土壤空气和热量答案1土壤空气组成有哪些特点土壤

合集下载

第六章 土壤空气和热量状况

第六章 土壤空气和热量状况

土壤通气性测定 土壤通气性造成的土壤剖面分异
第二节 土壤热状 况
一、土壤热量soil heat (一)土壤热量来源 太阳辐射、生物热、地球内热 (二)土壤热量消耗 土壤水分蒸发、给近地面空气升温、向地下传 递 热通量:单位面积单位时间内垂直通过的热量。 J/cm2.min
二、土壤热性质
土壤热性质包括土壤热容量、导热率和导温率,决定 着土壤热量和温度变化的程度、热量传导的速度和深度。 (一)土壤热容量soil heat capacity,分为质量热容量和容积 热容量 1、质量热容量mass heat capacity是指单位质量土壤的温度升高 1℃所需的热量(焦/克.度),也叫土壤比热 2、容积热容量volume heat capacity是指单位容积土壤的温度升 高1℃所需的热量(焦/厘米3.度) 土壤容积热容量=土壤重量热容量×容重 土壤矿物质的质量热容量为0.71-1.09焦/克.度,平均为0.84 水的热容量最大,容积热容量为空气的千倍 各种土壤组分的密度和热容量单位时间内,单位面积土壤上由土 壤扩散出来的CO2量。 2、氧气扩散率ODR(oxygen diffusion rate) 单位时间通过单位土壤截面扩散的氧的质量。 微克/厘米2.分钟
五、土壤通气性指标 3、土壤通气孔隙度soil air porosity 4、土壤氧化还原电位Eh 由土壤溶液中氧化态物质和还原态物质相 对比例变化而产生的电位。 Eh是土壤通气性指标。大于400mv为氧化 态,通气好。
O2(%) 20.94 18.0-20.03
CO2(%) 0.03 0.15-0.65
N2(%) 78.05 78.8-80.24
其他气体(%) 0.98 0.98
三、土壤空气的意义
1、土壤形成发育,二氧化碳溶于土壤溶液变为碳酸,使土壤中碳酸盐类 溶解,增加了土壤溶液中钙、镁、钾、钠、铁、锰,为植物增长提供了 养分,促进了他们的移动。 2、土壤空气影响着土壤微生物的活动,从而对土壤有机质的分解和植物 营养物质的转化及其生物有效性产生影响。 3、由于氧的作用,可氧化土壤中某些矿物,如硫铁矿变为溶解态的硫酸 铁,亚铁和亚锰变为高价铁锰化合物。 4、植物生长发育 植物从种子发芽到成熟都需要有足够的土壤空气,块茎类植物对土壤空 气要求高于一般植物,种子发芽需要土壤空气中氧的含量10%以上,低 于0.5%种子不发芽,对于ODR临界值要求15×18-8—25×18-8克/厘米2. 分的范围。

第四章土壤空气和热量

第四章土壤空气和热量

二、土壤通气性
• 土壤通气性泛指土壤空气与大气进行交换、 不同土层之间气体扩散或交换的能力。
(一)土壤通气性的重要意义
• 其重要性在于补充氧气。 • 如果没有大气氧气的补充,土壤中的氧气 将迅速被耗尽,缺氧将严重影响根系的正 常生长,影响好气微生物的活动,从而影 响土壤养分的有效化。一些有毒的还原性 物质的累积将毒害根系,严重时会使植物 死亡。 • 因此,土壤必须具有一定的通气性。
(二)土壤通气性的机制
1、气体扩散 指某种气体由于分压梯度而产生的移动。 这是土壤与大气进行气体交换的主要形式。 土壤呼吸: O2(大气) 土壤 CO2(土壤) 大气
2、气体整体流动
• 由于土壤空气与大气之间存在总压力梯度 而引起的气体运动,称为整体流动。 • 温度、气压、降水、灌溉水的挤压等都可 以引起气体的整体流动。
• R随时间而变(年、月、日、瞬间) • 当R为正值,地面辐射收入大于支出,地 面增温; • 当R为负值,地面辐射收入小于支出,地 面降温; • 一般白天R为正值,地面增温; • 夜间R为负值,地面降温。
(二)影响地面辐射平衡的因素
1、太阳辐射强度 ---太阳的总辐射强度取决于气候(天气)情 况。 ---晴天的辐射强度比阴天大; ---日照角越大,单位面积上接受的热量越多, 辐射强度越高(中午,垂直,最高) ---北半球的南坡,太阳入射角比平地大,土 温比平地高;南坡土温比北坡高。
四、土壤热性质
一、土壤热容量(C) 土壤热容量指单位质量或容积的土壤每升 高(或降低)1º C所需要(或放出)的热容 量。 C = Cv*ρ ρ:土壤容重
• 水的热容量最大(4.184); • 气体的热容量最小(1.255*10-3); • 矿物质(2.163-2.435)和有机质(2.515)热 容量介于其中。 • 在固相组成物质中,腐殖质热容量大于 矿物质。 • 土壤热容量主要取决于水分含量的多少 和腐殖质含量。

土壤水分、空气和热量

土壤水分、空气和热量

1cm
19 ℃
(2)导热率的物理意义
导热率大则传热快,得热后迅速下传(失热后迅速补 给),引起的变温小。
导热率小则传热慢,得热后不易下传(失热后补给缓 慢),引起的变温大。
J s-1
1cm2
20 ℃
21 ℃ 21 ℃
1cm
19 ℃
20 ℃ 19.2 ℃
Question:土壤的导热率大小取决于什么? Answer:取决于土壤中的基本组成物质。
固相 50% 矿物质45% 水20-30% 空气
30-20% 孔隙50%
有机质5%
不同土壤组分的热容量
土壤组成物质
粗石英砂 高岭石 石灰 腐殖质 Fe2O3 Al2O3
土壤空气 土壤水分
重量热容量 (Jg-1℃-1)
0.745 0.975 0.895 0.682 0.908 1.996 1.004 4.184
一般作物根系的吸水力平均为1.5MPa。
2、土壤膜状水
土壤膜状水:吸湿水达到最大后,土壤还有剩余的引力吸 附液态水, 在吸湿水的外围形成一层水膜。
膜 状 水 示 意 图
土壤膜状水的有效性:
土壤膜状水
3.1MPa (靠近土壤内层)(无效水)
受到的引力
0.625 MPa (靠近土壤外层)(有效水)
一般作物根系的吸水力平均为1.5MPa。
取容积为1的土壤,设它吸收(放出)的热量为 ⊿Q,引起的温度变化为⊿T ,则根据定义Cv=⊿Q/⊿T, 这就是容积热容量。
转换公式一下:⊿T=⊿Q/Cv, 当不同的物质吸收或放出相同热量时候,热容量越 大的物质,升、降温缓慢, 即温度变化小,反之亦然。
Question:土壤的热容量大小取决于什么?

2.3土壤气体、热量及其他性质

2.3土壤气体、热量及其他性质

4.0 3.5
tC/capita
3.0 2.5 2.0 1.5
global Annex 1 Non annex 1
1.0 0.5
0.0
1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990
课堂测验:
1、土壤空气质量的好坏关键在于氧气的含量( 2、土壤空气氧气浓度高而二氧化碳浓度低( ) )
是(Jg-1℃-1),Cv的单位是(Jcm-3℃-1)。C与Cv的粗略关系是Cv=C·ρ,ρ是
表示某物质的密度(gcm-3) 。
表 8-5 土壤组成 质量热容(J g-1C-1) 容积热容(J cm-3 C-1 ) 土壤空气 1.0048 0.0013 土壤各组成的热容 土壤水分 4.1868 4.1868 砂粒和粘粒 0.75~0.96 2.05~2.43 有机质 2.01 2.51
首先,土壤中气体表观扩散系数Ds必然比自由大气中的扩 散系数Do小。
其次,气体的传导与孔隙大小无关,主要与连续度有关。 而水在土中的传导性主要取决于孔隙的大小分布。
三、 土壤通气性(soil aeration)
(一)、土壤通气性的定义和指标 土壤通气性是泛指土壤空气与大气进行交换以及土 体内部允许气体扩散和通气的能力。 1.静态指标
谷类胚芽
中国农业大学资源与环境学院 吕贻忠
土壤气体的组成
土壤空气与大气组成的差异 气体 近地表大气 土壤空气 O2(%) 20.94 18.0~20.03 CO2(%) 0.03 0.15~0.65 N2(%) 78.05 78.8~80.24 其它气体(%) 0.98 0.98
主要差别: 1、土壤气体中的CO2含量高于大气 2、土壤气体中的O2含量低于大气 3、土壤气体中水汽含量一般高于大气 4、土壤气体中还原性气体可能高于大气 5、土壤气体成分随时空而变化

土壤空气的组成特点

土壤空气的组成特点

土壤空气的组成特点
土壤空气是土壤中的气体,其中含有大量的氧气、氮气和二氧化碳等气体。

土壤空气的组成在不同的土壤条件下有所不同,但大体上有以下几个特点:
氧气含量较高:土壤空气中氧气的含量通常占总气体的20%~30%。

氧气是生命活动中必不可少的气体,土壤中的微生物和植物都需要氧气进行生命活动。

氮气含量较低:土壤空气中氮气的含量通常占总气体的1%~2%。

氮气是植物生长发育中必需的养分,但土壤中的氮气通常含量较低。

二氧化碳含量较高:土壤空气中二氧化碳的含量通常占总气体的1%~2%。

二氧化碳是植物生长发育中必需的气体,也是植物光合作用
的原料。

水蒸气含量较低:土壤空气中水蒸气的含量通常占总气体的1%~2%。

水蒸气是土壤中的潜在水分,是植物生长发育的重要条件之一。

其他气体含量较低:土壤空气中还含有少量的氢气、氧化碳、硫化氢等气体。

这些气体对土壤中的生命活动有一定的影响,但含量较少。

土壤学试题答案

土壤学试题答案

土壤学试题答案(共7页) -本页仅作为预览文档封面,使用时请删除本页-一、名词解释1.土壤:地球陆地表面能生长绿色植物的疏松表层。

2.土壤肥力:在植物生长的全过程中,土壤供应和协调植物生长所需的水、肥、气、热的能力。

3.土壤质地:按照土壤机械组成人为地划分的若干土壤类别,就称为土壤质地。

4.土壤粒级:通常根据土粒直径大小及其性质上的变化,将其划分为若干组,称为~。

5.有机质矿质化作用:复杂的有机质在土壤微生物的作用下进行彻底的分解,形成CO2和H2O的过程。

6.有机质腐殖化作用:有机质在土壤微生物作用下形成结构、成分更为复杂的腐殖质的过程7.同晶异质替代:指组成矿物的中心离子被电性相同、大小相近的离子岁替代而晶格构造保持不变的现象。

8.潜性酸:指吸附在土壤胶体表面的交换性致酸离子(H+和Al3+),交换性氢和铝离子只有转移到溶液中,转变成溶液中的氢离子时,才会显示酸性,故称潜性酸。

9.土水势:把单位数量纯水可逆地等温地以无穷小量从标准大气压下规定水平的水池中移至土壤中某一点而成为土壤水所需做功的数量。

10.凋萎系数:是指植物产生永久凋萎时的土壤含水量,用它来表明植物可利用土壤水的下限。

11.土壤热容量:是指单位质量(重量)或容积的土壤每升高(或降低)1℃所需要(或放出的)热量。

12.阳离子交换量:土壤所能吸附和交换的阳离子的容量,用每千克土壤所能吸附的一价离子的厘摩数表示。

13.盐基饱和度:交换性盐基占阳离子交换量的百分比。

14.氧化还原电位:由于溶液中氧化态物质和还原态物质的浓度关系变化而产生的电位称为氧化还原电位。

15.反硝化作用:反硝化细菌在缺氧条件下,还原硝酸盐,释放出分子态氮(N2)或一氧化二氮(N2O)的过程。

16.土壤发生层:是指土壤形成过程中所形成的具有特定性质和组成的、大致与地面相平行的,并具有成土过程特性的层次。

17.土壤剖面:是一个具体土壤的垂直断面,其深度一般达到基岩或达到地表沉积体的相当深度为止。

土壤的物质组成及特性(下)

土壤的物质组成及特性(下)

3.2土壤热量状况
3.2.2 土壤热学性质 土壤热容量 ①概念: 重量热容量——单位重量土壤增减1℃所需要或放出的热量。 也称比热C,单位为 卡/g· 度。 容积热容量——单位容积土壤增减1℃所需要或放出的热量。 也称热容量W,单位为 卡/cm3· 度。 W = C ×容重 一般土壤热容量愈大,土温变幅愈小,土温愈稳定。 ②土壤三相物质的热容量比较:土壤空气的容积热容量极小,土壤 水分的容积热容量最大,约为固相物质的2倍。 土壤愈湿,土壤热容量愈大。因此,当春天土壤过湿时,可通 过耕作或排水降低热容量的方式,促使土温快速上升。
3.3土壤水分
土壤水分类型、水分常数及其有效性图示
3.3土壤水分 3.3.4 土壤水的能量——土水势
自然界中所有物质的自发和普遍的趋势 是:由势能较高处向较低处运动。土壤水分 亦从自由能高的地方向自由能低的地方移动。 土水势通常用单位容积土壤水分的势能值表 示,单位为帕(Pa)。
3、毛管水
• 当土壤含水量超过最大分子持水量时,水分子不 再受土粒表面引力的作用,而是靠毛管引力(水 的表面张力和水分子浸润力的合力)而保持在土 壤的毛管孔隙中,这部分的水就称为毛管水。 • 毛管水具有自由水的特点,能溶解溶质,移动速 度快,可以满足作物的需要,是作物可以利用的 土壤水分的主要形态。
• 根据毛管水与地下水的联系情况和所处的 地形部位,可以将其分为毛管上升水和毛 管悬着水。
(1)毛管悬着水
• 降雨或灌溉以后,由于毛管力的作用而保 留在土壤上层的水分,称为毛管悬着水。 • 毛管悬着水达到最大量时的含水量,称为 田间持水量。 • 田间持水量是旱地土壤有效水的上限。(2)毛管上升水Fra bibliotek4、重力水
• 当土壤水份超过田间持水量时,多余的水份不能 为毛管所保持而在重力作用下沿着大孔隙向下渗 漏,这部分水就称为重力水。 • 重力水对作物是有效的,但由于它渗漏很快,不 能被保持,所以对旱作而言是无效的。 • 当重力水达到饱和,即土壤孔隙全部充满水份时, 土壤的含水量就称为饱和持水量。

第五章 土壤空气与热状况

第五章 土壤空气与热状况

4、对土壤热特性的影响因素:固、液、气三相物质比例 由下表可见,土壤水分热容量最大,土壤空气最小,而 矿质土粒和土壤有机质介于两者之间,而固体是相对稳 定的,则主要取决于土壤水分和土壤空气的含量。 所以,粘土:水分含量较高,早春季节解冻迟,土壤回 升慢,为冷性土; 砂土:水分含量低,早春土温回升快,为热性土。
三、土壤通气性(soil aeration) 土壤通气性(土壤透气性):指土壤空气与近地层大气进行气
体交换以及土体内部允许气体扩散和流动的性能。
土壤通气性影响多种生物的生命活动,各种有机物质转化的化
学过程,根际呼吸,种子萌发,土壤病虫害的发生。
土壤通气产生的机制:
(一)、土壤空气扩散(Soil air diffusion) 指某种气体成分由于分压梯度与大气不同而产生的移动。它是 土壤空气与大气间进行交换的主要因素,原理服从气体扩散 公式: F=-D· dc/dx F:单位时间气体扩散通过单位面积的数量; Dc/dx:气体浓度梯度或气体分压梯度; D:扩散系数,负号表示其从气体分压高向低扩散。
2、土壤水分调节:
减少土壤水分的损失;增加作物对降雨,灌溉水及土壤中 原有贮水的有效利用,同时包括对多余水分的排除等, 措施如下: (1)控制地表径流,增加土壤水分入渗;

合理耕翻:创造疏松的耕作层,保持土壤适当的透水性 以吸收更多的降雨和减少地表径流损失。 等高种植,建立水平梯田:改造地形,平整土地,减少 水土流失,梯田层层蓄水,坎地节节拦蓄 改良表土质地结构:增加土壤孔隙度,使蓄墒能力增强。
第二节
一、土壤热来源与平衡
土壤热状况
(一)土壤热来源
1、太阳辐射(solar radiation) 与所处的纬度有关,随纬度的提高,接受辐射减少;

土壤水分、空气、热量(1)

土壤水分、空气、热量(1)
害、渍害。因此必须排除土壤多余的水分,主要包括排除地表 积水、降低过高的地下水和除去土壤上层滞水。
2.土壤空气调节
• 对于一般旱作来说,发生通气不良、供氧不足的情况 很少。土壤通气不良主要发生在那些质地粘重、通气 孔隙度不足10%、气体交换缓慢的粘质土壤上。对于 此类土壤可采取合理耕作结合增施有机肥料,以改善 土壤结构、增加土壤通气孔隙。土体中水分过多不仅 空气容量减少,而且阻碍土壤空气与大气的气体交换, 这是地势低洼、地下水位高的易涝地区土壤通气性差 的主要原因,对此应加强土壤水分管理,建立完整的 排水系统,降低地下水位,及时排除渍涝。至于那些 主要是由降(灌)水量大而造成的土壤过湿、表土板结而 影响通气的,则应及时中耕、松土,破除地结皮等, 土壤通气性就会大大改善。
壤水的收人大于支出,则土壤水分含量增加;反之,土壤水的支出
大于收入,则土壤水分含量降低。在农业生产实践中,土壤水分平 衡的作用主要表现为:
①计算作物日耗水量 例如,某玉米地在6月15日灌水前根层土壤 含水量厚度为70mm,然后灌水55mm。6月25日测定同一根层的含 水量厚度为81mm,假设灌水后的这段时间内无降雨过程,也没有 土壤水分的深层渗漏,则在此期间玉米的日耗水量为:
• (1)土水势 • (2)土壤水吸力 • (3)土壤水分特征曲线
(1)土水势 土水势(soil water potential)表示土壤水分在土—水平衡体系 中所具有的能态。通常用水势(ψw)表示。由于土壤水分受到各 种吸力的作用,有时还存在附加压力,所以其水势必然与参 比系统不同,两者之差为土水势的量度。通常规定纯水池参 比系统的水势能为零,因此,土水势一般为负值,它主要由 以下几个分势组成。 基质势(matric potential) 通常用ψm表示。对于非饱和土壤 而言,由于基质吸力对水分的吸持,完成这一过程需要环境 对它做功,所以基质势为负值;而饱和的土壤水不受基质吸 持,故其基质势为零。

土壤学复习重点要义

土壤学复习重点要义

⼟壤学复习重点要义绪论⼀、⼟壤及重要性⼟壤是指覆盖于地球表⾯,具有肥⼒特征的、能够⽣长绿⾊植物的疏松物质层。

A、⼟壤在农业中的重要性⼟壤是农业⽣产的基本⽣产资料⼟壤为植物⽣长提供营养条件和环境条件⼟壤是农业⽣态系统的重要组成部分B、⼟壤在⽣态环境中的重要性C、⼟壤是最珍贵的⾃然资源资源数量的有限性空间分布上的固定性质量的可变性⼆、⼟壤基本组成三、⼟壤肥⼒与⼟壤⽣产⼒⼟壤肥⼒:⼟壤在某种程度上能同时不断地供给和调节植物正常⽣长发育所必需的⽔分、养分、空⽓和热量的能⼒。

营养条件:养分,⽔分环境条件:热,⽓,⽔四⼤肥⼒因素:⽔、肥、⽓、热。

⾃然肥⼒:指⼟壤在⾃然(因素⽓候、⽣物、母质、地形、时间)综合作⽤下所发展起来的肥⼒。

⼈⼯肥⼒:指⼈类在⾃然⼟壤的基础上,通过耕作,熟化过程⽽发展起来的肥⼒。

有效肥⼒:在当季⽣产中能表现出来,产⽣经济效益的肥⼒部分。

潜在肥⼒:在当季没有直接反映出来的肥⼒部分。

⼟壤⽣产⼒:即⼟壤能⽣长植物并提供产品的能⼒。

⼟壤⽣产⼒与⼟壤肥⼒的区别是:⼟壤⽣产⼒是由⼟壤本⾝的肥⼒属性和发挥肥⼒作⽤的外部条件(包括⾃然环境条件、⼈为因素和社会因素影响)所共同决定的。

第⼀章⼟壤矿物质⼟粒形成⼟壤母质的矿物和岩⽯矿物岩⽯的风化作⽤与⼟壤母质⼟壤矿物质⼟粒的组成与特性⼀、主要的成⼟矿物和岩⽯原⽣矿物:来⾃⽕成岩或变质岩次⽣矿物:原⽣矿物、⽕⼭灰或各种风化产物通过化学或⽣物作⽤转变主要成⼟岩⽯:岩浆岩、沉积岩、变质岩⼆、岩⽯的风化作⽤与⼟壤母质风化作⽤:指地壳最表层的岩⽯在空⽓、⽔、温度和⽣物活动的影响下,发⽣机械破碎和化学变化的过程。

物理风化(⼤多属于热⼒学风化)风化作⽤化学风化(溶解、⽔化、⽔解、氧化)⽣物风化(根系机械破碎、⽣物化学作⽤)⼟壤母质:裸露的岩⽯经风化作⽤⽽形成的疏松的、粗细不同的矿物颗粒的地表堆积体,是形成⼟壤的母体。

残积物(⼭地丘陵顶部较⾼部位)坡积物(重⼒⾬⽔冲刷,坡脚、⾕地)洪积物(洪⽔引发,沿⼭麓成带状分布)河流冲积物(成层性,成带性,成分复杂)湖积物(湖⽔泛滥,湖周围)我国主要成⼟母质海积物(海边海相积物,海岸上升、江流⼊海)风积物(风搬运;沙质、黄⼟)黄⼟状沉积物(第四世纪时期黄⼟经冰⽔、洪⽔搬运)冰渍物(冰川夹杂物质搬运沉积)⼟粒按成分可分为:矿质⼟粒、有机质⼟粒⼟粒按粒级可分为:⽯粒、砂粒、粉粒、粘粒机械组成:⼟壤中各粒级矿物质⼟粒所占的百分质量分数叫矿物质⼟粒的机械组成。

土壤和空气的热量交换方式和热特性

土壤和空气的热量交换方式和热特性

第一节土壤和空气的热量交换方式和热特性一、土壤和空气的热量交换方式在土壤和空气中,存在着多种形式的热量过程。

除分子热传导、辐射和对流这三种方式外,还存在着平流、乱流和因水的相变而引起的热量转移形式。

这些过程对土壤和空气层热状况的形成起着决定性作用。

(一)分子热传导以分子运动来传递热量的过程称为分子热传导。

在土壤层中,热量交换是由分子热传导形式来完成的。

分子热传导过程强弱对土壤层内热状况的形成有着重要意义。

但在空气中,由于空气是热的不良导体,其分子导热率很小,因而由传导方式进行的热量转移比其他方式要少得多,在多数情况下是可忽略不计的。

(二)辐射地面和大气层之间的辐射热交换是始终存在的。

地面一方面吸收太阳辐射和大气逆辐射,同时也向大气放出长波辐射。

白天当地面吸收的辐射超过放出的热量时,地面被加热增温,并通过辐射或其他方式把热量传送到大气层和土壤下层使之增温;夜间地面放出的长波辐射超过吸收的大气逆辐射,结果使得地面损失热量,导致地面温度下降,此时土壤深层和大气就反过来以各种方式向地面输送热量,以维持地表温度不致下降太多,结果使得土壤深层和大气层的温度也发生下降。

(三)对流1、对流的概念空气在铅直方向上的大规模升降运动。

2、对流的种类对流按产生的原因可分为两类:(1)热力对流(自由对流)发生在低层气温剧烈增高或高层空气冷却时,上下层气温差异加大,造成低层空气密度较小,高层空气密度较大的不稳定状态,因而很容易产生对流。

(2)动力对流(强迫对流)空气水平流动时遇到山脉等障碍物时被迫抬升或因其它外力作用强迫时发生的。

对流使上下层空气混合,并发生热量交换。

对流的空气升降速度有时可达10m/s以上,高度可达对流层顶部附近。

一般在夏季及午后对流较强,冬季及清晨较弱。

(四)平流大范围的空气水平运动称为平流。

冬季大规模冷空气南下,可使气温急剧下降,在24小时内甚至气温可下降十几度;夏季海洋上暖湿空气北上,可使它影响地区的气温升高。

土壤学土壤空气和热量状况

土壤学土壤空气和热量状况

15 0.25 20.49 0.87 19.95 0.13 20.86 0.39 20.51
20 0.48 20.48 1.35 20.06 0.15 20.12 0.41 20.63
30 0.57 19.87 1.16 20.01 0.31 20.18 1.16 20.36
50 0.92 19.93 1.52 19.70 0.40 20.20 1.28 19.87
D=D0·S·l/le
D0—自由空气中的扩散系数; S—未被水分占据的孔隙度; l—土层厚度; le—气体分子扩散通过的实际长度。 l/le和S的值都小于1。
结构良好的土壤中,气体在团聚体间的大孔隙间 扩散,而团聚体内的小孔隙则较长时间保持或接近水饱 和状态,限制团聚体内部的通气性状。所以紧实的大团 块,即使周围大孔隙通气良好,在团块内部仍可能是缺 氧的。所以通气良好的旱地也会有厌气性的微环境。
六、土壤通气指标
1.土壤孔隙度 总孔隙度50~55%或60%,其中通气孔度要求
8~10%,最好15~20%。这样可以使土壤有一定 保水能力又可透水通气。 2.土壤呼吸强度(intensity of soil respiration)
覆膜
露地
05-01
07-29
05-01
07-29
CO2
O2
CO2
O2
Cቤተ መጻሕፍቲ ባይዱ2
O2
CO2
O2
0

— 0.92 —
— 0.06 0.06

5 0.16 20.50 1.01 20.44 0.07 20.65 0.21 20.65
10 0.42 20.40 1.06 20.28 0.10 20.51 0.28 20.67

土肥4~5及第一章测试题

土肥4~5及第一章测试题

§1.4 土壤空气一、土壤空气的组成特点1、土壤空气中CO 2含量高,O 2含量低;2、土壤空气中水汽含量高;3、土壤空气中的还原性气体,如CH 4,H 2S ,H 24、土壤空气的成分与数量,随季节和土层深度不同而有明显差异。

(1)CO 2含量夏季〉冬季;(2)越深土层CO 2〉浅层二、土壤通气性及其调节⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧灌溉排水中耕松土增施有机肥改善土壤结构改良土壤质地措施改善土壤松紧状况土壤含水量土壤质地土壤结构影响土壤通气性因素处向浓度小处运动。

土壤空气分子由浓度大气体扩散(主):是指整体流动交换方式体通过的能力概念:是指土壤允许气、土壤通气性~12、土壤通气性决定于土壤孔隙的大小及其连通性。

高产土壤要求总孔隙度50%左右,其中空气孔隙大于10%以上。

总孔隙度粘土〉砂土,但小孔隙多。

§1.4 练习题一、名词解释1、土壤通气性:2、气体扩散:二、填空题1、 土壤空气中CO 2含量______(填〈、=、〉)空气中CO 2含量,而O 2含量______(填〈、=、〉)空气中O 2含量,H 2O 汽含量______空气中水汽含量。

土壤空气中CO 2冬季含量______(填〈、=、〉)夏季含量,深层土壤O 2含量______(填〈、=、〉)浅层O 2含量。

2、土壤气体与大气间的气体交换方式有__________和_________,其中最主要的方式是__________,这种方式是气体分子从____________向____________地方运动,因此,土壤空气与大气中的CO2和O2的运动方向是________________________。

3、水汽从气压_______处移向气压_______处,从温度_______处移向温度______处。

三、选择题1、下列气体中属于土壤中还原性气体的是()A、CO2B、O2C、水汽D、H2S2、下列选项正确的是()A、大气中O2含量大于土壤的B、大气中水汽高于土壤的C、大气中CO2含量大于土壤的D、大气中还原性气体高于土壤的3、高产肥沃土壤要求土壤通气孔隙度在()A、10%以下;B、10%以上;C、20%以上;D、20%以下。

第三章(1)土壤流体之土壤空气与热量

第三章(1)土壤流体之土壤空气与热量
③土壤中CO2浓度对植物生长的影响也有待进一步研究。 现有的研究表明,某一特定植物对CO2浓度有一最佳值, 过高或过低都会引起根系生长衰退。过高浓度CO2往往 伴随缺O2而造成不良后果,但一定浓度CO2对植物生长 也有促进作用,而且CO2造成的土壤溶液的微酸性也有 利于有些土壤养分的释放.
二、 土壤中的空气流
覆膜田块的CO2含量明显高于未覆稻草原露地,而 O2则反之
土壤空气中的CO2和O2的含量是相互消长的,二者 的总和维持在19~22%之间,
注意:
①土壤空气对植物生长的影响,有许多过程和因素需进 一步研究。如土壤微生物需O2有一个很宽的范围。 ②仅仅一个空气容量指标并不能肯定土壤是否能满足植 物和微生物对氧的需求。
基质势(hPa) 含水率(%) 充气孔度(%)
K(m/s)
-9.8
40.24
14.06
12
-98
25.47
28.83
133
-310
23.07
31.23
272

0
54.30
682
三、 土壤通气性(soil aeration)
(一)、土壤通气性的定义和指标
土壤通气性是泛指土壤空气与大气进行交换以及土 体内部允许气体扩散和通气的能力。
(二)、土壤通气性的调节
1、调节土壤水分含量 2、改良土壤结构 3、通过各种耕作手段来调节土壤通性
对旱作土壤,有中耕松土,深耙勤锄,打破土 表结壳,疏松耕层等措施。
一 土壤空气的组成 二 土壤空气的运动 三 土壤空气与土壤肥力
第三章(一) 土壤空气和热量 §1 土壤空气的组成与植物生长 一、土壤空气的组成与变化 土壤空气与大气组成的比较(容积%)
气体

土壤学(第六章) 土壤空气和热量状况

土壤学(第六章) 土壤空气和热量状况

三、土壤热量平衡(soil heat balance)
地面辐射平衡是土壤热量平衡的基础,但后者 对土壤热量状况的影响更显著。 当土面获得的太阳辐射能转换为热能时,其大 部分热量消耗于土壤水分蒸发和土壤与大气之间的 湍流热交换,一小部分被生物活动所消耗,只有很
少部分通过热交换传导至土壤下层。
土壤学 资源环境学院土地资源与农业化学系
和状态,限制团聚体内部的通气性状。所以紧实的大团
块,即使周围大孔隙通气良好,在团块内部仍可能是缺 氧的。所以通气良好的旱地也会有厌气性的微环境。
土壤学 资源环境学院土地资源与农业化学系
六、土壤通气指标
1.土壤孔隙度
总孔隙度50~55%或60%,其中通气孔度要求
8~10%,最好15~20%。这样可以使土壤有一定 保水能力又可透水通气。 2.土壤呼吸强度(intensity of soil respiration) 单位时间通过单位断面(或单位土重)的CO2数量 土壤呼吸强度不仅可作为土壤通气指标,而且是 反映土壤肥力状况的一个综合指标。
土壤学 资源环境学院土地资源与农业化学系
土壤向大气释放温室气体,因此说土壤是大气痕
量温室气体的源。
土壤对大气中温室气体的吸收和消耗,称为汇。
五、土壤空气的运动
1.土壤空气的对流(convection) 土壤与大气间由总压力梯度推动的气体整体流动,
也称质流。对流由高压区流向低压区。
总压力梯度的产生:
土壤学 资源环境学院土地资源与农业化学系
气压变化、温度梯度、土壤表层风力、降水或灌溉 等。 土壤对流公式:qv=-(k/η )▽p qv—空气的容积对流量(单位时间通过单位横截 面积的空气容积);
k—通气孔隙通气率;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章土壤空气和热量答案
1. 土壤空气组成有哪些特点?
(1)土壤空气中的CO2含量高于大气
(2)土壤空气中的O2含量低于大气
(3)土壤空气中水汽含量一般高于大气
(4)土壤空气中含有较多的还原性气体
(5)土壤空气的组成不是绝对不变的,它会受其他因素的影响而发生变化。

2. 土壤热量主要有哪些来源?影响土壤热量状况的因素包括哪些?
土壤热量的来源主要包括太阳的辐射能、生物热、地球内热。

影响土壤热量状况的因素包括太阳的辐射强度、地面的反射率、地面有效辐射。

3 土壤热容量与导热率有何区别?
土壤热容量是单位质量(重量)或容积的土壤每升高(或降低)1℃所需要(或放出的)的热量。

在土壤的固、液、气三相物质组成中,水的热容量最大,气体热容量最小,矿物质和有机质热容量介于两者之间。

土壤导热率是在单位厚度(1cm)土层,温差为1℃时,每秒钟经单位断面(1 cm2)通过的热量焦耳数。

固体部分导热率最大,空气导热率最小,水的导热率介于两者之间。

4 土壤温度的时空变化与气温有何不同?
土温的四季变化与气温的变化类似,通常全年表土最低温度出现在1-2月份,最高温度出现在7-9月份。

随着土层深度的增加,土温的年变幅范围逐渐缩小,最高最低温度出现的时间亦逐渐推迟。

土壤温度的日变化随着气温的变化而变化,但与气温相比,土温最高最低温度存在滞后现象,土温的昼夜变幅随深度的增加而缩小,而且最高、最低温度出现时间亦逐渐推迟。

土壤温度的空间变化主要受纬度、海拔高度及地形等因子的影响。

随着维度增高,土壤温度和气温均逐渐降低。

随着海拔升高,土壤温度和气温均降低,但是高山上的土温比气温高。

地形对土壤温度的影响影响表现主要在坡向与坡度方面。

大体表现为北半球的南坡(即阳坡),土温比平地要高,北坡(即阴坡)的情况与南坡则相反。

坡度越陡,南、北坡向的温差就越大。

5 土壤水、气、热的主要调节措施包括哪些?
(1)通过耕作和施肥,改善土壤的物理性质
(2)灌溉和排水措施
(3)混交、间种措施
(4)采用人工覆盖物措施
6 土壤水、气、热三者之间存在什么关系?
土壤水、气、热是组成土壤肥力的重要因素,三者是互为矛盾,又互相制约的统一体。

(1)土壤水和空气土壤含水量达到全容水量时,其大小孔隙往往充满水,造成土壤的通气状况不良,产生植物的涝害。

当土壤含水量达到田间持水量时,其大多数大孔隙充满了空气。

当土壤含水量进一步降低,有许多毛管孔隙也为空气充满。

这时容易造成土壤水的供应不良,形成植物的旱害。

(2)土壤水和土壤温度湿土温度上升慢,下降也慢,不同土层深度的温度梯度也比较小;干土温度上升快,下降也快,而且不同土层深度的温度梯度也比较大。

(3)土壤热量对土壤水、气的影响当土温较高时,土壤的蒸发量也较大,土壤易于失水干燥,易于通气。

土壤不同层次中的温度梯度还可引起土壤水分的运动,即从热处向冷处的运动;特别是土壤冻结时可导致上层滞水,促使土壤过湿和通气不良。

相关文档
最新文档