°+sin20°22×cos45°cos20°+sin45°sin20°=cos20°+sin20° 12cos20°+sin20°=2故答案为:2.(二)给值(式)求值18(2023·江西九江·统考三模)已知0<α<π2<β<π,且sin α=23,cos β=-75,则cos (α-β)=()A.-115B.-1315C.-41415D.21415【答案】A【分析】先根据0<α<π2<β<π,sin α=23,cos β=-75求出cos α,sin β,再利用两角差的余弦公式求cos (α-β)【详解】解析:∵0<α<π2<β<π,sin α=23,cos β=-75,∴cos α=1-sin 2α=1-29=73,sin β=1-cos 2β=1-725=325,∴cos (α-β)=cos αcos β+sin αsin β=73×-75 +23×325=-115,故选:A .19(江西省九江市2023届高三三模数学(理)试题)已知0<α<β<π,且cos α=13,cos α-β =223,则cos β=()A.89B.79C.429D.0【答案】D【分析】利用三角恒等变换计算即可,注意整体思想的运用.【详解】解法一:∵0<α<π,cos α=13,∴sin α=223,又-π<α-β<0,cos α-β =223⇒-π2<α-β<0,∴sin α-β =-13,∴cos β=cos α-α-β =cos αcos α-β +sin a sin α-β=13×223+223×-13 =0,故选:D .解法二:∵0<α<π,cos α=13,∴sin α=223,∴cos α-β =sin α,即cos β-α =cos π2-α ∵0<β-α<π,0<π2-α<π2∴β-α=π2-α⇒β=π2,cos β=0,故选:D .20(2023·陕西榆林·统考模拟预测)若tan α+π4 =15,则tan α=()A.-23B.23C.-13D.13【答案】A【分析】利用正切函数的和差公式即可得解.【详解】因为tan α+π4 =15,所以tan α=tan α+π4 -π4 =15-11+15×1=-23.故选:A .21(山西省晋中市2023届高三三模数学试题(A 卷))已知α,β为锐角,且tan α=2,sin α+β =22,则cos β=()A.-31010B.31010C.-1010D.1010【答案】D【分析】由条件,结合同角关系求sin α,cos α,再由特殊角三角函数值求α+β,再利用两角差的余弦公式求cos β.【详解】因为tan α=2,所以sin α=2cos α,又sin 2α+cos 2α=1,α为锐角,所以sin α=255,cos α=55,且α>π4.因为α,β为锐角,α>π4,所以π4<α+β<π,又sin (α+β)=22,所以α+β=3π4,故cos β=cos 3π4-α =cos 3π4cos α+sin 3π4sin α=1010.故选:D .22(河南省名校青桐鸣2023届高三下学期4月联考文科数学试题)已知tan αtan β=2,cos α+β =-15,则cos α-β =()A.35B.-35C.115D.-115【答案】A【分析】根据切化弦以及两角和差公式解出sin αsin β,cos αcos β,代入两角差的余弦公式即可.【详解】由题意可得tan αtan β=sin αsin βcos αcos β=2cos α+β =cos αcos β-sin αsin β=-15,即sin αsin β=2cos αcos βcos αcos β-sin αsin β=-15 ,sin αsin β=25cos αcos β=15,故cos α-β =cos αcos β+sin αsin β=35.故选:A .23(2023·全国·高三专题练习)若α∈π2,3π4,cos α-π4 =210,则sin α+π3=【答案】4-3310【分析】根据同角三角函数的基本关系求出sin α-π4,由cos α=cos π4+α-π4 求出cos α,从而求出sin α,再利用两角和的正弦公式计算可得.【详解】∵cos α-π4 =210,α∈π2,3π4 ,所以α-π4∈π4,π2,∴sin α-π4 =1-cos 2α-π4 =7210,∴cos α=cos π4+α-π4 =cos π4cos α-π4 -sin π4sin α-π4 =22×210-7210×22=-35,sin α=1-cos 2α=45,所以sin α+π3 =sin αcos π3+cos αsin π3=45×12-35×32=4-3310.故答案为:4-331024【多选】(河北省承德市2023届高三下学期4月高考模拟数学试题)已知0<α<π2<β<π,sin α=13,cos (α+β)=-223,下列选项正确的有()A.sin (α+β)=±13B.cos β=-79C.cos2β=-1781D.sin (α-β)=-2327【答案】BD【分析】根据同角关系以及诱导公式可得可得α+β=π-α,进而可判断A ,根据和差角公司以及二倍角公式即可代入求解BCD .【详解】由于0<α<π2且sin α=13,所以cos α=223,又α+β∈π2,3π2 ,cos (α+β)=-223=-cos α,故α+β=π-α或α+β=π+α,当α+β=π+α时,β=π显然不满足,故α+β=π-α,所以sin (α+β)=13,故A 错误,对于B ,cos β=cos α+β cos α+sin α+β sin α=-223×223+13×13=-79,故B 正确,对于C , cos2β=2cos 2β-1=2×-792-1=1781,故C 错误,对于D ,由B 可知sin β=1-cos 2β=429,所以sin (α-β)=sin αcos β-cos αsin β=13×-79-223×429=-2327,故D 正确,故选:BD25(2023·陕西商洛·统考三模)已知tan (α+β)=3,tan α+π4=-3,则tan β=()A.-15B.15C.-17D.17【答案】D【分析】由tan α+π4 =-3求得tan α,再使用凑配角由tan (α+β)=3求tan β.【详解】tan α+π4 =1+tan α1-tan α=-3,解得tan α=2,则tan β=tan [(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan β=17.故选:D 26(2023·江西上饶·校联考模拟预测)已知α、β均为锐角,且sin α=2sin β,2cos α=cos β,则sin α-β =.【答案】35/0.6【分析】利用题目信息以及平方关系分别计算得α、β角的正弦、余弦值,再利用两角差的正弦公式即可求得结果.【详解】因为sin α=2sin β,2cos α=cos β,即cos α=12cos β,所以sin 2α+cos 2α=4sin 2β+14cos 2β=1,又4sin 2β+14cos 2β=154sin 2β+14sin 2β+14cos 2β=1,即sin 2β=15,则cos 2β=45,又α、β均为锐角,所以sin β=55,cos β=255,所以sin α=255,cos α=55,所以sin α-β =sin αcos β-cos αsin β=255×255-55×55=35.故答案为:35(三)给值求角27(2023·全国·高三专题练习)已知α,β都是锐角,cos α=17,cos (α+β)=-1114,则β=.【答案】π3/60°【分析】要求β,先求cos β,结合已知可有cos β=cos [(α+β)-α],利用两角差的余弦公式展开可求.【详解】∵α、β为锐角,∴0<α+β<π∵cos α=17,cos (α+β)=-1114∴sin α=1-cos 2α=437,sin (α+β)=1-cos 2α+β =5314∴cos β=cos [(α+β)-α]=cos (α+β)cos α+sin (α+β)sin α=-1114 ×17+5314×437=12由于β为锐角,∴β=π3故答案为:π328(2023·全国·高三专题练习)已知cos α=17,cos (α-β)=1314,若0<β<α<π2,则β=.【答案】π3【详解】因为cos α=17,0<α<π2,所以sin α=437,又因为0<α-β<π2,所以sin (α-β)=3314,所以sin β=sin [α-(α-β)]=sin αcos (α-β)-cos αsin (α-β)=437×1314-17×3314=32,又因为0<β<π2,所以β=π3.29(2023·河南·校联考模拟预测)设tan α,tan β是方程x 2+33x +4=0的两根,且α,β∈-π2,π2,则α+β=( ).A.π3B.-2π3C.π3或-2π3D.2π3【答案】B【分析】利用两角和的正切公式求解即可.【详解】因为tan α,tan β是方程x 2+33x +4=0的两根,所以tan α+tan β=-33,tan αtan β=4,所以tan (α+β)=tan α+tan β1-tan αtan β=3,因为tan α+tan β=-33,tan αtan β=4,所以tan α<0,tan β<0,且α,β∈-π2,π2,所以α,β∈-π2,0 ,所以α+β∈-π,0 ,所以α+β=-2π3,故选:B .30(2023·全国·高三专题练习)已知cos α=255,sin β=1010,且α∈0,π2 ,β∈0,π2,则α+β的值是()A.3π4B.π4C.7π4D.5π4。

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案

简单的三角恒等变换专题及答案简单的三角恒等变换专题一、选择题1.已知sinα=5115,则cos(π-2α)=()。

答案:B。

通过sinα和cos(π-2α)的关系,可以得到cos(π-2α)=-sinα=-(1/5115)。

2.sin70°/(2cos10°-sin20°)的值是()。

答案:C。

通过三角函数的恒等变换,可以将sin70°/(2cos10°-sin20°)化简为sin70°/cos80°,再使用tan的定义式,得到tan70°=sin70°/cos70°=sin70°/sin10°cos80°=sin70°/sin10°sin10°=1/sin10°=3.3.若sin76°=m,用含m的式子表示cos7°为()。

答案:B。

通过三角函数的恒等变换,可以得到cos(π/2-76°)=sin76°=m,即cos14°=m,再通过三角函数的恒等变换,可以得到cos7°=2cos2(7°)-1=2cos2(14°)cos(π/2-14°)-1=2(1-sin2(14°))-1=1-2sin2(14°)=1-2(cos14°)2=1-2m2.4.若cos2α=-2,则sinα+cosα的值为sin(7π/4)()。

答案:B。

通过cos2α的值可以得到sin2α=1-cos2α=3,再通过三角函数的恒等变换,可以得到sinα+cosα=√2sin(π/4+α)=√2sin(π/4+α-2π)=√2sin(7π/4-α)。

5.已知f(x)=2tanx-2/(x+π/12),则f(π/6)的值为()。

答案:D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数恒等变形的基本策略。

(1)常值代换:特别是用“1”的代换,如1=cos 2θ+sin 2θ=tanx ·cotx=tan45°等。

(2)项的分拆与角的配凑。

如分拆项:sin 2x+2cos 2x=(sin 2x+cos 2x)+cos 2x=1+cos 2x ;配凑角:α=(α+β)-β,β=2βα+-2βα-等。

(3)降次与升次。

(4)化弦(切)法。

(4)引入辅助角。

asin θ+bcos θ=22b a +sin(θ+ϕ),这里辅助角ϕ所在象限由a 、b 的符号确定,ϕ角的值由tan ϕ=ab确定。

1.已知tan x =2,求sin x ,cos x 的值. 解:因为2cos sin tan ==xxx ,又sin 2x +cos 2x =1, 联立得⎩⎨⎧=+=,1cos sin cos 2sin 22x x xx 解这个方程组得.55cos 552sin ,55cos 552sin ⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==x x x x2.求)330cos()150sin()690tan()480sin()210cos()120tan(----的值.解:原式)30360cos()150sin()30720tan()120360sin()30180cos()180120tan(o --+---++-=.3330cos )150sin (30tan )120sin )(30cos (60tan -=---=3.若,2cos sin cos sin =+-xx xx ,求sin x cos x 的值.解:法一:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),得到sin x =-3cos x ,又sin 2x +cos 2x =1,联立方程组,解得,,⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧-==1010cos 10103sin 1010cos 10103sin x x x x 所以⋅-=103cos sin x x 法二:因为,2cos sin cos sin =+-xx xx所以sin x -cos x =2(sin x +cos x ),所以(sin x -cos x )2=4(sin x +cos x )2, 所以1-2sin x cos x =4+8sin x cos x , 所以有⋅-=103cos sin x x 4.求证:tan 2x ·sin 2x =tan 2x -sin 2x .证明:法一:右边=tan 2x -sin 2x =tan 2x -(tan 2x ·cos 2x )=tan 2x (1-cos 2x )=tan 2x ·sin 2x ,问题得证. 法二:左边=tan 2x ·sin 2x =tan 2x (1-cos 2x )=tan 2x -tan 2x ·cos 2x =tan 2x -sin 2x ,问题得证. 5.求函数)6π2sin(2+=xy 在区间[0,2π ]上的值域. 解:因为0≤x ≤2π,所以,6π76π26π,π20≤+≤≤≤x x 由正弦函数的图象, 得到],1,21[)6π2sin(-∈+x所以y ∈[-1,2]. 6.求下列函数的值域.(1)y =sin 2x -cos x +2; (2)y =2sin x cos x -(sin x +cos x ). 解:(1)y =sin 2x -cos x +2=1-cos 2x -cos x +2=-(cos 2x +cos x )+3,令t =cos x ,则,413)21(413)21(3)(],1,1[222++-=++-=++-=-∈t t t t y t利用二次函数的图象得到].413,1[∈y (2)y =2sin x cos x -(sin x +cos x )=(sin x +cos x )2-1-(sin x +cos x ),令t =sin x +cos x 2=,)4πsin(+x ,则]2,2[-∈t 则,,12--=t t y 利用二次函数的图象得到].21,45[+-∈y7.若函数y =A sin(ωx +φ)(ω>0,φ>0)的图象的一个最高点为)2,2(,它到其相邻的最低点之间的图象与x 轴交于(6,0),求这个函数的一个解析式.解:由最高点为)2,2(,得到2=A ,最高点和最低点间隔是半个周期,从而与x 轴交点的间隔是41个周期,这样求得44=T ,T =16,所以⋅=8πω又由)28πsin(22ϕ+⨯=,得到可以取).4π8πsin(2.4π+=∴=x y ϕ8.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(Ⅰ)求f (x )的最小正周期; (Ⅱ)若],2π,0[∈x 求f (x )的最大值、最小值. 数xxy cos 3sin 1--=的值域.解:(Ⅰ)因为f (x )=cos 4x -2sin x cos x -sin4x =(cos 2x -sin 2x )(cos 2x +sin 2x )-sin2x )4π2sin(2)24πsin(22sin 2cos 2sin )sin (cos 22--=-=-=--=x x x x x x x所以最小正周期为π.(Ⅱ)若]2π,0[∈x ,则]4π3,4π[)4π2(-∈-x ,所以当x =0时,f (x )取最大值为;1)4πsin(2=--当8π3=x 时,f (x )取最小值为.2-1. 已知2tan =θ,求(1)θθθθsin cos sin cos -+;(2)θθθθ22cos 2cos .sin sin +-的值.解:(1)2232121tan 1tan 1cos sin 1cos sin 1sin cos sin cos --=-+=-+=-+=++θθθθθθθθθθ; (2) θ+θθ+θθ-θ=θ+θθ-θ222222cos sin cos 2cos sin sin cos 2cos sin sin 324122221cos sin 2cos sin cos sin 2222-=++-=+θθ+θθ-θθ=.说明:利用齐次式的结构特点(如果不具备,通过构造的办法得到),进行弦、切互化,就会使解题过程简化。

2. 求函数21sin cos (sin cos )y x x x x =++++的值域。

解:设sin cos )[4πt x x x =+=+∈,则原函数可化为22131()24y t t t =++=++,因为[t ∈,所以当t =时,max 3y =12t =-时,min 34y =,所以,函数的值域为3[34y ∈,。

3.已知函数2()4sin 2sin 22f x x x x R =+-∈,。

(1)求()f x 的最小正周期、()f x 的最大值及此时x 的集合; (2)证明:函数()f x 的图像关于直线8πx =-对称。

解:22()4sin 2sin 222sin 2(12sin )f x x x x x =+-=--2sin 22cos 2)4πx x x =-=- (1)所以()f x 的最小正周期T π=,因为x R ∈,所以,当2242ππx k π-=+,即38πx k π=+时,()f x最大值为 (2)证明:欲证明函数()f x 的图像关于直线8πx =-对称,只要证明对任意x R ∈,有()()88ππf x f x --=-+成立,因为())]2)28842ππππf x x x x --=---=--=-,())]2)28842ππππf x x x x -+=-+-=-+=-,所以()()88ππf x f x --=-+成立,从而函数()f x 的图像关于直线8πx =-对称。

4. 已知函数y=21cos 2x+23sinx ·cosx+1 (x ∈R ),(1)当函数y 取得最大值时,求自变量x 的集合;(2)该函数的图像可由y=sinx(x ∈R)的图像经过怎样的平移和伸缩变换得到?解:(1)y=21cos 2x+23sinx ·cosx+1=41 (2cos 2x -1)+ 41+43(2sinx ·cosx )+1=41cos2x+43sin2x+45=21(cos2x ·sin 6π+sin2x ·cos 6π)+45=21sin(2x+6π)+45 所以y 取最大值时,只需2x+6π=2π+2k π,(k ∈Z ),即 x=6π+k π,(k ∈Z )。

所以当函数y 取最大值时,自变量x 的集合为{x|x=6π+k π,k ∈Z}(2)将函数y=sinx 依次进行如下变换:(i )把函数y=sinx 的图像向左平移6π,得到函数y=sin(x+6π)的图像; (ii )把得到的图像上各点横坐标缩短到原来的21倍(纵坐标不变),得到函数y=sin(2x+6π)的图像;(iii )把得到的图像上各点纵坐标缩短到原来的21倍(横坐标不变),得到函数y=21sin(2x+6π)的图像;(iv )把得到的图像向上平移45个单位长度,得到函数y=21sin(2x+6π)+45的图像。

综上得到y=21cos 2x+23sinxcosx+1的图像。

历年高考综合题一,选择题1.(08全国一6)2(sin cos )1y x x =--是 ( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数D .最小正周期为π的奇函数2.(08全国一9)为得到函数πcos 3y x ⎛⎫=+⎪⎝⎭的图象,只需将函数sin y x =的图像( )A .向左平移π6个长度单位 B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位3.(08全国二1)若sin 0α<且tan 0α>是,则α是 ( ) A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角4.(08全国二10).函数x x x f cos sin )(-=的最大值为 ( ) A .1 B . 2 C .3 D .25.(08安徽卷8)函数sin(2)3y x π=+图像的对称轴方程可能是 ( ) A .6x π=-B .12x π=-C .6x π=D .12x π=6.(08福建卷7)函数y =cos x (x ∈R)的图象向左平移2π个单位后,得到函数y=g(x )的图象,则g(x )的解析式为 ( ) A.-sin x B.sin x C.-cos x D.cos x7.(08广东卷5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是 ( )A 、最小正周期为π的奇函数B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数8.(08海南卷11)函数()cos 22sin f x x x =+的最小值和最大值分别为 ( )A. -3,1B. -2,2C. -3,32 D. -2,32 9.(08湖北卷7)将函数sin()y x θ=-的图象F 向右平移3π个单位长度得到图象F ′,若F ′的一条对称轴是直线,1x π=则θ的一个可能取值是 ( )A.512π B.512π- C.1112π D.1112π-10.(08江西卷6)函数sin ()sin 2sin2xf x xx =+是 ( )A .以4π为周期的偶函数B .以2π为周期的奇函数C .以2π为周期的偶函数D .以4π为周期的奇函数11.若动直线x a =与函数()sin f x x =和()cos g x x =的图像分别交于M N ,两点,则MN 的最大值为 ( )A .1BCD .212.(08山东卷10)已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7πsin 6α⎛⎫+ ⎪⎝⎭的值是( ) A.5-B.5C .45-D .4513.(08陕西卷1)sin330︒等于 ( ) A.2-B .12-C .12D.214.(08四川卷4)()2tan cot cos x x x += ( ) A.tan x B.sin x C.cos x D.cot x 15.(08天津卷6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是 ( ) A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R , B .sin 26x y x π⎛⎫=+∈⎪⎝⎭R , C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R , D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R , 16.(08天津卷9)设5sin 7a π=,2cos 7b π=,2tan 7c π=,则 ( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<17.(08浙江卷2)函数2(sin cos )1y x x =++的最小正周期是 ( )A.2πB .π C.32π D.2π18.(08浙江卷7)在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是 ( )A.0B.1C.2D.4 二,填空题19.(08北京卷9)若角α的终边经过点(12)P -,,则tan 2α的值为 . 20.(08江苏卷1)()cos 6f x x πω⎛⎫=-⎪⎝⎭的最小正周期为5π,其中0ω>,则ω= . 21.(08辽宁卷16)设02x π⎛⎫∈ ⎪⎝⎭,,则函数22sin 1sin 2x y x +=的最小值为 .22.(08浙江卷12)若3sin()25πθ+=,则cos2θ=_________。

相关文档
最新文档