2018年苏教版八年级数学下册《第八章认识概率》单元测试卷含答案
第8章 认识概率 单元测试卷-苏科版八年级数学下册(原卷版+解析版)
第8章认识概率(原卷版)考试时间:100分钟;满分:120分一、单选题(共18分)1.(本题2分)在下图的各事件中,是随机事件的有()A.1个B.2个C.3个D.4个2.(本题2分)下列事件属于不可能事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意画一个三角形,其内角和等于180°C.连续掷两次骰子,向上一面的点数都是6D.明天太阳从西边升起3.(本题2分)下列事件中属于必然事件的是()A.两直线平行,同位角相等B.在一张纸上任意画两条线段,这两条线段相交C.有两条边长为3,4的三角形是直角三角形D.在一个只装有白球的袋子中摸出一个红球4.(本题2分)下列事件中是必然事件的是()A.平移后的图形与原来的图形对应线段相等B.同位角相等C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.-a是负数5.(本题2分)如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:估计这位同学投篮一次,投中的概率约是()(精确到0.1)A.0.55B.0.4C.0.6D.0.56.(本题2分)在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有()A.18B.27C.36D.307.(本题2分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是()A.抛一枚硬币,连续两次出现正面的概率B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.任意写一个正整数,它能被5整除的概率D.掷一枚正六面体的骰子,出现1点的概率8.(本题2分)在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数大于2的概率D.朝上的点数是3的倍数的概率9.(本题2分)一个不透明的袋子中装有除颜色外完全相同的黑、白棋子若干,小明进行了大量的摸出棋子记录颜色后放回再摸的试验,发现摸出黑棋子的频率稳定在0.6附近,那么摸出白棋子的概率约是()A.12B.25C.3150D.35二、填空题(共16分)10.(本题2分)在一个不透明的布袋中装有50个白球和黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有______个.11.(本题2分)在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.12.(本题2分)一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________.13.(本题2分)有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是________.(填写序号即可)14.(本题2分)下列事件:①打雷后会下雨;②明天是晴天;③1小时等于60分钟;④从装有2个红球,2个白球的袋子中摸出一个蓝球.其中是确定性事件的是________.(填序号)15.(本题2分)下列四个事件中:①如果a为实数,那么20a ;②在标准大气压下,水在1C时结冰;③同时掷两枚均匀的骰子,朝上一面的点数和为13;④小明期中考试数学得满分.其中随机事件有_____(填序号)16.(本题2分)在一个不透明的袋子中装有2个红球、5个白球和3个黑球,这些球除颜色外都相同.从中任意摸出1个球,摸到_______________________色的球的可能性最大.(填“红”、“白”或“黑”)17.(本题2分)某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)三、解答题(共86分)18.(本题9分)在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?19.(本题6分)在不透明箱里放有红、白、黄、蓝四种颜色球共16个,除颜色外都相同,其中白球5个,黄球4个.(1)小军和小颖为争一个竞赛的名额,决定用摸球的方式来确定,从不透明箱里随机摸出1个球,是白球就小军去,是黄球,就小颖去.请问这个规则是否公平?并通过计算概率说明理由.(2)现每次从箱中任意摸出一个球记下颜色,再放回箱中,通过大量重复摸球实验后发现,摸到蓝球的频率稳定在25%,那么箱里大约有多少个红球?20.(本题10分)在一个口袋里有大小形状都一样的10张卡片,分别写有-1,-2,-3,-4,-5,1,2,3,4,5.从中任意抽出一张卡片.(1)抽到正数的可能性大还是抽到负数的可能性大?(2)抽到奇数的可能性大还是抽到偶数的可能性大?(3)抽到小于2的可能性大还是抽到大于-3的可能性大?(4)抽到平方数的可能性大还是抽到立方数的可能性大?(5)抽到绝对值大于1的可能性大还是抽到绝对值小于6的可能性大?21.(本题8分)小覃和小莫两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了100次试验,实验的结果如下:(1)求表格中x的值.(2)计算“3点朝上”的频率.(3)小覃说:“根据实验,一次实验中出现1点朝上的概率是12%”;小覃的这一说法正确吗?为什么?(4)小莫说:“如果掷6000次,那么出现5点朝上的次数大概是1500次左右.”小莫的这一说法正确吗?为什么?22.(本题8分)孙明和王军两人去桃园游玩,返回时打算顺便买些新鲜油桃.此时桃园仅三箱油桃,价钱相同,但质量略有区别,分为1A级、2A级、3A级,其中1A级最好,3A级最差.挑选时,三箱油桃不同时拿出,只能一箱一箱的看,也不告知该箱的质量等级.两人采取了不同的选择方案:孙明无论如何总是买第一次拿出来的那箱.王军是先观察再确定,他不买第一箱油桃,而是仔细观察第一箱油桃的状况;如果第二箱油桃的质量比第一箱好,他就买第二箱油桃,如果第二箱的油桃不比第一箱好,他就买第三箱.(1)三箱油桃出现的先后顺序共有哪几种不同的可能?(2)孙明与王军,谁买到1A级的可能性大?为什么?23.(本题9分)九年级(1)班全班50名同学组成五个不同的兴趣爱好小组,每人都参加且只能参加一个小组,统计(不完全)人数如下表:编号一二三四五人数a152010b已知前面两个小组的人数之比是1:5.解答下列问题:+=.(1)a b(2)补全条形统计图:(3)若从第一组和第五组中任选两名同学,求这两名同学是同一组的概率.(用树状图或列表把所有可能都列出来)24.(本题8分)某射击运动员在相同条件下的射击160次,其成绩记录如下:射击次数20406080100120140160射中9环以上的次数1533637997111130射中9环以上的频率0.750.830.800.790.790.790.81(1)根据上表中的信息将两个空格的数据补全(射中9环以上的次数为整数,频率精确到0.01);(2)根据频率的稳定性,估计这名运动员射击一次时“射中9环以上”的概率(精确到0.1),并简述理由.25.(本题8分)[概率中的方案设计]小红和小明在操场上做游戏,他们先在地上画了半径分别为2m和3m的同心圆(如图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影部分时小红胜,否则小明胜,未掷入圈内(半径为3m的圆内)或掷在边界上重掷.(1)你认为游戏公平吗?为什么?(2)游戏结束,小明边走边想:能否用频率估计概率的方法,来估算不规则图形的面积呢?请你设计一个方案,解决这一问题(要求画出图形,说明设计步骤、原理,并给出计算公式)26.(本题9分)某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?27.(本题11分)在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个,小明做摸球试验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色后,再把它放回盒子中,不断重复上述过程,下表是试验中的组统计数据:摸球的次数m10020030050080010003000摸到白球的次数n661281713024815991806摸到白球的频率nm0.660.640.570.6040.6010.5990.602(2)估算盒子里约有白球__________个;(3)若向盒子里再放入x个除颜色以外其它完全相同的球,这x个球中白球只有1个.然后每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,通过大量重复摸球试验后发现,摸到白球的频率稳定在50%,请你推测x可能是多少?第8章认识概率(解析版)一、单选题(共18分)1.(本题2分)在下图的各事件中,是随机事件的有()A.1个B.2个C.3个D.4个【答案】B【解析】根据随机事件的概率值即可判断.【详解】解:因为不可能事件的概率为0,0<随机事件的概率<1,必然事件的概率为1,所以在如图的各事件中,是随机事件的有:事件B和事件C,共有2个,故选:B.【点睛】本题考查了随机事件,弄清不可能事件的概率,随机事件的概率,必然事件的概率是解题的关键.2.(本题2分)下列事件属于不可能事件的是()A.经过有交通信号灯的路口,遇到红灯B.任意画一个三角形,其内角和等于180°C.连续掷两次骰子,向上一面的点数都是6D.明天太阳从西边升起【答案】D【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:A、经过有交通信号灯的路口,遇到红灯,是随机事件,选项不符合题意;B、任意画一个三角形,其内角和等于180 ,是必然事件,选项不符合题意;C、连续掷两次骰子,向上一面的点数都是6,是随机事件,选项不符合题意;D、明天太阳从西边升起,是不可能事件,选项符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(本题2分)下列事件中属于必然事件的是()A.两直线平行,同位角相等B.在一张纸上任意画两条线段,这两条线段相交C.有两条边长为3,4的三角形是直角三角形D.在一个只装有白球的袋子中摸出一个红球【答案】A【解析】必然事件是在一定条件下一定会发生的事件,对各个选项进行判断即可得出答案.【详解】解:A中两直线平行,同位角相等是平行线的性质,属于必然事件,故符合要求;B中任意两条线段的位置关系可相交,可不相交,属于随机事件,故不符合要求;C中两条边长为3,4的三角形中,第三条边的长度大于1小于7均可,当第三边长为5时,该三角形为直角三角形,属于随机事件,故不符合要求;D中在只装有白球的袋子中摸出一个红球,属于不可能事件,故不符合要求;故选A.【点睛】本题考查了必然事件.解题的关键在于对必然事件,随机事件与不可能事件的理解.4.(本题2分)下列事件中是必然事件的是()A.平移后的图形与原来的图形对应线段相等B.同位角相等C.随机抛掷一枚质地均匀的硬币,落地后正面朝上D.-a是负数【答案】A【解析】根据必然事件和随机事件的定义解答即可.【详解】解:A.平移后的图形与原来的图形对应线段相等是必然事件;B.∵两直线平行同位角相等,∴同位角相等是随机事件;C.∵随机抛掷一枚质地均匀的硬币,落地后可能正面朝上,也可能反面朝向,∴随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件;D.∵当a=0时,-a=0,0既不是负数,也不是正数,∴-a 是负数是随机事件;故选A .【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件. 5.(本题2分)如表是一位同学在罚球线上投篮的试验结果,根据表中数据回答下列问题:估计这位同学投篮一次,投中的概率约是( )(精确到0.1)A .0.55B .0.4C .0.6D .0.5【答案】D【解析】【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【详解】解:估计这名球员投篮一次,投中的概率约是2860781041241532520.550100150200250300500++++++≈++++++,故选:D . 【点睛】本题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.6.(本题2分)在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有( )A .18B .27C .36D .30【答案】D【解析】 【分析】设黑球的个数为x 个,根据频率可列出方程,解方程即可求得x ,从而得到答案.【详解】设黑球的个数为x 个,由题意得:0.445x x=+ 解得:x=30经检验x=30是原方程的解,则袋中黑球的个数为30个故选:D【点睛】本题考查了用频率估计概率,解方程,根据概率列出方程是关键.7.(本题2分)甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )A .抛一枚硬币,连续两次出现正面的概率B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .任意写一个正整数,它能被5整除的概率D .掷一枚正六面体的骰子,出现1点的概率【答案】B【解析】【分析】根据统计图可得,实验结果在0.33附近波动,故概率0.33P ≈,计算四个选项的概率即可得出答案.【详解】A. 抛一枚硬币两次,出现得结果有(正,正),(正,反),(反,正)和(反,反)四种,所以连续两次出现正面的概率14P =,故A 排除; B. 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为10.333P =≈,故B 正确; C. 任意写一个正整数,它能被5整除的概率为21105P ==,故C 排除; D. 掷一枚正六面体的骰子,出现1点的概率为16P =,故D 排除.故选:B 【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,在解答过程中掌握概率公式是解决本题的关键.8.(本题2分)在利用正六面体骰子进行频率估计概率的试验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是( )A .朝上的点数是5的概率B .朝上的点数是奇数的概率C .朝上的点数大于2的概率D .朝上的点数是3的倍数的概率【答案】D【解析】【分析】计算出各个选项中事件的概率,根据概率即可作出判断.【详解】A 、朝上的点数是5的概率为.%≈116676,不符合试验的结果; B 、朝上的点数是奇数的概率为%==315062,不符合试验的结果; C 、朝上的点数大于2的概率.%≈466676,不符合试验的结果;D 、朝上的点数是3的倍数的概率是.%≈233336,基本符合试验的结果. 故选:D .【点睛】本题考查了频率估计概率,当试验的次数较多时,频率稳定在某一固定值附近,这个固定值即为概率.9.(本题2分)一个不透明的袋子中装有除颜色外完全相同的黑、白棋子若干,小明进行了大量的摸出棋子记录颜色后放回再摸的试验,发现摸出黑棋子的频率稳定在0.6附近,那么摸出白棋子的概率约是( )A .12B .25C .3150D .35【答案】B【解析】【分析】根据摸出黑棋子的频率稳定在0.6附近,则摸出白棋子的频率稳定在1-0.6=0.4附近,由此即可得到答案.【详解】解:∵摸出黑棋子的频率稳定在0.6附近,∴摸出白棋子的频率稳定在1-0.6=0.4附近, ∴那么摸出白棋子的概率约是20.45=, 故选B .【点睛】本题主要考查了用频率估计概率,解题的关键在于能够准确求出摸出白棋子的频率.二、填空题(共16分)10.(本题2分)在一个不透明的布袋中装有50个白球和黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.2左右,则布袋中黑球的个数可能有______个.【答案】10【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,设出未知数列出方程即可求解.【详解】解:设袋中有黑球x 个, 由题意得:0.250x ,解得:x=10, 则,布袋中黑球的个数可能有10个.故答案为:10.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.11.(本题2分)在一个不透明的布袋中,有黄色、白色的玻璃球共有20个,除颜色外,形状、大小、质地等完全相同,小刚每次换出一个球后放回通过多次摸球实验后发现摸到黄色球的频率稳定在40%,则布袋中白色球的个数很可能是______.【答案】12【解析】【分析】根据频率估计概率得到摸到黄色球的概率为40%,由此得到摸到白色球的概率:1-40%=60%,再乘以总球数即可解题.【详解】解:由题意知摸到黄色球的频率稳定在40%,所以摸到白色球的概率:1-40%=60%,因为不透明的布袋中,有黄色、白色的玻璃球共有20个,所以布袋中白色球的个数为20×60%=12(个),故答案为:12.【点睛】本题考查利用频率估计概率,是基础考点,掌握相关知识是解题关键. 12.(本题2分)一个密闭不透明的盒子里装有若干个质地、大小均完全相同的白球和黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球4000次,其中800次摸到黑球,则估计从中随机摸出一个球是黑球的概率为_________. 【答案】15##0.2【解析】【分析】可根据“黑球数量÷黑白球总数=黑球所占比例”来列等量关系式,“黑球所占比例=随机摸到的黑球次数÷总共摸球的次数”.【详解】解:∵共摸球4000次,其中800次摸到黑球,∴从中随机摸出一个球是黑球的概率为8001=40005,故答案为:15【点睛】考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.13.(本题2分)有如下四个事件:①随机抛掷一枚硬币,落地后正面向上;②任意写出一个数字,这个数字是一个有理数;③等腰三角形的三边长分别为2cm、2cm和5cm;④《九章算术》是中国传统数学重要的著作,书中《勾股章》说,把勾和股分别自乘,然后把它们的乘积加起来,再进行开方,便可以得到弦.在这四个事件中是不可能事件是________.(填写序号即可)【答案】③【解析】【分析】根据随机事件、不可能事件、必然事件的定义解答.【详解】解:①②是随机事件,③是不可能事件,④是必然事件,故答案为:③.【点睛】此题考查事件的分类:不确定事件、不可能事件、必然事件,正确掌握各定义是解题的关键.14.(本题2分)下列事件:①打雷后会下雨;②明天是晴天;③1小时等于60分钟;④从装有2个红球,2个白球的袋子中摸出一个蓝球.其中是确定性事件的是________.(填序号)【答案】③④【解析】【分析】因为确定事件包括必然事件和不可能事件,根据这两种事件的概念判断即可.【详解】①打雷后会下雨,随机事件;②明天是晴天,随机事件;③1小时等于60分钟,必然事件;④从装有2个红球,2个白球的袋子中摸出一个蓝球,不可能事件.故确定性事件的是:③④.【点睛】考查了必然事件、不可能事件、随机事件的概念:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件;不可能事件是指在一定条件下,一定不发生的事.15.(本题2分)下列四个事件中:①如果a为实数,那么20a≥;②在标准大气压下,水在1C时结冰;③同时掷两枚均匀的骰子,朝上一面的点数和为13;④小明期中考试数学得满分.其中随机事件有_____(填序号)【答案】④【解析】【分析】根据必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【详解】①如果a为实数,那么20a≥是必然事件;②在标准大气压下,水在1C时结冰是不可能事件;③同时掷两枚均匀的骰子,朝上一面的点数和为13是不可能事件;④小明期中考试数学得满分是随机事件.故答案是:④.【点睛】考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.16.(本题2分)在一个不透明的袋子中装有2个红球、5个白球和3个黑球,这些球除颜色外都相同.从中任意摸出1个球,摸到_______________________色的球的可能性最大.(填“红”、“白”或“黑”)【答案】白【解析】【分析】分别计算出摸到红、白、黑球的可能性,比较大小后即可得到答案.【详解】∵袋子中装有2个红球、5个白球和3个黑球,∴摸出红球的可能性是:2÷(2+5+3)=15,摸出白球的可能性是:5÷(2+5+3)=12,摸出黑球的可能性是:3÷(2+5+3)=3 10,∵12>310>15,∴白球出现的可能性大.故答案为:白【点睛】本题主要考查了求简单事件发生的可能性,用到的知识点为:可能性等于所求情况数与总情况数之比.17.(本题2分)某数学小组做抛掷一枚质地不均匀纪念币的实验,整理同学们获得的实验数据,如表.抛掷次数5010020050010002000300040005000“正面向上”的次数193868168349707106914001747“正面向上”的频率0.38000.38000.34000.33600.34900.35350.35630.35000.3494则抛掷该纪念币正面朝上的概率约为_________.(精确到0.01)【答案】0.35【解析】【分析】随着实验次数的增加,“正面向上”的频率总在0.35附近摆动,显示出一定的稳定性,据此进行判断即可.【详解】随着实验次数的增加,“正面向上”的频率总在0.35附近摆动,显示出一定的稳定性,据此进行判断抛掷该纪念币正面朝上的概率约为0.35.故答案为:0.35.【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义.三、解答题(共86分)18.(本题9分)在一个不透明的口袋里,装有6个除颜色外其余都相同的小球,其中2个红球,2个白球,2个黑球.它们已在口袋中被搅匀,现在有一个事件:从口袋中任意摸出n 个球,红球、白球、黑球至少各有一个.(1)当n为何值时,这个事件必然发生?(2)当n为何值时,这个事件不可能发生?(3)当n为何值时,这个事件可能发生?【答案】(1)n=5或6;(2)n=1或2;(3)n=3或4【解析】【分析】(1)利用必然事件的定义确定n的值;(2)利用不可能事件的定义确定n的值;(3)利用随机事件的定义确定n的值.【详解】(1)当n=5或6时,这个事件必然发生;(2)当n=1或2时,这个事件不可能发生;(3)当n=3或4时,这个事件为随机事件.【点睛】本题考查了随机事件在一定条件下,可能发生也可能不发生的事件,称为随机事件.也考查了必然事件和不可能事件.19.(本题6分)在不透明箱里放有红、白、黄、蓝四种颜色球共16个,除颜色外都相同,其中白球5个,黄球4个.。
苏科版数学八年级下册第8章认识概率考试试卷及答案
苏科版数学八年级下册第8章考试试题评卷人得分一、单选题1.下列事件中,随机事件是()A.经过有交通信号灯的路口,遇到红灯B.实心铁球投入水中会沉入水底C.一滴花生油滴入水中,油会浮在水面D.两负数的和为正数2.投掷一枚普通的六面体骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2.这些事件发生的可能性由大到小排列正确的是()A.①②③④B.④③②①C.③④②①D.②③①④3.下列说法正确的是()A.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等B.一颗质地均匀的骰子已连续抛掷了2000次,其中掷出5点的次数最少,则第2001次一定抛掷出5点C.天气预报说明天下雨的概率是50%,所以明天有一半的时间在下雨D.某种彩票的中奖的概率是1%,因此买100张彩票一定会中奖4.八年级某班45位同学中,4月份出生的频率是0.20,那么这个班4月份出生的同学有()A.8位B.9位C.10位D.11位5.某学校有1000名九年级学生,要知道他们在学业水平考试中成绩为A等、B等、C等、D等的人数各是多少,需要做的工作是()A.求平均成绩B.进行频数分布C.求极差D.计算方差6.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格(60分为及格)人数为().A.45B.51C.54D.577.如图为某校782名学生小考成绩的次数分配直方图,若下列有一选项为图(一)成绩的累积次数分配直方图,则此图为何()A.B.C.D.8.夷昌中学开展“阳光体育活动”,九年级一班全体同学在2011年4月18日16时分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师在此时统计了该班正在参加这三项活动的人数,并绘制了如图所示的频数分布直方图和扇形统计图.根据这两个统计图,可以知道此时该班正在参加乒乓球活动的人数是(■).(A)50(B)25(C)15(D)109.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1B.0.2C.0.3D.0.410.(2011•南充)某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A、0.1B、0.17C、0.33D、0.411.下列说法正确的是()A.为了审核书稿中的错别字,选择抽样调查B.为了了解春节联欢晚会的收视率,选择全面调查C.“射击运动员射击一次,命中靶心”是随机事件D.“366人中至少有2人的生日是同月同日”是必然事件12.下列说法中正确的是()A.同位角相等B.如果一个等腰三角形的两边长分别为3和6,那么该三角形的周长为12或15C.直线外一点与直线上各点连接的所有线段中,垂线段最短D.事件“打开电视机,正好播放足球比赛”是必然事件13.下列事件中,是必然事件的是()A.随意掷一块质地均匀的骰子,掷出的点数是1B.射击运动员射击一次,命中10环C.掷一块石块,石块下落D.在一个装满白球和黑球的袋中摸球,摸出红球14.某种产品10件,其中有2件次品,其余都是正品,今从中任取一件,抽到次品的可能性为()A.一定B.不可能C.可能性较大D.可能性较小15.一个布袋中装有10个相同的球,其中9个红球,1个黄球,从中任意摸取一个,那么()A.一定摸到红球B.一定摸到黄球C.不可能摸到黄球D.很有可能摸到红球第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题16.一个样本的容量是80,分成若干小组画频数分布直方图,某组对应的频率是0.2,则该组有____个数据.17.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最大.18.(1)明天是晴天;(2)黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门;(3)某小组有13名同学,至少有2名同学的生日在同一个月;(4)在标准大气压下,温度低于0℃时冰融化,在这些事件中属于随机事件的有__________;属于必然事件的有_______.(只填序号)19.我市某中学七年级甲、乙、丙三个班中,每班的学生人数都为60名,某次数学考试的成绩统计如下:(每组分数含最小值,不含最大值)丙班数学成绩频数统计表分数50~6060~7070~8080~9090~100人数29181714根据以上图、表提供的信息,则80~90分这一组人数最多的班是.20.对某班60名同学的一次数学测验成绩进行统计,如果频数分布直方图中80.5~90.5分这一组的频数是18,那么这个班的学生这次数学测验成绩在80.5~90.5分之间的人数占总人数的百分比为_____.评卷人得分三、解答题21.下列事件中,哪些是不可能发生的事件?哪些是必然发生的事件?哪些是不确定事件:(1)抛掷一个均匀的骰子,6点朝上;(2)367人中有2人的出生日期相同;(3)1+3>2;(4)打开电视,它正在播放广告.22.有个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个面标有“5”,其余面标有“6”,将这个骰子掷出后:(1)掷出“6”朝上的可能性有多大?(2)哪些数字朝上的可能性一样大?(3)哪些数字朝上的可能性最大?23.小明同学在学校组织的社会调查活动中负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了若干居民的月均用水量(单位:t),并绘制了不完整的样本的频数分布表的频数分布直方图(如图)根据上述图表回答下列问题:月均用水量(单位:t)频数百分比2≤x<320.043≤x<4120.244≤x<55≤x<6100.26≤x<70.127≤x<830.068≤x<920.04(1)小明同学共调查了多少户居民的月均用水量;(2)请根据题中已有的信息补全频数分布表和频数分布直方图;(3)如果家庭月均用水量“大于或等于4t且小于7t”为中等用水量家庭,请你通过样本估计总体中的等用水量家庭大约有多少户?24.阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).阅读时间分组统计表组别阅读时间x(h)人数A0≤x<10aB10≤x<20100C20≤x<30bD30≤x<40140E x≥40c请结合以上信息解答下列问题:(1)求a,b,c的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.25.初二年级教师对试卷讲评课中学生参与情况进行调查,调查项目分为主动质疑、独立思考、专注听讲、讲解题目四项.调查组随机抽取了若干名初中学生的参与情况,绘制了如图所示的扇形统计图和条形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为______度;(2)请将频数分布直方图补充完整;(3)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?26.判断下列事件的可能性是否相同,并简要说明理由:(1)袋中装有3个红球和3个白球,除颜色外都相同,从中任取1个球,取到红球与白球的可能性;(2)袋中放有5个红色的正方形木块和5个白色的三角形木块,若取木块的人事先知道哪种颜色是何种形状,问取到红色木块与取到白色木块的可能性;(3)袋中放有5个红色正方形木块和5个白色三角形木块,若取木块的人事先不知道哪种形状是何种颜色,问取到红色木块与取到白色木块的可能性.参考答案1.A【解析】分析:在一定条件下,可能发生也可能不发生的事件,称为不确定事件;事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的,据此逐项判断即可.详解:∵经过有交通信号灯的路口,遇到红灯是随机事件,∴选项A符合题意;∵实心铁球投入水中会沉入水底是必然事件,∴选项B不符合题意;∵一滴花生油滴入水中,油会浮在水面是必然事件,∴选项C不符合题意;∵两负数的和为正数是不可能事件,∴选项D不符合题意.故选A.点睛:此题主要考查了随机事件,要熟练掌握,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.2.B【解析】④的概率为56③的概率为23②的概率为12①的概率为16,故选B3.A【解析】试题分析:对于A选项钉尖触地的概率为0,钉尖朝上的概率为1;B、第2001次掷出5点的概率为16;C、明天有可能下雨,也有可能不下雨;D、买100张彩票有可能中奖.考点:概率的计算.4.B【解析】【分析】根据频率公式:频率 频数总数,即可求解.【详解】45×0.20=9(位).故选B.【点睛】本题考查了频率的计算公式,理解公式是关键.5.B【解析】【分析】根据频数的概念知,把学生分成四等,进行的工作是计算频数的分布.【详解】由题意可知:成绩为A等、B等、C等、D等的人数各是多少,则是计算它们的频数.故选B.【点睛】本题考查了频数的概念:对总数据按某种标准进行分组,统计出各个组内含个体的个数.6.C【解析】由题意可知:该班及格(60分以上)的同学的频率为0.15+0.15+0.3+0.25+0.05=0.90,则该班及格(60分以上)的同学的人数为60×0.90=54人.故选C.7.A【解析】【分析】将一个变量的不同等级的相对频数用矩形块标绘的图表(每一矩形的面积对应于频数).因为本题求哪个是成绩的累积次数分配直方图,故累计次数做为纵坐标.【详解】关键知道,分数是横坐标,累计次数是纵坐标,符合题意的是A.故选A.【点睛】本题考查了频数直方图的画法以及对横纵坐标要求的理解.才能够正确选出答案.8.C【解析】考点:频数(率)分布直方图;扇形统计图.分析:从直方图可知,参加巴山舞的有25人,从扇形图可知巴山舞占总体的50%,从而可求出总人数,总人数减去参加巴山舞的人数,减去篮球的人数即为所求.解:25÷50%=50(人),50-25-10=15(人).参加乒乓球的人数为15人.故选C.9.B【解析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.2.故选B.10.D【解析】∵从频数率分布直方图可以知道仰卧起坐次数在25~30之间的频数为12,而仰卧起坐总次数为:3+10+12+5=30,∴学生仰卧起坐次数在25~30之间的频率为12÷30=0.4.故选D.11.C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A.为了审核书稿中的错别字,选择普查,故A不符合题意;B.为了了解春节联欢晚会的收视率,调查范围广,适合抽样调查,故B不符合题意;C.“射击运动员射击一次,命中靶心”是随机事件,故C符合题意;D.“366人中至少有2人的生日是同月同日”是随机事件,故D不符合题意.故选C.【点睛】本题考查了随机事件,解答本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.C【解析】【分析】直接利用随机事件以及垂线段最短的性质和三角形三边关系分别分析得出答案.【详解】A.两直线平行,同位角相等,故此选项错误;B.如果一个等腰三角形的两边长分别为3和6,那么该三角形的周长为15,故此选项错误;C.直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;D.事件“打开电视机,正好播放足球比赛”是随机事件,故此选项错误.故选C.【点睛】本题考查了随机事件以及垂线段最短的性质和三角形三边关系,正确把握相关性质是解题的13.C【解析】A.随意掷一块质地均匀的骰子,掷出的点数可能是1,也可能是其它数字,故是不确定事件;B.射击运动员射击一次,可能命中10环,也可能是其它环数,故是不确定事件;C.掷一块石块,石块一定会下落,故是确定事件;D.在一个装满白球和黑球的袋中摸球,可能摸出红球,也可能摸出白球,故是不确定事件;故选C.14.D【解析】【分析】让次品的数量除以产品的总数目即可.【详解】抽到次品的可能性为21105 ,可能性较小.故选D.【点睛】用到的知识点为:可能性=所求情况数与总情况数之比.15.D【解析】【分析】红球的个数最多,那么摸到的机会最大;可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.【详解】解:∵一个布袋中共10个球,其中红球有9个,则P(摸到红球)=910,∴从中任意摸取一个球,摸到红球的概率是0.9,∴很大情况摸到红球,故选D.【点睛】本题考查了可能性大小的比较,掌握总情况数目相同:谁包含的情况数目多,谁的可能性就大,反之也成立;若包含的情况相当,那么它们的可能性就相等.【解析】【分析】根据每组数据=样本容量×该组频率,可求该组数据.【详解】依题意,得该组数据=80×0.2=16.故答案为:16.【点睛】本题考查了频率分布直方图.关键是熟悉求每组数据的公式.17.黄【解析】分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大.解:因为袋子中有4个红球、3个黄球和5个蓝球,从中任意摸出一个球,①为红球的概率是412=13;②为黄球的概率是312=14;③为蓝球的概率是512.可见摸出蓝球的概率大.18.(1),(2)(3)【解析】【分析】根据事件的分类判断,随机事件就是可能发生也可能不发生的事件,必然事件就是一定发生的事件,根据定义即可解决.【详解】(1)明天是晴天,无法确定是随机事件;(2)黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门,无法确定是随机事件;(3)某小组有13名同学,至少有2名同学的生日在同一个月,是确定事件是必然事件;(4)在标准大气压下,温度低于0℃时冰融化,是不可能事件,在这些事件中属于随机事件的有(1),(2);属于必然事件的有(3).故答案为:(1),(2);(3).本题考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.19.甲班【解析】考点:频数(率)分布直方图;扇形统计图.分析:从直方图可求出甲班80~90的人数,从扇形图求出乙班这个范围内的人数,从频数统计表可求出丙班的,从而可求出总人数.解答:解:甲班:60-3-7-12-18=20(人)乙班:60×(1-35%-10%-5%-20%)=18(人).丙班:17(人).所以最多的是甲班.点评:本题考查频数直方图,扇形图以及频数表的认知能力,关键知道直方图能够直接看出每组的人数,扇形图看出每部分占总体的百分比,频数表中频数就是每组的人数.20.30%【解析】【分析】根据频率频数数据总和=,计算成绩在80.5~90.5分之间的人数占总人数的百分比.【详解】成绩在80.5~90.5分之间的人数占总人数的百分比=18÷60=30%.故答案为30%.【点睛】本题考查了频率、频数的关系频率频数数据总和=.21.(1)(4)是不确定事件,(2)(3)是必然发生的事件.【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.(1)抛掷一个均匀的骰子,1,2,3,4,5,6点都有可能朝上,故6点不一定朝上;(2)一年有365(366)天,故367人中必然有2人的出生日期相同;(3)1+3>2,恒成立;(4)打开电视,有可能在播新闻,也有可能在播放广告等等.由以上分析知(1)(4)是不确定事件,(2)(3)是必然发生的事件.【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.22.(1)掷出“6”朝上的可能性有14;(2)3与6,4与2,1与5朝上的可能性一样大;(3)3,6朝上的面最多,因而可能性最大.【解析】【分析】(1)让“6”朝上的情况数除以总情况数即为所求的可能性;(2)看哪两个数字出现的情况数相同即可;(3)看哪个数字出现的情况最多即可.【详解】(1)标有“6”,的面有3个,因而掷出“6”朝上的可能性有1 4;(2)3与6,4与2,1与5朝上的可能性一样大;(3)3,6朝上的面最多,因而可能性最大.【点睛】用到的知识点为:可能性等于所求情况数与总情况数之比.可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.23.(1)小明同学共调查了50户居民的月均用水量;(2)补全频数分布表见解析表格;补全频数分布直方图见解析;(3)通过样本估计总体中的等用水量家庭大约有279户.【解析】【分析】(1)根据第一组的频数是2,百分比是4%即可求得总人数;(2)利用总户数50乘以6≤x<7的百分比可得其频数,再用总人数减去其余各组频数可得4≤x<5的频数及其频率;(3)用4≤x<5、5≤x<6、6≤x<7的频率之和乘以总人数可得答案.【详解】(1)调查的总数是:2÷0.04=50(户).答:小明同学共调查了50户居民的月均用水量;(2)因为共调查了50户,则6≤x<7部分调查的户数是:50×0.12=6(户),则4≤x<5的户数是:50﹣2﹣12﹣10﹣6﹣3﹣2=15(户),频率为:15÷50=0.3,补全频数分布表如下:月均用水量(单位:t)频数百分比2≤x<320.043≤x<4120.244≤x<5150.35≤x<6100.26≤x<760.127≤x<830.068≤x<920.04补全频数分布直方图如下:(3)中等用水量家庭大约有450×(0.30+0.20+0.12)=279(户).答:通过样本估计总体中的等用水量家庭大约有279户.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(1)20,200,40;(2)补全图形见解析;(3)24%.【解析】分析:(1)根据D类的人数是140,所占的比例是28%,即可求得总人数,然后根据百分比的意义求得c的值,同理求得A、B两类的总人数,则a的值即可求得:进而求得b的值;(2)根据(1)的结果即可作出;(3)根据百分比的定义即可求解.详解:(1)由图表可知,调查的总人数为140÷28%=500(人),∴b=500×40%=200,c=500×8%=40,则a=500-(100+200+140+40)=20,(2)补全图形如图所示.(3)由(1)可知20100500×100%=24%.答:估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比为24%.点睛:本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题25.(1)54;(2)补全频数分布直方图见解析;(3)在试卷评讲课中,“独立思考”的初二学生约有1800人.【解析】【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数,继而用360°乘以“主动质疑”的人数所占比例可得答案;(2)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(3)利用6000乘以对应的比例即可.【详解】(1)调查的总人数为224÷40%=560(人),∴项目“主动质疑”所在的扇形的圆心角的度数为360°84560⨯=54°.故答案为54;(2)选择“讲解题目”的人数为560﹣84﹣168﹣224=84(人),补全频数分布直方图如下:(3)168560⨯6000=1800(人).答:在试卷评讲课中,“独立思考”的初二学生约有1800人.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1)取到红球与白球的可能性相同;(2)取到红色木块与取到白色木块的可能性不相同,;(3)取到红色木块与取到白色木块的可能性相同.【解析】【分析】根据随机事件可能性大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的可能性大小.【详解】(1)取到红球与白球的可能性相同,因为红球与白球的个数相同;(2)取到红色木块与取到白色木块的可能性不相同,因为红色木块和白色木块的形状不同,人可以有意识地去取;(3)取到红色木块与取到白色木块的可能性相同,因为取木块的人事先不知道哪种形状是何种颜色.【点睛】本题考查了可能性大小的判断,解决这类题目要注意具体情况具体对待.可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.。
苏科版八年级数学下册 第八章《认识概率》单元测试卷(含答案)
初二第二学期数学第八章单元测试卷一、选择题:(本题共10小题,每小题3分,共30分)1.(2018•本溪)下列事件属于必然事件的是…………………………………………()A.经过有交通信号的路口,遇到红灯;B.任意买一张电影票,座位号是双号;C.向空中抛一枚硬币,不向地面掉落;D.三角形中,任意两边之和大于第三边;2.(2018•包头)下列事件中,属于不可能事件的是……………………………………()A.某个数的绝对值大于0;B.某个数的相反数等于它本身;C.任意一个五边形的外角和等于540°;D.长分别为3,4,6的三条线段能围成一个三角形;3.(2018•福建)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是……………………………………………………………………()A.两枚骰子向上一面的点数之和大于1;B.两枚骰子向上一面的点数之和等于1;C.两枚骰子向上一面的点数之和大于12;D.两枚骰子向上一面的点数之和等于12;4.一个不透明口袋中装有3个红球2个白球,除颜色外都相同,从中任意摸出一个球,下列叙述正确的是……………………………………………………………………………()A.摸到红球是必然事件; B.摸到白球是不可能事件;C.摸到红球的可能性比白球大; D.摸到白球的可能性比红球大;5.(2016•苏州)一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12、10、6、8,则第5组的频率是……………………………………………()A.0.1 B.0.2 C.0.3 D.0.46.(2017.兰州)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n 为…………………………()A.20 B.24 C.28 D.307.(2018.烟台)下列说法正确的是………………………………………………()A.367人中至少有2人生日相同;B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是13;C.天气预报说明天的降水概率为90%,则明天一定会下雨;D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖;8. (2018.南充)从一副扑克牌中任意抽取一张,下列事件发生的可能性最大的事件是………………()A.黑桃3;B.红桃;C.黑桃;D.红色;9.“六•一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据.下列说法不正确的A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70;B.假如你去转动转盘一次,获得铅笔的概率大约是0.70;C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次;D.转动转盘10次,一定有3次获得文具盒;10.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在黑色方格中的概率是…………()A.12;B.13;C.14;D.15;二、填空题:(本题共9小题,每小题3分,共27分)11.(2017•随州)“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).12.(2014•孝感)下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事件的是.(填序号)13.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出球的可能性最大.14.一只不透明的布袋中有三种小球(除颜色外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,记录颜色后均放回搅匀.在连续5次摸出的都是黑球的情况下,第6次摸出红球的概率是.15.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组牌中抽取一张,数字和是6的概率是_____.16.一个圆形转盘的半径为2cm,现将转盘分成若干个扇形,并分别相间涂上红、黄两种颜色.转盘转动10 000次,指针指向红色部分有2 500次.转盘上黄色部分的面积大约是cm2.17.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是 m2.18.(2017.营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是个.19.分别写有数字0,-3,-4,2,5的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是 .三、解答题:(43分)20.(本题满分6分)有个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个面标有“5”,其余面标有“6”,将这个骰子掷出后:(1)掷出“6”朝上的可能性有多大?(2)哪些数字朝上的可能性一样大?(3)哪些数字朝上的可能性最大?21. (本题满分6分)一个口袋中放有20个球,其中红球6个,白球和黑球各若干个,每个球除了颜色以外没有任何区别.(1)小王通过大量反复的实验(每次取一个球,放回搅匀后再取第二个)发现,取出黑球的频率稳定在14左右,请你估计袋中黑球的个数;(2)若小王取出的第一个球是白色,将它放在桌上,闭上眼睛从袋中余下的球中再任意取出一个球,取出红球的概率是多少?22. (本题满分5分)某儿童娱乐场有一种游戏,规则是:在一个装有6个红球和若干个白球(每个球除颜色外其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个奥运福娃玩具.已知参加这种游戏活动为40 000人次,公园游戏场发放的福娃玩具为10 000个.(1)求参加一次这种游戏活动得到福娃玩具的概率;(2)请你估计袋中白球接近的概率.23.(本题满分6分)某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计表,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率估计值为.(2)该地区已经移植这种树苗4万棵.①求这种树苗成活的大约棵数;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?24.(本题满分6分)研究问题:一个不透明的盒中装有若干个只有颜色不一样的红球与黄球,怎样估算不同颜色球的数量?操作方法:先从盒中摸出8个球,画上记号放回盒中,再进行摸球实验,摸球实验的要求:先搅拌均匀,每次摸出一个球,放回盒中,再继续.活动结果:摸球实验活动一共做了50次,统计结果如下表:推测计算:由上述的摸球实验可推算:(1)盒中红球、黄球各占总球数的百分比分别是多少?(2)盒中有红球多少个?无记号有记号球的颜色红色黄色红色黄色摸到的次数18 28 2 225.(本题满分6分)某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:(1)频数、频率分布表中a= ,b= ;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是 .26.(本题满分8分)(2017.株洲)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加,本次大赛首轮进行3×3阶魔方赛,组委会随机将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐;如图是3×3阶魔方赛A 区域30名爱好者完成时间统计图,求:①A 区域3×3阶魔方爱好者进入下一轮角逐的人数的比例(结果用最简分数表示).②若3×3阶魔方赛各个区域的情况大体一致,则根据A 区域的统计结果估计在3×3阶魔方赛后进入下一轮角逐的人数.③若3×3阶魔方赛A 区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的概率(结果用最简分数表示).(注意:要写出必要的解题过程)分组 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计 频数 2 a 20 16 4 50 频率 0.04 0.16 0.4 0.32 b 1参考答案一、选择题:1.D;2.C;3.D;4.C;5.A;6.D;7.A;8.D;9.D;10.B;二、填空题:11.随机;12.①③;13.蓝;14.0.2;15. 13;16. 3 ;17.1;18.15;19.0.6;三、解答题:20.(1)0.25;(2)1和5;2和4;3和6;(3)3和6;21.(1)5个;(2)619;22.0.25,0.25;23.0.9,0.9,16;24.(1)40%,60%,(2)40个;25.(1)8,0.08,(2)略;(3)0.25;26.(1)215;(2)80;(3)730;。
苏科版八年级下册数学第8章 认识概率含答案(有解析)
苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为()A. B. C. D.2、根据电视台天气预报:某市明天降雨的概率为80%,对此信息,下列几种说法中正确的是()A.该市明天一定会下雨B.该市明天有80%地区会降雨C.该市明天有80%的时间会降雨D.该市明天下雨的可能性很大3、下列说法正确的是()A.一个游戏的中奖概率是,则做5次这样的游戏一定会中奖.B.为了解深圳中学生的心理健康情况,应该采用普查的方式. C.事件“小明今=0.01,乙年中考数学考95分”是可能事件. D.若甲组数据的方差S 2甲组数据的方差S 2=0.1,则乙组数据更稳定.乙4、在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个5、“车辆随机到达一个路口,遇到红灯”这个事件是( )A.不可能事件B.不确定事件C.确定事件D.必然事件6、下列事件中是不可能事件的是( )A.任意画一个四边形,它的内角和是360°B.若,则C.一只不透明的袋子共装有3个小球,它们的标号分别为1、2、3,从中摸出一个小球,标号是“5”D.掷一枚质地均匀的硬币,落地时正面朝上7、下列事件中,必然事件是()A.打开电视,它正在播广告B.掷两枚质地均匀的正方体骰子,点数之和一定大于6C.早晨的太阳从东方升起D.没有水分,种子发芽8、下列事件中,属于确定事件的是()A.抛掷一枚质地均匀的骰子,正面向上的点数是6B.抛掷一枚质地均匀的骰子,正面向上的点数大于6C.抛掷一枚质地均匀的骰子,正面向上的点数小于6D.抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次9、如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材料表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个。
苏科版八年级数学下册第八章【 认识概率】单元测试卷(二)含答案与解析
C.从一副扑克牌中任意抽出一张,花色是红桃
D.任意选择电视的某一频道,正在播放新闻
12.下列事件中,是必然事件的()
A.抛出的篮球会下落;
B.一个射击运动员每次射击的命中环数是8环;
C.任意买一张电影票,座位号是2的倍数;
D.早上的太阳从四方升起;
2000
4000
7000
10000
12000
15000
发芽的粒数
421
868
1714
3456
6020
8580
10308
12915
发芽的频率
0.842
0.868
0.857
0.864
0.860
0.858
0.859
0.861
估计该种黄豆发芽的概率为______(精确到0.01).
16.一个口袋中有6个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,……,不断重复上述过程.小明共摸了100次,其中60次摸到白球.根据上述数据,小明可估计口袋中的白球大约有_________个.
A.摸出的是3个白球B.摸出的是3个黑球
C.摸出的球中至少有1个是黑球D.摸出的是2个白球、1个黑球
6.在数轴上任取一个比-5大比7小的实数 对应的点,则取到的点对应的实数 满足 的概率为()
A. B. C. D.
7.若一个口袋中装有 个红球和一个黑球,对于“从中摸出一个球是红球”这个事件,下列说法正确的是()
苏科版八年级数学下册第八章单元测试卷(二)
【单元卷】苏科版八年级数学下册:第8章 认识概率 单元质量检测卷(一)含答案与解析
苏科版八年级数学下册单元质量检测卷(一)第8章认识概率姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共27题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.若气象部门预报明天下雨的概率是70%,下列说法正确的是()A.明天下雨的可能性比较大B.明天一定不会下雨C.明天一定会下雨D.明天下雨的可能性比较小2.下列事件中,是随机事件的是()A.拔苗助长B.守株待兔C.水中捞月D.瓮中捉鳖3.下列说法正确的是()A.通常加热到100℃时,水沸腾是随机事件B.掷一次骰子,向上一面的点数是6是不可能事件C.任意画一个三角形,其内角和是360°是必然事件D.篮球队员在罚球线上投篮一次,未投中是随机事件4.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000186882168327823“射中九环以上”的次数“射中九环以0.900.850.820.840.820.82上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.845.在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是()A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场C.若这两个队打100场,他这个队会赢60场D.他这个队必赢6.下列关于事件发生可能性的表述,正确的是()A.“在地面向上抛石子后落在地上”是随机事件B.掷两枚硬币,朝上面是一正面一反面的概率为C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.彩票的中奖率为10%,则买100张彩票必有10张中奖7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和35%,则口袋中白色球的个数可能是()A.6个B.14个C.20个D.40个8.在利用正六面体骰子进行频率估计概率的实验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数是大于2的概率D.朝上的点数是3的倍数的概率9.某林业部门要考察某幼苗的成活率,于是进行了试验,如表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9050.8970.8970.902A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率10.某林业部门要考察某种幼树在一定条件下的移植成活率,实验结果统计如下:移植总数(n)50270400750150035007000900014000成活数(m)47235369662133532036335807312628成活频率()0.940.870.9230.8830.890.9150.9050.8970.902由此可以估计该种幼树移植成活的概率为()(结果保留小数点后两位)A.0.88B.0.89C.0.90D.0.92二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率稳定在.12.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为.(结果要求保留两位小数)13.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向颜色的可能性最小.14.某篮球运动员在同一条件下进行投篮训练,结果如下表:投篮总次数n1020501002005001000投中次数m8184286169424854投中的频率0.80.90.840.860.8450.8480.854根据上表,该运动员投中的概率大约是(结果精确到0.01).15.小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么(填“小李”或“小陈”)获胜的可能性较大.16.从谢家集到田家庵有3路,121路,26路三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从谢家集到田家庵的用时时间,在每条线路上随机选取了450个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:线路/用时的频数/用时40≤t≤4545<t≤5050<t≤55合计3路26016723450121路16016612445026路50122278450早高峰期间,乘坐(填“3路”,“121路”或“26路”)线路上的公交车,从谢家集到田家庵“用时不超过50分钟”的可能性最大.17.下列事件:①掷一枚质地均匀的硬币,正面朝上;②某彩票中奖率为,买100张一定会中奖;③13人中至少有2人的生日在同一个月.其中是必然事件的是.(填序号)18.某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:移植的棵数n3007001000500015000成活的棵数m280622912447513545成活的频率0.9330.8890.9120.8950.903根据表中的数据,估计这种树苗移植成活的概率为(精确到0.1);如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约万棵.三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.(1)从口袋中任意取出一个球,是一个白球;(2)从口袋中一次任取5个球,全是蓝球;(3)从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.20.用10个除颜色外完全相同的球设计一个摸球游戏.(1)使摸到红球的概率为1;(2)使摸到黑球的概率为,摸到红球的概率也为;(3)使摸到绿球的概率为,摸到红球概率为,摸到黑球的概率为.21.某学校初二年级进行“垃圾分类,从我做起”的垃圾分类知识竞赛活动,并对测试成绩进行了分组整理,各分数段的人数如图所示(满分100分).请观察统计图,填空并回答下列问题:(1)这个学校初二年级共有名学生;(2)成绩在分数段的人数最多、最集中,占全年级总人数的比值是.(3)若从该年级随意找出一名学生,他的测试成绩在分数段的可能性最小,可能性是.22.根据甲,乙两个事件发生的概率,解答下列相关问题:甲事件:在一个口袋中放入10个除颜色外形状大小都相同的球,其中9个红球,一个白球.则摸到白球的事件属于.A.必然事件;B.不可能事件;C.随机事件.乙事件:如图是一个被等分为6个扇形的转盘,2个扇形涂成红色,一个扇形涂成蓝色,其余三个扇形涂成白色,小颖和小琪想通过这个转盘做游戏,若转盘指针指到红色区域,则小颖贏;若转盘指针指到白色区域,则小琪赢,你认为这个游戏公平吗?并说明理由.23.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共5只.某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近;(2)试估计口袋中黑、白两种颜色的球各有多少只?(3)请画树状图或列表计算:从中先摸出一个球,不放回,再摸出一个球,这两只球颜色不同的概率是多少?24.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了下面两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次参与调查的共有人;在扇形统计图中,表示“微信”的扇形圆心角的度数为;其它沟通方式所占的百分比为.(2)将条形统计图补充完整;(3)如果我国有13亿人在使用手机.①请估计最喜欢用“微信”进行沟通的人数;②在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?25.为了了解学生毕业后就读普通高中或就读中等职业技术学校的意向,某校对八、九年级部分学生进行了一次调查,调查结果有三种情况:A.只愿意就读普通高中;B.只愿意就读中等职业技术学校;C.就读普通高中或中等职业技术学校都愿意.学校教务处将调查数据进行了整理,并绘制了尚不完整的统计图,如图,请根据相关信息,解答下列问题:(1)本次活动共调查了名学生.(2)补全图1,并求出图2中B区域的圆心角的度数;(3)若该校八、九年级学生共有2800名,请估计该校学生只愿意就读普通高中的概率.26.某中学为了解九年级学生对三大球类运动的喜爱情况,从九年级学生中随机抽取部分学生进行问卷调查,通过分析整理绘制了如图两幅统计图.请根据两幅统计图中的信息回答下列问题:(1)本次调查一共抽取了名九年级学生,其中“喜爱足球”所在的扇形圆心角度数为;(2)补全条形统计图;(3)若从喜爱足球运动的2名男生和2名女生中随机抽取2名学生,确定为该校足球运动员的重点培养对象,请用列表法或画树状图的方法求抽取的两名学生为一名男生和一名女生的概率.27.某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共调查了名学生;(2)补全条形统计图;(3)若该校共有1500名学生,估计爱好运动的学生有人;(4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.若气象部门预报明天下雨的概率是70%,下列说法正确的是()A.明天下雨的可能性比较大B.明天一定不会下雨C.明天一定会下雨D.明天下雨的可能性比较小【答案】A【分析】根据“概率”的意义进行判断即可.【解答】解:A.明天下雨的概率是70%,即明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项A符合题意,B.明天下雨的可能性比较大,与明天一定不会下雨是矛盾的,因此选项B不符合题意;C.明天下雨的可能性是70%,并不代表明天一定会下雨,因此选项C不符合题意;D.明天下雨的可能性是70%,也就是说明天下雨的可能性比较大,因此选项D不符合题意,故选:A.【知识点】随机事件、概率的意义2.下列事件中,是随机事件的是()A.拔苗助长B.守株待兔C.水中捞月D.瓮中捉鳖【答案】B【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、拔苗助长是不可能事件;B、守株待兔是随机事件;C、水中捞月是不可能事件;D、瓮中捉鳖是必然事件,故选:B.【知识点】随机事件3.下列说法正确的是()A.通常加热到100℃时,水沸腾是随机事件B.掷一次骰子,向上一面的点数是6是不可能事件C.任意画一个三角形,其内角和是360°是必然事件D.篮球队员在罚球线上投篮一次,未投中是随机事件【答案】D【分析】根据事件发生的可能性大小判断.【解答】解:A、通常加热到100℃时,水沸腾是必然事件,故本选项说法错误;B、掷一次骰子,向上一面的点数是6是随机事件,故本选项说法错误;C、任意画一个三角形,其内角和是360°是不可能事件,故本选项说法错误;D、篮球队员在罚球线上投篮一次,未投中是随机事件,本选项说法正确;故选:D.【知识点】随机事件、三角形内角和定理4.某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000 186882168327823“射中九环以上”的次数0.900.850.820.840.820.82“射中九环以上”的频率(结果保留两位小数)根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.84【答案】B【分析】根据大量的试验结果稳定在0.82左右即可得出结论.【解答】解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.【知识点】方差、利用频率估计概率5.在一次比赛前,教练预言说:“这场比赛我们队有60%的机会获胜”,则下列说法中与“有60%的机会获胜”的意思接近的是()A.他这个队赢的可能性较大B.若这两个队打10场,他这个队会赢6场C.若这两个队打100场,他这个队会赢60场D.他这个队必赢【答案】A【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【解答】解:A、根据概率的意义,正确;B、概率仅仅反映了这一事件发生的可能性的大小,若这两个队打10场,他这个队可能会赢6场,但不会是肯定的,所以错误;C、和B一样,所以错误;D、根据概率的意义,正确.故选:A.【知识点】概率的意义6.下列关于事件发生可能性的表述,正确的是()A.“在地面向上抛石子后落在地上”是随机事件B.掷两枚硬币,朝上面是一正面一反面的概率为C.在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D.彩票的中奖率为10%,则买100张彩票必有10张中奖【答案】C【分析】直接利用概率的意义以及概率求法和利用样本估计总体等知识分别分析得出答案.【解答】解:A、“在地面向上抛石子后落在地上”是必然事件,故此选项错误;B、掷两枚硬币,朝上面是一正面一反面的概率为:,故此选项错误;C、在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品,正确;D、彩票的中奖率为10%,则买100张彩票大约有10张中奖,故原说法错误.故选:C.【知识点】列表法与树状图法、用样本估计总体、随机事件、概率的意义7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在15%和35%,则口袋中白色球的个数可能是()A.6个B.14个C.20个D.40个【答案】C【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数,即可求出答案.【解答】解:∵摸到红色球、黑色球的频率稳定在15%和35%,∴摸到白球的频率为1﹣15%﹣35%=50%,故口袋中白色球的个数可能是40×50%=20(个).故选:C.【知识点】利用频率估计概率8.在利用正六面体骰子进行频率估计概率的实验中,小颖同学统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的试验可能是()A.朝上的点数是5的概率B.朝上的点数是奇数的概率C.朝上的点数是大于2的概率D.朝上的点数是3的倍数的概率【答案】D【分析】随机掷一个均匀正六面体骰子,每一个面朝上的概率为,约为16.67%,根据频率估计概率实验统计的频率,随着实验次数的增加,频率越稳定在35%左右,因此可以判断各选项.【解答】解:从统计图中可得该事件发生的可能性约在35%左右,A的概率为1÷6×100%≈16.67%,B的概率为3÷6×100%=50%,C的概率为4÷6×100%≈66.67%,D的概率为2÷6×100%≈33.33%,即朝上的点数是3的倍数的概率与之最接近,故选:D.【知识点】利用频率估计概率9.某林业部门要考察某幼苗的成活率,于是进行了试验,如表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400150035007000900014000成活数m369133532036335807312628成活的频率0.9230.8900.9050.8970.8970.902A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率【答案】B【分析】利用大量重复试验下事件发生的频率可以估计该事件发生的概率直接回答即可.【解答】解:A.由此估计这种幼苗在此条件下成活的概率约为0.9,此选项正确;B.如果在此条件下再移植这种幼苗20000株,则大约成活18000株,此选项错误;C.可以用试验次数累计最多时的频率作为概率的估计值,此选项正确;D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,此选项正确;故选:B.【知识点】利用频率估计概率10.某林业部门要考察某种幼树在一定条件下的移植成活率,实验结果统计如下:移植总数(n)50270400750150035007000900014000成活数(m)47235369662133532036335807312628成活频率()0.940.870.9230.8830.890.9150.9050.8970.902由此可以估计该种幼树移植成活的概率为()(结果保留小数点后两位)A.0.88B.0.89C.0.90D.0.92【答案】C【分析】概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【解答】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种幼树移植成活率的概率约为0.90,故选:C.【知识点】利用频率估计概率二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,请把答案直接填写在横线上)11.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率稳定在.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.【知识点】认识立体图形、利用频率估计概率12.技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为.(结果要求保留两位小数)【答案】0.99【分析】根据抽检某一产品2020件,发现产品合格的频率已达到0.9911,所以估计合格件数的概率为0.99,问题得解.【解答】解:∵抽检某一产品2020件,发现产品合格的频率已达到0.9911,∴依此我们可以估计该产品合格的概率为0.99,故答案为:0.99.【知识点】利用频率估计概率13.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向颜色的可能性最小.【答案】绿【分析】分别计算出指针指向红、黄、绿颜色的概率,然后利用概率的大小进行判断.【解答】解:转动一次转盘后,指针指向红色的概率==,指针指向黄色的概率==,指针指向绿色的概率=,所以转动一次转盘后,指针指向绿颜色的可能性最小.故答案为绿.【知识点】可能性的大小14.某篮球运动员在同一条件下进行投篮训练,结果如下表:投篮总次数n1020501002005001000投中次数m8184286169424854投中的频率0.80.90.840.860.8450.8480.854根据上表,该运动员投中的概率大约是(结果精确到0.01).【答案】0.85【分析】利用频率估计概率结合表格中数据得出答案即可;【解答】解:大量重复试验后投中的概率逐渐稳定到0.85左右,所以去投篮一次,投中的概率大约是0.85,故答案为:0.85.【知识点】利用频率估计概率15.小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么(填“小李”或“小陈”)获胜的可能性较大.【答案】小李【分析】画出树状图,共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,即可得出答案.【解答】解:画树状图如图:共有25个等可能的结果,两人出拳的手指数之和为偶数的结果有13个,则小李获胜的概率为,故小李获胜的可能性较大.故答案为:小李.【知识点】可能性的大小16.从谢家集到田家庵有3路,121路,26路三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从谢家集到田家庵的用时时间,在每条线路上随机选取了450个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:线路/用时的频数/用时40≤t≤4545<t≤5050<t≤55合计3路26016723450121路16016612445026路50122278450早高峰期间,乘坐(填“3路”,“121路”或“26路”)线路上的公交车,从谢家集到田家庵“用时不超过50分钟”的可能性最大.【答案】3【分析】只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;第二种:通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.【解答】解:3路从谢家集到田家庵“用时不超过50分钟”的概率,121路从谢家集到田家庵“用时不超过50分钟”的概率,26路从谢家集到田家庵“用时不超过50分钟”的概率,所以3路从谢家集到田家庵“用时不超过50分钟”的可能性最大.【知识点】可能性的大小、频数(率)分布表17.下列事件:①掷一枚质地均匀的硬币,正面朝上;②某彩票中奖率为,买100张一定会中奖;③13人中至少有2人的生日在同一个月.其中是必然事件的是.(填序号)【答案】③【分析】必然事件就是一定会发生的事件,依据定义即可判断.【解答】解:①掷一枚质地均匀的硬币,不一定正面朝上,有可能反面朝上,故不是必然事件;②某彩票中奖率为,则买100 张也不一定会中奖,故不是必然事件;③一年共有12个月,13 人中至少有2 人的生日在同一个月,是必然事件;故答案为:③.【知识点】随机事件、概率的意义18.某林业部门统计某种树苗在本地区一定条件下的移植成活率,结果如表:移植的棵数n3007001000500015000成活的棵数m280622912447513545成活的频率0.9330.8890.9120.8950.903根据表中的数据,估计这种树苗移植成活的概率为(精确到0.1);如果该地区计划成活4.5万棵幼树,那么需要移植这种幼树大约万棵.【答案】【第1空】0.9【第2空】5【分析】利用表格中数据估算这种幼树移植成活率的概率即可.然后用样本概率估计总体概率即可确定答案.【解答】解:由表格数据可得,随着样本数量不等增加,这种幼树移植成活率稳定的0.9左右,故这种幼树移植成活率的概率约为0.9.∵该地区计划成活4.5万棵幼树,∴那么需要移植这种幼树大约4.5÷0.9=5万棵故本题答案为:0.9;5.【知识点】利用频率估计概率、频数(率)分布表三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.在一个不透明的口袋中装着大小、外形等一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了.请判断以下事情是不确定事件、不可能事件,还是必然事件.(1)从口袋中任意取出一个球,是一个白球;(2)从口袋中一次任取5个球,全是蓝球;(3)从口袋中一次任意取出9个球,恰好红蓝白三种颜色的球都齐了.。
苏科版八年级下册数学第8章 认识概率 含答案完整版
苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、小明将分别标有爱我中华汉字的四个小球装在一个不透明的口袋中,这些球除汉字外都相同,每次摸球前先搅拌均匀,随机摸出一球记下汉字后放回,再随机摸出一球,两次摸出的球上的汉字能组成“中华”的概率是( )A. B. C. D.2、一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5B.m=n=4C.m+n=4D.m+n=83、小烈和小伟玩一种扑g版的游戏,若小烈手里有3张牌是K,小伟从小烈手中抽到K的概率为,则小烈手里共有扑g牌()A.4张B.9张C.12张D.15张4、一个盒子装有除颜色外其它均相同的2个红球和3个白球,现从中任取2个球,则取到的是一个红球、一个白球的概率为()A. B. C. D.5、盒子中装有2个红球和4个绿球,每个球除颜色外都相同,从盒子中任意摸出一个球,是绿球的概率是( )A. B. C. D.6、下列事件中,是随机事件的是()A.将石子抛入水中,石子会沉入水底B.傍晚的太阳从东方落下C.用长度为厘米厘米、厘米的三根小木棒(不能折断),首尾顺次相接可以搭成一个三角形D.打开电视机,正在播放篮球比赛7、下列说法正确的是()A.抛一枚硬币,正面一定朝上B.掷一颗骰子,朝上一面的点数一定不大于6C.为了解一种灯泡的使用寿命,宜采用普查的方法D.“明天的降水概率为80%”,表示明天会有80%的地方下雨8、四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为()A. B. C. D.19、下列说法中,正确的是()A.“打开电视,正在播放河南新闻节目”是必然事件B.某种彩票中奖概率为10%是指买十张一定有一张中奖C.神舟飞船发射前需要对零部件进行抽样调查D.了解某种节能灯的使用寿命适合抽样调查10、从﹣1,0,,π,中随机任取一数,取到无理数的概率是()A. B. C. D.11、从﹣2,0,1,2,3中任取一个数作为a,既要使关于x一元二次方程ax2+(2a﹣4)x+a﹣8=0有实数解,又要使关于x的分式方程=3有正数解,则符合条件的概率是()A. B. C. D.12、在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸”,若翻到“哭脸”就不获奖,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是()A. B. C. D.13、下列事件中,属于必然事件的是()A.任意购买一张电影票,座位号是奇数B.明天晚上会看到太阳C.五个人分成四组,这四组中有一组必有2人D.三天内一定会下雨14、在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率为()A. B. C. D.15、下列说法正确的是( )A.“概率为0.0001的事件”是不可能事件B.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次C.“任意画出一个等边三角形,它是轴对称图形”是随机事件D.“任意画出一个平行四边行,它是中心对称图形”是必然事件二、填空题(共10题,共计30分)16、袋中有4个红球,x个黄球,从中任摸一个恰为黄球的概率为,则x的值为________.17、下列事件:①掷一枚质地均匀的硬币,正面朝上;②某彩票中奖率为买100张一定会中奖;③13人中至少有2人的生日在同一个月.其中是必然事件的是________(填序号).18、如图1,有六张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图2摆放,从中任意翻开一张是汉字“成”的概率是________.19、如图,是某射手在相同条件下进行射击训练的结果统计图,该射手击中靶心的概率的估计值为________.20、袋子中装有除颜色外完全相同的n个黄色乒乓球和3个白色乒乓球,从中随机抽取1个,若选中白色乒乓球的概率是,则n的值是________.21、在4张完全相同的卡片上分别画上①、②、③、④。
苏科版八年级下册数学第8章 认识概率 含答案
苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、一只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A.m=3,n=5B.m=n=4C.m+n=4D.m+n=82、在一个不透明的布袋中装有红色.白色玻璃球共40个,除颜色外其他完全相同,小明通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有().A.34个B.30个C.10个D.6个3、从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是()A. B. C. D.4、一个不透明的袋中装有除颜色外均相同的5个红球和n个黄球,从中随机摸出一个,摸到红球的概率是,则n是()A.5B.8C.3D.135、下列说法中正确的是( )A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖率为,说明每买1 000张彩票,一定有一张中奖C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为 D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查6、天气预报称,明天长沙市全市的降水率为90%,下列理解正确的是()A.明天长沙市全市有90%的地方会下雨B.明天长沙市全市有90%的时间会下雨C.明天长沙市全市下雨的可能性较大D.明天长沙市一定会下雨7、下列判断正确的是( )A.“打开电视机,正在播斯诺g台球赛”是必然事件B.一组数据2,3,4,5,5,6的众数和中位数都是5C.“掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上 D.甲组数据的方差S甲2=0.01,则乙组数据比甲组稳定2=0.2,乙组数据的方差S乙8、下面四个实验中,实验结果概率最小的是( )A.如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B.如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C.如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D.有7张卡片,分别标有数字1,2,3,4,6,8,9,将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率9、下列说法中不正确的是()A.抛掷一枚质量均匀的硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉至少有两个球是必然事件C.为了呈现某个月的气温变化情况,应选择的统计图为扇形统计图D.从一副扑g牌中任意抽取1张,摸到的牌是“A”的可能性比摸到的牌是“红桃”可能性小10、下列说法正确的是()A.抛一枚硬币,正面一定朝上B.掷一颗骰子,朝上一面的点数一定不大于6C.为了解一种灯泡的使用寿命,宜采用普查的方法D.“明天的降水概率为80%”,表示明天会有80%的地方下雨11、下列事件是必然事件的是()A.瓶酒会爆B.在一段时间内汽车出现故障C.地球在自转D.下届世界杯在中国举行12、如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A. B. C. D.13、如图,已知点A,B,C,D,E,F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为()A. B. C. D.14、下列事件发生的概率为0的是()A.随意掷一枚均匀的硬币两次,至少有一次反面朝上B.今年冬天黑龙江会下雪C.随意掷两个均匀的骰子,朝上面的点数之和为1D.一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域15、下列说法正确的是()A.若甲、乙两组数据的平均数相同,S甲2=0.1,S乙2=0.04,则乙组数据较稳定 B.如果明天降水的概率是50%,那么明天有半天都在降雨 C.了解全国中学生的节水意识应选用普查方式 D.早上的太阳从西方升起是必然事件二、填空题(共10题,共计30分)16、一个不透明的袋子中装有若干个除颜色外均相同的小球,小明每次从袋子中摸出一个球,记录下颜色,然后放回,重复这样的试验1000次,记录结果如下:实验次数200 300 400 500 600 700 800 1000 摸到红球次数m151 221 289 358 429 497 568 701 摸到红球频率0.75 0.74 0.72 0.72 0.72 0.71 a b (1)表格中a=________ ,b=________;(2)估计从袋子中摸出一个球恰好是红球的概率约为________ ;(精确到0.1)17、从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是:________ 。
苏科版八年级下册数学《第8章认识概率》单元检测卷有答案
第8章认识概率单元检测卷姓名:__________ 班级:__________1. 在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.2.(2017•乌鲁木齐)下列说法正确的是()A. “经过有交通信号的路口,遇到红灯,”是必然事件B. 已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次C. 处于中间位置的数一定是中位数D. 方差越大数据的波动越大,方差越小数据的波动越小3. 下列事件是必然事件的是()A. 乘坐公共汽车恰好有空座 B. 同位角相等C. 打开手机就有未接电话 D. 三角形内角和等于180°4.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,英语题9个,她从中随机抽取1个,抽中数学题的概率是()A. B. C.D.5.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A. ①B.② C. ①②D. ①③6.在一个不透明的盒子中装有红、白两种除颜色外完全相同的球,其中有a个白球和3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A. 9B.12 C.15 D.187.如图的四个转盘中,转盘3,4被分成8等分,若让转盘自由转动一次停止后,指针落在阴影区域内可能性从大到小排列为()A. ①②④③B. ③②④①C. ③④②①D. ④③②①8.下列说法错误的是()A. 同时抛两枚普通正方体骰子,点数都是4的概率为B. 不可能事件发生机会为0C. 买一张彩票会中奖是可能事件 D. 一件事发生机会为1.0%,这件事就有可能发生9.分别写有数字 0,-3,-4,2,5 的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到非负数的概率是( )A.B.C.D.10.一个口袋里有5个红球,5个黄球,每个球除颜色外都相同,任意摸1个,则下列说法正确的是()A. 只摸到1个红球B. 一定摸到1个黄球C. 可能摸到1个黑球D. 不可能摸到1个白球11.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是( )A. 至少有1个球是红球B. 至少有1个球是白球C. 至少有2个球是红球D. 至少有2个球是白球12.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A. 能够事先确定抽取的扑克牌的花色B. 抽到黑桃的可能性更大C. 抽到黑桃和抽到红桃的可能性一样大D. 抽到红桃的可能性更大二、填空题(共10题;共30分)13. “抛掷一枚质地均匀的硬币,正面向上”是________事件(从“必然”、“随机”、“不可能”中选一个).14. 现有五张正面图形分别是平行四边形、圆、等边三角形、正五边形、菱形的卡片,它们除正面图形不同,其它完全相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,卡片的正面图形既是中心对称图形又是轴对称图形的概率是________.15. 袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有________个.16.一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到________球的可能性最大17.在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是________18.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性 ________摸出黄球可能性.(填“等于”或“小于”或“大于”).19.有5张纸签,分别标有数字-1,0,-0.5,1,2,从中随机的抽取一张,则抽到标有的数字为正数的纸签的概率是________.20.任意翻一下2016年的日历,翻出1月6日是________事件,翻出4月31日是________事件.(填“确定”或“不确定”)21. 黔东南下司“蓝每谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为800kg,由此估计该果农今年的“优质蓝莓”产量约是________ kg.22.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球________个.三、解答题(共4题;共34分)23.下面第一排表示了十张扑克牌中不同情况,任意摸一张,请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.24.某人的钱包内有10元钱、20元钱和50元钱的纸币各1张,从中随机取出2张纸币.(1)求取出纸币的总额是30元的概率;(2)求取出纸币的总额可购买一件51元的商品的概率.25.下表记录了一名球员在罚球线上投篮的结果,(2)这名球员投篮一次,投中的概率约是多少(精确到0.1)?26.小颖和小红两位同学在做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:(2)小颖说:“根据实验得出,出现5点朝上的机会最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?参考答案一、选择题B D D A B B A ACD B B二、填空题13. 随机 14. 15. 3 16. 红17. 10 18. 小于 19.20. 不确定;确定 21. 560 22. 20三、解答题23. 解:.24. (1)解:取出纸币的总数是30元(记为事件A)的结果有1种,即(10,20),所以. (2)解:取出纸币的总额可购买一件51元的商品(记为事件B)的结果有2种,即(10,50)、(20,50)。
2018年苏教版八年级数学下册《第八章认识概率》单元测试卷含答案
2018年苏教版⼋年级数学下册《第⼋章认识概率》单元测试卷含答案第8章认识概率单元测试⼀、选择题1.下列判断正确的是( )A. “打开电视机,正在播百家讲坛”是必然事件B. “在标准⼤⽓压下,⽔加热到100℃会沸腾”是必然事件C. ⼀组数据2,3,4,5,5,6的众数和中位数都是5D. “篮球运动员在罚球线上投篮⼀次,未投中”是不可能事件2.袋⼦内有3个红球和2个蓝球,它们只有颜⾊上的区别,从袋⼦中随机地取出⼀个球,取出红球的概率是()A. B. C. D.3.某校组织九年级学⽣参加中考体育测试,共租3辆客车,分别编号为1、2、3,李军和赵娟两⼈可任选⼀辆车乘坐,则两⼈同坐2号车的概率为A. B. C. D.4.在⼀个不透明的布袋中,红球、⿊球、⽩球共有若⼲个,除颜⾊外,形状、⼤⼩、质地等完全相同,⼩新从布袋中随机摸出⼀球,记下颜⾊后放回布袋中,摇匀后再随机摸出⼀球,记下颜⾊,…如此⼤量摸球实验后,⼩新发现其中摸出红球的频率稳定于20%,摸出⿊球的频率稳定于50%,对此实验,他总结出下列结论:①若进⾏⼤量摸球实验,摸出⽩球的频率稳定于30%,②若从布袋中任意摸出⼀个球,该球是⿊球的概率最⼤;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )A. ①②③B. ①②C. ①③D. ②③5.如图,⼀个圆形转盘被分成了6个圆⼼⾓都为60°的扇形,任意转动这个转盘⼀次,当转盘停⽌转动时,指针指向阴影区域的概率是( )A. 1B. 0C. 12D. 136.下列说法错误的是( )A. 必然事件发⽣的概率为1B. 不确定事件发⽣的概率为0.5C. 不可能事件发⽣的概率为0D. 随机事件发⽣的概率介于0和1之间7.在做“抛掷⼀枚质地均匀的硬币”试验时,下列说法正确的是( )A. 随着抛掷次数的增加,正⾯向上的频率越来越⼩B. 当抛掷的次数n很⼤时,正⾯向上的次数⼀定为n2C. 不同次数的试验,正⾯向上的频率可能会不相同D. 连续抛掷5次硬币都是正⾯向上,第6次抛掷出现正⾯向上的概率⼩于128.⼀个不透明的盒⼦中装有3个红球,2个黄球和1个绿球,这些球除了颜⾊外⽆其他差别,从中随机摸出⼀个⼩球,恰好是黄球的概率为()A. B. C. D.9.下列事件中,是确定性事件的是( )A. 买⼀张电影票,座位号是奇数B. 射击运动员射击⼀次,命中10环C. 明天会下⾬D. 度量三⾓形的内⾓和,结果是360°⼆、填空题10.写出⼀个不可能事件______ .11.⼀个不透明的⼝袋⾥装有若⼲除颜⾊外其他完全相同的⼩球,其中有6个黄球,将⼝袋中的球摇匀,从中任意摸出⼀个球记下颜⾊后再放回,通过⼤量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计⼝袋中共有⼩球______ 个.12.下列事件:①过三⾓形的三个顶点可以作⼀个圆;②检验员从被检查的产品中抽取⼀件,就是合格品;③度量五边形的内⾓和,结果是540°;④测得某天的最⾼⽓温是100℃;⑤掷⼀枚骰⼦,向上⼀⾯的数字是3,其中必然事件的有______ ,随机事件的有______ .(只填序号)13.如图,⼩明和⼩丁做游戏,分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,⼩明得2分,当所转到的数字之积为偶数时,⼩丁得1分,这个游戏公平吗?______ .。
苏科版八年级下册数学第8章 认识概率 含答案
苏科版八年级下册数学第8章认识概率含答案一、单选题(共15题,共计45分)1、一个不透明的口袋中放着若干个红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,从口袋中随机取出一个球,取出红球的概率是.如果袋中共有32个小球,那么袋中的红球有()A.4个B.6个C.8个D.10个2、下列说法正确的是( )A.“明天的降水概率为 80%”,意味着明天有 80%的时间降雨B.掷一枚质地均匀的骰子,“点数为奇数”与“点数为偶数”的可能性相等C.“某彩票中奖概率是 1%”,表示买 100 张这种彩票一定会中奖D.小明上次的体育测试成绩是“优秀”,这次测试成绩一定也是“优秀”3、做重复实验同一枚啤酒瓶盖1000次.经过统计得“凸面向上”的频率0.48,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()A.0.24B.0.48C.0.50D.0.524、如图,在4张背面完全相同的卡片上分别印有不同的图案.现将印有图案的一面朝下洗匀后,从中随机抽取一张,则抽出的卡片正面图案是中心对称图形的概率是()A. B. C. D.15、下列事件中,是必然事件的是()A.随意翻到一本书的某页,这页的页码是奇数B.明天一定是晴天C.通常温度降到0℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心6、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.“x 2<0(x是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上 D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查7、一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为()A. B. C. D.8、下列事件中,是随机事件的是()A.成都市的人口比青神县的人口多B.任何一个有理数的平方都不小于零 C.从装有30个红球的袋中,随机抽出3个球都是黄色 D.从装有10个黄球,4个白球的袋中,随机抽出两个球,一个是黄球,一个是白球9、甲、乙两盒中各放入分别写有数字1,2,3的三张卡片,每张卡片除数字外其他完全相同.从甲盒中随机抽出一张卡片,再从乙盒中随机摸出一张卡片,摸出的两张卡片上的数字之和是3的概率是A. B. C. D.10、关于概率,下列说法正确的是()A.某地“明天降雨的概率是90%”表明明天该地有90%的时间会下雨; B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月; C.“打开电视,正在播放新闻节目”是不可能事件; D.经过有交通信号灯的路口,一定遇到红灯.11、下列说法正确的是()A.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件 B.审查书稿中有哪些学科性不符合题意适合用抽样调查法 C.甲乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是=0.4,=0.6,则甲的射击成绩较稳定 D.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为12、下列说法正确的是()A.“打开电视机,正在播放体育节目”是必然事件B.了解夏季冷饮市场上冰淇淋的质量情况适合用普查C.抛掷一枚普通硬币,“这枚硬币正面朝上”,这一事件发生的概率为D.甲、乙两人在相同条件下各射击10次,他们的成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.5,则乙的射击成绩较稳定13、下列事件中,是随机事件的是()A.任意画一个三角形,其内角和是360°B.任意抛一枚图钉,钉尖着地 C.在一个标准大气压下加热到时,水沸腾 D.太阳从东方升起14、在不透明的布袋中装有2个白球,3个黑球,它们除颜色外完全相同,从袋中任意摸出一个球,摸出的球是白球的概率是()A. B. C. D.15、下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.“等腰三角形的一个角是80度,则它的顶角是80度”是必然事件C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“是有理数,”是不可能事件二、填空题(共10题,共计30分)16、从一副扑g牌里任意抽取一张,抽到“王”(“大王”或“小王”)的概率是________.17、有一个只放满形状大小都一样的白色小球的不透明盒子,小刚想知道盒内有多少白球,于是小刚向这个盒中放了8个黑球(黑球的形状大小与白球一样),摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球________.18、有四张不透明卡片,分别写有实数,﹣1,,,除正面的数不同外其余都相同,将它们背面朝上洗匀后,从中任取一张卡片,取到的数是无理数的可能性大小是________19、从,,这三个数字中,随机抽取一个数,记为,那么使关于的一次函数y=2x+a的图象与轴、轴围成的三角形的面积为1的概率为________.20、某种油菜籽在相同条件下的发芽试验结果如下:每批粒数n 100 300 400 600 1000 2020 3000 发芽的频数m 96 283 344 552 948 1912 2848 发芽的频率0.96 0.94 0.86 0.92 0.95 0.95 0.95由此可以估计油菜籽发芽的概率约为________ (精确到0.01),其依据是________21、实验中学举行中国古诗词大赛,四道题分别是①锄禾日当午;②春眠不觉晓;③白日依山尽;④床前明月光.要求甲乙两选手任选一道题在自己的答题板上写出下一句,他们选取的诗句恰好相同的概率是________.22、下列4个事件:①异号两数相加,和为负数;②异号两数相减,差为正数;③异号两数相除,商为负数;④异号两数相乘,积为正数.必然事件是________.(将事件的序号填上即可)23、在,,,,中任意取一个数,取到无理数的概率是________.24、一个不透明的口袋中有5个完全相同的小球,把它们分别标号为1,2,3,4,5,随机提取一个小球,则取出的小球标号是奇数的概率是________.25、我市博览馆有A,B,C三个入口和D,E两个出口,小明入馆游览,他从A 口进E口出的概率是________.三、解答题(共6题,共计25分)26、某彩民在上期的体彩中,一次买了100注,结果有一注中了二等奖,三注中了四等奖,该彩民高兴地说:“这期彩票的中奖率真高,竟高达4%”.请对这一事件做简单的评述.27、某批乒乓球的质量检验结果如下:抽取的乒乓球数n 200 500 1000 1500 2000优等品频数m 188 471 946 1426 1898优等品频率0.940 0.942 0.946 0.951 0.949(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?28、在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.29、给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰予的质量.30、掷一枚骰子1点朝上和4点朝上的可能性哪个大?参考答案一、单选题(共15题,共计45分)1、C2、B4、B5、C6、C7、C8、D9、B10、B11、C12、C13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共6题,共计25分)26、29、30、。
苏科版数学八年级下册第8章认识概率单元测试题(含答案)
苏科版数学八年级下册第8章认识概率单元测试题(含答案)一、选择题1.下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上2.[不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是()A.3个球都是黑球B.3个球都是白球C.3个球中有黑球D.3个球中有白球3.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于124.在一个不透明的布袋中装有红、白两种颜色的小球,它们除颜色外没有其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A.4个B.5个C.不足4个D.6个或6个以上5.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件6.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.1200二、填空题(每小题4分,共24分)7.袋中有4个白球和2个红球,这些球除颜色不同外其他完全相同,将袋中的球搅拌均匀后,小强同学闭上眼睛随机从袋中取出3个球,这3个球都是球是可能发生的,都是球是不可能发生的.(填“白”或“红”)8.根据天气预报,明天降水的概率为20%,后天降水的概率为80%,假如你准备明天或后天去放风筝,你选择为佳.(填“明天”或“后天”)9.在一个不透明的口袋里装有2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件:.10.在一个不透明的口袋中,装有除颜色不同外无其他差别的白球和黄球.某同学进行了如下试验:从袋中随机摸出一个球记下它的颜色,放回摇匀,为一次摸球试验.记录摸球的次数与摸出白球的次数列表如下:摸球的次数100 200 500 1000摸出白球的次数21 39 102 199根据上表可以估计摸出白球的概率为.11.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.12.如图2,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2 m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积是m2.图2三、解答题(共52分)13.(9分)按下列要求各举一例:(1)一个发生可能性为0的不可能事件;(2)一个发生可能性为100%的必然事件;(3)一个发生可能性大于50%的随机事件.14.(9分)有一个转盘(如图3所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.思考各事件的可能性大小,然后回答下列问题:(1)可能性最大和最小的事件分别是哪个?(用序号表示)(2)将这些事件的序号按发生的可能性从小到大的顺序排列.图315.(9分)对某工厂生产的直径为38 mm的乒乓球进行产品质量检测,结果如下:抽取球数n50 100 500 1000 5000优等品的频数m45 92 455 890 4500优等品的频率(1)填写表中的空格;(2)估计该厂生产的乒乓球“优等品”的概率.16.(12分)在不透明的袋中装有只有颜色不同的8个小球,其中红球3个,黑球5个.(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将“摸出黑球”记为事件A.请完成下列表格:事件A必然事件随机事件m的值(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出一个球是黑球的概率是,求m的值.17.(13分)某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图4所示的统计图,根据统计图提供的信息解决下列问题:(1)这种树苗成活的频率稳定在,成活的概率的估计值为.(2)该地区已经移植这种树苗5万棵.①估计这种树苗成活万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?图4答案1. B2. B3. D4. D5. C6. C7.白红8.明天9.答案不唯一.摸1个球是白球10. 0.19911. 512. 113.解:答案不唯一.(1)一个发生可能性为0的不可能事件:在一个装着白球和黑球的袋中摸球,摸出红球.(2)一个发生可能性为100%的必然事件:抛掷一块石头,石头终将落地.(3)一个发生可能性大于50%的随机事件:在一个装着10个白球和1个黑球的袋中摸球,摸出白球.14.解:(1)可能性最大的事件是④,可能性最小的事件是②.(2)由题意得②<③<①<④.15.解:(1)0.900.920.910.890.90(2)估计该厂生产的乒乓球“优等品”的概率是0.9.16.解:(1)从袋中取出3个红球,再从袋中随机摸出1个球,“摸出黑球”是必然事件;从袋中取出2个红球,再从袋中随机摸出1个球,“摸出黑球”是随机事件.故答案为3,2.(2)由题意得=,解得m=1.故m的值为1.17.解:(1)0.90.9(2)①4.5②18÷0.9-5=15(万棵).答:该地区还需移植这种树苗约15万棵.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章认识概率单元测试
一、选择题
1.下列判断正确的是( )
A. “打开电视机,正在播百家讲坛”是必然事件
B. “在标准大气压下,水加热到100℃会沸腾”是必然事件
C. 一组数据2,3,4,5,5,6的众数和中位数都是5
D. “篮球运动员在罚球线上投篮一次,未投中”是不可能事件
2.袋子内有3个红球和2个蓝球,它们只有颜色上的区别,从袋子中随机地取出一个
球,取出红球的概率是()
A. B. C. D.
3.某校组织九年级学生参加中考体育测试,共租3辆客车,分别编号为1、2、3,李
军和赵娟两人可任选一辆车乘坐,则两人同坐2号车的概率为
A. B. C. D.
4.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、
质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( )
A. ①②③
B. ①②
C. ①③
D. ②③
5.如图,一个圆形转盘被分成了6个圆心角都为60∘的扇形,任意
转动这个转盘一次,当转盘停止转动时,指针指向阴影区域的概
率是( )
A. 1
B. 0
C. 1
2
D. 1
3
6.下列说法错误的是( )
A. 必然事件发生的概率为1
B. 不确定事件发生的概率为0.5
C. 不可能事件发生的概率为0
D. 随机事件发生的概率介于0和1之间
7.在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )
A. 随着抛掷次数的增加,正面向上的频率越来越小
B. 当抛掷的次数n很大时,正面向上的次数一定为n
2
C. 不同次数的试验,正面向上的频率可能会不相同
D. 连续抛掷5次硬币都是正面向上,第6次抛掷出现正面向上的概率小于1
2
8.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其
他差别,从中随机摸出一个小球,恰好是黄球的概率为()
A. B. C. D.
9.下列事件中,是确定性事件的是( )
A. 买一张电影票,座位号是奇数
B. 射击运动员射击一次,命中10环
C. 明天会下雨
D. 度量三角形的内角和,结果是360∘
二、填空题
10.写出一个不可能事件______ .
11.一个不透明的口袋里装有若干除颜色外其他完全相同的小球,其中有6个黄球,将
口袋中的球摇匀,从中任意摸出一个球记下颜色后再放回,通过大量重复上述实验后发现,摸到黄球的频率稳定在30%,由此估计口袋中共有小球______ 个.
12.下列事件:
①过三角形的三个顶点可以作一个圆;
②检验员从被检查的产品中抽取一件,就是合格品;
③度量五边形的内角和,结果是540∘;
④测得某天的最高气温是100℃;
⑤掷一枚骰子,向上一面的数字是3,
其中必然事件的有______ ,随机事件的有______ .(只填序号)
13.如图,小明和小丁做游戏,分别旋转两个转盘,当两个转盘所转到的数字之积为奇
数时,小明得2分,当所转到的数字之积为偶数时,小丁得1分,这个游戏公平吗?
______ .
三、解答题
14.有一个渔具包,包内装有A,B两只鱼竿,长度分别为3.6m,4.5m,包内还装有绑
好鱼钩的a1,a2,b三根钓鱼线,长度分别为3.6m,3.6m,4.5m.若从包内随即取出一支鱼竿,再随即取出一根钓鱼线,则鱼竿和鱼钩线长度相同的概率是多少?(请画树状图或列表说明)
15.甲、乙两人玩“石头、剪子、布”游戏,游戏规则为:
双方都做出“石头”、“剪子”、“布”三种手势(如
图)中的一种,规定“石头”胜“剪子”,“剪子”胜“布”,“布”胜“石头”,手势相同,不分胜负.若甲、乙两人都随意做出三种手势中的一种,则两人一次性分出胜负的概率是多少?请用列表或画树状图的方法加以说明.
16.小明骑自行车从家去学校,途经装有红、绿灯的三个路口.假设他在每个路口遇到
,则小明经过这三个路口时,恰有一次遇到红灯的概率是红灯和绿灯的概率均为1
2
多少?请用树状图的方法加以说明.
17.一枚普通的正方体骰子,每个面上分别标有1,2,3,4,5,6,在抛掷一枚普通
的正方体骰子的过程中,请用语言描述:
(1)一件不可能事件:______
(2)一件必然事件:______
(3)一件不确定事件:______ .
18.在一个不透明的盒子中装有涂颜色不同的8个小球,其中红球3个,黑球5个.
(1)先从袋中取出m(m>1)个红球,再从袋中随机摸出1个球,将“摸出黑球”记
为事件A.请完成下列表格:
(2)先从袋中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出一个球是黑
,求m的值.
球的概率是3
4
【答案】
1. B
2. C
3. A
4. B
5. C
6. B
7. C
8. B
9. D
10. 明天是三十二号
11. 20
12. ①③;②⑤
13. 公平
14. 解:画树状图得:
∵共有6种等可能的结果,鱼竿和鱼钩线长度相同的有:(A,a1),(A,a2),(B,b),
∴鱼竿和鱼钩线长度相同的概率是:3
6=1
2
.
15. 解:根据题意,有
分析可得,共9种情况,两人一次性分出胜负的有6种;故其概率为2
3
.
答:两人一次性分出胜负的概率是2
3
.
16. 解:树状图如下:
∴P(1次红灯,2次绿灯)=3
8
,
答:恰有一次红灯的概率是3
8
.
17. 如出现数字7朝上;如出现朝上的点数小于7;如出现朝上的点数为5
18. 3;2。