2.4连续型随机变量及其概率密度函数
2.4连续型随机变量及其密度函数
x0 x0
x
0
其中 ( 0) 为常数,则称随机变量X服从参数为
的指数分布.记为 X ~ E
上页
下页
例7 设随机变量X的概率密度为
• (1)试确定常数C:由
ce 2 x , x 0 p( x ) 0, x 0
2 x
1
•(2)
p( x )dx c e
x 2
e
2 2
x
⑴.曲线关于直线 x 对称, 这表明:对于任意的 h 0,有 P h X P X h
f (x)
0 h
h
x
⑵.当 x 时,f x 取到最大值 f 1 2
(2)[0, ] 3 (4) [0, ] 2
练习题 设连续型随机变量X的密度函数为 1 xe f ( x) c 0
x2 2c
x0 其他
2
则式中c为( (1) 任意实数 (3) 1
) (2)正数 (4)任意非零实数
均匀分布 若随机变量X 的概率密度为:
f (x)
1 , a xb f ( x) b a 0, 其它
x ,
二、
密度函数的性质
(1) 非负性 (2) 归一性
f x 0 x ,
f ( x )dx=1.
性质(1)、(2)是密度函数的充要性质; 这两条性质是判定一个函数 f ( x ) 是否为某随机变量
X的概率密度函数的充要条件。
f (x)
年的概率为多少?
解
3e 3 x f ( x) 0
2.4_几种常见的连续型随机变量的分布
F ( x)
x
1 2
e
( x )2 2 2
dt
(2) 正态分布的密度函数 f(x) 的图形的性质
1 f ( x) e 2 ( x )2 2 2
, x
正态曲线
(1) f(x) 关于 是对称的.
1 在 点 f(x) 取得最大值 . 2
2.4 几种常见的连续型随机变 量的分布
(1) 均匀分布 (2) 指数分布
(3) 正态分布(重点)
1 、均匀分布
如果随机变量 X 的概率密度为
1 , a xb f ( x) b a 其它 0,
则称 X 在区间 [a, b]上服从均匀分布. 记为 X~U[a, b].
由于 P{c x d } f ( x)dx
b
x
abBiblioteka x例1 设随机变量 X ~ U(2, 5). 现在对 X 进行三次独立观测,
试求至少有两次观测值大于 3 的概率.
解: 记 A = { X > 3 },
则 P(A) = P( X> 3) = 2/3
设 Y 表示三次独立观测中 A 出现的次数, 则 Y~ B(3, 2/3),所求概率为
P (Y ≥ 2) = P(Y = 2) + P(Y = 3)
(2)该热水器能正常使用600 h以上的概率是多少?
解 (1)P{在100 h以内需要维修} P( X 100}
100 0
100
f ( x)dx
0.002e0.002 x dx 1 e0.2 0.1813
(2) P{能无故障使用600 h以上} P( X 600}
概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第二章
第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9,从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.解答:分别用ω1,ω2,ω3表示试验的三个结果“小于5”,“等于5”,“大于5”,则样本空间S={ω1,ω2,ω3},定义随机变量X如下:X=X(ω)={0,ω=ω11,ω=ω2,2,ω=ω3则X取每个值的概率为P{X=0}=P{取出球的号码小于5}=5/10,P{X=1}=P{取出球的号码等于5}=1/10,P{X=2}=P{取出球的号码大于5}=4/10.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.解答:由P{X=1}=P{X=2},得λe-λ=λ22e-λ,解得λ=2.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52;(2)P{1≤X≤3};(3)P{X>3}.解答:(1)P{12<X<52=P{X=1}+P{X=2}=115+215=15;(2)P{≤X≤3}=P{X=1}+P{X=2}+P{X=3}=115+215+315=25;(3)P{X>3}=P{X=4}+P{X=5}=415+515=35.习题3已知随机变量X只能取-1,0,1,2四个值,相应概率依次为12c,34c,58c,716c,试确定常数c,并计算P{X<1∣X≠0}.解答:依题意知,12c+34c+58c+716c=1,即3716c=1,解得c=3716=2.3125.由条件概率知P{X<1∣X≠0}=P{X<1,X≠0}P{X≠0}=P{X=-1}P{X≠0}=12c1-34c=24c-3=26.25=0.32.习题4一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.解答:随机变量X的可能取值为3,4,5.P{X=3}=C22⋅1C53=110,P{X=4}=C32⋅1C53=310,P{X=5}=C42⋅1C53=35,所以X的分布律为(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?解答:(1)P{X=k}=(1-p)kp=(0.9)k×0.1,k=0,1,2,⋯;(2)P{X≥5}=∑k=5∞P{X=k}=∑k=5∞(0.9)k×0.1=(0.9)5;(3)设以0.6的概率保证在两次调整之间生产的合格品不少于m件,则m应满足P{X≥m}=0.6,即P{X≤m-1}=0.4. 由于P{X≤m-1}=∑k=0m-1(0.9)k(0.1)=1-(0.9)m,故上式化为1-0.9m=0.4,解上式得m≈4.85≈5,因此,以0.6的概率保证在两次调整之间的合格品数不少于5.习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.解答:此运动员一次投篮的投中次数是一个随机变量,设为X,它可能的值只有两个,即0和1. X=0表示未投中,其概率为p1=P{X=0}=1-0.6=0.4,X=1表示投中一次,其概率为p2=P{X=1}=0.6.则随机变量的分布律为由于每次取出的产品仍放回去,各次抽取相互独立,下次抽取时情况与前一次抽取时完全相同,所以X的可能取值是所有正整数1,2,⋯,k,⋯.设第k次才取到正品(前k-1次都取到次品),则随机变量X的分布律为P{X=k}=310×310×⋯×310×710=(310)k-1×710,k=1,2,⋯.习题10设随机变量X∼b(2,p),Y∼b(3,p),若P{X≥1}=59,求P{Y≥1}.解答:因为X∼b(2,p),P{X=0}=(1-p)2=1-P{X≥1}=1-5/9=4/9,所以p=1/3.因为Y∼b(3,p),所以P{Y≥1}=1-P{Y=0}=1-(2/3)3=19/27.习题11纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.解答:以X记纺锭断头数,n=800,p=0.005,np=4,应用泊松定理,所求概率为:P{0≤X≤2}=P{⋃0≤xi≤2{X=xi}=∑k=02b(k;800,0.005)≈∑k=02P(k;4)=e-4(1+41!+422!)≈0.2381.习题12设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解答:\becauseP{X=1}=P{X=2},即λ11!e-λ=λ22!e-λ⇒λ=2,∴P{X=0}=e-2,∴p=(e-2)4=e-8.2.3 随机变量的分布函数习题1F(X)={0,x<-20.4,-2≤x<01,x≥0,是随机变量X的分布函数,则X是___________型的随机变量. 解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2设F(x)={0x<0x20≤1,1x≥1问F(x)是否为某随机变量的分布函数.解答:首先,因为0≤F(x)≤1,∀x∈(-∞,+∞).其次,F(x)单调不减且右连续,即F(0+0)=F(0)=0,F(1+0)=F(1)=1,且F(-∞)=0,F(+∞)=1,所以F(x)是随机变量的分布函数.习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.解答:由题意知X的分布律为:试求:(1)系数A与B;(2)X落在(-1,1]内的概率.解答:(1)由于F(-∞)=0,F(+∞)=1,可知{A+B(-π2)A+B(π2)=1=0⇒A=12,B=1π,于是F(x)=12+1πarctanx,-∞<x<+∞;(2)P{-1<X≤1}=F(1)-F(-1)=(12+1πarctan1)-[12+1πarctanx(-1)]=12+1π⋅π4-12-1π(-π4)=12.习题7在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.解答:F(x)=P{X≤x}={0,x<0xa,0≤x<a.1,x≥a2.4 连续型随机变量及其概率密度习题1设随机变量X的概率密度为f(x)=12πe-(x+3)24(-∞<x<+∞),则Y=¯∼N(0,1).解答:应填3+X2.由正态分布的概率密度知μ=-3,σ=2由Y=X-μσ∼N(0,1),所以Y=3+X2∼N(0,1).习题2已知X∼f(x)={2x,0<x<10,其它,求P{X≤0.5};P{X=0.5};F(x).解答:P{X≤0.5}=∫-∞0.5f(x)dx=∫-∞00dx+∫00.52xdx=x2∣00.5=0.25,P{X=0.5}=P{X≤0.5}-P{X<0.5}=∫-∞0.5f(x)dx-∫-∞0.5f(x)dx=0.当X≤0时,F(x)=0;当0<x<1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt=t2∣0x=x2;当X≥1时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫0x2tdt+∫1x0dt=t2∣01=1,故F(x)={0,x≤0x2,0<x<1.1,x≥1习题3设连续型随机变量X的分布函数为F(x)={A+Be-2x,x>00,x≤0,试求:(1)A,B的值;(2)P{-1<X<1};(3)概率密度函数F(x).解答:(1)\becauseF(+∞)=limx→+∞(A+Be-2x)=1,∴A=1;又\becauselimx→0+(A+Be-2x)=F(0)=0,∴B=-1.(2)P{-1<X<1}=F(1)-F(-1)=1-e-2.(3)f(x)=F′(x)={2e-x,x>00,x≤0.习题4服从拉普拉斯分布的随机变量X的概率密度f(x)=Ae-∣x∣,求系数A及分布函数F(x).解答:由概率密度函数的性质知,∫-∞+∞f(x)dx=1,即∫-∞+∞Ae-∣x∣dx=1,而∫-∞+∞Ae-∣x∣dx=∫-∞0Aexdx+∫0+∞Ae-xdx=Aex∣-∞0+(-Ae-x∣0+∞)=A+A=2A或∫-∞+∞Ae-xdx=2∫0+∞Ae-xdx=-2Ae-x∣0+∞=2A,所以2A=1,即A=1/2.从而f(x)=12e-∣x∣,-∞<x<+∞,又因为F(x)=∫-∞xf(t)dt,所以当x<0时,F(x)=∫-∞x12e-∣t∣dt=12∫-∞xetdt=12et∣-∞x=12ex;当x≥0时,F(x)=∫-∞x12e-∣x∣dt=∫-∞012etdt+∫0x12e-tdt=12et∣-∞0-12e-t∣0x=12-12e-x+12=1-12e-x,从而F(x)={12ex,x<01-12e-x,x≥0.习题5某型号电子管,其寿命(以小时计)为一随机变量,概率密度f(x)={100x2,x≥1000,其它,某一电子管的使用寿命为X,则三个电子管使用150小时都不需要更换的概率.解答:设电子管的使用寿命为X,则电子管使用150小时以上的概率为P{X>150}=∫150+∞f(x)dx=∫150+∞100x2dx=-100x∣150+∞=100150=23,从而三个电子管在使用150小时以上不需要更换的概率为p=(2/3)3=8/27.习题6设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.解答:设X为每位乘客的候车时间,则X服从[0,5]上的均匀分布. 设Y表示车站上10位乘客中等待时间超过4分钟的人数. 由于每人到达时间是相互独立的.这是10重伯努力概型. Y服从二项分布,其参数n=10,p=P{X≥4}=15=0.2,所以P{Y=1}=C101×0.2×0.89≈0.268.习题7设X∼N(3,22).(1)确定C,使得P{X>c}=P{X≤c};(2)设d满足P{X>d}≥0.9,问d至多为多少?解答:因为X∼N(3,22),所以X-32=Z∼N(0,1).(1)欲使P{X>c}=P{X≤c},必有1-P{X≤c}=P{X≤c},即P{X≤c}=1/2,亦即Φ(c-32)=12,所以c-3=0,故c=3.(2)由P{X>d}≥0.9可得1-P{X≤d}≥0.9,即P{X≤d}≤0.1.于是Φ(d-32)≤0.1,Φ(3-d2)≥0.9.查表得3-d2≥1.282,所以d≤0.436.习题8设测量误差X∼N(0,102),先进行100次独立测量,求误差的绝对值超过19.6的次数不小于3的概率.解答:先求任意误差的绝对值超过19.6的概率p,p=P{∣X∣>19.6}=1-P{∣X∣≤19.6}=1-P{∣X10∣≤1.96=1-[Φ(1.96)-Φ(-1.96)]=1-[2Φ(1.96)-1]=1-[2×0.975-1]=1-0.95=0.05.设Y为100次测量中误差绝对值超过19.6的次数,则Y∼b(100,0.05).因为n很大,p很小,可用泊松分布近似,np=5=λ,所以P{Y≥3}≈1-50e-50!-51e-51!-52e-52!=1-3722-5≈0.87.习题9某玩具厂装配车间准备实行计件超产奖,为此需对生产定额作出规定. 根据以往记录,各工人每月装配产品数服从正态分布N(4000,3600).假定车间主任希望10%的工人获得超产奖,求:工人每月需完成多少件产品才能获奖?解答:用X表示工人每月需装配的产品数,则X∼N(4000,3600).设工人每月需完成x件产品才能获奖,依题意得P{X≥x}=0.1,即1-P{X<x}=0.1,所以1-F(x)=0.1,即1-Φ(x-400060)=0.1,所以Φ(x-400060)=0.9.查标准正态人分布表得Φ(1.28)=0.8997,因此x-400060≈1.28,即x=4077件,就是说,想获超产奖的工人,每月必须装配4077件以上.习题10某地区18岁女青年的血压(收缩压,以mm-HG计)服从N(110,122).在该地区任选一18岁女青年,测量她的血压X.(1)求P{X≤105},P{100<X≤120};(2)确定最小的x,使P{X>x}≤0.005.解答:已知血压X∼N(110,122).(1)P{X≤105}=P{X-11012≤-512≈1-Φ(0.42)=0.3372,P{100<X≤120}=Φ(120-11012)-Φ(100-11012)=Φ(0.833)-Φ(-0.833)=2Φ(0.833)-1≈0.595.(2)使P{X>x}≤0.05,求x,即1-P{X≤x}≤0.05,亦即Φ(x-11012)≥0.95,查表得x-10012≥1.645,从而x≥129.74.习题11设某城市男子身高X∼N(170,36),问应如何选择公共汽车车门的高度使男子与车门碰头的机会小于0.01.解答:X∼N(170,36),则X-1706∼N(0,1).设公共汽车门的高度为xcm,由题意P{X>x}<0.01,而P{X>x}=1-P{X≤x}=1-Φ(x-1706)<0.01,即Φ(x-1706)>0.99,查标准正态表得x-1706>2.33,故x>183.98cm.因此,车门的高度超过183.98cm时,男子与车门碰头的机会小于0.01.习题12某人去火车站乘车,有两条路可以走. 第一条路程较短,但交通拥挤,所需时间(单位:分钟)服从正态分布N(40,102);第二条路程较长,但意外阻塞较少,所需时间服从正态分布N(50,42),求:(1)若动身时离开车时间只有60分钟,应走哪一条路线?(2)若动身时离开车时间只有45分钟,应走哪一条路线?解答:设X,Y分别为该人走第一、二条路到达火车站所用时间,则X∼N(40,102),Y∼N(50,42).哪一条路线在开车之前到达火车站的可能性大就走哪一条路线.(1)因为P{X<60}=Φ(60-4010)=Φ(2)=0.97725,P{Y<60}=Φ(60-504)=Φ(2.5)=0.99379,所以有60分钟时应走第二条路.(2)因为P{X<45}=Φ(45-4010)=Φ(0.5)=0.6915,P{X<45}=Φ(45-504)=Φ(-1.25)=1-Φ(1.25)=1-0.8925=0.1075所以只有45分钟应走第一条路.2.5 随机变量函数的分布习题1已知X的概率分布为Y-101P2*******习题3设随机变量X服从[a,b]上的均匀分布,令Y=cX+d(c≠0),试求随机变量Y的密度函数. 解答:fY(y)={fX(y-dc)⋅1∣c∣,a≤y-dc≤b0,其它,当c>0时,fY(y)={1c(b-a),ca+d≤y≤cb+d0,其它,当c<0时,fY(y)={-1c(b-a),cb+d≤y≤ca+d0,其它.习题4设随机变量X服从[0,1]上的均匀分布,求随机变量函数Y=eX的概率密度fY(y).解答:f(x)={1,0≤x≤10,其它,f=ex,x∈(0,1)是单调可导函数,y∈(1,e),其反函数为x=lny,可得f(x)={fX(lny)∣ln′y,1<y<e0,其它={1y,1<y<e0,其它.习题5设X∼N(0,1),求Y=2X2+1的概率密度.解答:因y=2x2+1是非单调函数,故用分布函数法先求FY(y).FY(y)=P{Y≤y}=P{2X2+1≤y}(当y>1时)=P{-y-12≤X≤y-12=∫-y-12y-1212πe-x2dx,所以fY(y)=F′Y(y)=22πe-12⋅y-12⋅122y-1,y>1,于是fY(y)={12π(y-1)e-y-14,y>10,y≤1.习题6设连续型随机变量X的概率密度为f(x),分布函数为F(x),求下列随机变量Y的概率密度:(1)Y=1X;(2)Y=∣X∣.解答:(1)FY(y)=P{Y≤y}=P{1/X≤y}.①当y>0时,FY(y)=P{1/X≤0}+P{0<1/X≤y}=P{X≤0}+P{X≥1/y}=F(0)+1-F(1/y),故这时fY(y)=[-F(1y)]′=1y2f(1y);;②当y<0时,FY(y)=P{1/y≤X<0}=F(0)-F(1/y),故这时fY(y)=1y2f(1y);③当y=0时,FY(y)=P{1/X≤0}=P{X<0}=F(0),故这时取fY(0)=0,综上所述fY(y)={1y2⋅f(1y),y≠00,y=0.(2)FY(y)=P{Y≤y}=P{∣X∣≤y}.①当y>0时,FY(y)=P{-y≤X≤y}=F(y)-F(-y)这时fY(y)=f(y)+f(-y);②当y<0时,FY(y)=P{∅}=0,这时fY(y)=0;③当y=0时,FY(y)=P{Y≤0}=P{∣X∣≤0}=P{X=0}=0,故这时取FY(y)=0,综上所述fY(y)={f(y)+f(-y),y>00,y≤0.习题7某物体的温度T(∘F)是一个随机变量, 且有T∼N(98.6,2),已知θ=5(T-32)/9,试求θ(∘F)的概率密度.解答:已知T∼N(98.6,2).θ=59(T-32),反函数为T=59θ+32,是单调函数,所以fθ(y)=fT(95y+32)⋅95=12π⋅2e-(95y+32-98.6)24⋅95=910πe-81100(y-37)2.习题8设随机变量X在任一区间[a,b]上的概率均大于0,其分布函数为FY(x),又Y在[0,1]上服从均匀分布,证明:Z=FX-1(Y)的分布函数与X的分布函数相同.解答:因X在任一有限区间[a,b]上的概率均大于0,故FX(x)是单调增加函数,其反函数FX-1(y)存在,又Y在[0,1]上服从均匀分布,故Y的分布函数为FY(y)=P{Y≤y}={0,y<0y,0≤y≤11,y>0,于是,Z的分布函数为FZ(z)=P{Z≤z}=P{FX-1(Y)≤z}=P{Y≤FX(z)}={0,FX(z)<0FX(z),0≤FX(z)≤1,1,FX(z)>1由于FX(z)为X的分布函数,故0≤FX(z)≤1.FX(z)<0和FX(z)>1均匀不可能,故上式仅有FZ(z)=FX(z),因此,Z与X的分布函数相同.总习题解答习题1从1∼20的整数中取一个数,若取到整数k的概率与k成正比,求取到偶数的概率.解答:设Ak为取到整数k,P(Ak)=ck,k=1,2,⋯,20.因为P(⋃K=120Ak)=∑k=120P(Ak)=c∑k=120k=1,所以c=1210,P{取到偶数}=P{A2∪A4∪⋯∪A20}=1210(2+4+⋯+20)=1121.习题2若每次射击中靶的概率为0.7,求射击10炮,(1)命中3炮的概率;(2)至少命中3炮的概率;(3)最可能命中几炮.解答:若随机变量X表示射击10炮中中靶的次数. 由于各炮是否中靶相互独立,所以是一个10重伯努利概型,X服从二项分布,其参数为n=10,p=0.7,故(1)P{X=3}=C103(0.7)3(0.3)7≈0.009;(2)P{X≥3}=1-P{X<3}=1-[C100(0.7)0(0.3)10+C101(0.7)1(0.3)9+C102(0.7)2(0.3)8]≈0.998;(3)因X∼b(10,0.7),而k0=[(n+1)p]=[(10+1)]×0.7=[7.7]=7,故最可能命中7炮.习题3在保险公司里有2500名同一年龄和同社会阶层的人参加了人寿保险,在1年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交120元保险费,而在死亡时家属可从保险公司里领20000元赔偿金,求:(1)保险公司亏本的概率;(2)保险公司获利分别不少于100000元, 200000元的概率.解答:(1)以“年”为单位来考虑,在1年的1月1日,保险公司总收入为2500×120元=30000元.设1年中死亡人数为X,则X∼b(2500,0.002),则保险公司在这一年中应付出200000X(元),要使保险公司亏本,则必须200000X>300000即X>15(人).因此,P{保险公司亏本}=P{X>15}=∑k=162500C2500k(0.002)k×(0.998)2500-k≈1-∑k=015e-55kk!≈0.000069,由此可见,在1年里保险公司亏本的概率是很小的.(2)P{保险公司获利不少于100000元}=P{300000-200000X≥100000}=P{X≤10}=∑k=010C2500k(0.002)×(0.998)2500-k≈∑k=010e-55kk!≈0.986305,即保险公司获利不少于100000元的概率在98%以上.P{保险公司获利不少于200000元}=P{300000-200000X≥200000}=P{X≤5}=∑k=05C2500k(0.002)k×(0.998)2500-k≈∑k=05e-55kk!≈0.615961,即保险公司获利不少于200000元的概率接近于62%.习题4一台总机共有300台分机,总机拥有13条外线,假设每台分机向总机要外线的概率为3%, 试求每台分机向总机要外线时,能及时得到满足的概率和同时向总机要外线的分机的最可能台数.解答:设分机向总机要到外线的台数为X, 300台分机可看成300次伯努利试验,一次试验是否要到外线. 设要到外线的事件为A,则P(A)=0.03,显然X∼b(300,0.03),即P{X=k}=C300k(0.03)k(0.97)300-k(k=0,1,2,⋯,300),因n=300很大,p=0.03又很小,λ=np=300×0.03=9,可用泊松近似公式计算上面的概率. 因总共只有13条外线,要到外线的台数不超过13,故P{X≤13}≈∑k=0139kk!e-9≈0.9265,(查泊松分布表)且同时向总机要外线的分机的最可能台数k0=[(n+1)p]=[301×0.03]=9.习题5在长度为t的时间间隔内,某急救中心收到紧急呼救的次数X服从参数t2的泊松分布,而与时间间隔的起点无关(时间以小时计),求:(1)某一天从中午12至下午3时没有收到紧急呼救的概率;(2)某一天从中午12时至下午5时至少收到1次紧急呼救的概率.解答:(1)t=3,λ=3/2,P{X=0}=e-3/2≈0.223;X-101pi1/22-13/2-2(2)由F(x)=P{X≤x}计算X的分布函数F(x)={0,1/2,2-1/2,1,x<-1-1≤x<00≤x<0x≥1.习题7设随机变量X的分布函数F(x)为F(x)={0,x<0Asinx,0≤x≤π/2,1,x>π/2则A=¯,P{∣X∣<π/6}=¯.解答:应填1;1/2.由分布函数F(x)的右连续性,有F(π2+0)=F(π2)⇒A=1.因F(x)在x=π6处连续,故P{X=π6=12,于是有P{∣X∣<π6=P{-π6<X<π6=P{-π6<X≤π6=F(π6)-F(-π6)=12..习题8使用了x小时的电子管,在以后的Δx小时内损坏的概率等于λΔx+o(Δx),其中λ>0是常数,求电子管在损坏前已使用时数X的分布函数F(x),并求电子管在T小时内损坏的概率.解答:因X的可能取值充满区间(0,+∞),故应分段求F(x)=P{X≤x}.当x≤0时,F(x)=P{X≤x}=P(∅)=0;当x>0时,由题设知P{x<X≤x+Δx/X}=λΔx+o(Δx),而P{x<X≤x+Δx/X}=P{x<X≤x+Δx,X>x}P{X>x}=P{x<X≤x+Δx}1-P{X≤x}=F(x+Δx)-F(x)1-F(x),故F(X+Δx)-F(x)1-F(x)=λΔx+o(Δx),即F(x+Δx)-F(x)Δx=[1-F(x)][λ+o(Δx)Δx],令o(Δx)→0,得F′(x)=λ[1-F(x)].这是关于F(x)的变量可分离微分方程,分离变量dF(x)1-F(x)=λdx,积分之得通解为C[1-F(x)]=e-λx(C为任意常数).注意到初始条件F(0)=0,故C=1.于是F(x)=1-e-λx,x>0,λ>0,故X的分布函数为F(x)={0,x≤01-e-λx,x>0(λ>0),从而电子管在T小时内损坏的概率为P{X≤T}=F(T)=1-e-λT.习题9设连续型随机变量X的分布密度为f(x)={x,0<x≤12-x,1<x≤20,其它,求其分布函数F(x).解答:当x≤0时,F(x)=∫-∞x0dt=0;当0<x≤1时,F(x)=∫-∞xf(t)dt=∫-∞00tdt+∫0xtdt=12x2;当1<x≤2时,F(x)=∫-∞xf(t)dt=∫-∞00dt+∫01tdt+∫1x(2-t)dt=0+12+(2t-12t2)∣1x=-1+2x-x22;当x>2时,F(x)=∫-∞00dt+∫01tdt+∫12(2-t)dt+∫2x0dt=1,故F(x)={0,x≤212x2,0<x≤1-1+2x-x22,1<x≤21,x>2.习题10某城市饮用水的日消费量X(单位:百万升)是随机变量,其密度函数为:f(x)={19xe-x3,x>00,其它,试求:(1)该城市的水日消费量不低于600万升的概率;(2)水日消费量介于600万升到900万升的概率.解答:先求X的分布函数F(x).显然,当x<0时,F(x)=0,当x≥0时有F(x)=∫0x19te-t3dt=1-(1+x3)e-x3故F(x)={1-(1+x3)e-x3,x≥00,x<0,所以P{X≥6}=1-P{X<6}=1-P(X≤6}=1-F(6)=1-[1-(1+x3)e-x3]x=6=3e-2,P{6<X≤9}=F(9)-F(6)=(1-4e-3)-(1-3e-2)=3e-2-4e-3.习题11已知X∼f(x)={cλe-λx,x>a0,其它(λ>0),求常数c及P{a-1<X≤a+1}.解答:由概率密度函数的性质知∫-∞+∞f(x)dx=1,而∫-∞+∞f(x)dx=∫-∞a0dx+∫a+∞cλe-λxdx=c∫a+∞e-λxd(λx)=-ce-λx\vlinea+∞=ce-λa,所以ce-λa=1,从而c=eλa.于是P{a-1<X≤a+1}=∫a-1a+1f(x)dx=∫a-1a0dx+∫aa+1λeλae-λxdx=-eλae-λx\vlineaa+1=-eλa(e-λ(a+1)-e-λa)=1-e-λ.注意,a-1<a,而当x<a时,f(x)=0.习题12已知X∼f(x)={12x2-12x+3,0<x<10,其它,计算P{X≤0.2∣0.1<X≤0.5}.解答:根据条件概率;有P{X≤0.2∣0.1<X≤0.5}=P{X≤0.2,0.1<X≤0.5}P{0.1<X≤0.5}=P{0.1<X≤0.2}P{0.1<X≤0.5}=∫0.10.2(12x2-12x+2)dx∫0.10.5(12x2-12x+3)dx=(4x3-6x2+3x)∣0.10.2(4x3-6x2+3x)∣0.10.5=0.1480.256=0.578125.习题13若F1(x),F2(x)为分布函数,(1)判断F1(x)+F2(x)是不是分布函数,为什么?(2)若a1,a2是正常数,且a1+a2=1.证明:a1F1(x)+a2F2(x)是分布函数.解答:(1)F(+∞)=limx→+∞F(x)=limx→+∞F1(x)+limx→+∞F2(x)=1+1=2≠1故F(x)不是分布函数.(2)由F1(x),F2(x)单调非减,右连续,且F1(-∞)=F2(-∞)=0,F1(+∞)=F2(+∞)=1,可知a1F1(x)+a2F2(x)单调非减,右连续,且a1F1(-∞)+a2F2(-∞)=0,a1F1(+∞)+a2F2(+∞)=1.从而a1F1(x)+a2F2(x)是分布函数.习题14设随机变量X的概率密度ϕ(x)为偶函数,试证对任意的a>0,分布函数F(x)满足:(1)F(-a)=1-F(a);(2)P{∣X∣>a}=2[1-F(a)].解答:(1)F(-a)=∫-∞-aϕ(x)dx=∫a+∞ϕ(-t)dt=∫a+∞ϕ(x)dx=1-∫-∞aϕ(x)dx=1-F(a).(2)P{∣X∣>a}=P{X<-a}+P{X>a}=F(-a)+P{X≥a}F(-a)+1-F(a)=2[1-F(a)].习题15设K在(0,5)上服从均匀分布,求x的方程4x2+4Kx+K+2=0有实根的概率.解答:因为K∼U(0,5),所以fK(k)={1/5,0<k<50,其它,方程4x2+4Kx+K+2=0有实根的充要条件为(4K)2-4⋅4(K+2)≥0,即K2-K-2≥0,亦即(k-2)(K+1)≥0,解得K≥2(K≤-1舍去),所以P{方程有实根}=P{K≥2}=∫2515dx=35.习题16某单位招聘155人,按考试成绩录用,共有526人报名,假设报名者考试成绩X∼N(μ,σ2), 已知90分以上12人,60分以下83人,若从高分到低分依次录取,某人成绩为78分,问此人是否能被录取?解答:要解决此问题首先确定μ,σ2, 因为考试人数很多,可用频率近似概率.根据已知条件P{X>90}=12/526≈0.0228,P{X≤90}=1-P{X>90}≈1-0.0228}=0.9772;又因为P{X≤90}=P{X-μσ≤90-μσ, 所以有Φ(90-μσ)=0.9772, 反查标准正态表得90-μσ=2 ①同理:P{X≤60}=83/526≈0.1578; 又因为P{X≤60}=P{X-μσ≤60-μσ,故Φ(60-μσ)≈0.1578.因为0.1578<0.5,所以60-μσ<0, 故Φ(μ-60σ)≈1-0.1578=0.8422, 反查标准正态表得μ-60σ≈1.0 ②联立①,②解得σ=10,μ=70, 所以,X∼N(70,100).某人是否能被录取,关键看录取率. 已知录取率为155526≈0.2947, 看某人是否能被录取,解法有两种:方法1:P{X>78}=1-P{X≤78}=1-P{x-7010≤78-7010=1-Φ(0.8)≈1-0.7881=0.2119,因为0.2119<0.2947(录取率), 所以此人能被录取.方法2:看录取分数线. 设录取者最低分为x0, 则P{X≥x0}=0.2947(录取率),P{X≤x0}=1-P{X≥x0}=1-0.2947=0.7053,P{X≤x0}=P{x-7010≤x0-7010=Φ{x0-7010=0.7053,反查标准正态表得x0-7010≈0.54, 解得x0≈75. 此人成绩78分高于最低分,所以可以录取. 习题17假设某地在任何长为t(年)的时间间隔内发生地震的次数N(t)服从参数为λ=0.1t的泊松分布,X表示连续两次地震之间间隔的时间(单位:年).(1)证明X服从指数分布并求出X的分布函数;(2)求今后3年内再次发生地震的概率;(3)求今后3年到5年内再次发生地震的概率.解答:(1)当t≥0时,P{X>t}=P{N(t)=0}=e-0.1t,∴F(t)=P{X≤t}=1-P{X>t}=1-e-0.1t;当t<0时,F(t)=0,∴F(x)={1-e-0.1t,x≥00,x<0,X服从指数分布(λ=0.1);(2)F(3)=1-e-0.1×3≈0.26;(3)F(5)-F(3)≈0.13.习题18100件产品中,90个一等品,10个二等品,随机取2个安装在一台设备上,若一台设备中有i个(i=0,1,2)二等品,则此设备的使用寿命服从参数为λ=i+1的指数分布.(1)试求设备寿命超过1的概率;(2)已知设备寿命超过1,求安装在设备上的两个零件都是一等品的概率.解答:(1)设X表示设备寿命. A表示“设备寿命超过1”,Bi表示“取出i个二等品”(i=0,1,2),则X的密度函数为fX(x)={λe-λx,x>00,x≤0 (λ=i+1,i=0,1,2),P(B0)=C902C1002, P(B1)=C901C102C1002, P(B2)=C102C1002,P(A∣B0)=∫1+∞e-xdx=e-1,P(A∣B1)=∫1+∞2e-2xdx=e-2,P(A∣B2)=∫1+∞3e-3xdx=e-3,由全概率公式:P(A)=∑i=02P(Bi)P(A∣Bi)≈0.32.(2)由贝叶斯公式:P(B0∣A)=P(B0)P(A∣B0)P(A)≈0.93.习题19设随机变量X的分布律为由定理即得fY(x)={0,y<3(y-32)3e-(y-32),y≥3.习题21设随机变量X的概率密度fX(x)={e-x,x>00,其它,求Y=eX的概率密度.解答:因为α=min{y(0),y(+∞)}=min{1,+∞}=1,β=max{y(0),y(+∞)}=max{1,+∞}=+∞.类似上题可得fY(y)={fX[h(y)]∣h′(y)∣,1<y<+∞0,其它={1/y2,1<y<+∞0,其它.习题22设随便机变量X的密度函数为fX(x)={1-∣x∣,-1<x<10,其它,求随机变量Y=X2+1的分布函数与密度函数.解答:X的取值范围为(-1,1),则Y的取值范围为[1,2).当1≤y<2时,FY(y)=P{Y≤y}=P{X2+1≤y}=P{-Y-1≤x≤y-1}=∫-y-1y-1(1-∣x∣)dx=2∫0y-1(1-x)dx=1-(1-y-1)2,从而Y的分布函数为FY(y)={0,y<11-(1-y-1)2,1≤y<2,1,其它Y的概率密度为fY(y)={1y-1-1,1<y<20,其它.。
《概率论》第2章§4连续型随机变量及其密度函数
密度函数是描述连续型随机变量取值 规律的工具,通常用大写字母f(x)表示 ,f(x)在x处的函数值表示随机变量在x 点附近取值的“概率密度”。
性质与定理
非负性
密度函数f(x)在整个实数范围 内都是非负的,即f(x)≥0。
正态分布
又称高斯分布,是一种连续概率分布。正态分布 是自然界中最常见的分布之一,许多自然现象和 社会现象都服从或近似服从正态分布。其密度函 数呈钟形曲线,关于均值对称。
指数分布
常用于描述某些随机事件发生之间的时间间隔, 如无线电通信中的信号到达间隔等,其密度函数 呈指数形式衰减。
其他分布
除了上述三种分布外,还有许多其他类型的连续 型随机变量分布,如t分布、F分布、贝塔分布等 。这些分布在实际问题中也有广泛的应用。
03 概率计算与应用
概率计算公式及方法
概率密度函数
常用的概率分布
对于连续型随机变量,其概率通过概率 密度函数进行描述,该函数表示随机变 量在某个取值点附近的概率分布情况。
ቤተ መጻሕፍቲ ባይዱ
如正态分布、均匀分布、指数分布等,这些 分布具有特定的概率密度函数和累积分布函 数形式,可用于描述不同类型的随机现象。
累积分布函数
性质
多维随机变量具有一维随机变量的一些基本性质,如分布函数性质、独立性等。此外, 多维随机变量还具有一些特殊的性质,如多维随机变量的每一个分量都是一维随机变量。
联合密度函数概念及性质
要点一
概念
对于多维连续型随机变量(X1, X2, ..., Xn),如果存在非负可积 函数f(x1, x2, ..., xn),使得对Rn中的任意区域D,有P{(X1, X2, ..., Xn) ∈ D} = ∫∫...∫f(x1, x2, ..., xn)dx1dx2...dxn,则 称f(x1, x2, ..., xn)为(X1, X2, ..., Xn)的联合密度函数。
2.4连续型随机变量及其概率密度1
c
ba
例 在PGA巡回赛中,前100名最好的高尔夫运动员 的击球距离在260米和284米之间,假设这些运动员的 击球距离在该区间上服从均匀分布。
(1)写出击球距离的概率密度函数; 解:令X表示击球距离,根据题意可知X~U(260,284)
f
(x)
1 24
,
260 x 284
0,
0
x0
P{X 1} F(1) 1 (11)e1 1 2e1
二、几个重要的连续型随机变量及其密度函数
1.均匀分布 若连续型随机变量X具有概率密度
f
(
Байду номын сангаас
x)
b
1
a
,
0,
a x b, 其他,
则称X在(a,b)上服从均匀分布. 记为X ~ U(a,b).
概率密度函数图形
0
0dx
0.5 3x2dx x3 0.5 0.125
1
0
0
A3
3x2, 0 x 1,
例题 1 设 X 概率密度 f (x) 0
, 其它.
求(3)求 F(x) .
解(3)由定义知 F(x) x f (t)dt
x
x
当 x 0 时, F(x) f (x)dx 0dx 0 ;
0.06
0.04
0.02
连续型随机变量取值落在某一 区间的概率与区间的开闭无关
-10
-5
a
5
bx
x
F( x) f (t)dt
注意
若X是连续型随机变量,{ X=a }是不可
能事件,则有P{ X a} 0. 反之不一定
2.4常用的连续型分布
) 0 (
)
)
x1 P{ X x1} 1 ( x1 ) 1 0 ( )
P{ X x1} ( x1 ) 0 (
x1
)①
p1 0 (
4
4
) 0 ( 1)
p2 1 0 (
5
5
) 1 0 (1)
6
3. 定理2.5(指数分布的无记忆性)非负 连续型随机变量X服从指数分布的充要 条件是对任意的正实数r, s有
P{X r s X s} P{X r}
例. 某元件的寿命X服从指数分布,已知 其平均寿命为1000小时,求3个这样的元 件使用1000小时,至少已有一个损坏的概 率。(P64例2.22)
三. 正态分布
1.定义 如果随机变量X的概率密度函数为
( x )2 2 2
( x)
1 2
e
,
x
其中 和 2都是常数, 任意, >0, 则称 X 服从参数为 和 2的正态分布. 记作 X ~ N ( μ , σ 2 ).
2. 数字特征
X 的分布函数为
0, x x a F ( x) f (t ) d t , ba 1
x a, a x b, xb
3
二. 指数分布
1.定义 如果随机变量X的概率密度函数为
λ e , x 0 f ( x) ( λ 0) x0 0, 则称X服从参数为的指数分布,记为X ~ e().
推论2: X~N(, 2)的充要条件是存在随机变量 ξ ~N(0, 1), 使得X= ξ + .
概率论与数理统计连续型随机变量及其概率分布ppt课件
0 x
则t , dt d
1-(x)
x1
2
3
F(x) 1
(t )2
1 x e
2 2
dt
x
2
e 2 d
( x )
2
2
4. P{a X b} (b ) ( a )
P{X b} (b ) P{X a} 1 (a )
例6
设 X ~ N(1,4) , 求 P (0 X 1.6)
解:X 的密度函数为
f
x
1 10
e
x 10
0
x0 x0
令:B={ 等待时间为10-20分钟 }
则 PB P10 X 20
20
1
x
e 10 dx
10 10
x
e 10
20
e 1
e 2
0.2325
10
例5 假定一大型设备在任何长为 t 的时间内发生
故障的次数 N( t ) 服从参数为t 的Poisson分布,
P(2
X
4)
4
2
2
2
2
(0)
0.3
2
0.8
P( X 0) 0.2
解二 图解法
0.2 0.15
0.1 0.05
0.3 0.2
-2
2
4
6
由图 P( X 0) 0.2
例 3 原理
设 X ~ N ( , 2), 求 P(| X | 3 )
解 P(| X | 3 ) P( 3 X 3 )
应用场合:
若随机变量X在区间(a,b)内等可能的取值,则
X ~ U a,b
例3 秒表的最小刻度差为0.01秒. 若计时精度 是取最近的刻度值, 求使用该秒表计时产生的 随机误差X 的概率密度, 并计算误差的绝对值 不超过0.004秒的概率.
连续型随机变量及其概率密度函数
证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
概率统计
例2. 某电子计算机在毁坏前运行的总时间(单位:小
f (x)
概率统计
0
x1 x2
x
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F ( x)
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
概率统计
解: (1)
1
f ( x)dx
x
e 100dx
0
x
100e 100
f
(
x)
2
1 x2 ,
1 x 1
求 : F(x)
0, 其它
x
解: F ( x) P( X x) f (t)dt
当 x 1 时, F( x) 0
当1 x 1,
F(x)
2.4连续型随机变量的概率密度
中间大,左右对称”。
决定了图形的中心位置,
决定了图形中峰的陡峭程度。
正态分布的重要性 正态分布是概率论中最重要的分布,这可以由以下 情形加以说明:
⑴.正态分布是自然界及工程技术中最常见的分布 之一,大量的随机现象都是服从或近似服从正态分 布的.可以证明,如果一个随机指标受到诸多因素 的影响,但其中任何一个因素都不起决定性作用, 则该随机指标一定服从或近似服从正态分布.
0 其它
则称随 X服 机从 变 a, 区 量 b上 间的均匀
记作 X ~ U [a , b]或 X ~ R [a, b]
均匀分布的概率背景
如果随机 X服 变从 量区 a,间 b上的均匀分布 变, 量 X在区a, 间b上的任意一个 取子 值区 的间 概上 率与
间的长度成正 该比 子, 区而 间与 的位置无关
例1 设 X 是连续型随机变量,其密度函数为
fx c4x2x2 0
0x2 其它
求:⑴.常数c; ⑵P . X1.
解: ⑴.由密度函数的性质 f xdx 1
0
2
得 1 f xdxfxdxfxdxfxdx
2
x
由高等数学中我 的们 知有 识: ,f (x)
⑴.曲线关于 x直对线称,
这表明:对于h任 0, 意有 的
PhXPXh
0 h h x
正态分布密度函数的图形性质
⑵.当x 时,f x取到最大值 f 1
2
x离越远,f x的值就越小.这表明对,于
解: 当x 2 时,
x
F x f t dt
0
1
2
x
ftd tftd tftd tftdt
2.4连续型随机变量及其概率密度函数
-?
a b- a
连续型随机变量及概率密度函数
注
蝌 P{c < X ? c l} = c+l f ( x)dx = c+l 1 dx = l
c
c b- a b- a
随机变量 X 落在任一长度为 l 的子区间(c,c + l],(a ? c c + l ? b)
内的可能性是相同的.
均匀分布的分布函数为
2
解 (2)X的分布函数为
ì
0,
ï
ï
ò ï
x x dx = x2 ,
F
(
x
)
=
ï í
ï
蝌 ï
ï
3 x dx + 06
06
x 3
骣 琪 琪 桫2
-
x 2
12 x2
dx = - 3 + 2x - , 4
ï î
1,
x <0 0? x 3 3? x 4
x³ 4
连续型随机变量及概率密度函数
例 1 设随机变量 X 具有概率密度
f
(x)
=
ì ï í
1 5
,0
<
x
<
5,
ï î
0,
其他
ì 0,
ï
蝌 F ( x) =
x
ï f ( x)dx = í
x dt = x ,
-?
ï 05 5
ï î
1,
x£ 0 0< x <5
x³ 5
(2)随机变量 X 的取值不小于 2,即
蝌 ò P{ X ? 2} = +? f ( x)dx = 5 1 dx + ? 0dx 3
2.4连续型随机变量的概率密度
λe −λx , x ≥ 0 ∴ f ( x) = 0 ,x <0
例6
已知随机变量X 已知随机变量X的概率密度为
0 ≤ x <1 x f ( x ) = 2 − x 1 ≤ x < 2 0 其他
1)求 的分布函数F(x), 1)求X的分布函数F(x), 解 由F ( x) = 2)求P{X∈ 2)求P{X∈(0.5,1.5)}
0
π
π
∴函数f ( x) = sin x不是某一随机变量ξ的分布密度函数.
(3)当x ∈ [0,3π / 2]时, ∵ f ( x) = sin x不满足非负性 ∴函数f ( x) = sin x不是某一随机变量ξ的分布密度函数.
例4.设随机变量ξ的分布密度为 A f ( x) = , (−∞ < x < +∞) 2 1+ x 求(1)常数A;(2)ξ的分布函数;(3) P(−1 ≤ ξ < 1)
∫
x
−∞
f ( x)dx,
x −∞
当x < 0时,F ( x) = ∫
f (u )du = ∫ 0du = 0,
0
x
x
当0 ≤ x < 1时,F ( x) = ∫
−∞
x2 f (u )du = ∫ udu = , 0 2
x
当1 ≤ x < 2时, x F ( x) = ∫ f (u)du = ∫ udu + ∫ (2 − u)du = 2x − −1 −∞ 0 1 2
∵ f ( x) = sin x ≥ 0;
且∫
π /2
0
sin xdx = − cos x |π / 2 = 1 0
∴函数f ( x) = sin x是某一随机变量ξ的分布密度函数.
概率论2.4
x
x
1 e 2
z2 2
(t )2 2 2
z
dt
x
1 e 2
z2 2
dz
一般有
1 e 2
x dz
x1 X x2 x2 x1 P( x1 X x2 ) P 26
F ( x) P( X x)
x x 1 e f (t )dt 0
x0 x0
10
指数分布的另一种表示形式
f ( x)
e x , x 0 X ~ f ( x )= 0, x 0
则称X服从参数为>0的指数分布。 其分布函数为
3
【例】 (等待时间)公共汽车每10分钟按时通过
一车站,一乘客随机到达车站.求他等车时间不
超过3分钟的概率. 解 设X表示他等车时间(以分计),则X是 一个随机变量,且 X ~ U (0,10). X的概率密度为
1 , 0 x 10, f ( x ) 10 其 它. 0,
P(c X d ) f ( x)dx
c
d
d
c
x a, 0, x a , a x b, f(x),F(x)的图像分别为 X的分布函数 F ( x) b a x b. F(x) f(x) 1,
1
1 ba
1 d c l dx ba ba ba
1.5
16
例 某公路桥每天第一辆汽车过桥时刻为T,设 [0,t]时段内过桥的汽车数Xt服从参数为t的泊 松分布,求T的概率密度。 解
2-4_连续型随机变量及其概率密度
1
连续型随机变量及其概率密度
1.定义 定义
设 X 为随机变量 , F ( x )为 X 的分布函数, 若存在 非负函数f ( x ), 使对于任意实数 x 有 F ( x) = ∫
x −∞
f (t ) d t ,
则称 X 为连续型随机变量, 其中 f ( x ) 称为 X 的概 率密度函数, 简称概率密度.
为离散型随机变量, 若 X 为离散型随机变量
{ X = a } 是不可能事件 ⇔ P{ X = a} = 0.
离 散 型
4
例1
设随机变量 X 具有概率密度
0 ≤ x < 3, kx, x f ( x) = 2 − , 3 ≤ x ≤ 4, 2 0, 其它. (1) 确定常数 k ; (2) 求 X 的分布函数; 7 (3) 求 P{1 < X ≤ }. 2
的正态分布或高斯分布, 记为
X ~ N ( µ , σ 2 ).
22
正态概率密度函数的几何特征
1 ( 2) 当x = µ时, p( x )取得最大值 ; 2 πσ
(1) 曲线关于 x = µ 对称;
(4) 曲线在 x = µ ± σ 处有拐点;
23
(3) 当 x → ±∞ 时, f ( x) → 0;
x 1 −θ k e , f ( x) = θ 0,
x ≥ 0, x < 0.
1 且已知 P{ X > 1} = , 试求常数 θ 2
10
例
设随机变量 X : 0, 2 F ( x) = Ax + B, 1, x ≤ 0, 0 p x ≤ 1, x > 1.
试求常数A,B以及密度函数f(x)。
2.4 连续型随机变量及其概率密度
分布函数为
F( x)
1
x
e
(
t u )2 2 2
dt
2π
当 0 , 1时称 X 服从标准正态分布.
其概率密度和分布函数分别用 ( x),Φ( x)表示 ,
即有
易知
(x) Φ( x)
1 et2 2 , 2π
1 ex t2 2dt .
2π
Φ( x) 1 Φ( x)
正态分布的应用与背景 正态分布是最常见最重要的一种分布, 例如测
2. 常见连续型随机变量的分布
均匀分布
正态分布(或高斯分布)
指数分布
3. 正态分布是概率论中最重要的分布
正态分布有极其广泛的实际背景, 是自然界 和社会现象中最为常见的一种分布, 一个变量如 果受到大量微小的、独立的随机因素的影响, 那 么这个变量一般是一个正态随机变量.
二项分布、泊松分布等的极限分布是正态分 布.所以,无论在实践中,还是在理论上,正态 分布是概率论中最重要的一种分布.
f
(
x)
b
1
a
,
0,
a xb, 其他,
则称X在(a,b)上服从均匀分布. 记为X ~ U (a,b) .
概率密度函数图形
f (x)
均匀分布概率密度函数演示
•
a
o
•
bx
均匀分布的意义
在区间(a,b)上服从均匀分布的随机变量 X , 落在区间(a , b)中任意等长度的子区间内的可能 性是相同的.
P{X s t X s} P{X t} .
事实上
P{X s t X s} P{(X s t) ( X s)}
P{X s}
P{X s t} 1 F(s t)
2.4一维连续型随机变量
信息系刘康泽
例 4、设随机变量 的密度函数为:
ax b 0 x 1 p( x) , 其它 0 5 1 1 a 且 P ( ) ,求(1) , b ; (2)P( „ ) 。 8 4 2
解: (1)由 :
a 1 p( x)dx (ax b)dx b 0 2 1 5 3 b P ( ) 1 ( ax b )dx a 8 8 2 2 1 解得: a 1, b 2
a a
b
a
b
信息系刘康泽 (4) a R , 有:P{ a} 0 。
即:连续型随机变量取某个特定点的概率为0。
证明:
P( a) lim P(a „ a x)
lim
x 0
x 0
a x
a
p( x)dx 0
【注】此性质可以说明:概率为0的事件不一定是不可 能事件。同理: 概率为1的事件也不一定是必然事件. 由此,对于连续型随机变量有:
信息系刘康泽
第2-4节 一维连续型随机变量
有些随机变量所有可能的取值充满了一个区 间, 对这种类型的随机变量, 不能象离散型随机变 量那样, 以指定它取每个值概率的方式, 去给出 其概率分布, 而是通过给出所谓“概率密度函数” 的方式,这就是连续性随机变量。
信息系刘康泽
1、引例:武汉年降雨量的分布
1 2
(1) (2)
信息系刘康泽 ) P( ) (2) P(sin 2 6 2
1 3 6 2 106 P ( ) p ( x)dx 1 ( x )dx 。 5 135 3 5 5 3 1 3
p 例 6、 (选择题)设随机变量 的密度函数为( x) , 且 p ( x) p ( x), F ( x)是 的分布函数, 则对任意的实
2.4 (绝对)连续型随机变量
0.1 x
x0 x 0,
(1) P{ X 2} 0.1e0.1x dx e0.2
2
(2) P{X 3.5 | X 1.5}
P{ X 3.5, X 1.5} P{ X 1.5}
0.1e
0.1x
dx e
0.2
3.5
0.1e
0.1 x
1 n,当n
时,概率趋于0。
说明r.v.X 落在(a, b)区间上的任一点的可能性 都相同。
注2 均匀分布的特征性质
均匀分布的特征性质:
X服从均匀分布U(a, b)的充分必要条件是: (1) r.v.X 落在(a, b)区间内的概率为1, 落在(a, b)区间 外的概率为0;
(2) X 落在(a, b)子区间上概率与子区间长度成正比。
dF ( x ) f ( x) dx
(3)对任意实数c,则P{X=c}=0。 (4)
P{a X b}=P{a X b} P{a X b} =P{a X b}= f ( x)dx
a b
证明
x
(1) F ( x x) F ( x)
f (u)du
f ( x)x
设随机变量X的分布函数为
1 x 2e F ( x) 1 1 e x 2 x0 x0
求 f (x)
注4从上节已经得到离散型随机变量的分布函数为
F ( x) pi U ( x xi )
0 x 0 其中 U ( x) 1 x 0
记作 X ~ N ( , 2 )
N ( , 2 ) 的图形特点 (II)正态分布
x
2.4 连续型随机变量的概率分布
p P{ X 10} 10
即: Y ~ B( 5, e 2 ).
1 e dx e 5
x 5
x 5 10
e 2
至少有一次未得到服务而离开的概率为:
P{Y 1} 1 P{Y 0}
1 C
0 5
e 1 e
2 0 2
a F ( x ) bx ln x cx d d
求:(1) 系数a,b,c,d ;
x1 1 x e xe
(2) X落在区间(2 , 3)内的概率。 (3) X的概率密度。
(1) 利用分布函数性质 F ( ) 1和 F ( ) 0 解: 以及连续型随机变量的分布函数的连续性计算
xe
xe
be e 1 1
由此得:a 0, b 1, c 1, d 1
0 F ( x ) x ln x x 1 1
x1 1 x e xe
(2)
P{2 X 3} F (3) F (2) 1 (2ln 2 1) 2 2ln 2
0 x
F ( x)
x
-
f ( t )dt
x 1 x 0
x 1
x
若x 1
-1 -
F( x )
0
x
-
f ( t )dt
1
= 0 dt -1 (1 t )dt 0 (1 t )dt 1 0 dt 1
所以
x
0 2 (1 x ) 2 F(x) 2 1 x x 2 2 1
(3)
f ( x ) F ( x )
2.4连续型随机变量及其概率密度
其它.
f (x)
•
a
o
•
bx
(2) 分布函数
当 x a 时, F (x) x f (x)dx 0; 当a x b 时,
a
x
x
F (x) f (x)dx f (x)dx f (x)dx
a
a
x 1 dx x a ;
aba
ba
当 x b时,
a
b
x
F (x) f (x)dx f (x)dx f (x)dx
则任一电子元件在 200 h 内损坏的概率为
200
p P(0 X 200) 0 f (x) dx
200
1
x
e 600 dx
0 600
1
1e 3.
从而,所求概率为
1 (1 p)3 1 e1 0.6321.
小结
1. 均匀分布:背景,定义,密度函数,分布函数. 2. 指数分布:背景,定义,密度函数及其图形,分布函 数.
均匀分布的概率密度与分布函数
(1) 概率密度
在区间[a,b]上概率密度 f (x) C(常数),于是
b
C d x C(b a) 1 C
1
.
a
ba
又因为随机变量 X 不可能取得区间[a,b]外的值,所以
在[a,b]外,概率密度为零.于是概率密度为
f
(
x)
b
1
a
,
a x b;
0,
其中 0为常数.这种分布叫做指数分布.
记作:X ~ e( )
易知
f (x)dx
e x
0
dx
e x
0
1.
密度函数 f (x) 的图形:
连续型随机变量及其密度函数
即f ( x)不是X取值x的概率,而是它在x点 概率分布的密集程度 .因此,f ( x)的大小能 反映出X在x附近取值的概率的大小 .
密度函数的性质:
1. f ( x) 0
2.
f ( x)dx 1
注意:
1. 求f ( x)中的参数:利用 f ( x)dx 1;
2. 求F ( x)中的参数:F () lim F ( x) 0;
例 3: 设随机变量 X 的密度函数为
0 x 1 Ax( x 1), f ( x) 0, 其他
(1) 确定常数 A; (2)
1 P ( 1 X ) 计算概率 2 .
解
1
(1)由密度函数性质
6 Ax3 Ax2 1 5 f ( x)dx Ax( x 1)dx ( A ) |0 A 0 3 2 6 5
任取其中 5 只,求: (1) 使用最初 150 小时内,无一晶体管损坏的概率. (2) 使用最初 150 小时内,至多有一只晶体管损坏的 概率.
解
100 , x 100 因为X~ f ( x) x 2 0, x 100
p P( X 150)
150
对任意的实数a<b
① P(a X b) F (b) F (a)
b
f (t )dt
a
f (t )dt
f (t)dt
a
b
即X落在区间的概率为密度函数y=f(t)与直线 t=a,t=b及t轴所围面积.
②X取任意单点值a的概率
P( X a ) 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北邮概率统计课件
注: P( x X x x) F( x x) F( x)
不计高阶 无穷小
x x
x f ( x)dx
f ( x)x
b
(相当于积分中值定理 f ( x)dx f ( x)(b a) ) a
这表示落在区间 ( x, x x]上的概率近似等 于 f ( x)x ,称 f ( x)x 为概率微分。 f ( x)
的值的大小直接影响关系到概率的大小,所以 f ( x) 的确描述了连续型随机变量的概率分布
的情况。
202概0/5/率30 统计
北邮概率统计课件
但要注意的是:密度函数
f (x)
f (x)在某点处 a 的高度,
并不反映X 取值的概率.
但是,这个高度越大,
则 X 取 a 附近的值的概 率就越大. 也可以说, 在某点密度曲线的高度
满足: (1). f ( x) 0
(2). f ( x)dx 1 x
则称 F ( x) f ( x)dx
为连续型随机变量的分布函数
f (x)确定了 分布函数F(x),
P( x1 X x2 ) P( x1 X x2 ) P( x1 X x2 )
P( x1 X x2 )
x2 x1
f
(
x)dx
F
(
x2
)
F(
x1
)
▲ P() 0 (不可能的事件的概率为0),但概率
为零的事不一定是不可能事件.
202概0/5/率30 统计
北邮概率统计课件
2. 概率密度函数的性质
o
x
f ( x)x 在连续型
反映了概率集中在该点 随机型变量理论中所
附近的程度.
的作用与
P( X xk ) pk
在离散型随机变量理
论中所起的作用相类
似
202概0/5/率30 统计
北邮概率统计课件
例1. 证明:函数 f ( x) 1 e x ( x ) 2
是一个连续型随机变量的概率密度函数.
离散型: P( X xk ) 0 连续型:P( X xk ) 0
202概0/5/率30 统计
北邮概率统计课件
I [证]:
证法1
Q
X
xk
X
n1
xk
1 n
X
xk
让 “交”
往 xk方
向 “挤”
1
0
xk
xk n
1
P(X
xk
)
lim
n
P
(
X
xk
) n
P(X
xk )
x 1
x
lim n f ( x)dx f ( x)dx
n
x
x
f ( x)dx f ( x)dx 0
202概0/5/率30 统计
北邮概率统计课件
证法2 任取x0 (, ), 并给x0以增量x
0 P( X x0 ) P( x0 X x0 x)
F ( x0 x) F ( x0 )
x0x f ( x)dx x0
当 x 0时, 两边取极限:
第四节 连续型随机变量及其概率密度
一. 连续型随机变量的概率密度 1.定义 若对于随机变量 X 的分布函数,存在非负
函数 f(x),使得对于任意实数 x 有:
x
F ( x) f (t)dt ( P( X x))
则称 X 为连续型变量,f (x)为 X 的概率密度函数 注: ▲ 连续型随机变量与离散型随机变量的区别
性质1 f ( x) 0
性质2
f ( x)dx 1
这两条性质是判定
一个函数 f(x)是否为某 随机变量X 的概率密度
函数的充要条件.
f (x) 面积为1
o
202概0/5/率30 统计
x
北邮概率统计课件
性质3
P( x1 X x2 ) F( x2 ) F( x1)
x2 f ( x)dx
x1
几何 X落在区间( x1, x2 ]的概率等于区间( x1, x2 ] 意义: 上曲线 f ( x) 之下的曲边梯计
0
x1 x2
x
北邮概率统计课件
性质4
若 f ( x) 在点 x 处连续,则有:F( x) f ( x)
物理 意义:
F ( x x) F( x)
0
P( X
x0 )
lim
x0
x0 x x0
f ( x)dx 0
P( X x0 ) 0
202概0/5/率30 统计
北邮概率统计课件
这个结论的意义:
1. P( X x0 ) 0 从积分的几何意义上说,当底边缩 为一点时,曲边梯形面积退化为零.
2.由此可知连续型随机量X在某区间上取值的概率只 与区间长度有关,而与区间是闭,开,半开半闭无关, 即有:
(3)
P( X 100)
100
1
x
e 100dx
0 100
1 e 0.633
一般称: 若 X 具有概率密度:
f
(
x)
1
e
x
x0
0
0 x 0
则 称 X 为服从参数 的 指数分布.
202概0/5/率30 统计
北邮概率统计课件
二 . 连续型随机变量的分布函数
定义: 若定义在 (, ) 上的可积函数 f ( x)
x
e 100dx
0
x
100e 100
0
100
1
(2)
100 P(50 X 150)
150
1
x
e 100dx
50 100
f
(x)
e
x 100
0
(1) 的值.
当x 0 当x 0
(2) 50 到 150 小时
x
e 100
150 50
0.384
202(概03/5/)率30少统于计100小时 北邮概率统计课件
f ( x) lim
x 0
x
P( x X x x)
lim
x0
x
故 X 的密度 f (x) 在 x 这一点的值,恰好是
X落在区间 ( x, x x] 上的概率与区间长度 x
之比的极限. 这里,如果把概率理解为质量, f (x)
相当于线密度,故称 f (x)为概率密度函数。
202概0/5/率30 统计
时)是一个连续型随机变量,其密度函数为:
f
(
x)
e
x 100
0
求: (1). 的值.
当x 0 当x 0
(2).这台计算机在毁坏前能运行 50 到 150 小
时的概率. (3).运行时间少于100小时的概率.
202概0/5/率30 统计
北邮概率统计课件
解: (1)
Q 1
f ( x)dx
证明:(1). 显然, f ( x) 0 ( x )
(2).
f ( x)dx
1e x dx
2
1 0 e xdx 1 exdx
2
20
一般只需验 证f(x)性质中 的这两条即
可.
11 1 22
202概0/5/率30 统计
北邮概率统计课件
例2. 某电子计算机在毁坏前运行的总时间(单位:小