运筹学(存储论)

合集下载

运筹学-存储论

运筹学-存储论

案例分析:某汽车制造企业供应链协同实践
01
背景介绍
某汽车制造企业面临着激烈的市场竞争和快速变化的市场 需求,为了提高运营效率和市场响应速度,该企业实施了 供应链协同战略。
02 03
协同实践
该企业通过与供应商、经销商等合作伙伴建立紧密的协同 关系,实现了信息共享、协同计划和资源优化等目标。同 时,该企业还采用了实时库存管理、多级库存管理和协同 补货等策略,进一步优化了库存管理。
运筹学-存储论
目 录
• 存储论基本概念与原理 • 需求预测与库存控制方法 • 供应链协同与库存管理优化 • 现代信息技术在存储论中的应用 • 存储论挑战与未来发展趋势
01 存储论基本概念与原理
存储论定义及作用
存储论定义
存储论是研究物资存储策略的理论, 通过对存储系统的分析、建模、优化 和控制,实现物资存储成本最小化、 服务水平最大化等目标。
和状态,提高库存透明度。
自动化补货
02
物联网技术可以实现自动化补货,当库存低于安全库存时,系
统会自动触发补货流程,减少人工干预和误差。
货物追踪与定位
03
物联网技术可以追踪货物的运输过程,确保货物在运输过程中
的安全和准确送达。
大数据在存储论中的价值挖掘
需求预测
通过分析历史销售数据、市场趋势等大数据信息,企业可以更准 确地预测未来需求,从而制定合理的库存策略。
实施效果
经过优化后,企业原材料库存水平显著降低,资金利用率得到提高,过期、变质等风险得到有效控制。
02 需求预测与库存控制方法
需求预测技术及应用
1 2
时间序列分析
利用历史销售数据,通过时间序列模型(如 ARIMA、指数平滑等)进行需求预测。

运筹学存储论习题

运筹学存储论习题

运筹学存储论习题习题十三13.1 一家出租汽车公司平均每月使用汽油8000公升,汽油价格为每公升1.05元,每次定货费为3000元,保管费为每月每公升0.03元。

试求最优策略及其费用。

13.2 某厂对某种材料的全年需求量为1040吨,其购价为每吨1200元,每次订货费为2040元,每年每吨的保管费为170元。

(1)试求最优策略及其费用;(2)为实用方便,则存贮策略及其费用又如何? 13.3 某装配车间每月需要A零件400件。

该零件由厂内生产,生产率为每月800件,每批生产准备费为100元,每件生产成本为5元,每月每个零件的保管费为0.5元。

试求装配车间对A零件的存贮策略及其费用,以及该零件的生产周期与最高存贮水平。

13.4 某厂每天生产50件产品,每批生产固定费用为250元,每件产品的成本为200元,每件产品每年保管费为65元。

若每天对该产品的需求量为10件,求最有策略及其费用。

13.5 某机械厂每周购进某种机械零件50个,购价为每件4元,每次订货费为4元,每件每周保管费为0.36元。

(1)求经济订货批量;(2)为少占用流动资金,使存贮大到最低限度,该厂宁可使总费用超过最低费用的4%,则此时订货批量又为多少? 13.6 承13.2题,若允许缺货,且知缺货损失费为每吨每年500元。

(1)求最优策略、最大缺货量及最小费用;(2)若为实用方便,则结果有应如何?13.7 某印刷厂负责印刷一本年销售量为120万册的书,该厂每天的生产能力是几十万册,该书的销售是均匀的。

若该厂只按每天销售印刷,则可使生产率与销售率同步,从而无库存,但每天印完此书又得换印刷别的书,其生产调节费为每天2000元。

每万册书贮存一天的费用为4.53元,缺货一天的损失为1.02元,试分析比较缺货与不缺货的最有策略哪个比较好,并说明理由。

13.8 承13.4题,若允许缺货,且知缺货损失为每件每年85元。

(1)求最优策略、最大缺货量及最小费用;(2)若为实用方便,则又应如何?13.9 某报社定期补充纸张的库存量,所用新闻纸以大型卷筒进货,每次订货费用(包括采购手续、运输费等)为25元,购价如下:买1~9筒,单价为12.00元买10~49筒,单价为10.00元买50~99筒,单价为9.50元买100筒以上,单价为9.00元报社印刷车间的消耗率是每周32筒,贮存纸张的费用(包括保险、占用资金的利息)为每周每筒1元。

运筹学第十三章存储论

运筹学第十三章存储论
2
Q0
2C 3 D C1
最佳批次
n0
最佳周期
t0
2C 3 C1D
另外:t0 要取整数。
13
模型2: 边生产边供应,不允许缺货的模型 假设
缺货费用无穷大; 不能得到立即补充,生产需一定时间; 需求是连续的、均匀的;
每次订货量不变,订购费用不变(每次生产量不变 ,装配费不变);
C3 -- 每次订购费用 P -- 生产速度
C2 -- 缺货费 R -- 需求速度


t1 0 t2 t3 t
天数
31
取 [ 0, t ] 为一个周期,设 t1时刻开始生产。 [ 0, t2 ] 时间内存储为零,B为最大缺货量。 [t1, t2 ] -满足需求及[ 0, t1 ] 内的缺货。 [t2, t3 ] -满足需求,存储量以P-R速度增加。 存储量 t3时刻达到最大。 [t3, t ] -存储量以需求速度R减少。 S
,当 C 2 时 ,
1
最佳周期 t0是模型1的最佳周期 t 的
C 1
C2 C2
倍,
又由于
(C1 C2 ) C2
1
,所以两次订货时间延长了。
Rt 0 2 RC C1
3
不允许缺货量,订货量为 最大缺货量为:
Q0 S0 2 RC C1
3
C 1
C2 C2
C 1 C 2
C ( t0 ) C 3
C1R 2C 3

1 2
C1R

2 C 1C 3 R
10
Annual cost (dollars)
Total cost = HC + OC C(t)

运筹学11-存储论

运筹学11-存储论

第11章存储论存储论也称库存论(Inventory theory),是研究物资最优存储策略及存储控制的理论。

物资的存储是工业生产和经济运转的必然现象。

任何工商企业,如果物资存储过多,不但积压流动资金,而且还占用仓储空间,增加保管费用。

如果存储的物资是过时的或陈旧的,会给企业带来巨大经济损失;反之,若物资存储过少企业就会失去销售机会而减少利润,或由于缺少原材料而被迫停产,或由于缺货需要临时增加人力和费用。

寻求合理的存储量、订货量和订货时间是存储论研究的重要内容。

§1 确定型经济订货批量模型本节假定在单位时间内(或称计划期)的需求量为已知常数,货物供应速率、订货费、存储费和缺货费已知,其订货策略是将单位时间分成n等分的时间区间t,在每个区间开始订购或生产相同的货物量,形成t循环储存策略。

在建立储存模型时定义了下列参数及其含义。

D:需求速率,单位时间内的需求量(Demand per unit time)。

P:生产速率或再补给速率(Production or replenishment rate)。

A:生产准备费用(Fixed ordering or setup cost)。

C:单位货物获得成本(Unit acquisition cost)。

H:单位时间内单位货物持有(储存)成本(Holding cost per unit per unit time)。

B:单位时间内单位货物的缺货费用(Shortage cost per unit short per unit time)。

π:单位货物的缺货费用,与时间无关(Shortage cost per unit short, independent of time)。

t:订货区间(Order interval),周期性订货的时间间隔期,也称为订货周期。

L:提前期(order lead time),从提出订货到所订货物且进入存储系统之间的时间间隔,也称为订货提前时间或拖后时间。

运筹学课件k7

运筹学课件k7
存储策略
策略:几天进货一次,一次订购多少 三种策略: 1.t0循环策略 2.(s,S)策略 3.(t0 ,s,S)策略
优化尺度--费用
存储费C1:库存期间发生的费用 内涵:管理费、租金、物耗、利息 订购费C3:为订购支付的费用 内涵:差旅费、邮电费 缺货费C2 :供不应求导致的损失 内涵:停工待料、违约金、机会损失 使得总费用最低的策略为最优策略
第7章 存储论
本章要点 存储论的基本概念 确定性存储模型的特点 不允许缺货条件下的建模 随机性存储模型的特点 需求离散与连续型下的随机性库存建模
第1节 存储论概述
存储现象:成袋买粮、成桶买油 存储目的:应对不确定性,满足不时之需 存储原因:解决供需矛盾 1、供需时间不平衡 2、供需空间不平衡 3、供需数量不平衡 讨论:你遇到的存储问题
根据不同的概率和供货提前期确定预定服务水平(如保证95%概率不缺货) 例如,假设市场每日的需求是均值D,标准差为 的正态分布。 设提前期为L,期望值= ,方差= ,服务水平为 ,订货点为R,得
则可变为
第2节 存储论的基本概念
存储模型 存储是供需之间的平衡装置,存储量因供应而增加,因需求而减少;需求是已知参数,供应是可控变量
存储状态
供应
需求
存储论研究什么?
在既定的需求约束之下,以适当的存储策略,寻求最优化的存储水平。 决策变量:订购批量、订购周期、订购批次。
存储状态
外部订购自行生产
间断、连续确定、随机
一、需求为随机离散型
例4、挂历新年期间每售出一千张可赢利700元。否则须削价处理且一定可以售完,但是此时每千张赔本400元。据经验统计数据,市场需求的概率如下 问:应该订购多少张?
需求量(千张)

存储论

存储论

大连大学
28
数学建模工作室
随机性存储模型的策略
❖ (1) 定期订货,但订货数量需要根据上一个周期末剩下货物的数量决
定订货量。剩下的数量少,可以多订货。剩下的数量多,可以少订或不 订货。这种策略可称为定期订货法。
❖ (2) 定点订货,存储降到某一确定的数量时即订货,不再考虑间隔的 时间。这一数量值称为订货点,每次订货的数量不变,这种策略可称之 为定点订货法。
存储模型的基本介绍
存储模型的分类
存储模型大体分为两类:一类是确定性模型,即模型 中的变量皆为确定型的量,不包括任何随机变量;另一 类是随机性模型,即模型中含有随机变量。
大连大学
7 数学建模工作室
存储模型的分类
存储模型的分类
存储模型大体分为两类:一类是确定型模型,即模型 中的变量皆为确定型的量,不包括任何随机变量;另一 类是随机型模型,即模型中含有随机变量。
确定型存储模型
(4)允许缺货,补充时间极短的经济订购批量模型
基本假设:除允许缺货外,其余条件皆与模型一相同。
大连大学
23
数学建模工作室
确定型存储模型
从图上可知:
平均存储量 Q S T1 Q S 2
2T
2Q
平均缺货量 ST2 S 2 2T 2Q
因此,最优策略为:
Q* 2CD DCP CS
Q
C
1 2
1
D P
QC
P
CDD Q
因此,平均总费用为:
大连大学
21
数学建模工作室
Q确* 定CP型2C1D存DDP 储 模 型
T * Q* D
2CD P
CPDP D
A* 1 D Q* P

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(存储论)

《运筹学》教材编写组《运筹学》笔记和课后习题(含考研真题)详解(存储论)

第13章存储论13.1 复习笔记1.存储论的基本概念备货时间:从订货到货物进入“存储”往往需要一段时间,我们把这段时间称为备货时间。

备货时间可能很长,也可能很短,可能是随机性的,也可以是确定性的。

提前时间:从另一个角度看,为了在某一时刻能补充存储,必须提前订货,那么这段时间称之为提前时间。

存储策略:决定多少时间补充一次以及每次补充数量的策略称为存储策略。

存储论要解决的问题是:多少时间补充一次,每次补充的数量应该是多少,即存储策略。

2.一些参数的含义K:货物单价;:最佳订货周期;R:需求速度;:最佳订货批量;:单位存储费用;:单位缺货损失;:订购费;:最佳费用;:最佳生产时间;:生产速度;:最大存贮量;:最大缺货量;:最大缺货量。

3.存储策略(1)-循环策略,每隔时间向系统内补充存储量Q。

(2)策略,当存储量时不补充;当时补充存储,补充量(即,将存储量补充到S)。

(3)混合策略,每经过t时间检查存储量,当时不补充;当时,补充存储量使之达到S。

4.确定性存储模型(1)模型一—经典的E.O.Q模型:不允许缺货,备货时间很短,且需求是连续均匀的,即需求速度是一常数;每批订货量不变,订货费用为常数;单位存储费用不变。

已知,求,,(2)模型二:不允许缺货,生产需一定时间,其余条件同模型一。

已知,求,,(3)模型三:允许缺货,备货时间很短,其余条件同模型一。

已知,求,,,最大缺货量(4)模型四:允许缺货(需补足缺货),生产需要一定时间,其余条件同模型一。

已知,求,,简便的记忆方法:①永远成立②记住模型一,,③定义两个因子④与因子的关系与乘以因子,与除以因子模型二乘除,模型三乘除,模型四乘除⑤模型二的,模型三的,模型四的说明:在允许缺货条件下,经过研究而得出的存储策略是:每隔时间订货一次,订货量为,用中的一部分补足所缺货物,剩余部分进入存储。

很明显,在相同的时间段落里,允许缺货的订货次数比不允许缺货时订货次数减少了。

运筹学课件——存储论

运筹学课件——存储论
*
最大缺货量
C1R * B t C1 C2
*
平均总费用
C 2C3 t
*
*
存贮论
三、单周期的随机性存贮模型 在前面讨论的模型中,我们把需求看成是固定不变的已 知常量。但是,在现实世界中,更多的情况却是需求为一
个随机变量。为此,在本节中我们将介绍需求是随机变量,
特别是需求服从均匀分布和正态分布这两种简单情况的存
存贮论
三、存贮问题及其基本概念
存贮系统 是一个由补充、存贮、需求三个环节紧密构成的运行 系统。 存贮由于需求(输出)而减少,通过补充(输入)而增加, 其中心可视为仓库。
定购进货 输入
仓库 (库存量)
供给需求
输出
存贮论
需求: 由于需求,从存贮中取出一定数量的存货,使存贮 量减少,即存贮的输出。 需求类型:间断的, 连续的; 确定性的, 随机性的 Q Q
存贮费用越小 订货费用越大 存贮费用越大 订货费用越小
存贮论
研究目的: 1.补充存贮物资时,每次补充数量(Q)是多少? 2.应该间隔多长时间( t )来补充这些存贮物资? 使得总费用最少
存贮量 Q
存贮状态图
Q/2
0
t
t
t
时间 t
存贮论
采用t - 循环策略
2C3 t C1 R
*
2C3 R Q Rt C1
贮模型。典型的单周期存储模型是“报童问题”
(Newsboy Problem),它是由报童卖报演变而来的,
在存储论和供应链的研究中有广泛地应用。
存贮论
基本的订货策略
按决定是否订货的条件划分: 订购点订货法、定期订货法 按订货量的决定方法划分: 定量订货法、补充订货法

管理运筹学--存储论

管理运筹学--存储论

1.3 存贮论的研究对象 • 何时订货——时间 • 每次订多少货——数量
1.4 存贮论的基本概念
1、需求:
即库存的输出(生产消耗、商业销售)。
需求量:单位时间的需求。
初始存 贮量
I Q I Q T时间后 的存贮量
T (1)连续式输出
T (2)间断式输出
2、补充订货:库存的输入。 控制两个主要因素:补充库存的时间。 每次补充的数量。
则有
D D D D C2 C2 C 2 C2
C1 C1 C1 C1
Q Q * Q Q*
Q
D 2C 2 C1
2 D(1 D )C 2 (1 C 2 ) C 1 (1 C 1 )
所以
Q Q * Q Q* (1 D )(1 C 2 ) 1 (1 C 1 )
B类物资品种占总物资品种数目的20%-30%,但其 年金额占全部物资年金额的20%左右.
C 类物资品种多 , 占总物资数目的 60%-70%. 但其年 金额小,只占全部物资年金额的10%-20%. 分类管理: 对A类物资:计算最经济的批量,尽可能缩减库存 量和与库存有关的费用,它的储备天数较少; 对C类物资:订货次数不能过多,可适当增大批量, 减少订购次数,其储备天数较长;
从订货费角度看,订货批量越大越好。 存贮费:一般指每存储单位物资单位时间所需花费 的费用。
存贮费率:每存储1元物资单位时间所支付的费用。
从存贮费角度看,订货批量越大越不好。
缺货损失费:一般是指由于中断供应影响生产造 成的损失赔偿费,包括生产停工待料,或者采取应急 措施而支付的额外费用,以及影响利润、信誉的损失 费等。
对B类物资:对一部分品种计算最经济的批量,对 另一部分品种实行一般性管理。

运筹学_存储论

运筹学_存储论

一、模型假设
1) 需求是连续均匀的。设需求速度为常数R; 2) 每次生产准备费为c3,单位存储费为c1,且都为常数; 3) 当存储量降至零时开始生产,单位时间生产量(生产率) 为P(常数),生产的产品一部分满足当时的需要,剩 余部分作为存储,存储量以P-R的速度增加;当生产t 时间以后,停止生产,此时存储量为(P-R)t,以该 存储量来满足需求。当存储量降至零时,再开始生产, 开始一个新的周期。
(二)费用 1.订货费 ——企业向外采购物资的费用,包括订购费和货物成本费。 (1)订购费(ordering cost)——手续费、电信往来费用、交通费等。 与订货次数有关; (2)货物成本费——与所订货物数量有关,如成本费、运输费等。 2.生产费 ——企业自行生产库存品的费用,包括装备费和消耗性费用。 (1)装备费(setup cost)——与生产次数有关的固定费用; (2)消耗性费用——与生产数量有关的费用。 – 对于同一产品,订货费与生产费只有一种。 3.存储费用(holding cost) ——保管费、流动资金占用利息、货损费等,与存储数量及存货性质有关。 4.缺货费(backorder cost)
再订货点为427+200=627箱。
这样,公司一年总费用为: C=0.5×1282×6 + (365÷3)×25 + 200×6=8087.67元
第三节 经济生产批量模型 ----Economic Production Lot Size Model
– 经济生产批量模型也称不允许缺货、生产需要一定时间 模型。
的存储费为6元,其中包括贷款利息3.6元,仓库费用、 保险费用、损耗费用管理费用等2.4元。(3)每次订货 费25元,其中包括:批发公司支付采购人员劳务费12元, 支付手续费、电话费、交通费等13元。(4)方便面每

存储论的基本概念

存储论的基本概念

1 2
C1R
0
得: t0
2C3 C1R

d2C(t) dt2
0
得:Q0 Rt0
2C3R C1
(13 3)
C(t)
C3 t
KR
1 2
C1Rt
C(t)
C3 t
1 2
C1Rt
将t 0代入上式得出最佳费用
C0 C(t0 ) C3
C1R 2C3
1 2 C1R
2C3 C1R
2C1C3R
不允许缺货模型
又由于 C1 C2 1
C2
所以两次订货间隔时间延长了。
在不允许缺货情况下,为满足t0时间内的需求,订货量Q0=Rt0 即:
Qo
2RC3 C1 C2
C1
C2
允许缺货模型
例 已知需求速度R=100件,C1=4元,C2=1.5元, C3=50元,求S0及C0。
S0
2RC1C2 C1(C1 C2 )
获利的 期望值
0 645 1180 1440* 1315 1025
需求是随机离散
报童问题:报童每日售报数量是一个随机变量。报 童每售出一份报纸赚k元。如报纸未能售出,每份赔h元。 每日售出报纸份数r的概率P(r)根据以往的经验是已知的, 问报童每日最好准备多少份报纸?
这个问题是报童每日报纸的订货量Q为何值时,赚钱 的期望值最大?反言之,如何适当地选择Q值,使因不能 售出报纸的损失及因缺货失去销售机会的损失,两者期望 值之和最小。现在用计算损失期望值最小的办法求解。
存储论
存储论的基本概念 确定性存贮模型 随机性存贮模型
存储问题的提出
为了解决供应(生产)与需求(消费)之间的不协调,这 种不协调性一般表现为供应量与需求量和供应时期与需求时 期的不一致性上,出现供不应求或供过于求。人们在供应与 需求这两环节之间加入储存这一环节,就能起到缓解供应与 需求之间的不协调,以此为研究对象,利用运筹学的方法去 解决最合理、最经济地储存问题。

管理运筹学第5章:存储论

管理运筹学第5章:存储论
引入生产纯输入速率系数
QA A R QA A A
A R 1 ,则 H K A Q A ,并且R=QA/tA=H/tR A 一个周期tA内的存贮总费用费为 KA
C A R 1 FA F p Fh C p 1 C h Ht A C p h QAt A 2 2 A
2 200 5 = 25.8(吨/次) 3 200 1 RT ① 每月需订购次数为 n = 7.752(次/月) 25 .8 Q 2C 0 2 5 ② 订购(存贮)周期为 t RC 200 3 = 0.129(月)3.873(天) h
Q
③ 总存贮费用率为 f 2 RC 0 C h 2 200 5 3 = 77.4(元/月)
2 RC 0 Ch
④ 设提前订购时间需2天,则存贮水平为 L=RtL=200×2/30=13.3(吨), 即当库存量下降到13.3吨时,应立即订货,见下图
库存量 R 一次订购耗用
经济订购批量耗用 订购点 Q*=25.8 L=13.3 0
3.87天 10天
20天
1月 时间
库存量
R 一次订购耗用
经济订购批量耗用 订购点 Q*=25.8 L=13.3 0
总存贮费率(单位时间内的总存贮费)为 Cp RC p C h A R Ch A R FA C p C h A R fA QA QA QA tA tA 2 A QA / R 2 A QA 2 A

RC p C A R df A 2 h 0 dQA 2 A QA
5.2
确定性存储模型
一、订购物资存贮模型
输入环节:输入物资从货源采购而来,输入速率A→∞,每一周期订购一次且数量不变,每次 订购费Co也不变,提前订购时间也是确定性的; 存贮环节:存贮费率Ch一定,没有安全存贮量的要求; 输出环节:需求率R是确定性的。 可见,这是一个最简化的模型,下面分两种情况来讨论。 1、不允许出现物资短缺: ⑴、特点 短缺损失费用率Cs为无限大,每批订购物资量Q到达后立即入库,然后以每单位时间(天、周、 月等)耗用R的速率输出,库存量逐渐减少,经过一个周期用完,这时第二批物资恰好补充入库, 不会出现短缺现象,由此开始第二周期的循环。考虑到订购物资需提前一定时间tL,当存贮水平 到达L时就应开始订购。见下图所示:

运筹学 课件 第八章库存论

运筹学 课件 第八章库存论
11:09 8
五、库存策略(库存量何时补充,补充多少的策略) (1)T-循环策略:每经时间间隔T(常数)就补充一定的库存量; (2)(L,S)策略:当库存量降到L单位以下时,就补充库存 量到S; (3)(T,L,S)策略:每经时间间隔T就检查库存量,若已 已低于L就补充到S,否则不予补充。
11:09
第八章 存贮论
什么是存储论? 物资常需要储存起来以备将来使用 存储需要成本。存储多少,多少时间补充一次是 合理的? 应满足两个要求: 存储量应保证不产生供不应求或供过于求的现象 存储计划应使成本最小 ——研究上述问题,并给出有关解答的理论和方法叫做
存储论
11:09 1
第一节 基本概念 第二节 确定型库存模型 模型一:不允许缺货,补充时间很短 模型二:不允许缺货,补充需一定时间 模型三:允许缺货,补充时间很短 模型四:允许缺货,补充需要一定时间 模型五:价格有折扣的存储问题 第三节 随机库存模型 模型六:单周期离散随机库存模型
(3000 − 2400) = 2×0.1×150× 2400× + 3×2400 3000 = 7320 元/ 月 ( )
* * 因 :C(t2 ) < C(t1 ) 为
结论:该企业应选择自行生产 11:09
缺货时间和缺货量有关。一般给出单位时间单位货物的缺货费,
记成 C2
11:09
7
3、订货费/生产费用 1)订货费 订货补充。包括两项费用 订购费:它与订货次数 有关,与订货量无关。订一次货所 订购费: 有关,与订货量无关。 支付的费用C 支付的费用 3 表示 订货本身的成本: 订货本身的成本:KQ,与产品数量有关。 K:单价 ,与产品数量有关。 : 2)生产费用 自行生产补充。包括两项费用 生产准备费用:它与组织生产的次数 有关,与产品数量无 关 (对应于订购费用)。组织一次生产所需要的调整、装 配费 用C3 表示。 生产本身的成本:KQ (对应于订货成本),它与产品数量 有关。K:单位生产成本

物流运筹学——存储论

物流运筹学——存储论
1批量生产的生产准备费用12 000元/次; 2单位成本费用100元/件;与批量生产的规模无关; 3存储费为30元/件·月; 4零件的缺货费为10元/件·月
存储问题基本要素 :
• 需求 • 补充 • 盘点方式 • 存储策略 • 费用 • 缺货处理 • 目标函数
存储策略
1t—循环策略 每隔一个时间段t就补充一次;补充量为固定值Q 此时不用考虑库存水平如何
第二节 库存控制的基本方法
• ABC分类法 • 供应链下的库存管理 :VMI和JMI
ABC分类法
70% 20% 10%
VMI
• 供应商管理库存Vendor Managed Inventory;VMI;是一种在供应链环境下的库 存运作模式;以用户和供应商双方都获得最 低成本为目的;在一个共同的协议下由供应 商管理库存;并不断监督协议执行情况和修 正协议内容;使库存管理得到持续地改进的 合作性策略
第三节 确定型存储模型
• 模型一:允许缺货;补充需要时间
模型二:不允许缺货;瞬时补充
模型三:允许缺货;瞬时补充
模型四:不允许缺货;补充需要时间
第四节 随机型存储模型
• 需求为离散型随机变量
• 报童模型是典型的离散随机存储问题;又称为破产 销售问题;其对于商店订购季节性商品或易腐商品 都有参考价值 报童每天预定的报纸数量是固定的; 而每天售出报纸的数量是随机的 每售出一份报纸; 可赚k元;当日未售出的要进行处理;每份损失h元; 那么报童要考虑的问题就是应该如何确定每天订 购的份数才能使预期利润最大
第八章 存储论
➢存储论基本概念 ➢库存控制的基本方法
➢确定型存储模型 ➢随机型存储模型 ➢物流系统库存控制应用实例
知识目标
• 了解存储论的基本概念和原理; • 理解库存控制的基本方法;掌握ABC分类法; • 掌握确定型存储模型的基本假定和四种模型对应存储策

管理运筹学教学课件存储论

管理运筹学教学课件存储论

详细描述
随着全球化和网络化趋势的发展,供应链管 理在存储领域的应用越来越广泛。通过整合 供应商、制造商、分销商和零售商之间的资 源,实现库存优化、降低成本、提高效率和 减少浪费。
基于大数据的存储优化
总结词
大数据技术在存储管理中的应用
详细描述
大数据技术为存储管理提供了强大的分析工 具。通过对大量数据的收集、处理和分析, 企业可以更好地预测市场需求、优化库存结
本,提高经济效益。
03
费用随机模型的优缺点
费用随机模型能够较为全面地考虑各种不确定性费用,但需要较为精确
的成本数据和复杂的计算方法,同时也存在一定的误差和风险。
多级多物品模型
多级多物品模型概述
多级多物品模型是指考虑了多级供应链和多种物品的存储模型,能够更好地模拟实际生 产和库存情况。
多级多物品模型的应用
意义
存储论为企业提供了科学合理的库存管理方案,有助于降低库存成本、提高企 业的经济效益和市场竞争力。
存储论的发展历程
早期阶段
存储论起源于20世纪初,最初是为了解决战争时期的物资储备问 题。
发展阶段
随着计算机技术的不断发展,存储论逐渐形成了较为完善的理论体 系,并广泛应用于各个领域。
现代阶段
现代存储论不仅关注物资的存储管理,还涉及到供应链管理、物流 管理等多个方面,为企业提供了更加全面的解决方案。
订货随机模型的优缺点
订货随机模型能够较为准确地预测未来的订货需求,但需要较为精确的市场预测和生产计 划,同时也存在一定的误差和风险。
费用随机模型
01
费用随机模型概述
费用随机模型是指考虑了库存持有成本、缺货成本、采购成本等不确定
性费用的存储模型。

运筹学-存贮论

运筹学-存贮论
存贮论(存储论,库存论) (Inventory theory)
引言 经济订货批量的存贮模型 具有约束条件的存贮模型 具有价格折扣优惠的存贮模型 单时期的随机存贮模型
第一节 引言
在生产和生活中,人们经常进行着各种个样的存 贮活动,这是为了解决供应(或生产)与需求(或消 费)之间不协调或矛盾的一种手段.例如,一场战 斗在很短时间内可能消毫几十万发炮弹,而兵工 厂不可能在这么短的时间内生产那么多炮弹,这 就是供需矛盾,为了解决这一矛盾,只能将军火 工厂每天生产的炮弹储存到军火库内,以备战争 发生时的需要.
B类物资的特点:通常它占全部库存物资
总品种的20%到30%,年金额占全部库存物 资的年金额的20%左右。
C类物资的特点:通常它占全部库存物资
总品种的60%到70%,年金额占全部库存物 资的年金额的10%到20%。
1:某企业有2000种库存物资,先计算
每类物资的年耗用量,平均单价,得到 年金额,然后按照年金额的大小把全部 库存物资排队,并划分如下三类:
解:先用图形表示这一过程
数量
Q
Ot
T
时间
C表示全年发生的总费用,TOC表示全年内的
定货费,TCC表示全年内的的存储费,n表示全
年的平均定货次数, n D .
Q
TOC
C2
n
C2
D Q
,TCC
1 2
C1Q.
平量均为D存t储,此量时为的12库Q存. 这量是为因Q-为Dt在,则时平间均t内库的存需量求为
库存物资占用仓库面积而引起的一系列费 用,如货物的搬运费,仓库本身的固定资 产折旧,仓库维修费用,仓库及其设备的 租金,仓库的取暖、冷藏、照明等费用, 仓库管理人员等的工资、福利费用,仓库 的业务核算费用等。

运筹学-存储论

运筹学-存储论

t0
2
若单位时间单位货物存储费用为 C1 ,则 t 时间平均存储费用为:
1 2
C1R
t
若每次订购费为 C3 ,货物单价为 K,则t 时间平均订货费为:
所以,t 时间总平均费用为:
1 t
(C3
KQ)
1 t
C3
KR
C(t)1 tC3来自KR1 2C1Rt
(13-1)
不允许缺货的批量订购问题
对式(13-1)利用微积分求导,即可得到 C(t) 的最小值。
周期与价格 k 无关,只与需求速度、订购费和存储费有关。这一结论与我们的直观判
断是比较吻合的。需求速度如果增大,订货量就要相应增加;订购费增加时,企业会
相应地减少订货次数,从而增加每次的订货量;存储费增加时,企业为尽量减少库存
量,换之以多增加订货次数,减少每次的订货量。
不允许缺货的批量订购问题
另外,由于 Q 与价格无关,所以式(13-1)中可省略 KR 改写为式(13-4)的 形式。这在以后各节中也同样适用,如无特殊需要可不再考虑货物费用。
C(t)
1 t
C3
1 2
C1Rt
将(13-2)代入(13-4)得到:
(13-4)
C0 C(t) 2C3C1R
(13-5)
不允许缺货的批量订购问题
例 13.1 某产品年需求量为 D ,需求连续均匀,采用订购方式进行补充,且不允许缺货。若
与存储有关的费用主要有存储费、订货费/生产费以及缺货费: 存储费:包括仓库使用费(如仓库租金或仓库设施的运行费、维修费、
管理人员工资等)、保险费、存储货物损坏、变质等造成的损失费以及货物 占用流动资金的利息等支出。
订货费/生产费:采用订购的方式补充进货会产生订货费,而采用自行 生产的方式则要付出一定的生产费。订货费等于订购费与货物费之和。订购 费(Setup Cost)是采购人员的差旅费、手续费、最低起运费等费用之和,与 订货量无关,只与订货次数有关。货物费与订货数量有关,一般情况下它等 于货物数量与货物单价的乘积。生产费是装配费与货物费之和。装配费是生 产前进行组织准备,生产后进行清洗保养等费用的总和,只与生产次数关。

第9章:存储论《运筹学》

第9章:存储论《运筹学》

2VT
2TV
T
利用极值的必要条件:
f T
0
f T3
0
解之,得最优解:
T *
2Va(b R )
bRD(V D)
T *
2VRa
3
bD(bR)(V D)
Q* DT *
2 aVD(b R ) bR(V D)
f*
Dp 2abRD(V D) V (bR)
则最大存储量及最大缺货量的计算:
Q1 T3D(V D) /T
解得:
RDT Q1 b R
对(11.6)式对 T 求偏导,由极值必要条件,得:
f T
bQ12 2DT 2
RD 2
RQ12 2DT 2
a T2
0
RD 2
(b R)Q12 2DT 2
a T2
0
将 Q1 代入得:
RD 2
(b
R) RDT bR
2DT 2
2
a T2
Q1 T1 (V D)
T1V T3 D Q DT
在一个周期T内:
平均储存量: Q1T3
2T
平均缺货量: S (T T3 )
2T
采用以前的符号得模型:
min
f
Q1T3b S(T T3 )R a
2T
2T
T
Dp
将(11.11)代入得:
min f Dp bD(V D)T32 RD(V D)(T T3 )2 a
解:此为连续加工不允许缺货的模型,以一个月为计划期。已知V=500, D=100,P=10,a=5,b=0.5。
Q*
50(件) 25100500
0.5(500100)
T*
25500 0.5100(500100)

存储论四个模型公式

存储论四个模型公式

存储论四个模型公式存贮论(或称为库存论)是定量方法和技术最早的领域之一,是研究存贮系统的性质、运行规律以及如何寻找最优存贮策略的一门学科,是运筹学的重要分支。

存贮论的数学模型一般分成两类:一类是确定性模型,它不包含任何随机因素,另一类是带有随机因素的随机存贮模型。

1 存贮模型中的基本概念所谓存贮实质上是将供应与需求两个环节以存贮中心联结起来,起到协调与缓和供需之间矛盾的作用。

存贮模型的基本形式如图 1 所示。

1.存贮问题的基本要素(1)需求率:单位时间内对某种物品的需求量,用 D 表示。

(2)订货批量:一次订货中,包含某种货物的数量,用Q 表示。

(3)订货间隔期:两次订货之间的时间间隔,用T 表示。

2.存贮模型的基本费用(1)订货费:每组织一次生产、订货或采购的费用,通常认为与定购数量无关,记为。

(2)存贮费:所有用于存贮的全部费用,通常与存贮物品的多少和时间长短有关。

单位存贮费记为。

(3)短缺损失费:由于物品短缺所产生的一切损失费用,通常与损失物品的多少和短缺时间的长短有关,记为。

3.存贮策略所谓一个存贮策略,是指决定什么情况下对存贮进行补充,以及补充数量的多少。

下面是一些比较常见的存贮策略。

(1)t 循环策略:不论实际的存贮状态如何,总是每隔一个固定的时间t ,补充一个固定的存贮量Q 。

(2)(t,S) 策略:每隔一个固定的时间t 补充一次,补充数量以补足一个固定的最大存贮量S 为准。

因此,每次补充的数量是不固定的,要视实际存贮量而定。

当存贮(余额)为I 时,补充数量为Q = S −I 。

(3)(s,S) 策略:当存贮(余额)为I ,若I > s ,则不对存贮进行补充;若I ≤s ,则对存贮进行补充,补充数量Q = S −I 。

补充后达到最大存贮量S 。

s 称为订货点(或保险存贮量、安全存贮量、警戒点等)。

在很多情况下,实际存贮量需要通过盘点才能得知。

若每隔一个固定的时间t 盘点一次,得知当时存贮I ,然后根据I 是否超过订货点s ,决定是否订货、订货多少,这样的策略称为(t,s,S)策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每箱方便面的进价为30元,银行贷款利息为 12%,则30×12%=3.6(元) (2)贮存仓库的费用、保险费用、损耗费用、管 理费用等:经计算每箱方便面贮存一年的费用为
2.4元 以上两部分相加,可知每箱方便面存贮一年的存
贮费为6元,即C1=6元/年·箱
§2 经济订购批量存贮模型
模型举例
订货费的确定: 订货费指订一次货所支付的手续费、电 话费、交通费、采购人员的劳务费等。 订货费与所订货的数量无关。
与存贮有关的基本概念:
物资费用:指物资本身的费用,如单 价、运费等。
缺货损失费用:指由于存贮不足,不 能及时满足顾客或生产的需要而引起 的费用。如缺货引起的停工损失、延 期交货而付出的罚金、信誉损失、失 去销售机会的损失等。
存贮策略:
确定订货的间隔时间和订购量的方 法。
定期补充法:以固定的时间间隔订货, 每次订货要把存货量恢复到某种水平。 简单但容易造成缺货或积压
第十三章 存储论 Inventory Theory
平抑波动,保障供给
存储论是定量方法和技术最早应用的 领域之一,是管理运筹学的重要分支。 早在1915年人们就开始了对存储论的 研究。
所谓存储就是将一些物资,例如原材 料、外购零件、部件、在制品等等存 储起来以备将来的使用和消费。
存贮是一种常见的社会和日常现象
控的因素,但可以预测;总体上需求可 分为确定型的和随机型的 订货时间和订货量一般是可控的因素。 问题是:什么时间订货(期的问题), 一次订多少(量的问题)?
存贮问题的基本要素:
需求率:指单位时间(年、月、日) 内对某种物品的需求量,用D表示。 它是存贮系统的输出。
订货批量:指一次订货中包含的某种 物资的数量。用Q表示。
订货间隔期:指两次订货之间的时间 间隔。用t表示。
订货提前期:从提出订货到收到货物 的时间间隔,用L表示。
与存贮有关的基本费用:
存贮费:指物资存放在仓库经过一定 时期后所发生的全部费用。包括保管 费、仓库占用费、通风照明费、冷气 暖气费、流动资金利息、存贮损耗费 等,与时间和数量成正比。
订货费:是指为取得物资所发生的费 用。包括手续费、电话费、交通费、 采购人员的劳务费、质检、入库等, 与订购数量无关的一次性费用
经典存贮理论和现代物流管理
经典研究最佳订货周期和订货量 现代研究如何将存贮降至最低,减少和优
化物流环节,如 JIT,MRPII,Supply Chain
本章只介绍经典存贮理论的基础
存贮系统:
存贮过程通常包括三个环节:订购进货、 存贮和供给需求
存贮系统的中心可视为仓库 对存贮系统而言,外部需求一般是不可
若订货提前期不为零,不影响经济订 货量及相关总费用的计算,只是影响 到订货点。 订货点=(平均每天正常耗用量*订货 提前期)+安全储备量
§2 经济订购批量存贮模型 模型举例(例1 :P283)
益民食品批发部是个中型的批发公 司,它为附近200多家食品零售店提供 货源,批发部的负责人为了减少存贮的 成本,选择了某种品牌的方便面进行了 调查研究,制定正确的存贮策略。
如: 军事战争中炮弹的存贮 水力发电站雨水的库存
存贮是缓解供应与需求之间出现供不 应求或供过于求等不协调现象的必要 和有效的方法和措施。
但是要存储就需要资金和维护,存储 的费用在企业经营的成本中占据非常 大的部分,它是企业流动资金中的主 要部分,因此如何最合理,最经济地 解决好存储问题是企业经营管理中的 大问题。
时间的存贮费为 c1。
各种参数(Q、 c3 、c1 )均为常数
定性分析:
订货批量小,则存贮费用少,但订货 次数频繁,增加订货费;
订货批量大,则存贮费用大,佳的订货量和订货周期
定量分析:
存贮费:
存贮费 单位物资单位时间存贮费 平均存贮量
c1
1 2
Q
1 2
§2 经济订购批量存贮模型
模型举例

1
需求量的确定: 2
3
4
5
6
7
8
9
10
11
12
总计
需求(箱)
3000 3080 2960 2950 2990 3000 3020 3000 2980 3030 3000 2990 36000
平均每周
3000
§2 经济订购批量存贮模型
模型举例
存贮费的确定: 每箱的存贮费由两部分组成: (1)用于购买一箱方便面所占用的资金的利息:
§1 经济订货批量存贮模型(掌握) §2 经济生产批量模型(掌握) §3 允许缺货的经济订货批量模型(了解) §4 允许缺货的经济生产批量模型(了解) §5 经济订货批量的折扣模型(掌握)
关于存贮理论 (Inventory Theory)
存贮论要解决两方面的矛盾: 短缺造成的损失和存贮形成的费用
劳务费12元,其它费用13元, 所以每次订货费C3=12+13=25(元)
§2 经济订购批量存贮模型
模型举例
需做决策:每次订货量Q为多少时才能 使得总的费用为最少?
定点补充法:当存货量下降到某点就 订货,每次的订货量可以是固定的。 要监视订货点。
§1 经济订货批量模型
指不允许缺货,生产时间很短的存贮 模型,是最基本的确定性存贮模型。
经济订货量Q* (EOQ--Economic Order Quantity, )
模型假设
需求率D为常数 订货提前期为 0; 不允许缺货; 订货批量Q; 设每次订货费为 c3,单位物资单位
存储论主要解决存储策略问题即如下 两个问题:
(1)当我们补充存储物资时,我们补 充数量是多少?
(2)我们应该间隔多长时间来补充我 们的存储物资?
下面就需要我们建立不同的存储模型 来解决上面两个问题。我们介绍的是 一些常用的存储模型及其解决办法。
第十三章 存贮论 Inventory Theory
Qc1
订货费:
订货费 订货单价订货次数
c3
D Q
D Q
c3
定量分析:
总费用:
TC
1 2
Qc1
D Q
c3
Q* TC*
2Dc3 c1
2Dc3c1
存贮费、订货费与总费用关系图:
费 用
1 2 Qc1
0
Q*
D Q c3
Q
经济订货批量模型的几点说明:
没有考虑物资单价
若物资单价与时间和订购量无关,为常 数 c,则单位时间内的物资消耗费用为 cD
相关文档
最新文档