人教版数学高一-几何概型及均匀随机数的产生 精品教案

合集下载

高中数学必修三《均匀随机数的产生》优秀教学设计

高中数学必修三《均匀随机数的产生》优秀教学设计

均匀随机数的产生
1、教学任务分析
(1)通过本节课的学习让学生知道如何利用计算器或计算机Excel软件产生均匀随机数,并会利用随机模拟方法估计未知量.
(2)通过本节课学习让学生学会建立严格的几何模型来解决多元的几何概型问题。

(3)这是概率必修章节的最后一个知识点,前面已经学过了(整数值)随机数的产生和用蒙特卡罗模拟方法估计概率值.本节的主要思路是对照前面学过的知识让学生自主思考、设计方案。

(4)用随机模拟法估计未知量.例3是圆周率的估计,例4则是不规则平面图形面积的估计.
(5)建立严格的几何模型,解决例1中涉及到的两元几何概型问题.
2.教学重点与难点
重点:
(1) 均匀随机数的产生,设计模型并运用随机模拟法估计未知量;
(2) 转化为严格的几何概型再分析上述问题.
难点:
(1) 如何设计随机模拟法;(2) 如何转化为严格的几何概型问题.
3.教学流程
4.教学情境设计。

人教版高中必修33.3.2均匀随机数的产生教学设计

人教版高中必修33.3.2均匀随机数的产生教学设计

人教版高中必修3 3.3.2 均匀随机数的产生教学设计
一、教学目标
1.了解均匀随机数的定义和特点;
2.掌握利用计算机生成均匀随机数的方法;
3.培养学生的计算机编程能力和创新意识。

二、教学内容
1.均匀随机数的定义及其特点;
2.利用计算机生成均匀随机数的方法;
3.计算机编程实现产生均匀随机数。

三、教学过程
步骤一:导入
1.引导学生回顾前面所学的概率知识,特别是随机事件和概率的概念;
2.引导学生思考,如果需要产生大量的随机数,应该如何实现。

步骤二:均匀随机数的定义和特点
1.通过例子引导学生了解均匀随机数的定义和特点;
2.给学生示范如何计算均匀随机数的概率。

步骤三:计算机产生均匀随机数的方法
1.引导学生了解计算机产生均匀随机数的算法;
2.讲解线性同余法生成随机数的原理和实现方法;
3.配合案例进行演示。

步骤四:计算机编程实现
1.列出程序框架,包括主程序和子程序;
2.引导学生编写主程序和子程序的伪代码;
3.学生自主编写程序,并进行测试。

步骤五:总结
1.引导学生总结均匀随机数的特点和计算机产生随机数的方法;
2.引导学生思考如何利用随机数进行实际应用。

四、教学重点与难点
1.掌握计算机产生均匀随机数的算法和程序实现方法;
2.能够熟练地运用计算机产生随机数。

五、教学评价
1.观察学生的课堂表现,包括参与度、思维活跃度、编写程序功底等;
2.组织小组讨论,分享编程体会;
3.通过作业、期末考试等方式进行考核。

人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_0

人教A版高中数学必修3《三章 概率  3.3 几何概型  3.3.2 均匀随机数的产生》优质课教案_0

3.3.2 均匀随机数的产生(教案)课标要求1.了解均匀随机数的产生方法与意义.2.会用模拟试验求几何概型的概率.3.能利用模拟试验估计不规则图形的面积.重点难点1.会利用模拟试验估计概率.(重点)2.会设计简单的模拟试验的设计方案.(难点)自学导引1.均匀随机数定义:如果试验的结果是区间[a,b]内的任何一个实数,而且出现任何一个实数是等可能的,则称这些实数为均匀随机数.2.均匀随机数的产生(1)计算器上产生[0,1]的均匀随机数的函数是RAND函数.并统计试验结果.(2) 计算机模拟的方法:用Excel软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.[a,b]上均匀随机数的产生利用计算器或计算机产生[0,1]上的均匀随机数x=RAND,然后利用伸缩和平移交换x=x1]想一想:概率为0的事件一定是不可能事件吗?概率为1的事件也一定是必然事件吗?提示:如果随机事件所在区域是一个单点,因单点的长度、面积、体积均为0,则它出现的概率为0(即P=0),但它不是不可能事件;如果随机事件所在的区域是全部区域扣除一个单点,则它出现的概率为1(即P=1),但它不是必然事件.均匀随机数的产生:(1)用计算器产生0~1之间的均匀随机数过程如图所示:(2)用计算机产生均匀随机数的过程如下:S cilab 中用rand()函数来产生0~1的均匀随机数,每调用一次rand()函数,就产生一个随机数,如果要产生a~b之间的随机数,则使用变换rand()*(b-a)+a得到例题1:取一根长度为3 m的绳子,拉直后在任意位置剪断,用随机模拟的方法计算剪得两段的长都不小于1 m的概率有多大?[思路探索] 利用计算器产生随机数的方法或利用随机模拟的方法解决.(1)利用计算器或计算机产生一组[0,1]的均匀随机数,a1=RAND;(2)经过伸缩变换,a=a1*3;(3)统计出[1,2]内随机数的个数N1和[0,3]内随机数的个数N;(4)计算频率f n(A)= 即为概率P(A)的近似值.规律方法用模拟试验求概率近似值的步骤如下:1.确定求均匀随机数的实数区间[a,b];2.用计算器或计算机求[0,1]内的均匀随机数;3.用伸缩变换转化到[a,b]内的随机数;4.确定试验次数N和事件A发生次数N,求得频率得出概率的近似值变式1:在长为4,宽为2的矩形中有一以矩形长为直径的半圆.(1)随机撒一把豆子,计算豆子落入半圆的概率.(2)利用计算机模拟的方法估计π值例题2:如图所示,向边长为2的正方形内投飞镖,求飞镖落在中央边长为1的正方形内的概率.变式2:在长为12 cm的线段AB上任取一点M,并以线段AM为边作正方形.用随机模拟法估算该正方形的面积介于36 cm2与81 cm2之间的概率.变式3:利用随机模拟的方法近似计算图中阴影部分(y=2-2x-x2与x轴围成的图形)的面积.思路分析:在坐标系内画出正方形,用随机模拟方法可以求出阴影部分面积与正方面积之比,从而求得阴影部分的近似值.。

人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_5

人教A版高中数学必修3《三章 概率  3.3 几何概型  3.3.2 均匀随机数的产生》优质课教案_5
通过前两个例子的讲解,让学生分组讨论例3的模拟试验方法和步骤。最后找一位代表板演
本环节是对前面模拟试验的升华,检验学生是否达到自己动手设计模拟试验。对应学习目标2.
环节5
小结:
1、本节课学习了哪些内容?
2、作业
让学生自己总结本节课的学习内容,学生总结不到位的地方,老师及时补充。并且老师诱导学生说出均匀随机数的意义和随机模拟的基本思想。作业也是和例3同类型的试题。
利用计算机软件模拟撒豆子试验,学生会发现,撒的豆子越多,越接近 真实值。接着再利用均匀随机数来模拟试验,让学生意识到每做一次试验就相当于做了一次试验。并和学生一起总结模拟试验的操作步骤。
通过模拟试验的方法,可以培养学生数学建模的和数据处理的核心素养。对应学习目标2。
环节4
学生自己动手设计:
例3:利用随机模拟方法计算右图中阴影部分(由 和 所围成的部分)的面积.
评价设计
目标1:通过老师讲解[0,1]区间和不同区间上随机数的产生,会准确说出和操作excel得到某个区间上的均匀随机数,从而掌握均匀随机数的产生方法。
评价任务1:学生自己操作计算机得到某个区间上的均匀随机数。
评价标准1:通过教师举例操作,学生会自己操作计算机产生自己想要的区间上的均匀随机数。
目标2:通过老师讲解例1、2和小组交流讨论,会写出计算机模拟实验的步骤;并能操作完成整个模拟过程。
2.均匀随机数的产生方法
学生通过老师的操作,学会自己试着操作计算机的到自己想要的某个区间上的均匀随机数。
通过定义的讲解,特别是均匀随机数的产生方法操作,学生还是很感兴趣的,为后面模拟试拟:
例1:假如你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间是在早上7:00-8:00,问你父亲在离开家前能得到报纸(称为事件A)的概率是多少?

高中数学第三章概率3.3几何概型几何概型均匀随机数的产生教学案新人教A版必修

高中数学第三章概率3.3几何概型几何概型均匀随机数的产生教学案新人教A版必修

学 习 资 料 专 题3.3.1& 3.3.2 几何概型 均匀随机数的产生(1)什么是几何概型?(2)几何概型的两大特点是什么?(3)几何概型的概率计算公式是什么?(4)均匀随机数的含义是什么?它的主要作用有哪些?[新知初探]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果有无限多个. (2)每个结果出现的可能性相等. 3.几何概型概率公式在几何概型中,事件A 的概率的计算公式为:P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.4.均匀随机数的产生(1)计算器上产生[0,1]的均匀随机数的函数是RAND 函数.预习课本P135~140,思考并完成以下问题(2)Excel 软件产生[0,1]区间上均匀随机数的函数为“rand(_)”. 5.用模拟的方法近似计算某事件概率的方法(1)试验模拟的方法:制作两个转盘模型,进行模拟试验,并统计试验结果. (2)计算机模拟的方法:用Excel 的软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.[小试身手]1.一个靶子如右图所示,随机地掷一个飞镖扎在靶子上,假设飞镖既不会落在靶心,也不会落在阴影部分与空白的交线上,现随机向靶掷飞镖30次,则飞镖落在阴影部分的次数约为( )A .5B .10C .15D .20解析:选A 阴影部分对应的圆心角度数和为60°,所以飞镖落在阴影内的概率为60°360°=16,飞镖落在阴影内的次数约为30×16=5. 2.已知集合M ={x |-2≤x ≤6},N ={x |0≤2-x ≤1},在集合M 中任取一个元素x ,则x ∈M ∩N 的概率是( )A.19B.18C.14D.38解析:选B 因为N ={x |0≤2-x ≤1}={x |1≤x ≤2},又M ={x |-2≤x ≤6},所以M ∩N ={x |1≤x ≤2},所以所求的概率为2-16+2=18.3.如图所示,半径为4的圆中有一个小狗图案,在圆中随机撒一粒豆子,它落在小狗图案内的概率是13,则小狗图案的面积是( )A.π3B.4π3C.8π3D.16π3解析:选D 设小狗图案的面积为S 1,圆的面积S =π×42=16π,由几何概型的计算公式得S 1S =13,得S 1=16π3.故选D.4.在区间[-1,1]上随机取一个数x ,则x ∈[0,1]的概率为________. 解析:根据几何概型的概率的计算公式,可得所求概率为1-01--=12. 答案:12与长度有关的几何概型[典例] (1)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________. (2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.[解析] (1)∵区间[-1,2]的长度为3,由|x |≤1,得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.答案:23(2)解:设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生.∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.1.解几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性); (2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为:P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.[活学活用]一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.解:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)法一:P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35.法二:P =1-P (红灯亮)=1-25=35.[典例] (1)(福建高考)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14 C.38D.12(2)有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[解析] (1)依题意得,点C 的坐标为(1,2),所以点D 的坐标为(-2,2),所以矩形ABCD 的面积S 矩形ABCD =3×2=6,阴影部分的面积S 阴影=12×3×1=32,根据几何概型的概率求解公式,得所求的概率P =S 阴影S 矩形ABCD =326=14,故选B.(2)先求点P 到点O 的距离小于1或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于1或等于1的概率为:23π2π=13,故点P 到点O 的距离大于1的概率为:1-13=23.[答案] (1)B (2)231.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.2.与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.[活学活用]1.在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( )A.6πB.32πC.3πD.233π解析:选D 由题意可得正方体的体积为V 1=1.又球的直径是正方体的体对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.则此点落在正方体内的概率为P =V 1V 2=132π=233π. 2.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8解析:选B 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π·121×2=π4. 用随机模拟估计面积型的几何概型[典例] 解放军某部队进行特种兵跳伞演习,如图所示,在长为16 m ,宽为14 m 的矩形内有大、中、小三个同心圆,其半径分别为1 m 、2 m 、5 m .若着陆点在圆环B 内,则跳伞成绩为合格;若着陆点在环状的阴影部分,则跳伞成绩为良好;若跳伞者的着陆点在小圆A 内,则跳伞成绩为优秀;否则为不合格.若一位特种兵随意跳下,假设他的着陆点在矩形内,利用随机模拟的方法求他的成绩为良好的概率.[解] 设事件A 表示“该特种兵跳伞的成绩为良好”.(1)利用计算器或计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND. (2)经过伸缩和平移变换,a =16a 1-8,b =14b 1-7,得到[-8,8]与[-7,7]上的均匀随机数.(3)统计满足-8<a <8,-7<b <7的点(a ,b )的个数N .满足1<a 2+b 2<4的点(a ,b )的个数N 1.(4)计算频率f n (A )=N 1N即为所求概率的近似值.用随机模拟方法估计长度型与面积型几何概型的概率的联系与区别 (1)联系:二者模拟试验的方法和步骤基本相同,都需产生随机数;(2)区别:长度型几何概型只要产生一组均匀随机数即可,所求事件的概率为表示事件的长度之比,对面积型几何概型问题,一般需要确定点的位置,而一组随机数是不能在平面上确定点的位置的,故需要利用两组均匀随机数分别表示点的横纵坐标,从而确定点的位置,所求事件的概率为点的个数比.[活学活用]现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.解:(1)利用计算器或计算机产生两组0至1区间内的均匀随机数a 1,b 1(共N 组);(2)经过平移和伸缩变换,a =2(a 1-0.5),b =2(b 1-0.5);(3)数出满足不等式b <2a -43,即6a -3b >4的数组数N 1.所求概率P ≈N 1N .可以发现,试验次数越多,概率P 越接近25144.[层级一 学业水平达标]1.如图,一颗豆子随机扔到桌面上,则它落在非阴影区域的概率为( )A.19 B.16 C.23D.13解析:选C 试验发生的范围是整个桌面,其中非阴影部分面积占整个桌面的69=23,而豆子落在任一点是等可能的,所以豆子落在非阴影区域的概率为23,故选C.2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、下底长分别为a 3与a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112B.14C.512D.712解析:选C S 矩形=ab ,S 梯形=12⎝ ⎛⎭⎪⎫13a +12a b =512ab .故所投的点在梯形内部的概率为P =S 梯形S 矩形=512abab =512.3.已知函数f (x )=log 2x ,x ∈⎣⎢⎡⎦⎥⎤12,2,在区间⎣⎢⎡⎦⎥⎤12,2上任取一点x 0,则使f (x 0)≥0的概率为________.解析:欲使f (x )=log 2x ≥0,则x ≥1,而x ∈⎣⎢⎡⎦⎥⎤12,2,∴x 0∈[1,2], 从而由几何概型概率公式知所求概率P =2-12-12=23.答案:234.已知正三棱锥S ­ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ­ABC <12V S ­ABC 的概率是________.解析:由V P ­ABC <12V S ­ABC 知,P 点在三棱锥S ­ABC 的中截面A 0B 0C 0的下方,P =1-VS ­A 0B 0C 0V S ­ABC=1-18=78. 答案:78[层级二 应试能力达标]1.如图,在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是( )A.16B.23C.13D.160解析:选A ∵在任意角集合中任取一个角,则该角终边落在∠xOT 内对应的角度为60度,而整个角集合对应的角度为圆周角,∴该角终边落在∠xOT 内的概率P =60360=16,故选A.2.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:选C △ABE 的面积是矩形ABCD 面积的一半,由几何概型知,点Q 取自△ABE 内部的概率为12.3.如图所示,一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为( )A.2πB.1πC.12D .1-2π解析:选D S 扇形=14×π×22=π,S 阴影=S 扇形-S △OAB =π-12×2×2=π-2,∴P =π-2π=1-2π.4.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为( )A.12B.32C.13D.14解析:选C 如图,当AA ′的长度等于半径长度时,∠AOA ′=60°,由圆的对称性及几何概型得P =120360=13.故选C.5.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________. 解析:由于方程x 2+x +n =0(n ∈(0,1))有实根, ∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.答案:146.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.解析:大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005.答案:0.0057.在棱长为a 的正方体ABCD ­A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a的概率为________解析:点P 到点A 的距离小于等于a 可以看做是随机的,点P 到点A 的距离小于等于a 可视作构成事件的区域,棱长为a 的正方体ABCD ­A 1B 1C 1D 1可视做试验的所有结果构成的区域,可用“体积比”公式计算概率.P =18×43πa 3a 3=16π. 答案:16π8.如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?解:记“射中黄心”为事件B ,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,而当中靶点落在面积为14×π×12.22 cm 2的黄心时,事件B 发生,于是事件B 发生的概率为P (B )=14×π×12.2214×π×1222=0.01.即“射中黄心”的概率是0.01.9.已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)求圆C 的圆心到直线l 的距离;(2)求圆C 上任意一点A 到直线l 的距离小于2的概率. 解:(1)由点到直线l 的距离公式可得d =2542+32=5.(2)由(1)可知圆心到直线l 的距离为5,要使圆上的点到直线的距离小于2,设与圆相交且与直线l 平行的直线为l 1,其方程为4x +3y =15.则符合题意的点应在l 1:4x +3y =15与圆相交所得劣弧上,由半径为23,圆心到直线l 1的距离为3可知劣弧所对圆心角为60°.故所求概率为P =60°360°=16.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中随机事件的个数为( )①连续两次抛掷一枚质地均匀的骰子,两次都出现2点;②在地球上,树上掉下的雪梨不抓住就往下掉;③某人买彩票中奖;④已经有一个女儿,第二次生男孩;⑤在标准大气压下,水加热到90 °C会沸腾.A.1 B.2C.3 D.4解析:选C ①③④都有可能发生,也可能不发生,故是随机事件;对于②,在地球上,树上掉下的雪梨不抓住就往下掉,这是一定会发生的事件,属于必然事件.对于⑤,在标准大气压下,水加热到90 °C会沸腾,是不可能事件.故选C.2.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有一个黑球与都是红球B.至少有一个黑球与都是黑球C.至少有一个黑球与至少有一个红球D.恰有1个黑球与恰有2个黑球解析:选D A中的两个事件是对立事件,不符合要求;B中的两个事件是包含关系,不是互斥事件,不符合要求;C中的两个事件都包含“一个黑球、一个红球”这一事件,不是互斥事件;D中是互斥而不对立的两个事件.故选D.3.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为( )A.15B.25C.310D.710解析:选B 试验的所有基本事件总数为10,两字母恰好是相邻字母的有(A,B),(B,C),(C,D),(D,E)4种,故P=410=2 5.4.在正方体ABCD­A1B1C1D1中随机取一点,则点落在四棱锥O­ABCD内(O为正方体的对角线的交点)的概率是( )A.13B.16C.12D.14解析:选B 设正方体的体积为V ,则四棱锥O ­ABCD 的体积为V6,所求概率为V6V =16.5.在两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率为( )A.12 B.13 C.14D.15解析:选B 该试验属于几何概型,所求事件构成的区域长度为2 m ,试验的全部结果所构成的区域长度为6 m ,故灯与两端距离都大于2 m 的概率为26=13.6.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 的子集的概率是( )A.35B.25C.14D.18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19B.29C.13D.49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8种,故概率为29.8.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15解析:选D 从正六边形的6个顶点中随机选择4个顶点,列举可得,以它们作为顶点的四边形共有15个,其中矩形有3个,所以所求的概率为315=15.故选D.9.甲、乙、丙三人在3天节目中值班,每人值班1天,则甲紧接着排在乙的前面值班的概率是( )A.16B.14C.13D.12解析:选C 甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.10.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A 记3个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为:甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有:甲1,乙1;甲2,乙2;甲3,乙3,共3个基本事件.因此P (A )=39=13.11.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( )A.34B.58C.12D.14解析:选C 分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P =12.12.设一元二次方程x 2+Bx +C =0,若B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为( )A.112B.736C.1336D.1936解析:选D 因为B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,所以一共有36种情况.由方程有实数根知,Δ=B 2-4C ≥0,显然B ≠1.当B =2时,C =1(1种);当B =3时,C =1,2(2种);当B =4时,C =1,2,3,4(4种);当B =5时,C =1,2,3,4,5,6(6种);当B =6时,C =1,2,3,4,5,6(6种).故方程有实数根共有19种情况,所以方程有实数根的概率是1936.二、填空题(本大题共4小题,每小题5分,共20分)13.在边长为2的正方形中作其内切圆,然后向正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率π的值.如果撒了1 000粒芝麻,落在圆内的芝麻总数是776粒,那么这次模拟中π的估计值是________.解析:由于芝麻落在正方形内任意位置的可能性相等,由几何概型的概率计算公式知S 内切圆S 正方形≈7761 000,即π×1222≈7761 000,解得π≈3.104. 答案:3.10414.某中学青年教师、中年教师和老年教师的人数比例为4∶5∶1,其中青年教师有120人.现采用分层抽样的方法从这所学校抽取容量为30的教师样本以了解教师的工作压力情况,则每位老年教师被抽到的概率为________.解析:由青年教师、中年教师和老年教师的人数比例为4∶5∶1, 知该校共有教师120÷410=300(人).采用分层抽样的方法从这所学校抽取容量为30的教师样本,则每位老年教师被抽到的概率为P =30300=110.答案:11015.如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是________.解析:连接AC 交弧DE 于点F ,∠BAC =30°,P =弧EF 的长弧DE 的长=13.答案:1316.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.解析:如图所示,圆周上使AM 的长度等于1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1AM 2长为2,点B 落在优弧M 1AM 2上就能使劣弧AB 的长度小于1,所以劣弧AB 的长度小于1的概率为23.答案:23三、解答题(本大题共6题,共70分,解答时应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)对一批衬衣进行抽样检查,结果如下表:(1)(2)记“任取一件衬衣是次品”为事件A ,求P (A );(3)为了保证买到次品的顾客能够及时更换,销售1 000件衬衣,至少需进货多少件? 解:(1)次品率依次为:0,0.02,0.06,0.054,0.045,0.05,0.05. (2)当n 充分大时,出现次品的频率m n在0.05附近摆动,故P (A )≈0.05.(3)设进货衬衣x 件,为保证1 000件衬衣为正品,则(1-0.05)x ≥1 000,得x ≥1 053. ∴至少需进货1 053件衬衣.18.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率; (2)所取的2道题不是同一类题的概率.解:将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.(1)用A表示“都是甲类题”这一事件,则A包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)=615=25.(2)用B表示“不是同一类题”这一事件,则B包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P(B)=815.19.(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.解:(1)因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=1-0.2-0.45-0.1-0.15=0.1.所以a=0.1,b=0.15,c=0.1.(2)从x1,x2,x3,y1,y2这5件日用品中任取2件,所有可能的结果为(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2),共10个.设事件A表示“从x1,x2,x3,y1,y2这5件日用品中任取2件,其等级系数相等”,则事件A所包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4个.故所求的概率P(A)=410=0.4.20.(本小题满分12分)投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域C:x2+y2≤10上的概率;(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机撒一粒豆子,求豆子落在区域M 上的概率.解:(1)点P 的坐标有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4)共9种,其中落在区域C :x 2+y 2≤10上的点P 的坐标有(0,0),(0,2),(2,0),(2,2)共4种,故点P 落在区域C :x 2+y 2≤10上的概率为49.(2)区域M 为一边长为2的正方形,其面积为4,区域C 的面积为10π,则豆子落在区域M 上的概率为25π.21.(本小题满分12分)一条笔直街道上的A ,B 两盏路灯之间的距离为120米,由于光线较暗,想在中间再随意安装两盏路灯C ,D ,路灯次序为A ,C ,D ,B ,求A 与C ,B 与D 之间的距离都不小于40米的概率.解:设A 与C 之间的距离为x 米,B 与D 之间的距离为y 米,(x ,y )可以看成平面中的点,在如图所示的平面直角坐标系xOy 中,(x ,y )的所有可能结果构成的区域为Ω={(x ,y )|0<x +y <120,x >0,y >0},即两直角边边长都为120米的等腰直角三角形区域(不包括边界).而“A 与C ,B 与D 之间的距离都不小于40米”(记为事件M )的所有可能结果构成的区域为M ={(x ,y )|x ≥40,y ≥40,(x ,y )∈Ω},即图中的阴影部分.由几何概型的概率计算公式得P (M )=12×40×4012×120×120=19.故A 与C ,B 与D 之间的距离都不小于40米的概率为19.22.(本小题满分12分)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中抽取6件样品进行检测.(1)求这6件样品中来自(2)若在这6件样本中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个数数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A;B1,B2,B3;C1,C2.则抽取的这2件商品构成的所有基本事件为{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记“抽取的这2件商品来自相同地区”为事件D,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415 .。

高中数学新人教版A版精品教案《3.3.2 均匀随机数的产生》

高中数学新人教版A版精品教案《3.3.2 均匀随机数的产生》

“几何概型”教学设计四川省眉山中学校谢维勇一、教材分析“几何概型”是人教A版高中数学必修3第三章概率第三节的内容,安排在“随机事件的概率”和“古典概型”之后,其上位知识为概率的统计定义和等可能事件定义,下位知识为运用计算机产生均匀随机数估计”几何概型”的概率等内容。

”几何概型”是新课程新增加的内容,介绍”几何概型”主要是为了更广泛地满足随机模拟的需要,对”几何概型”的要求仅限于初步体会”几何概型”的意义。

”几何概型”在概率论中占有重要的地位,它将”古典概型”中等可能事件数量从有限推广到无限,更广泛地满足随机模拟的需要,进一步完善了人类对概率模型的认识。

教材中”几何概型”这一节共分两个课时,这里是针对第一节课的教学设计,主要涉及”几何概型”的定义、计算公式及其简单应用。

“几何概型”的课堂教学活动应侧重学生对”几何概型”本质的理解和计算公式的掌握教学的关键是处理好以下几个方面:一是克服”古典概型”思维定势的影响,阐释并引入”几何概型”的意义;二是归纳”几何概型”特征,理解”几何概型”与”古典概型”的本质区别;三是一维、二维到三维”几何概型”中测度的具体内容。

因此,将本节课教学的重难点确定为:”几何概型”概念的建构和选择恰当的概率模型进行概率计算。

二、教学目标1了解”几何概型”的基本特点及与”古典概型”的异同。

2会依据具体问题选择恰当测度进行简单的”几何概型”计算。

3依据具体问题选择基本事件恰当的几何表征发展学生直观想象的数学素养4通过”几何概型”概念的建构过程和选择恰当的概率模型进行概率计算发展学生数学建模的数学素养三、教学重难点教学重点:”几何概型”概念的建构和选择恰当的概率模型进行概率计算教学难点:”几何概型”概念的建构和依据具体问题选择基本事件恰当的几何表征。

四、教学方法本节课采用学生探究与教师讲授相结合的教学方法,注重启发式教学,多以问题链的形式出现,并结合多媒体辅助教学。

在课堂教学过程中,通过分组讨论、合作交流的形式,使学生体验数学活动中的发现与创造,让学生亲身经历”几何概型”概念的建构过程,从观察到分析再到归纳,感受事物从具体到抽象,从特殊到一般,从感性到理性的认知过程,逐渐培养透过现象看本质的思维方法和能力。

高一数学人教A版必修3教案:3.3.1—3.3.2几何概型及均匀随机数的产生

高一数学人教A版必修3教案:3.3.1—3.3.2几何概型及均匀随机数的产生

第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。

2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。

3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。

理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。

理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。

进一步体会算法的基本思想。

4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。

点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。

二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。

随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。

需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。

在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。

人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_0

人教A版高中数学必修3《三章 概率  3.3 几何概型  3.3.2 均匀随机数的产生》优质课教案_0

课题3.3 几何概型(1)教案
一、教学目标
1.知识与技能:使学生理解几何概型的意义,掌握几何概型的计算公式,会求简单几何概型问题的概率。

2.过程与方法:通过求古典概率知识的迁移,运用转化、数形结合思想与方法解决问题。

3.情感态度价值观:通过对几何概型知识探索过程,体会数学思维的特点,感悟几何概型在实际生活的应用。

二、教材分析
1.教学重点:几何概型的概念与计算方法。

2.教学难点:几何概型中几何模型及几何度量。

三、学情分析
学生已有了求古典概型的认知,有几何度量(长度、面积、体积)的技能,以及生活中的经验,容易理解几何概型,但是对问题转化成几何概型的建模、以及分清基本事件的抽象、转化能力还欠缺。

四、教学方法
启发性、探究式引导教学法
五、教学手段
多媒体辅助教学
六、教学流程设计
问题引入------学生探究、活动---交流、归纳----实践与提高---总结与巩固
(师)(生)(生--师)(师--生)(生)
七、教学过程。

《均匀随机数的产生》教学设计【高中数学人教A版必修2(新课标)】

《均匀随机数的产生》教学设计【高中数学人教A版必修2(新课标)】

《均匀随机数的产生》教学设计1、知识与技能:(1)掌握几何概型的概率公式:P(A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (2)了解均匀随机数的概念;(3)掌握利用计算器(计算机)产生均匀随机数的方法;(4)会利用均匀随机数解决具体的有关概率的问题。

2、过程与方法:(1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。

3、情感态度与价值观:通过模拟方法的设计体验数学的重要性和信息技术在数学中的应用;通过动手模拟,动脑思考,体会做数学的乐趣;通过合作试验,培养合作与交流的团队精神。

【教学重点】掌握[0,1]上均匀随机数的产生及[a ,b ]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率。

【教学难点】利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。

(一)新课导入假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A ,则事件A 的概率是多少?计算该事件的概率有两种方法:1、利用几何概型的公式:找到试验的全部结果构成的区域及父亲离开家前能拿到报纸的区域;2、用随机模拟的方法。

那么如何应用这两种方法来求解呢?(二)新课讲授试用计算器来产生一个0~1之间的均匀随机数。

解析:实验结果是[0,1]内的任何一个实数,而且出现任何一个实数,而且出现任何一个实数都是等可能的,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟。

思考1:计算机只能产生[0,1]上的均匀随机数,如果试验的结果是区间[a,b]上等可能出现的任何一个值,则需要产生[a,b]上的均匀随机数,对此,你有什么办法解决?答:首先利用计算器或计算机产生[0,1]上的均匀随机数X=RAND,然后利用伸缩和平移变换:Y=X*(b—a)+a计算Y的值,则Y为[a,b]上的均匀随机数。

人教版高中必修33.3.2均匀随机数的产生课程设计

人教版高中必修33.3.2均匀随机数的产生课程设计

人教版高中必修33.3.2均匀随机数的产生课程设计一、课程背景均匀随机数的产生是计算机科学和数学中的重要问题,在许多领域都有广泛的应用,比如模拟、数值计算、密码学、游戏、统计学等。

在高中数学中,均匀随机数的产生也是必修内容之一,是培养学生计算机思维和创新能力的重要途径。

二、教学目标1.掌握使用计算机生成均匀随机数的方法;2.理解均匀随机数的性质和应用;3.能够运用均匀随机数解决实际问题。

三、教学内容及教学方法1. 教学内容本课程主要涉及以下内容:1.均匀分布及其概率密度函数;2.伪随机数的产生方法;3.随机数序列的统计检验方法。

2. 教学方法本课程采用“讲授 + 实践”相结合的教学方法,具体为:1.讲解均匀分布的概念和性质;2.演示如何使用计算机生成伪随机数;3.手把手教学生编写生成均匀随机数的程序;4.引导学生进行随机数序列的统计检验。

四、实验设计1. 实验目的通过本实验,学生将掌握如何使用计算机生成均匀随机数,理解随机数的性质和应用,培养学生的计算机思维和创新能力。

2. 实验步骤Step 1. 模拟掷骰子的实验掷一颗六面骰子,将每个面出现的次数记录下来,并统计所有试验的次数和各面出现的频率。

根据频率统计结果和理论分布比较,探讨随机现象的规律性和数量特征,进而引出均匀随机数的概念。

代码实现:```python import randomcount = [0] * 6 for i in range(10000): point = random.choice([1, 2, 3, 4, 5, 6]) count[point-1] += 1for i in range(6): print(。

高中数学《第三章概率3.3几何概型3.3.2均匀随机数的产生》114教案教学设计 一等奖

高中数学《第三章概率3.3几何概型3.3.2均匀随机数的产生》114教案教学设计 一等奖

第1页共15页普通高中课程标准实验教科书—数学[人教版]概率第三节几何概型及随机模拟一.课标要求:1.了解随机数的意义,能运用模拟方法(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义;2.通过阅读材料,了解人类认识随机现象的过程。

二.命题走向本讲内容在高考中所占比较轻,纵贯近几年的高考对概率要求降低,但本讲内容使新加内容,考试涉及的可能性较大。

预测07年高考:(1)题目类型多以选择题、填空题形式出现,;(2)本建考试的重点内容几何概型的求值问题,我们要善于将实际问题转化为概率模型处理。

三.要点精讲1.随机数的概念随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的。

2.随机数的产生方法(1)利用函数计算器可以得到0~1之间的随机数;(2)在Scilab语言中,应用不同的函数可产生0~1或a~b 之间的随机数。

3.几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;4、几何概型试验的两个基本特征(1)无限性:指在一次试验中,可能出现的结果有无限多个(2)等可能性:每个结果的发生具有等可能性即几何概型的试验结果是无穷多且等可能出现的。

4.几何概型的概率公式:P(A)=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A。

5.几种常见的几何概型(1)设线段l是线段L的一部分,向线段L上任投一点.若落在线段l上的点数与线段L的长度成正比,而与线段l在线段l上的相对位置无关,则点落在线段l上的概率为:P=l的长度/L的长度(2)设平面区域g是平面区域G的一部分,向区域G上任投一点,若落在区域g上的点数与区域g的面积成正比,而与区域g在区域G上的相对位置无关,则点落在区域g上第2页共15页概率为:P=g的面积/G的面积(3)设空间区域上v是空间区域V的一部分,向区域V上任投一点.若落在区域v上的点数与区域v的体积成正比,而与区域v在区域v上的相对位置无关,则点落在区域V上的概率为:P=v的体积/V的体积四.典例解析1、在棱长为a的正方体ABCD﹣A1B1C1D1内任取一点P,则点P到点A的距离小于或等于a的概率为.A、22B、22C、61D、6解:答案:;由由题意可得正方形的体积为a3,与点A距离等于a的点的轨迹是一个八分之一个球面,体积为=,则点P到点A的距离小于等于a的概率为:=,。

人教A版高中数学必修3《三章 概率 3.3 几何概型 3.3.2 均匀随机数的产生》优质课教案_3

人教A版高中数学必修3《三章 概率  3.3 几何概型  3.3.2 均匀随机数的产生》优质课教案_3

《几何概型》教学设计一、教学目标(一)知识与技能1.通过探究学习使学生掌握几何概型的基本特征,明确几何概型与古典概型的区别.2.理解并掌握几何概型的概念.3.掌握几何概型的概率公式,会进行简单的几何概率计算.(二)过程与方法1.让学生通过对随机试验的观察分析,提炼它们共同的本质的东西,从而亲历几何概型的建构过程,培养学生观察、类比、联想等逻辑推理能力.2.通过实际应用,培养学生把实际问题抽象成数学问题的能力,感知用图形解决概率问题的方法.(三)情感、态度、价值观1.让学生了解几何概型的意义,加强与现实生活的联系,以科学的态度评价一些随机现象.2.通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力.二、教学重点与难点教学重点:了解几何概型的基本特点及进行简单的几何概率计算.教学难点:如何在实际背景中找出几何区域及如何确定该区域的“测度”.三、教学方法与教学手段教学方法:“自主、合作、探究”教学法教学手段:电子白板、实物投影、多媒体课件辅助四、教学过程(一)复习回顾问题.古典概型的特点及概率公式分别是什么?你熟悉常见的古典概型?你能举例吗?答:①基本事件发生的等可能性②基本事件只有有限个古典概型的概率公式:[处理方式]多媒体课件展示问题,简洁明了。

(利用电子白板文字展示功能)【设计意图】回顾古典概型的相关知识,为引出下面要学的几何概型作铺垫。

(二)问题情境取一根长度为3m的绳子,拉直后在任意位置剪断.要求剪得两段的长都不小于1m的概率有多大?问题(1)试验中一个基本事件是什么?答:试验:剪在绳子上的每一点都是一个基本事件.问题(2)基本事件有多少个?答:基本事件有无限个.问题(3)每个基本事件发生是否等可能?答:每个基本事件发生都是等可能的.[处理方式]多媒体课件展示,电子白板笔点击答案,这样与学生互动起来,清晰自然。

(利用电子白板文字、图片展示功能,作图功能)在这两个问题中,基本事件有无数多个,虽然类似于古典概型的“等可能性”还存在,但是显然不是古典概型,那它是什么概型呢?【设计意图】引发认知冲突,引入几何概型。

精品2019学年高中数学第三章概率3.3几何概型几何概型均匀随机数的产生教学案新人教A版必修

精品2019学年高中数学第三章概率3.3几何概型几何概型均匀随机数的产生教学案新人教A版必修

3.3.1& 3.3.2 几何概型均匀随机数的产生(1)什么是几何概型?(2)几何概型的两大特点是什么?(3)几何概型的概率计算公式是什么?(4)均匀随机数的含义是什么?它的主要作用有哪些?[新知初探]1.几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.几何概型的特点(1)试验中所有可能出现的结果有无限多个.(2)每个结果出现的可能性相等.3.几何概型概率公式在几何概型中,事件A的概率的计算公式为:P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.4.均匀随机数的产生(1)计算器上产生[0,1]的均匀随机数的函数是RAND函数.(2)Excel软件产生[0,1]区间上均匀随机数的函数为“rand(_)”.5.用模拟的方法近似计算某事件概率的方法(1)试验模拟的方法:制作两个转盘模型,进行模拟试验,并统计试验结果.(2)计算机模拟的方法:用Excel的软件产生[0,1]区间上均匀随机数进行模拟.注意操作步骤.预习课本P135~140,思考并完成以下问题[小试身手]1.一个靶子如右图所示,随机地掷一个飞镖扎在靶子上,假设飞镖既不会落在靶心,也不会落在阴影部分与空白的交线上,现随机向靶掷飞镖30次,则飞镖落在阴影部分的次数约为( )A .5B .10C .15D .20解析:选A 阴影部分对应的圆心角度数和为60°,所以飞镖落在阴影内的概率为60°360°=16,飞镖落在阴影内的次数约为30×16=5.2.已知集合M ={x |-2≤x ≤6},N ={x |0≤2-x ≤1},在集合M 中任取一个元素x ,则x ∈M ∩N 的概率是( ) A.19 B.18 C.14 D.38解析:选B 因为N ={x |0≤2-x ≤1}={x |1≤x ≤2},又M ={x |-2≤x ≤6},所以M ∩N ={x |1≤x ≤2},所以所求的概率为2-16+2=18.3.如图所示,半径为4的圆中有一个小狗图案,在圆中随机撒一粒豆子,它落在小狗图案内的概率是13,则小狗图案的面积是( )A.π3B.4π3C.8π3D.16π3解析:选D 设小狗图案的面积为S 1,圆的面积S =π×42=16π,由几何概型的计算公式得S 1S =13,得S 1=16π3.故选D.4.在区间[-1,1]上随机取一个数x ,则x ∈[0,1]的概率为________. 解析:根据几何概型的概率的计算公式,可得所求概率为1-01--=12. 答案:12[典例] (1)在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.(2)某汽车站每隔15 min 有一辆汽车到达,乘客到达车站的时刻是任意的,求一位乘客到达车站后等车时间超过10 min 的概率.[解析] (1)∵区间[-1,2]的长度为3,由|x |≤1,得x ∈[-1,1],而区间[-1,1]的长度为2,x 取每个值为随机的,∴在[-1,2]上取一个数x ,|x |≤1的概率P =23.答案:23(2)解:设上一辆车于时刻T 1到达,而下一辆车于时刻T 2到达,则线段T 1T 2的长度为15,设T 是线段T 1T 2上的点,且T 1T =5,T 2T =10,如图所示.记“等车时间超过10 min”为事件A ,则当乘客到达车站的时刻t 落在线段T 1T 上(不含端点)时,事件A 发生. ∴P (A )=T 1T 的长度T 1T 2的长度=515=13,即该乘客等车时间超过10 min 的概率是13.1.解几何概型概率问题的一般步骤(1)选择适当的观察角度(一定要注意观察角度的等可能性); (2)把基本事件转化为与之对应的区域D ; (3)把所求随机事件A 转化为与之对应的区域I ; (4)利用概率公式计算.2.与长度有关的几何概型问题的计算公式如果试验的结果构成的区域的几何度量可用长度表示,则其概率的计算公式为:P (A )=构成事件A 的区域长度试验的全部结果所构成的区域长度.[活学活用]一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少?(1)红灯亮; (2)黄灯亮; (3)不是红灯亮.解:在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型. (1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)法一:P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35.法二:P =1-P (红灯亮)=1-25=35.与面积和体积有关的几何概型[典例] (1)(福建高考)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16 B.14 C.38D.12(2)有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.[解析] (1)依题意得,点C 的坐标为(1,2),所以点D 的坐标为(-2,2),所以矩形ABCD 的面积S 矩形ABCD =3×2=6,阴影部分的面积S 阴影=12×3×1=32,根据几何概型的概率求解公式,得所求的概率P =S 阴影S 矩形ABCD =326=14,故选B.(2)先求点P 到点O 的距离小于1或等于1的概率,圆柱的体积V 圆柱=π×12×2=2π,以O 为球心,1为半径且在圆柱内部的半球的体积V 半球=12×43π×13=23π.则点P 到点O 的距离小于1或等于1的概率为:23π2π=13,故点P 到点O 的距离大于1的概率为:1-13=23.[答案] (1)B (2)231.与面积有关的几何概型的概率公式如果试验的结果所构成的区域的几何度量可用面积表示,则其概率的计算公式为:P (A )=构成事件A 的区域面积试验的全部结果所构成的区域面积.2.与体积有关的几何概型概率的求法如果试验的结果所构成的区域的几何度量可用体积表示,则其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果所构成的区域体积.[活学活用]1.在一球内有一棱长为1的内接正方体,一点在球内运动,则此点落在正方体内部的概率为( ) A.6π B.32π C.3πD.233π解析:选D 由题意可得正方体的体积为V 1=1.又球的直径是正方体的体对角线,故球的半径R =32.球的体积V 2=43πR 3=32π.则此点落在正方体内的概率为P =V 1V 2=132π=233π.2.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC=1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8解析:选B 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积=12π·121×2=π4.[典例] 解放军某部队进行特种兵跳伞演习,如图所示,在长为16 m ,宽为14 m 的矩形内有大、中、小三个同心圆,其半径分别为1 m 、2 m 、5 m .若着陆点在圆环B 内,则跳伞成绩为合格;若着陆点在环状的阴影部分,则跳伞成绩为良好;若跳伞者的着陆点在小圆A 内,则跳伞成绩为优秀;否则为不合格.若一位特种兵随意跳下,假设他的着陆点在矩形内,利用随机模拟的方法求他的成绩为良好的概率.[解] 设事件A 表示“该特种兵跳伞的成绩为良好”.(1)利用计算器或计算机产生两组[0,1]上的均匀随机数,a 1=RAND ,b 1=RAND.(2)经过伸缩和平移变换,a =16a 1-8,b =14b 1-7,得到[-8,8]与[-7,7]上的均匀随机数. (3)统计满足-8<a <8,-7<b <7的点(a ,b )的个数N .满足1<a 2+b 2<4的点(a ,b )的个数N 1. (4)计算频率f n (A )=N 1N即为所求概率的近似值.用随机模拟方法估计长度型与面积型几何概型的概率的联系与区别 (1)联系:二者模拟试验的方法和步骤基本相同,都需产生随机数;(2)区别:长度型几何概型只要产生一组均匀随机数即可,所求事件的概率为表示事件的长度之比,对面积型几何概型问题,一般需要确定点的位置,而一组随机数是不能在平面上确定点的位置的,故需要利用两组均匀随机数分别表示点的横纵坐标,从而确定点的位置,所求事件的概率为点的个数比.[活学活用]现向图中所示正方形内随机地投掷飞镖,试用随机模拟的方法求飞镖落在阴影部分的概率.解:(1)利用计算器或计算机产生两组0至1区间内的均匀随机数a 1,b 1(共N 组); (2)经过平移和伸缩变换,a =2(a 1-0.5),b =2(b 1-0.5);(3)数出满足不等式b <2a -43,即6a -3b >4的数组数N 1.所求概率P ≈N 1N .可以发现,试验次数越多,概率P 越接近25144.[层级一 学业水平达标]1.如图,一颗豆子随机扔到桌面上,则它落在非阴影区域的概率为( )A.19 B.16 C.23D.13解析:选C 试验发生的范围是整个桌面,其中非阴影部分面积占整个桌面的69=23,而豆子落在任一点是等可能的,所以豆子落在非阴影区域的概率为23,故选C.下底长分别为a3与2.如图所示,在一个边长为a ,b (a >b >0)的矩形内画一个梯形,梯形上、a2,高为b .向该矩形内随机地投一点,则所投的点落在梯形内部的概率为( )A.112B.14C.512D.712解析:选C S 矩形=ab ,S 梯形=12⎝ ⎛⎭⎪⎫13a +12a b =512ab .故所投的点在梯形内部的概率为P =S 梯形S 矩形=512abab =512.3.已知函数f (x )=log 2x ,x ∈⎣⎢⎡⎦⎥⎤12,2,在区间⎣⎢⎡⎦⎥⎤12,2上任取一点x 0,则使f (x 0)≥0的概率为________. 解析:欲使f (x )=log 2x ≥0,则x ≥1,而x ∈⎣⎢⎡⎦⎥⎤12,2,∴x 0∈[1,2],从而由几何概型概率公式知所求概率P =2-12-12=23.答案:234.已知正三棱锥S ­ABC 的底面边长为4,高为3,在正三棱锥内任取一点P ,使得V P ­ABC <12V S ­ABC 的概率是________.解析:由V P ­ABC <12V S ­ABC 知,P 点在三棱锥S ­ABC 的中截面A 0B 0C 0的下方,P =1-VS ­A 0B 0C 0V S ­ABC =1-18=78.答案:78[层级二 应试能力达标]1.如图,在平面直角坐标系中,射线OT 为60°角的终边,在任意角集合中任取一个角,则该角终边落在∠xOT 内的概率是( )A.16B.23C.13D.160解析:选A ∵在任意角集合中任取一个角,则该角终边落在∠xOT 内对应的角度为60度,而整个角集合对应的角度为圆周角,∴该角终边落在∠xOT 内的概率P =60360=16,故选A.2.如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.23解析:选C △ABE 的面积是矩形ABCD 面积的一半,由几何概型知,点Q 取自△ABE 内部的概率为12.3.如图所示,一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为( )A.2πB.1πC.12D .1-2π解析:选D S 扇形=14×π×22=π,S 阴影=S 扇形-S △OAB =π-12×2×2=π-2,∴P =π-2π=1-2π.4.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为( )A.12 B.32C.13D.14解析:选C 如图,当AA ′的长度等于半径长度时,∠AOA ′=60°,由圆的对称性及几何概型得P =120360=13.故选C.5.方程x 2+x +n =0(n ∈(0,1))有实根的概率为________. 解析:由于方程x 2+x +n =0(n ∈(0,1))有实根, ∴Δ≥0,即1-4n ≥0,∴n ≤14,又n ∈(0,1),∴有实根的概率为P =141-0=14.答案:146.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为________.解析:大肠杆菌在400毫升自来水中的位置是任意的,且结果有无限个,属于几何概型.设取出2毫升水样中有大肠杆菌为事件A ,则事件A 构成的区域体积是2毫升,全部试验结果构成的区域体积是400毫升,则P (A )=2400=0.005.答案:0.0057.在棱长为a 的正方体ABCD ­A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________ 解析:点P 到点A 的距离小于等于a 可以看做是随机的,点P 到点A 的距离小于等于a 可视作构成事件的区域,棱长为a 的正方体ABCD ­A 1B 1C 1D 1可视做试验的所有结果构成的区域,可用“体积比”公式计算概率.P =18×43πa 3a 3=16π. 答案:16π8.如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?解:记“射中黄心”为事件B ,由于中靶点随机地落在面积为14×π×1222 cm 2的大圆内,而当中靶点落在面积为14×π×12.22 cm 2的黄心时,事件B 发生,于是事件B 发生的概率为P (B )=14×π×12.2214×π×1222=0.01. 即“射中黄心”的概率是0.01.9.已知圆C :x 2+y 2=12,直线l :4x +3y =25. (1)求圆C 的圆心到直线l 的距离;(2)求圆C 上任意一点A 到直线l 的距离小于2的概率. 解:(1)由点到直线l 的距离公式可得d =2542+32=5.(2)由(1)可知圆心到直线l 的距离为5,要使圆上的点到直线的距离小于2,设与圆相交且与直线l 平行的直线为l 1,其方程为4x +3y =15.则符合题意的点应在l 1:4x +3y =15与圆相交所得劣弧上,由半径为23,圆心到直线l 1的距离为3可知劣弧所对圆心角为60°.故所求概率为P=60°360°=16.(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中随机事件的个数为( )①连续两次抛掷一枚质地均匀的骰子,两次都出现2点; ②在地球上,树上掉下的雪梨不抓住就往下掉; ③某人买彩票中奖;④已经有一个女儿,第二次生男孩;⑤在标准大气压下,水加热到90 °C 会沸腾.A .1B .2C .3D .4解析:选C ①③④都有可能发生,也可能不发生,故是随机事件;对于②,在地球上,树上掉下的雪梨不抓住就往下掉,这是一定会发生的事件,属于必然事件.对于⑤,在标准大气压下,水加热到90 °C 会沸腾,是不可能事件.故选C.2.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .至少有一个黑球与都是红球 B .至少有一个黑球与都是黑球 C .至少有一个黑球与至少有一个红球 D .恰有1个黑球与恰有2个黑球解析:选D A 中的两个事件是对立事件,不符合要求;B 中的两个事件是包含关系,不是互斥事件,不符合要求;C 中的两个事件都包含“一个黑球、一个红球”这一事件,不是互斥事件;D 中是互斥而不对立的两个事件.故选D.3.从分别写有A ,B ,C ,D ,E 的5张卡片中任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为( ) A.15 B.25 C.310D.710解析:选B 试验的所有基本事件总数为10,两字母恰好是相邻字母的有(A ,B ),(B ,C ),(C ,D ),(D ,E )4种,故P =410=25.4.在正方体ABCD ­A 1B 1C 1D 1中随机取一点,则点落在四棱锥O ­ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13B.16C.12D.14解析:选B 设正方体的体积为V ,则四棱锥O ­ABCD 的体积为V6,所求概率为V6V =16.5.在两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率为( ) A.12 B.13 C.14D.15解析:选B 该试验属于几何概型,所求事件构成的区域长度为2 m ,试验的全部结果所构成的区域长度为6 m ,故灯与两端距离都大于2 m 的概率为26=13.6.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 的子集的概率是( ) A.35 B.25 C.14D.18解析:选 C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14. 7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( ) A.19 B.29 C.13D.49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),共8种,故概率为29.8.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ) A.110B.18C.16D.15解析:选D 从正六边形的6个顶点中随机选择4个顶点,列举可得,以它们作为顶点的四边形共有15个,其中矩形有3个,所以所求的概率为315=15.故选D.9.甲、乙、丙三人在3天节目中值班,每人值班1天,则甲紧接着排在乙的前面值班的概率是( ) A.16 B.14 C.13D.12解析:选C 甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.10.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A 记3个兴趣小组分别为1,2,3,甲参加1组记为“甲1”,则基本事件为:甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有:甲1,乙1;甲2,乙2;甲3,乙3,共3个基本事件.因此P (A )=39=13. 11.在2,0,1,5这组数据中,随机取出三个不同的数,则数字2是取出的三个不同数的中位数的概率为( ) A.34 B.58 C.12D.14解析:选C 分析题意可知,共有(0,1,2),(0,2,5),(1,2,5),(0,1,5)4种取法,符合题意的取法有2种,故所求概率P =12.12.设一元二次方程x 2+Bx +C =0,若B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,则方程有实数根的概率为( )A.112B.736C.1336D.1936解析:选D 因为B ,C 是一枚质地均匀的骰子连续投掷两次出现的点数,所以一共有36种情况.由方程有实数根知,Δ=B 2-4C ≥0,显然B ≠1.当B =2时,C =1(1种);当B =3时,C =1,2(2种);当B =4时,C =1,2,3,4(4种);当B =5时,C =1,2,3,4,5,6(6种);当B =6时,C =1,2,3,4,5,6(6种).故方程有实数根共有19种情况,所以方程有实数根的概率是1936.二、填空题(本大题共4小题,每小题5分,共20分)13.在边长为2的正方形中作其内切圆,然后向正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率π的值.如果撒了1 000粒芝麻,落在圆内的芝麻总数是776粒,那么这次模拟中π的估计值是________.解析:由于芝麻落在正方形内任意位置的可能性相等,由几何概型的概率计算公式知S 内切圆S 正方形≈7761 000,即π×1222≈7761 000,解得π≈3.104. 答案:3.10414.某中学青年教师、中年教师和老年教师的人数比例为4∶5∶1,其中青年教师有120人.现采用分层抽样的方法从这所学校抽取容量为30的教师样本以了解教师的工作压力情况,则每位老年教师被抽到的概率为________.解析:由青年教师、中年教师和老年教师的人数比例为4∶5∶1, 知该校共有教师120÷410=300(人).采用分层抽样的方法从这所学校抽取容量为30的教师样本,则每位老年教师被抽到的概率为P =30300=110.答案:11015.如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率是________.解析:连接AC 交弧DE 于点F ,∠BAC =30°,P =弧EF 的长弧DE 的长=13.答案:1316.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为________.解析:如图所示,圆周上使AM 的长度等于1的点M 有两个,设为M 1,M 2,则过A 的圆弧M 1AM 2长为2,点B 落在优弧M 1AM 2上就能使劣弧AB 的长度小于1,所以劣弧AB 的长度小于1的概率为23.答案:23三、解答题(本大题共6题,共70分,解答时应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)对一批衬衣进行抽样检查,结果如下表:(1)(2)记“任取一件衬衣是次品”为事件A ,求P (A );(3)为了保证买到次品的顾客能够及时更换,销售1 000件衬衣,至少需进货多少件? 解:(1)次品率依次为:0,0.02,0.06,0.054,0.045,0.05,0.05. (2)当n 充分大时,出现次品的频率m n在0.05附近摆动,故P (A )≈0.05.(3)设进货衬衣x 件,为保证1 000件衬衣为正品,则(1-0.05)x ≥1 000,得x ≥1 053. ∴至少需进货1 053件衬衣.18.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解:将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.(1)用A表示“都是甲类题”这一事件,则A包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)=615=25.(2)用B表示“不是同一类题”这一事件,则B包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P(B)=815.19.(本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:(1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.解:(1)因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=1-0.2-0.45-0.1-0.15=0.1.所以a=0.1,b=0.15,c=0.1.(2)从x1,x2,x3,y1,y2这5件日用品中任取2件,所有可能的结果为(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2),共10个.设事件A表示“从x1,x2,x3,y1,y2这5件日用品中任取2件,其等级系数相等”,则事件A所包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4个.故所求的概率P(A)=410=0.4.20.(本小题满分12分)投掷一个质地均匀、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面的数字是0,两个面的数字是2,两个面的数字是4.将此玩具连续抛掷两次,以两次朝上一面出现的数字分别作为点P的横坐标和纵坐标.(1)求点P落在区域C:x2+y2≤10上的概率;(2)若以落在区域C 上的所有点为顶点作面积最大的多边形区域M ,在区域C 上随机撒一粒豆子,求豆子落在区域M 上的概率.解:(1)点P 的坐标有:(0,0),(0,2),(0,4),(2,0),(2,2),(2,4),(4,0),(4,2),(4,4)共9种,其中落在区域C :x 2+y 2≤10上的点P 的坐标有(0,0),(0,2),(2,0),(2,2)共4种,故点P 落在区域C :x 2+y 2≤10上的概率为49.(2)区域M 为一边长为2的正方形,其面积为4,区域C 的面积为10π,则豆子落在区域M 上的概率为25π.21.(本小题满分12分)一条笔直街道上的A ,B 两盏路灯之间的距离为120米,由于光线较暗,想在中间再随意安装两盏路灯C ,D ,路灯次序为A ,C ,D ,B ,求A 与C ,B 与D 之间的距离都不小于40米的概率.解:设A 与C 之间的距离为x 米,B 与D 之间的距离为y 米,(x ,y )可以看成平面中的点,在如图所示的平面直角坐标系xOy 中,(x ,y )的所有可能结果构成的区域为Ω={(x ,y )|0<x +y <120,x >0,y >0},即两直角边边长都为120米的等腰直角三角形区域(不包括边界).而“A 与C ,B 与D 之间的距离都不小于40米”(记为事件M )的所有可能结果构成的区域为M ={(x ,y )|x ≥40,y ≥40,(x ,y )∈Ω},即图中的阴影部分.由几何概型的概率计算公式得P (M )=12×40×4012×120×120=19.故A 与C ,B 与D 之间的距离都不小于40米的概率为19.22.(本小题满分12分)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,C (2)若在这6件样本中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率. 解:(1)因为样本容量与总体中的个体数的比是 650+150+100=150,所以样本中包含三个地区的个数数量分别是 50×150=1,150×150=3,100×150=2.所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为A ;B 1,B 2,B 3;C 1,C 2. 则抽取的这2件商品构成的所有基本事件为{A ,B 1},{A ,B 2},{A ,B 3},{A ,C 1},{A ,C 2},{B 1,B 2},{B 1,B 3},{B 1,C 1},{B 1,C 2},{B 2,B 3},{B 2,C 1},{B 2,C 2},{B 3,C 1},{B 3,C 2},{C 1,C 2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记“抽取的这2件商品来自相同地区”为事件D,则事件D包含的基本事件有{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415 .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3.2几何概型及均匀随机数的产生一、教材分析1.几何概型是不同于古典概型的又一个最基本、最常见的概率模型,其概率计算原理通俗、简单,对应随机事件及试验结果的几何量可以是长度、面积或体积.2.如果一个随机试验可能出现的结果有无限多个,并且每个结果发生的可能性相等,那么该试验可以看作是几何概型.通过适当设置,将随机事件转化为几何问题,即可利用几何概型的概率公式求事件发生的概率.二、教学目标(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式;(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法; (6)会利用均匀随机数解决具体的有关概率的问题. 三、教学重点难点1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中. 四、学情分析五、教学方法1.自主探究,互动学习2.学案导学:见后面的学案。

3.新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习 六、课前准备1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.七、课时安排:1课时 七、教学过程1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。

例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。

2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.3、例题分析:课本例题略例1 判下列试验中事件A 发生的概度是古典概型,还是几何概型。

(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。

分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。

而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关。

解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.例 2 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= 605060 =61,即此人等车时间不多于10分钟的概率为61. 小结:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.练习:1.已知地铁列车每10min 一班,在车站停1min ,求乘客到达站台立即乘上车的概率。

2.两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m 的概率.解:1.由几何概型知,所求事件A 的概率为P(A)=111; 2.记“灯与两端距离都大于2m ”为事件A ,则P(A)= 62=31.例3 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的而40平方千米可看作构成事件的区域面积,有几何概型公式可以求得概率。

解:记“钻到油层面”为事件A ,则P(A)=所有海域的大陆架面积储藏石油的大陆架面积=1000040=0.004.答:钻到油层面的概率是0.004.例4 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率。

解:取出10毫升种子,其中“含有病种子”这一事件记为A ,则P(A)=所有种子的体积取出的种子体积=100010=0.01.答:取出的种子中含有麦诱病的种子的概率是0.01. 例5 取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意数,并且每一个实数被取到都是等可能的。

因此在任意位置剪断绳子的所有结果(基本事件)对应[0,3]上的均匀随机数,其中取得的[1,2]内的随机数就表示剪断位置与端点距离在[1,2]内,也就是剪得两段长都不小于1m 。

这样取得的[1,2]内的随机数个数与[0,3]内个数之比就是事件A 发生的概率。

解法1:(1)利用计算器或计算机产生一组0到1区间的均匀随机数a 1=RAND . (2)经过伸缩变换,a=a 1*3.(3)统计出[1,2]内随机数的个数N 1和[0,3] 内随机数的个数N . (4)计算频率f n (A)=NN 1即为概率P (A )的近似值. 解法2:做一个带有指针的圆盘,把圆周三等分,标上刻度[0,3](这里3和0重合).转动圆盘记下指针在[1,2](表示剪断绳子位置在[1,2]范围内)的次数N 1及试验总次数N ,则f n (A)=NN 1即为概率P (A )的近似值. 小结:用随机数模拟的关键是把实际问题中事件A 及基本事件总体对应的区域转化为随机数的范围。

解法2用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大;解法1用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.例6 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面积介于36cm 2 与81cm 2之间的概率.分析:正方形的面积只与边长有关,此题可以转化为在12cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6cm 与9cm 之间的概率.解:(1)用计算机产生一组[0,1]内均匀随机数a 1=RAND . (2)经过伸缩变换,a=a 1*12得到[0,12]内的均匀随机数. (3)统计试验总次数N 和[6,9]内随机数个数N 1(4)计算频率NN 1. 记事件A={面积介于36cm 2 与81cm 2之间}={长度介于6cm 与9cm 之间},则P (A )的近似值为f n (A)=NN 1.八、反思总结,当堂检测。

九、发导学案、布置预习。

完成本节的课后练习及课后延伸拓展作业。

设计意图:布置下节课的预习作业,并对本节课巩固提高。

教师课后及时批阅本节的延伸拓展训练。

十、板书设计十一、教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。

课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以达到提高课堂效率的目的。

1、几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;2、均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量。

在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出宝贵意见,共同完善,共同进步!十二、学案设计(见下页)3.3.2几何概型及均匀随机数的产生课前预习学案一、预习目标1.了解几何概型的概念及基本特点;2. 掌握几何概型中概率的计算公式;3. 会进行简单的几何概率计算.二、预习内容1. 基本事件的概念: 一个事件如果事件,就称作基本事件.基本事件的两个特点:10.任何两个基本事件是的;20.任何一个事件(除不可能事件)都可以.2. 古典概型的定义:古典概型有两个特征:10.试验中所有可能出现的基本事件;20.各基本事件的出现是,即它们发生的概率相同.具有这两个特征的概率称为古典概率模型. 简称古典概型.3. 古典概型的概率公式, 设一试验有n个等可能的基本事件,而事件A恰包含其中的m个基本事件,则事件A的概率P(A)定义为:P A==。

()问题情境:试验1.取一根长度为3m的绳子,拉直后在任意位置剪断.试验2.射箭比赛的箭靶涂有五个彩色得分环.从外向内为白色,黑色,蓝色,红色,靶心是金色.奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m外射箭.假设射箭都能射中靶面内任何一点都是等可能的.问题:对于试验1:剪得两段的长都不小于1m的概率有多大?试验2:射中黄心的概率为多少?新知生成:1.几何概型的概念:2.几何概型的基本特点:3.几何概型的概率公式:三、提出疑惑疑惑点疑惑内容课内探究学案一、学习目标1.了解几何概型的概念及基本特点;2. 掌握几何概型中概率的计算公式;3. 会进行简单的几何概率计算.学习重难点:重点:概率的正确理解难点:用概率知识解决现实生活中的具体问题。

二、学习过程例题学习:例1判下列试验中事件A发生的概度是古典概型,还是几何概型。

(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P135图中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率。

相关文档
最新文档