初中数学数与式总复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学数与式总复习
注意:1.最简分数是有理数。2. n 、最简根式、e 等是无理数。
(2) 数轴:规定了原点、正方向和单位长度的直线叫做数轴
(画数轴时,要注意
上述规定的三要素缺一个不可),实数与数轴上的点是 ---------- 对应的。数轴上任一
点对应的数总大于这个点左边的点对应的数,
(3) 相反数
实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反 数是零). 从数轴上看,互为相反数的两个数所对应的点关于原点对称.
(4) 绝对值
a(a 0)
|a |
0(a
0) a(a 0)
从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离
(5) 倒数
实数a(a 工的倒数是丄(乘积为1的两个数,叫做互为倒数);零没有倒数.
【例题经典】
理解实数的有关概念 例1①a 的相反数是-丄,则a 的倒数是
5
----- 4 --------- 4 ---- *
②实数a 、b 在数轴上对应点的位置如图所示: b 0 a
则化简 |ba |+ ―b)2 = __________ . ③去年泉州市林业用地面积约为
10200000亩,用科学记数法表示为约
【点评】本大题旨在通过几个简单的填空,让学生加强对实数有关概念的理
解. 例 2.(-2)3 与-23().
(A)相等
(B)互为相反数 (C)互为倒数 (D)它们的和为16
分析:考查相反数的概念,明确相反数的意义。
实数的有关概念 ⑴实数的组成 正整数
整数
有理数 实数 分数
负整数
正分数 负分数
有尽小数或无尽循环小数
无理数
正无理数 负无理数
无尽不循环小数
例3.-.、3的绝对值是;-3丄的倒数是;4的平方根是•
2 9
分析:考查绝对值、倒数、平方根的概念,明确各自的意义,不要混淆。
答案:,3 , -2/7,切3
例4.下列各组数中,互为相反数的是()
A. -3 与3 B -3 | 与一- C.| -3 | 与- D . -3 与,(-3)2
3 3
分析:本题考查相反数和绝对值及根式的概念掌握实数的分类
例1 下列实数22、sin60 ° —、(0) °、3.14159、-宾、(-厲)-2、V8 中无7 3理数有()个
A. 1
B. 2 C . 3 D. 4
【点评】对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.
实数的运算
(1) 加法
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
(2) 减法a-b=a+(-b)
⑶乘法
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即
|a| |b|(a,b同号)
ab | a | | b | (a,b异号)
0(a或b为零)
a 1
⑷除法—a -(b 0)
b b
(5) 乘方a n aa a
n个
(6) 开方如果x2= a且x>0那么Q a = x;如果x3=a,那么Va x
在同一个式于里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.
3.实数的运算律
(1) 加法交换律a+b= b+a
(2) 加法结合律(a+b)+c=a+(b+c)
(3) 乘法交换律ab= ba
(4) 乘法结合律(ab)c=a(bc)
(5) 分配律a(b+c)=ab+ac
其中a、b、c表示任意实数•运用运算律有时可使运算简便.
【例题经典】
例1、若家用电冰箱冷藏室的温度是4C,冷冻室的温度比冷藏室的温度低22C, 则冷冻室的温度
「C)可列式计算为
A. 4—22 =—18
B. 22-4= 18
C. 22— (—4) = 26
D. —4—22= —26
点评:本题涉及对正负数的理解、简单的有理数运算,试题以应用的方式呈现,同时也强调列式”即过程。
例2.我国宇航员杨利伟乘神州五号”绕地球飞行了14周,飞行轨道近似看作圆,其半径约为
6.71X103千米,总航程约为(取 3.14,保留3个有效数字)()
A. 5. 90 X05千米 B . 5. 90 X06千米
C. 5. 89 X05千米
D. 5. 89X106千米
分析:本题考查科学记数法
例3•化简3的结果是().
J7 2
(A)、7 -2 (B) 7 +2 (C)3( . 7 -2) (D)3( 7 +2)
分析:考查实数的运算。
例4.实数a、b、c在数轴上的对应点的位置如图所示,下列式子中正确的有().
①b+c>0 ② a+b>a+c③ bc>ac④ ab>ac
C b a
一20 -12 3 1
(A)1 个(B)2 个(C)3 个(D)4 个分析:考查实数的运算,在数轴上比较实数的大小
1
例5 计算:--+ (-2) 2X(-1) 0- 1 —12 | .
3
【点评】按照运算顺序进行乘方与开方运算。
例5•校学生会生活委员发现同学们在食堂吃午餐时浪费现象十分严重,于是决定写一张标语贴在食堂门口,告诫大家不要浪费粮食.请你帮他把标语中的有关数
分析:本题考查实数的运算。
例7•阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台阶数为一级、二级、三级……逐步增加时,楼梯的上法数依次为:1, 2,3,5,8,13, 21,...•••(这就是著名的斐波那契数列).请你仔细观察这列数中的规律后回答:上10级台阶共有_________________________________________________ 种上法.
分析:归纳探索规律:后一位数是它前两位数之和
例8•观察下列等式(式子中的“!是一种数学运算符号)