专题4 一元函数导数及其应用(含答案解析)
专题04 一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)试题含解析

专题04一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)目录①构造()()n F x x f x =或()()n f x F x x =(n Z ∈,且0n ≠)型........................1②构造()()nx F x e f x =或()()nx f x F x e=(n Z ∈,且0n ≠)型.......................2③构造()()sin F x f x x =或()()sin f x F x x=型....................................3④构造()()cos F x f x x =或()()cos f x F x x =型 (4)⑤根据不等式(求解目标)构造具体函数 (5)①构造()()n F x x f x =或()()n f x F x x =(n Z ∈,且0n ≠)型②构造()()nx F x e f x =或()()nx f x F x e =(n Z ∈,且0n ≠)型1.(2023春·安徽合肥·高二合肥工业大学附属中学校联考期末)设函数()f x 的定义域为R ,其导函数为()f x ',且满足()()1f x f x >'+,()02023f =,则不等式()e e 2022x x f x -->+(其中e 为自然对数的底数)的解集是()③构造()()sin F x f x x =或()()sin f x F x x =型④构造()()cos F x f x x =或()()cos f x F x x =型⑤根据不等式(求解目标)构造具体函数1.(2023·江苏南京·统考二模)已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若对任意x ∈R 有()1f x '>,()()110f x f x ++-=,且()02f =-,则不等式()11f x x ->-的解集为()A .()0,∞+B .()1,+∞C .()2,+∞D .()3,+∞专题04一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)目录①构造()()n F x x f x =或()()n f x F x x =(n Z ∈,且0n ≠)型........................1②构造()()nx F x e f x =或()()nx f x F x e=(n Z ∈,且0n ≠)型.......................6③构造()()sin F x f x x =或()()sin f x F x x=型....................................9④构造()()cos F x f x x =或()()cos f x F x x =型..................................13⑤根据不等式(求解目标)构造具体函数 (17)①构造()()n F x x f x =或()()n f x F x x =(n Z ∈,且0n ≠)型②构造()()nxF x e f x =或()()nx f x F x e =(n Z ∈,且0n ≠)型则函数()g x 为增函数,且(1)e (1)2e g f =⋅=,则不等式e ()2e x f x >即为()()1g x g >,所以1x >.故答案为:()1,+∞③构造()()sin F x f x x =或()()sin f x F x x =型④构造()()cos F x f x x =或()()cos f x F x x =型⑤根据不等式(求解目标)构造具体函数。
2025年高考数学一轮复习-一元函数的导数及其应用(能力提升卷)【含答案】

一元函数的导数及其应用(能力提升卷)题号123456789101112答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数f(x)=(x2+x+1)e x,则f(x)的图象在点(0,f(0))处的切线方程为()A.x+y+1=0B.x-y+1=0C.2x+y+1=0D.2x-y+1=02.已知函数f(x)=16x3-12ax2-bx(a>0,b>0)的一个极值点为1,则ab的最大值为()A.1B.12C.14D.1163.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和莱布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:f(x)=c+a cosh xa =c+a·e xa+e-xa2(e为自然对数的底数).当c=0,a=1时,记p=f(-1),m=n=f(2),则p,m,n的大小关系为()A.p<m<nB.n<m<pC.m<p<nD.m<n<p4.已知函数f (x )=ax +ln x -1有且仅有一个零点,则实数a 的取值范围为()A.(-∞,0]∪{1}B.[0,1]C.(-∞,0]∪{2}D.[0,2]5.已知f (x )是定义在R 上的可导函数,若在R 上有f (x )>f ′(x )恒成立,且f (1)=e(e 为自然对数的底数),则下列结论正确的是()A.f (0)=1B.f (0)<1C.f (2)<e 2D.f (2)>e 26.设0<x <1,则a =e xx ,b ,c =e x2x2的大小关系是()A.a <b <cB.a <c <bC.c <a <bD.b <a <c7.若∀a ,b ,c ∈D ,g (a ),g (b ),g (c )可以作为一个三角形的三条边长,则称函数g (x )是区间D 上的“稳定函数”.已知函数f (x )=ln x x +m 是区间1e 2,e 2上的“稳定函数”,则实数m 的取值范围为()+1e ,+2+1e ,++1e,+2+1e,+8.已知函数f (x )=ln x -m 与g (x )=-x 2+73x 的图象在区间[1,3]上存在关于x 轴对称的点,则实数m 的取值范围是()A.ln 3-2,ln32+54B.ln 3-2,43C.43,ln 32+54D.54,43二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知e是自然对数的底数,则下列不等关系中不正确的是()A.ln2>2e B.ln3<3eC.lnπ>πe D.ln3lnπ<3π10.已知函数f(x)=x3-3x2+3,则下列选项正确的是()A.函数y=f(x)的图象在点(1,f(1))处的切线方程为3x+y-4=0B.函数y=f(x)有3个零点C.函数y=f(x)在x=2处取得极大值D.函数y=f(x)的图象关于点(1,1)对称11.已知函数f(x)=x4+ax2+ax+1(a≠0),则()A.存在a使得f(x)恰有三个单调区间B.f(x)有最小值C.存在a使得f(x)有小于0的极值点D.当x1<0<x2,且x1+x2>0时,f(x1)<f(x2)12.已知函数f(x)=ln xx,则()A.f(2)>f(5)B.若f(x)=m有两个不相等的实根x1,x2,则x1x2<e2C.ln2>2eD.若2x=3y,x,y均为正数,则2x>3y三、填空题:本题共4小题,每小题5分,共20分.13.若函数f(x)=13x3-a2x2+(3-a)x+b有三个不同的单调区间,则实数a的取值范围是________.14.已知函数f(x)=x2+2x+a,g(x)=ln x-2x,如果存在x1∈12,2,使得对任意的x2∈12,2,都有f(x1)≤g(x2)成立,则实数a的取值范围是________.15.定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新驻点”.若函数g(x)=12x,h(x)=ln2x,φ(x)=sin x(0<x<π)的“新驻点”分别为α,β,γ,则α,β,γ的大小关系为________.16.已知函数f(x)的定义域为(0,+∞),其导函数为f′(x),且满足f(x)>0,f(x)+f′(x)<0,若0<x1<1<x2,且x1x2=1.给出以下不等式:①f(x1)>e x2-x1f(x2);②x1f(x2)<x2f(x1);③x1f(x1)>x2f(x2);④f(x2)>(1-x1)f(x1).其中正确的有________(填写所有正确的不等式的序号).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-43.(1)求函数f(x)的解析式;(2)若方程f(x)=k有3个不同的根,求实数k的取值范围.18.(12分)已知函数f(x)(x+1)e x,x≤0,2-ax+12,x>0.(1)若a=2,求f(x)的最小值;(2)若f(x)恰好有三个零点,求实数a的取值范围.19.(12分)已知函数f(x)=e x-a(x-1)+2(a∈R).(1)讨论函数f(x)的单调性;(2)若x∈[a,+∞),不等式f(x)≥3恒成立,求实数a的取值范围.20.(12分)已知函数f(x)=(x-b)e x-a(x-b+1)2(a>0,b∈R,e为自然对数的底2数).(1)若b=2,讨论f(x)的单调性;(2)若f(x)在R上单调递增,求证:e a-1≥b.+a2x+a ln x,x∈(0,10).21.(12分)已知实数a>0,函数f(x)=2x(1)讨论函数f(x)的单调性;(2)若x=1是函数f(x)的极值点,曲线y=f(x)在点P(x1,f(x1)),Q(x2,f(x2))(x1<x2)处的切线分别为l1,l2,且l1,l2在y轴上的截距分别为b1,b2.若l1∥l2,求b1-b2的取值范围.22.(12分)已知函数f (x )=x e x -a ln x -e(a ∈R ).(1)当a =2e 时,不等式f (x )≥mx -m 在[1,+∞)上恒成立,求实数m 的取值范围;(2)若a >0时,f (x )的最小值为g (a ),求g (a )的最大值以及此时a 的值.参考答案1.D[因为f (x )=(x 2+x +1)e x ,所以f ′(x )=(x 2+3x +2)e x ,f (0)=1,f ′(0)=2,则f (x )的图象在点(0,f (0))处的切线方程为y -1=2(x -0),即2x -y +1=0,故选D.]2.D[由题意,得f ′(x )=12x 2-ax -b .因为1是函数f (x )的一个极值点,所以f ′(1)12-a -b =0,所以a +b =12,所以ab =116,当且仅当a =b =14时等号成立,所以ab 116,故选D.]3.C[由题意知,当c =0,a =1时,f (x )=e -x +e x2,f ′(x )=-e -x +e x 2=e 2x -12e x,当x >0时,f ′(x )>0,即函数f (x )在区间(0,+∞)上单调递增,f (-1)=e -1+e 2=f (1),∵0<12<1<2,∴f (1)<f (2),即m <p <n ,故选C.]4.A [由函数f (x )有且仅有一个零点,得方程f (x )=0在(0,+∞)上只有一个解,即a =x -x ln x ,x >0只有一个解,令g (x )=x -x ln x ,x >0,则g ′(x )=-ln x ,当x ∈(0,1)时,g ′(x )>0,函数g (x )单调递增;当x ∈(1,+∞)时,g ′(x )<0,函数g (x )单调递减,且g (1)=1,作出函数g (x )的图象如图所示,则当a ≤0或a =1时,f (x )=0在(0,+∞)上只有一个解,故选A.]5.C [设g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )ex,又因为f (x )>f ′(x )在R 上恒成立,所以g ′(x )=f ′(x )-f (x )e x <0在R 上恒成立,所以函数g (x )=f (x )e x在R 上单调递减,则g (2)<g (1),即f (2)e 2<f (1)e=1,所以f (2)<e 2.故选C.]6.B[设f (x )=e xx ,则f ′(x )=e x (x -1)x2,当x ∈(0,1)时,f ′(x )<0,则f (x )在(0,1)上为减函数,∵x 2<2x ,∴e x2<e 2x ,则e x 2x 2<e 2xx 2=,故b >c .又0<x 2<x <1,∴f (x 2)>f (x ),则e x2x 2>e xx,故c >a ,所以a <c <b ,故选B.]7.D [∵f ′(x )=1-ln xx 2,∴当x ∈1e 2,f ′(x )>0;当x ∈(e ,e 2]时,f ′(x )<0;∴f (x )在1e 2,(e ,e 2]上单调递减,∴f (x )max =f (e)=1e+m ,又2e 2+m ,f (e 2)=2e2+m ,∴f (x )min =-2e 2+m ,由“稳定函数”定义可知:2f (x )min >f (x )max ,即2(-2e 2+m )>1e +m ,解得m >4e 2+1e ,即实数m 2+1e,+故选D.]8.A[由题可知函数f (x )=ln x -m 与y =x 2-73x 的图象在区间[1,3]上存在公共点,即方程ln x -m -x 2+73x =0在区间[1,3]内有解,即方程m =ln x -x 2+73x在区间[1,3]内有解.令h (x )=ln x -x 2+73x (x ∈[1,3]),则h ′(x )=1x -2x +73=-(3x +1)(2x -3)3x,所以当x ∈[1,3]时,h ′(x ),h (x )随x 的变化情况如下表:由上表可知h (1)=43,h (3)=ln 3-2<43,ln 32+54,所以当x ∈[1,3]时,h (x )∈ln 3-2,ln 32+54,故m 的取值范围是ln 3-2,ln32+54,故选A.]9.ACD [令f (x )=ln x -x e ,则f ′(x )=1x -1e ,当0<x <e 时f ′(x )>0,当x >e 时,f ′(x )<0,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,故f (x )max =f (e)=ln e -e e =0,则f (2)=ln 2-2e <0,得ln 2<2e ,故A 错误;f (3)=ln 3-3e <0,得ln 3<3e ,故B 正确;f (π)=ln π-πe <0,得ln π<πe ,故C 错误;对D 项,令g (x )=ln xx ,则g ′(x )=1-ln x x2,当0<x <e 时,g ′(x )>0,当x >e 时,g′(x)<0,所以g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,则g(3)>g(π),得ln33>lnππ,即ln3lnπ>3π,故D错误,故选ACD.]10.ABD[A项,∵f′(x)=3x2-6x,∴f′(1)=3-6=-3,且f(1)=1-3+3=1,∴函数y=f(x)的图象在点(1,f(1))处的切线方程为3x+y-4=0,A正确;B项,令f′(x)=3x2-6x>0,解得x<0或x>2,∴函数y=f(x)在(-∞,0)和(2,+∞)上单调递增,在(0,2)上单调递减.又∵f(-1)=-1<0,f(0)=3>0,f(2)=-1<0,f(3)=3>0,∴在(-1,0),(0,2),(2,3)上各有一零点,即函数y=f(x)有3个零点,B正确;C项,由B知函数y=f(x)在x=2处取得极小值,C错误;D项,令g(x)=x3-3x,x∈R,∵g(-x)=-x3+3x=-g(x),∴函数g(x)为奇函数,则g(x)的图象关于原点对称.将函数g(x)=x3-3x的图象向右平移一个单位长度再向上平移一个单位长度可得函数h(x)=(x-1)3-3(x-1)+1=x3-3x2+3=f(x)的图象,∴函数y=f(x)的图象关于点(1,1)对称,D为真命题.]11.BC[f′(x)=4x3+2ax+a,令g(x)=f′(x),则g′(x)=12x2+2a,当a>0时,g′(x)>0,f′(x)单调递增,又f′(-3a)=-3a-2a3a<0,f′(0)=a>0,∴f′(x)在(-3a,0)内存在唯一零点,记为x0,则f(x)在(-∞,x0)上单调递减,在(x0,+∞)上单调递增,f(x0)既是极小值又是最小值;当a<0时,f′(x)∞--a6,f′(0)=a<0,f a<-278,则f0,f′(x)在(-∞,0)上有两个零点,记为x1,x2,在(0,+∞)上有一个零点,记为x3,则f(x)在(-∞,x1)和(x2,x3)上单调递减,在(x1,x2)和(x3,+∞)上单调递增,x 1为小于0的极小值点,f (x 1)和f (x 3)中的较小者即为f (x )的最小值;若-278≤a <0,则f 0,f ′(x )只在(0,+∞)上存在唯一零点,记为x 4,f (x )在(-∞,x 4)上单调递减,在(x 4,+∞)上单调递增,f (x 4)为最小值,故B ,C 正确,A 错误;对于D ,当x 1<0<x 2,且x 1+x 2>0时,f (x 1)-f (x 2)=x 41-x 42+a (x 21-x 22)+a (x 1-x 2)=(x 1-x 2)[(x 1+x 2)·(x 21+x 22+a )+a ],取a =-(x 21+x 22),则有f (x 1)-f (x 2)>0,故D错误.故选BC.]12.AD[对于A ,f (2)=ln 22=ln2,f (5)=ln 55=ln 55,又(2)10=25=32,(55)10=25,32>25,所以2>55,则有f (2)>f (5),A 正确;对于B ,若f (x )=m 有两个不相等的实根x 1,x 2,则x 1x 2>e 2,故B 不正确;证明如下:函数f (x )=ln xx ,定义域为(0,+∞),则f ′(x )=1-ln x x2,当f ′(x )>0时,0<x <e ;当f ′(x )<0时,x >e ,所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,则f (x )max =1e ,且x >e 时,有f (x )>0,所以若f (x )=m 有两个不相等的实根x 1,x 2,则有0<m <1e .不妨设x 1<x 2,则有0<x 1<e <x 2,要证x 1x 2>e 2,只需证x 2>e 2x 1,且x 2>e2x 1>e ,又f (x 1)=f (x 2),所以只需证f (x 1)<F (x )=f (x )-<x <e),则有F ′(x )=(1-ln x 当0<x <e 时,1-ln x >0,1x 21e2>0,所以有F ′(x )>0,即F (x )在(0,e)上单调递增,且F (e)=0,所以F (x )<0恒成立,即f (x 1)<f (x 2)<x 1x 2>e 2.对于C ,由B 可知,f (x )在(0,e)上单调递增,则有f (2)<f (e),即ln 22<ln ee,则有ln 2<2e<2e,故C 不正确.对于D ,令2x =3y =m ,x ,y 均为正数,则m >1,解得x =log 2m =ln mln 2,y =log 3m=ln m ln 3,2x -3y =2ln m ln 2-3ln m ln 3=(ln m f (2)-f (3)=ln 22-ln 33=3ln 2-2ln 36=ln 8-ln 96=ln896<0,则有f (2)<f (3),即0<ln 22<ln 33,即2ln 2>3ln 3,所以2x -3y >0,故D 正确.故选AD.]13.(-∞,-6)∪(2,+∞)[f ′(x )=x 2-ax +3-a ,要使f (x )有三个不同的单调区间,则f ′(x )=0有两个不同的实数根,故Δ=(-a )2-4(3-a )>0,即a ∈(-∞,-6)∪(2,+∞).]∞,ln 2-214[g ′(x )=1x -2=1-2x x≤0,x ∈12,2,∴g (x )在12,2上单调递减,∴g (x )min =g (2)=ln 2-4.∵f (x )=x 2+2x +a =(x +1)2+a -1,∴f (x )在12,2上单调递增,∴f (x )min ==54+a .∵存在x 1∈12,2,使得对任意的x 2∈12,2,都有f (x 1)≤g (x 2)成立,∴54+a ≤ln2-4,∴a ≤ln 2-214.]15.γ<α<β[由题意知①g ′(x )=12,所以12α=12,则α=1.②h ′(x )=1x ,由ln 2x =1x ,得ln 2β=1β,在(0,+∞)上h (x )为增函数,h ′(x )=1x 为减函数,h ′(1)=1>h (1)=ln 2,若0<β<1,则h ′(β)>h ′(1)>h (1)>h (β),故与h ′(β)=h (β)矛盾,所以β>1.③φ′(x )=cos x ,由cos x =sin x 得cos γ=sin γ,则tan γ=1,又γ∈(0,π),∴γ=π4<1,∴γ<α<β.]16.①②③[设F (x )=e x f (x ),则F ′(x )=e x [f ′(x )+f (x )]<0,由此可得F (x )单调递减,所以e x 1f (x 1)>e x 2f (x 2),即f (x 1)>e x 2-x 1f (x 2),故①正确;因为f(x)>0,f(x)+f′(x)<0,所以f′(x)<0,所以f(x)单调递减,所以f(x2)<f(x1)<x2x1f(x1),所以x1f(x2)<x2f(x1),故②正确;对于③,由①分析可知f(x1)>e x2-x1f(x2),欲使x1f(x1)>x2f(x2),且x1x2=1,即f(x1)>x22f(x2)成立,只需满足e x2-1x2>x22即可,即证x2-1x2>2ln x2(x2>1),设m(x)=x-1x-2ln x,则m′(x)=1+1x2-2x=(x-1)2x2>0,则m(x)单调递增,所以m(x2)>m(1)=0,故③正确;对于④,假设f(x2)>(1-x1)f(x1)成立,因为e x1f(x1)>e x2f(x2),所以e x1-1x1f(x1)>f(x2),所以e x1-1x1>1-x1,取x1=12,则e-32>12,所以e32<2不成立,故④不正确.故答案为①②③.]17.解(1)f′(x)=3ax2-b,(2)=12a-b=0,2)=8a-2b+4=-43,解得a=13,b=4.故所求函数的解析式为f(x)=13x3-4x+4.(2)由(1)可得f′(x)=x2-4=(x-2)(x+2),令f′(x)=0,得x=2或x=-2.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,-2)-2(-2,2)2(2,+∞) f′(x)+0-0+f(x)单调递增283单调递减-43单调递增因此,当x=-2时,f(x)有极大值283,当x=2时,f(x)有极小值-4 3,所以函数f(x)=13x3-4x+4的图象大致如图所示.若f(x)=k有3个不同的根,则直线y=k与函数f(x)的图象有3个交点,所以-4 3<k<28 3 .综上,实数k -4 3,18.解(1)当a=2时,f(x)(x+1)e x,x≤0,2-2x+12,x>0.当x≤0时,f′(x)=2(x+2)e x,所以f(x)在(-∞,-2)上单调递减,在(-2,0]上单调递增,此时f(x)的最小值为f(-2)=-2 e2;当x>0时,f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,此时f(x)的最小值为f(1)=-1 2 .因为-2e2>-12,所以f(x)的最小值为-12.(2)显然a≠0.因为当x≤0时,f(x)有且只有一个零点-1,所以原命题等价于f(x)在(0,+∞)上有两个零点.2-2>0,>0,解得a>2,故实数a的取值范围是(2,+∞).19.解(1)f′(x)=e x-a,①当a≤0时,f′(x)=e x-a>0,f(x)在(-∞,+∞)上单调递增.②当a>0时,由f′(x)=e x-a>0,得x>ln a;由f′(x)=e x-a<0,得x<ln a,所以f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.综上,当a≤0时,函数f(x)在(-∞,+∞)上单调递增;当a>0时,f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.(2)①当a=0时,因为x≥0,所以f(x)=e x+2≥3恒成立,所以a=0符合题意;②当a<0时,由(1)知f(x)min=f(a)<f(0)=a+3<3,不符合题意;③当a>0时,由(1)知f(x)在(-∞,ln a)上单调递减,f(x)在(ln a,+∞)上单调递增.下面先证明:a>ln a(a>0).设g(x)=x-ln x,因为g′(x)=1-1x=x-1x,所以当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0,所以g(x)在(0,1)上单调递减,在(1,+∞)上单调递增,所以g(x)≥g(1)=1>0,因此a>ln a.所以f(x)在[a,+∞)上单调递增,所以f(x)min=f(a)=e a-a2+a+2.令h(x)=e x-x2+x+2,则h′(x)=e x-2x+1.令u(x)=e x-2x+1(x>0),则u′(x)=e x-2.由u′(x)>0,得x>ln2;由u′(x)<0,得0<x<ln2.所以u(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增,所以u(x)≥u(ln2)=3-2ln2>0,即当x>0时,h′(x)>0,所以h(x)在(0,+∞)上单调递增,所以当x>0时,h(x)>h(0)=3,所以f(x)min>3,所以f(x)≥3恒成立,故a>0符合题意.综上,实数a的取值范围是[0,+∞).20.(1)解当b=2时,f(x)=(x-2)e x-a2(x-1)2,则f′(x)=(x-1)e x-a(x-1)=(x-1)(e x-a),因为a>0,所以分类讨论:①当ln a<1,即0<a<e时,由f′(x)<0得ln a<x<1,由f′(x)>0得x>1或x<ln a,此时f(x)在(-∞,ln a),(1,+∞)上单调递增,在(ln a,1)上单调递减;②当ln a>1,即a>e时,由f′(x)<0得1<x<ln a,由f′(x)>0得x<1或x>ln a,此时f(x)在(-∞,1),(ln a,+∞)上单调递增,在(1,ln a)上单调递减;③当ln a=1,即a=e时,f′(x)≥0恒成立,此时f(x)在R上单调递增.综上,当0<a<e时,f(x)在(ln a,1)上单调递减,在(-∞,ln a),(1,+∞)上单调递增;当a>e时,f(x)在(1,ln a)上单调递减,在(-∞,1),(ln a,+∞)上单调递增;当a=e时,f(x)在R上单调递增.(2)证明f′(x)=(x-b+1)(e x-a),由f(x)在R上单调递增,知(x-b+1)(e x-a)≥0恒成立,易知y=x-b+1,y=e x-a在R上均单调递增,要使(x-b+1)(e x-a)≥0恒成立,则y=x-b+1与y=e x-a的零点相等,即b -1=ln a,即b=ln a+1,故要证e a-1≥b,只需证ln a+1≤e a-1.设g(a)=e a-1-ln a-1,则g′(a)=e a-1-1 a,易知g′(a)在(0,+∞)上单调递增,且g′(1)=0,故由g′(a)<0,得0<a<1,由g′(a)>0,得a>1,所以g(a)在(0,1)上单调递减,在(1,+∞)上单调递增,则g(a)≥g(1)=0,即ln a+1≤e a-1,原不等式得证.21.解(1)f′(x)=-2x2+a 2+ax=(ax+2)(ax-1)x2(0<x<10).∵a >0,0<x <10,∴ax +2>0.①当1a≥10,即a ,110时,f ′(x )<0,∴f (x )在(0,10)上单调递减;②当0<1a <10,即a当x f ′(x )<0;当x f ′(x )>0,∴f (x ).综上所述,当a ,110时,f (x )在(0,10)上单调递减;当a f (x ).(2)∵x =1是f (x )的极值点,∴f ′(1)=0,即(a +2)(a -1)=0,解得a =1或a =-2(舍),此时f (x )=2x +x +ln x ,f ′(x )=-2x 2+1x +1.∴l 1方程为y x 1+ln x-2x 21+1x 1+x -x 1),令x =0,得b 1=4x 1+ln x 1-1同理可得b 2=4x 2+ln x 2-1.∵l 1∥l 2,∴-2x 21+1x 1+1=-2x 22+1x 2+1,整理得x 1x 2=2(x 1+x 2),∴x 2=2x 1x 1-2,又0<x 1<x 2<10,则x 1<2x 1x 1-2<10,解得52<x1<4,∴b1-b2=4x2-4x1x1x2+lnx1x2=2(x2-x1)x1+x2+lnx1x2=1+x1x2lnx1x2.令x1x2=t,则t=x1·x1-22x1=x12-1设g(t)=2(1-t)1+t+ln t,∴g′(t)=-4(1+t)2+1t=(t-1)2t(t+1)2>0,∴g(t)又g(1)=0,=65-ln4,∴g(t)ln4,即b1-b2ln4,22.解(1)当a=2e时,不等式f(x)≥mx-m即x e x-2eln x-e≥mx-m.令F(x)=x e x-2eln x-e-m(x-1),x∈[1,+∞),则F′(x)=(x+1)e x-2ex-m,F′(x)在[1,+∞)上单调递增,F′(1)=-m,当m≤0时,F′(1)≥0,F′(x)≥F′(1)≥0,所以F(x)在[1,+∞)上单调递增,所以F(x)≥F(1)=0.当m>0时,F′(1)<0,当x→+∞时,F′(x)→+∞,所以存在x1∈(1,+∞),使得F′(x1)=0,当x∈(1,x1)时,F′(x)<0,F(x)单调递减,F(x)<F(1)=0,不符合题意.综上,实数m的取值范围是(-∞,0].(2)f(x)=x e x-a ln x-e(a∈R),f(x)的定义域为(0,+∞),f′(x)=(x+1)e x-ax,a>0时,f′(x)在(0,+∞)上单调递增,当x→0时,f′(x)→-∞,当x→+∞时,f′(x)→+∞,所以存在唯一的正数x0∈(0,+∞),使得f′(x0)=0,可得a=x0(x0+1)e x0,当x∈(0,x0)时,f′(x)<0,f(x)单调递减,当x∈(x0,+∞)时,f′(x)>0,f(x)单调递增,所以f(x)min=f(x0)=x0e x0-a ln x0-e=x0e x0-x0(x0+1)e x0ln x0-e.令h(x)=x e x-x(x+1)e x ln x-e,x∈(0,+∞),则h′(x)=(x+1)e x-e x[(x2+3x+1)ln x+x+1]=-e x(x2+3x+1)ln x,易知h′(1)=0,且当x∈(0,1)时,h′(x)>0,h(x)单调递增,当x∈(1,+∞)时,h′(x)<0,h(x)单调递减,所以h(x)max=h(1)=0,即g(a)的最大值为0,此时x0=1,a=2e.。
全国通用2020_2022三年高考数学真题分项汇编专题04导数及其应用解答题理(含答案及解析)

全国通用2020_2022三年高考数学真题分项汇编:04 导数及其应用(解答题)(理科专用)1.【2022年全国甲卷】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.【答案】(1)(−∞,e+1](2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为e xx −xe1x−2[lnx−12(x−1x)]>0,再利用导数即可得证.(1)f(x)的定义域为(0,+∞),f′(x)=(1x −1x2)e x−1x+1=1x(1−1x)e x+(1−1x)=x−1x(e xx+1)令f(x)=0,得x=1当x∈(0,1),f′(x)<0,f(x)单调递减当x∈(1,+∞),f′(x)>0,f(x)单调递增f(x)≥f(1)=e+1−a,若f(x)≥0,则e+1−a≥0,即a≤e+1所以a的取值范围为(−∞,e+1](2)由题知,f(x)一个零点小于1,一个零点大于1不妨设x1<1<x2要证x1x2<1,即证x1<1x2因为x1,1x2∈(0,1),即证f(x1)>f(1x2)因为f(x1)=f(x2),即证f(x2)>f(1x2)即证e xx −lnx+x−xe1x−lnx−1x>0,x∈(1,+∞)即证e xx −xe1x−2[lnx−12(x−1x)]>0下面证明x>1时,e xx −xe1x>0,lnx−12(x−1x)<0设g(x)=e xx−xe1x,x>1,则g′(x)=(1x −1x2)e x−(e1x+xe1x⋅(−1x2))=1x(1−1x)e x−e1x(1−1x) =(1−1x)(e xx−e1x)=x−1x(e xx−e1x)设φ(x)=e xx (x>1),φ′(x)=(1x−1x2)e x=x−1x2e x>0所以φ(x)>φ(1)=e,而e1x<e所以e xx−e1x>0,所以g′(x)>0所以g(x)在(1,+∞)单调递增即g(x)>g(1)=0,所以e xx−xe1x>0令ℎ(x)=lnx−12(x−1x),x>1ℎ′(x)=1x−12(1+1x2)=2x−x2−12x2=−(x−1)22x2<0所以ℎ(x)在(1,+∞)单调递减即ℎ(x)<ℎ(1)=0,所以lnx−12(x−1x)<0;综上, e xx −xe1x−2[lnx−12(x−1x)]>0,所以x1x2<1.【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式ℎ(x)=lnx−12(x−1x)这个函数经常出现,需要掌握2.【2022年全国乙卷】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.【答案】(1)y=2x(2)(−∞,−1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a分类讨论,对x分(−1,0),(0,+∞)两部分研究(1)f(x)的定义域为(−1,+∞)当a=1时,f(x)=ln(1+x)+xe x ,f(0)=0,所以切点为(0,0)f′(x)=11+x+1−xe x,f′(0)=2,所以切线斜率为2所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x (2)f(x)=ln(1+x)+ax e xf′(x)=11+x+a(1−x)e x=e x+a(1−x2)(1+x)e x设g(x)=e x+a(1−x2)1°若a>0,当x∈(−1,0),g(x)=e x+a(1−x2)>0,即f′(x)>0所以f(x)在(−1,0)上单调递增,f(x)<f(0)=0故f(x)在(−1,0)上没有零点,不合题意2°若−1⩽a⩽0,当x∈(0,+∞),则g′(x)=e x−2ax>0所以g(x)在(0,+∞)上单调递增所以g(x)>g(0)=1+a⩾0,即f′(x)>0所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0故f(x)在(0,+∞)上没有零点,不合题意3°若a<−1(1)当x∈(0,+∞),则g′(x)=e x−2ax>0,所以g(x)在(0,+∞)上单调递增g(0)=1+a<0,g(1)=e>0所以存在m∈(0,1),使得g(m)=0,即f′(m)=0当x∈(0,m),f′(x)<0,f(x)单调递减当x∈(m,+∞),f′(x)>0,f(x)单调递增所以当x∈(0,m),f(x)<f(0)=0当x→+∞,f(x)→+∞所以f(x)在(m,+∞)上有唯一零点又(0,m)没有零点,即f(x)在(0,+∞)上有唯一零点(2)当x∈(−1,0),g(x)=e x+a(1−x2)设ℎ(x)=g′(x)=e x−2axℎ′(x)=e x−2a>0所以g′(x)在(−1,0)单调递增g′(−1)=1e+2a<0,g′(0)=1>0所以存在n∈(−1,0),使得g′(n)=0当x∈(−1,n),g′(x)<0,g(x)单调递减当x∈(n,0),g′(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0又g(−1)=1e>0所以存在t∈(−1,n),使得g(t)=0,即f′(t)=0当x∈(−1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减有x→−1,f(x)→−∞而f(0)=0,所以当x∈(t,0),f(x)>0所以f(x)在(−1,t)上有唯一零点,(t,0)上无零点即f(x)在(−1,0)上有唯一零点所以a<−1,符合题意所以若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围为(−∞,−1)【点睛】方法点睛:本题的关键是对a的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.3.【2022年新高考1卷】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)a=1(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当b>1时,e x−x=b的解的个数、x−lnx=b的解的个数均为2,构建新函数ℎ(x)=e x+lnx−2x,利用导数可得该函数只有一个零点且可得f(x),g(x)的大小关系,根据存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点可得b的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)f(x)=e x−ax的定义域为R,而f′(x)=e x−a,若a≤0,则f′(x)>0,此时f(x)无最小值,故a>0.g(x)=ax−lnx的定义域为(0,+∞),而g′(x)=a−1x =ax−1x.当x<lna时,f′(x)<0,故f(x)在(−∞,lna)上为减函数,当x>lna时,f′(x)>0,故f(x)在(lna,+∞)上为增函数,故f(x)min=f(lna)=a−alna.当0<x<1a 时,g′(x)<0,故g(x)在(0,1a)上为减函数,当x>1a 时,g′(x)>0,故g(x)在(1a,+∞)上为增函数,故g(x)min=g(1a )=1−ln1a.因为f(x)=e x−ax和g(x)=ax−lnx有相同的最小值,故1−ln1a =a−alna,整理得到a−11+a=lna,其中a>0,设g(a)=a−11+a −lna,a>0,则g′(a)=2(1+a)2−1a=−a2−1a(1+a)2≤0,故g(a)为(0,+∞)上的减函数,而g(1)=0,故g(a)=0的唯一解为a=1,故1−a1+a=lna的解为a=1.综上,a=1.(2)由(1)可得f(x)=e x−x和g(x)=x−lnx的最小值为1−ln1=1−ln11=1.当b>1时,考虑e x−x=b的解的个数、x−lnx=b的解的个数.设S(x)=e x−x−b,S′(x)=e x−1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(−∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1−b<0,而S(−b)=e−b>0,S(b)=e b−2b,设u(b)=e b−2b,其中b>1,则u′(b)=e b−2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e−2>0,故S(b)>0,故S(x)=e x−x−b有两个不同的零点,即e x−x=b的解的个数为2.设T(x)=x−lnx−b,T′(x)=x−1x,当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1−b<0,而T(e−b)=e−b>0,T(e b)=e b−2b>0,T(x)=x −lnx −b 有两个不同的零点即x −lnx =b 的解的个数为2. 当b =1,由(1)讨论可得x −lnx =b 、e x −x =b 仅有一个零点, 当b <1时,由(1)讨论可得x −lnx =b 、e x −x =b 均无零点, 故若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 则b >1.设ℎ(x)=e x +lnx −2x ,其中x >0,故ℎ′(x)=e x +1x −2,设s(x)=e x −x −1,x >0,则s ′(x)=e x −1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0即e x >x +1, 所以ℎ′(x)>x +1x−1≥2−1>0,所以ℎ(x)在(0,+∞)上为增函数,而ℎ(1)=e −2>0,ℎ(1e 3)=e 1e 3−3−2e 3<e −3−2e 3<0,故ℎ(x)在(0,+∞)上有且只有一个零点x 0,1e 3<x 0<1且: 当0<x <x 0时,ℎ(x)<0即e x −x <x −lnx 即f(x)<g(x), 当x >x 0时,ℎ(x)>0即e x −x >x −lnx 即f(x)>g(x),因此若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 故b =f(x 0)=g(x 0)>1,此时e x −x =b 有两个不同的零点x 1,x 0(x 1<0<x 0), 此时x −lnx =b 有两个不同的零点x 0,x 4(0<x 0<1<x 4), 故e x 1−x 1=b ,e x 0−x 0=b ,x 4−lnx 4−b =0,x 0−lnx 0−b =0 所以x 4−b =lnx 4即e x 4−b =x 4即e x 4−b −(x 4−b)−b =0, 故x 4−b 为方程e x −x =b 的解,同理x 0−b 也为方程e x −x =b 的解又e x 1−x 1=b 可化为e x 1=x 1+b 即x 1−ln(x 1+b)=0即(x 1+b)−ln(x 1+b)−b =0, 故x 1+b 为方程x −lnx =b 的解,同理x 0+b 也为方程x −lnx =b 的解, 所以{x 1,x 0}={x 0−b,x 4−b},而b >1, 故{x 0=x 4−bx 1=x 0−b 即x 1+x 4=2x 0. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系. 4.【2022年新高考2卷】已知函数f(x)=xe ax −e x . (1)当a =1时,讨论f(x)的单调性;(2)当x >0时,f(x)<−1,求a 的取值范围;(3)设n ∈N ∗,证明:√12+1√22+2+⋯√n 2+n >ln(n +1).【答案】(1)f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)a ≤12 (3)见解析 【解析】 【分析】(1)求出f ′(x),讨论其符号后可得f(x)的单调性.(2)设ℎ(x)=xe ax −e x +1,求出ℎ″(x),先讨论a >12时题设中的不等式不成立,再就0<a ≤12结合放缩法讨论ℎ′(x)符号,最后就a ≤0结合放缩法讨论ℎ(x)的范围后可得参数的取值范围.(3)由(2)可得2lnt <t −1t 对任意的t >1恒成立,从而可得ln(n +1)−lnn <√n 2+n 对任意的n ∈N ∗恒成立,结合裂项相消法可证题设中的不等式. (1)当a =1时,f(x)=(x −1)e x ,则f ′(x)=xe x , 当x <0时,f ′(x)<0,当x >0时,f ′(x)>0, 故f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)设ℎ(x)=xe ax −e x +1,则ℎ(0)=0,又ℎ′(x)=(1+ax)e ax −e x ,设g(x)=(1+ax)e ax −e x , 则g ′(x)=(2a +a 2x)e ax −e x , 若a >12,则g ′(0)=2a −1>0, 因为g ′(x)为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x)>0, 故g(x)在(0,x 0)为增函数,故g(x)>g(0)=0,故ℎ(x)在(0,x 0)为增函数,故ℎ(x)>ℎ(0)=−1,与题设矛盾. 若0<a ≤12,则ℎ′(x)=(1+ax)e ax −e x =e ax+ln(1+ax)−e x , 下证:对任意x >0,总有ln(1+x)<x 成立,证明:设S(x)=ln(1+x)−x ,故S ′(x)=11+x −1=−x1+x <0, 故S(x)在(0,+∞)上为减函数,故S(x)<S(0)=0即ln(1+x)<x 成立. 由上述不等式有e ax+ln(1+ax)−e x <e ax+ax −e x =e 2ax −e x ≤0, 故ℎ′(x)≤0总成立,即ℎ(x)在(0,+∞)上为减函数, 所以ℎ(x)<ℎ(0)=−1.当a ≤0时,有ℎ′(x)=e ax −e x +axe ax <1−1+0=0, 所以ℎ(x)在(0,+∞)上为减函数,所以ℎ(x)<ℎ(0)=−1. 综上,a ≤12. (3)取a =12,则∀x >0,总有xe 12x −e x +1<0成立, 令t =e 12x ,则t >1,t 2=e x ,x =2lnt ,故2tlnt <t 2−1即2lnt <t −1t 对任意的t >1恒成立. 所以对任意的n ∈N ∗,有2ln√n+1n <√n+1n−√nn+1,整理得到:ln(n +1)−lnn <√n 2+n ,故√12+1√22+2⋯√n 2+n >ln2−ln1+ln3−ln2+⋯+ln(n +1)−lnn =ln(n +1), 故不等式成立. 【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.5.【2021年甲卷理科】已知0a >且1a ≠,函数()(0)a x x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【答案】(1)20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,+∞e e .【解析】 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性; (2)方法一:利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x ax a =有两个不同的实数根,即曲线()y g x =与直线ln a y a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【详解】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ⋅-⋅-⋅===', 令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, ∴函数()f x 在20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)[方法一]【最优解】:分离参数()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x-'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增; 在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==,又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,+∞e e .[方法二]:构造差函数由()y f x =与直线1y =有且仅有两个交点知()1f x =,即a x x a =在区间(0,)+∞内有两个解,取对数得方程ln ln a x x a =在区间(0,)+∞内有两个解.构造函数()ln ln ,(0,)g x a x x a x =-∈+∞,求导数得ln ()ln a a x a g x a x x'-=-=. 当01a <<时,ln 0,(0,),ln 0,()0,()a x a x a gx g x '<∈+∞->>在区间(0,)+∞内单调递增,所以,()g x 在(0,)+∞内最多只有一个零点,不符合题意;当1a >时,ln 0a >,令()0g x '=得ln a x a =,当0,ln a x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,ln a x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<;所以,函数()g x 的递增区间为0,ln a a ⎛⎫ ⎪⎝⎭,递减区间为,ln a a ⎛⎫+∞ ⎪⎝⎭.由于1110e1,e 1e ln 0ln aaa a g a a ---⎛⎫<<<=--< ⎪⎝⎭,当x →+∞时,有ln ln a x x a <,即()0g x <,由函数()ln ln g x a x x a =-在(0,)+∞内有两个零点知ln 10ln ln a a g a a a ⎛⎫⎛⎫=->⎪ ⎪⎝⎭⎝⎭,所以e ln aa >,即eln 0a a ->.构造函数()eln h a a a =-,则e e()1a h a a a'-=-=,所以()h a 的递减区间为(1,e),递增区间为(e,)+∞,所以()(e)0h a h ≥=,当且仅当e a =时取等号,故()0>h a 的解为1a >且e a ≠.所以,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法三]分离法:一曲一直曲线()y f x =与1y =有且仅有两个交点等价为1ax xa=在区间(0,)+∞内有两个不相同的解.因为a x x a =,所以两边取对数得ln ln a x x a =,即ln ln x ax a=,问题等价为()ln g x x =与ln ()x ap x a=有且仅有两个交点. ①当01a <<时,ln 0,()ap x a<与()g x 只有一个交点,不符合题意. ②当1a >时,取()ln g x x =上一点()()000011,ln ,(),,()x x g x g x g x xx ''==在点()00,ln x x 的切线方程为()0001ln y x x x x -=-,即0011ln y x x x =-+. 当0011ln y x x x =-+与ln ()x a p x a =为同一直线时有0ln 1,ln 10,a a x x ⎧=⎪⎨⎪-=⎩得0ln 1,e e.a a x ⎧=⎪⎨⎪=⎩ 直线ln ()x a p x a =的斜率满足:ln 1e0a a <<时,()ln g x x =与ln ()x ap x a =有且仅有两个交点.记2ln 1ln (),()a a h a h a a a'-==,令()0h a '=,有e a =.(1,e),()0,()a h a h a '∈>在区间(1,e)内单调递增;(e,),()0,()a h a h a '∈+∞<在区间(,)e +∞内单调递减;e a =时,()h a 最大值为1(e)eg =,所当1a >且e a ≠时有ln 1e0a a <<. 综上所述,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法四]:直接法()112ln (ln )()(0),()a a x x a a x x x x ax a a a x x a x a f x x f x a a a --'⋅-⋅-=>==. 因为0x >,由()0f x '=得ln ax a=. 当01a <<时,()f x 在区间(0,)+∞内单调递减,不满足题意;当1a >时,0ln aa >,由()0f x '>得0,()ln a x f x a <<在区间0,ln a a ⎛⎫ ⎪⎝⎭内单调递增,由()0f x '<得,()ln ax f x a >在区间,ln a a ⎛⎫+∞⎪⎝⎭内单调递减. 因为lim ()0x f x →+∞=,且0lim ()0x f x +→=,所以1ln a f a ⎛⎫> ⎪⎝⎭,即ln ln ln 1(ln )aaa aa a aa a a a a -⎛⎫ ⎪⎝⎭=>,即11ln ln (ln ),ln a a aaaaa aa -->>,两边取对数,得11ln ln(ln )ln a a a ⎛⎫-> ⎪⎝⎭,即ln 1ln(ln )a a ->. 令ln a t =,则1ln t t ->,令()ln 1h x x x =-+,则1()1h x x'=-,所以()h x 在区间(0,1)内单调递增,在区间(1,)+∞内单调递减,所以()(1)0h x h ≤=,所以1ln t t -≥,则1ln t t ->的解为1t ≠,所以ln 1a ≠,即e a ≠.故实数a 的范围为(1,e)(e,)⋃+∞.] 【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值. 方法三:将问题取对,分成()ln g x x =与ln ()x ap x a=两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论. 方法四:直接求导研究极值,单调性,最值,得到结论.6.【2021年乙卷理科】设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】(1)1a =;(2)证明见详解 【解析】 【分析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解 【详解】(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)[方法一]:转化为有分母的函数 由(Ⅰ)知,ln(1)11()ln(1)ln(1)+-==+--x x g x x x x x,其定义域为(,0)(0,1)-∞.要证()1g x <,即证111ln(1)+<-x x ,即证1111ln(1)-<-=-x x x x.(ⅰ)当(0,1)x ∈时,10ln(1)<-x ,10x x -<,即证ln(1)1->-x x x .令()ln(1)1=---xF x x x ,因为2211()01(1)(1)--=-=>--'-x F x x x x ,所以()F x 在区间(0,1)内为增函数,所以()(0)0F x F >=.(ⅱ)当(,0)x ∈-∞时,10ln(1)>-x ,10x x ->,即证ln(1)1->-x x x ,由(ⅰ)分析知()F x 在区间(,0)-∞内为减函数,所以()(0)0F x F >=. 综合(ⅰ)(ⅱ)有()1g x <.[方法二] 【最优解】:转化为无分母函数 由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-<, ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <->, ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞,1x t =-,令()1ln t t t t ϕ=-+,()1ln 1ln t t t ϕ'=-++=,当()0,1t ∈时,()0t ϕ'<,()t ϕ单减,故()()10t ϕϕ>=; 当()1,t ∈+∞时,()0t ϕ'>,()t ϕ单增,故()()10t ϕϕ>=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞恒成立.[方法三] :利用导数不等式中的常见结论证明令()ln (1)ϕ=--x x x ,因为11()1x x x xϕ-'=-=,所以()ϕx 在区间(0,1)内是增函数,在区间(1,)+∞内是减函数,所以()(1)0x ϕϕ≤=,即ln 1≤-x x (当且仅当1x =时取等号).故当1x <且0x ≠时,101x >-且111x ≠-,11ln 111<---x x ,即ln(1)1--<-x x x ,所以ln(1)1->-x x x . (ⅰ)当(0,1)x ∈时,0ln(1)1>->-xx x ,所以1111ln(1)-<=--x x x x ,即111ln(1)+<-x x ,所以()1g x <.(ⅱ)当(,0)x ∈-∞时,ln(1)01->>-xx x ,同理可证得()1g x <. 综合(ⅰ)(ⅱ)得,当1x <且0x ≠时,ln(1)1ln(1)+-<-x x x x ,即()1g x <.【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当(0,1)x ∈时,转化为证明ln(1)1->-x x x ,当(,0)x ∈-∞时,转化为证明ln(1)1->-xx x ,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当()0,1x ∈时,()()1ln 10x x x +-->成立和当(),0x ∈-∞时,()()1ln 10x x x +-->成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数()ln (1)ϕ=--x x x ,利用导数分析单调性,证得常见常用结论ln 1≤-x x (当且仅当1x =时取等号).然后换元得到ln(1)1->-xx x ,分类讨论,利用不等式的基本性质证得要证得不等式,有一定的巧合性.7.【2021年新高考1卷】已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】 【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论. 【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b≠. 由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--, 当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=, 从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.① 令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=, 从而()x f x e +<,所以11()f e b b+<.又由1(0,1)a∈,可得11111(1ln )()()f f a a a a b<-==, 所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>. 再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<. 令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换证明112a b+>同证法2.以下证明12x x e +<.不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<, 即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s s s ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)ex h x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增. 因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<.综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.8.【2021年新高考2卷】已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>; ②10,22a b a <<≤.【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可; (2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论. 【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增;当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增, 若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增; 当12a =时,()()'0,f x f x ≥在R 上单调递增; 当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增, 若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减, 若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增; (2)若选择条件①:由于2122e a <,故212a e <≤,则()21,010b af b >>=->,而10f e b b ⎛⎛=--+< ⎝⎝,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点. ()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a >--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a <,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点.综上可得,题中的结论成立. 若选择条件②:由于102a <<,故21a <,则()01210fb a =-≤-<, 当0b ≥时,24,42ea ><,()2240f e ab =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.当0b <时,构造函数()1xH x e x =--,则()1x H x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减, 当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x >()()2110a x b -+->,取01x ,则()00f x >,即:()00,10f f ⎫<>⎪⎪⎭,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点. ()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于102a <<,021a <<,故()()ln 22ln 20a a a -<⎡⎤⎣⎦, 结合函数的单调性可知函数在区间(),0-∞上没有零点. 综上可得,题中的结论成立. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【解析】 【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围. 【详解】(1)当1a =时,()2e x f x x x =+-,()e 21xf x x ='+-,由于()''e 20xf x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减, 当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2) [方法一]【最优解】:分离参数 由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----, 记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-, 令()()21e 102xh x x x x =---≥,则()e 1x h x x ='--,()''e 10xh x =-≥,故()'h x 单调递增,()()00h x h ''≥=, 故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102xx x ---恒成立, 故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减; 因此,()()2max7e 24g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭. [方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a. 只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x xf x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e74244e -+++⇔≤xx x x , 令()223e7424()(0)e-+++=≥xx x x h x x ,则()()222313e 2e 92()e -+--=='x xx x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=xx x x ()2(2)2e 9e⎡⎤--+-⎣⎦xx x x ,所以当29e 0,2⎡⎤-∈⎢⎥⎣⎦x 时,()0,()h x h x '<单调递减; 当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增; 当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e1(1)e 122xx x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2xg x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--2(23)42]121)2)1[e ((22x x x x x x a x a a -=--+++=----,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x xg x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21xg x x x -=+≤+恒成立, 所以12a ≥时,满足题意. 综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有: 方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!10.【2020年新课标2卷理科】已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22nx ≤34nn .【答案】(1)当0,3x π⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减,当2,3x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增. (2)证明见解析; (3)证明见解析. 【解析】 【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)[方法一]由题意将所给的式子进行变形,利用四元基本不等式即可证得题中的不等式; (3)[方法一]将所给的式子进行恒等变形,构造出(2)的形式,利用(2)的结论即可证得题中的不等式. 【详解】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()224'23sin cos sin f x x x x =-()2222sin 3cos sin x x x =- ()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()'0f x =在()0,x π∈上的根为:122,33x x ππ==, 当0,3x π⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减, 当2,3x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增. (2)[方法一]【最优解】:基本不等式法 由四元均值不等式可得24262[()]sin sin 24sin cos =⋅=⋅=f x x x x x 222244sin sin sin 3cos 33⋅⋅⋅≤⋅x x x x 42222sin sin sin 3cos 27464⎛⎫+++= ⎪⎝⎭x x x x ,当且仅当22sin 3cos =x x , 即3x k ππ=-或()3x k k ππ=+∈Z 时等号成立.所以|()|f x . [方法二]:构造新函数+齐次化方法因为()()333222222sin cos 2tan ()2sin cos sin cos tan 1===++x xxf x x x x x x ,令tan (0)=≥x t t ,则问题转化为求()3222()(0)1=≥+t g t t t的最大值.求导得()()()22222213()1+'-=+t t t g t t,令()0g t '=,得t =当∈t 时,()0g t '>,函数()g t 单调递增;当)∈+∞t 时,()0g t '<,函数()g t 单调递减. 所以函数()g t的最大值为==g|()|f x ≤. [方法三]:结合函数的周期性进行证明注意到()()()()22sin sin 2sin sin 2f x x x x x f x πππ+=++==⎡⎤⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()00f f π==,23f π⎛⎫== ⎪⎝⎭⎝⎭223f π⎛⎛⎫=⨯= ⎪ ⎝⎭⎝⎭⎝⎭, 据此可得:()max f x =⎡⎤⎣⎦()minf x =⎡⎤⎣⎦ 即()f x (3)[方法一]【最优解】:利用(2)的结论 由于()32223332sin sin 2sin 2sin sin 2sin 2==nn x xx x xx 23312|sin |sin sin 2sin 2sin2sin 2-=n n n x x xx x x ()12|sin |()(2)2sin 2-≤n n x f x f x f x x ()1()(2)2-n f x f x f x ,所以232223sin sin 2sin 24⎫≤=⎝⎭n n nn x xx . [方法二]:数学归纳法+放缩当1n =时,222sin sin 2sin sin 2sin 2⋅=≤x x x x x 33244≤≤x ,显然成立; 假设当n k =时原式成立,即22223sin sin 2sin 4sin 24≤kkk x x x x .那么,当1n k =+时,有222221sin sin 2sin 4sin 2sin 2+≤kk x x x x x 2234sin 2cos 24⎛⎫⋅⋅⋅≤⎪⎝⎭kk kx x332cos22sin 2cos24sin 2⎛⎫⋅⋅≤ ⎪⎝⎭k kk kk x x x x 32cos248sin 2⎛⎫⋅≤ ⎪⎝⎭k k k x x 11334tan 24++⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭k k kx , 即当1n k =+时不等式也成立.综上所述,不等式对所有的n *∈N 都成立. 【整体点评】(2)方法一:基本不等式是证明不等式的重要工具,利用基本不等式解题时一定要注意等号成立的条件;方法二:齐次化之后切化弦是一种常用的方法,它将原问题转化为一元函数的问题,然后构造函数即可证得题中的不等式;方法三:周期性是三角函数的重要特征,结合函数的周期性和函数的最值证明不等式充分体现了三角函数有界限的应用.(3)方法一:利用(2)的结论体现了解答题的出题思路,逐问递进是解答题常见的设问方式; 方法二:数学归纳法是处理与自然数有关的命题的常见策略,放缩法是不等式证明中常见的方法.11.【2020年新课标3卷理科】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析【解析】 【分析】(1)利用导数的几何意义得到1()02f '=,解方程即可;(2)方法一:由(1)可得2311()32()()422f x x x x '=-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可. 【详解】(1)因为2()3f x x b '=+,由题意,1()02f '=,即:21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-.(2)[方法一]:通性通法由(1)可得33()4f x x x c =-+,2311()33()()422f x x x x '=-=+-, 令()0f x '>,得12x >或12x <-;令()0f x '<,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x , 即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0'x , 即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1. [方法二]【最优解】:设0x 是()f x 的一个零点,且01x ≤,则30034c x x =-+. 从而()332200000333()444f x x x x x x x x x x x ⎛⎫=--+=-++- ⎪⎝⎭. 令22003()4h x x x x x =++-,由判别式2220003Δ43304x x x ⎛⎫=--=-≥ ⎪⎝⎭,可知()0h x =在R 上有解,()h x 的对称轴是011,222x x ⎡⎤=-∈-⎢⎥⎣⎦220002200031(1)104231(1)1042h x x x h x x x ⎧⎛⎫=++-=+≥⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-=-+-=-≥ ⎪⎪⎝⎭⎩,所以()h x 在区间01,2x ⎡⎤--⎢⎥⎣⎦上有一根为1x ,在区间0,12x ⎡⎤-⎢⎥⎣⎦上有一根为2x ,进而有121,1x x ≤≤,所以()f x。
2023 届高考数学复习:历年经典好题专项(一元函数的导数及其应用)练习(附答案)

-(a>0),若对∀x1∈{x|g(x)=√
.
-},∃x2∈[4,16],使 g(x1)=f(x2)
.
成立,则实数 a 的取值范围是
1
2
16.已知函数 f(x)=2ln x,g(x)=ax2-x- (a>0).若直线 y=2x-b 与函数 y=f(x),y=g(x)的图像均相切,则 a 的值
ln
在点
e
13.(历年山东、海南两省 4 月模拟,13)函数 f(x)=
a=
.
P(1,f(1))处的切线与直线 2x+y-3=0 垂直,则
14.设 f(x)=ex(ln x-a),若函数 f(x)在区间
15.已知函数 f(x)=log2x,g(x)=√
1
,e
e
上单调递减,则实数 a 的取值范围为
(1)当 a=1 时,求曲线 y=
x=1 处的切线方程;
1
在(0,+∞)上的单调性.
()
(2)讨论函数 F(x)=f(x)-
18.(12 分)(历年河南开封三模,理 20)已知函数 f(x)=axex-ln x+b(a,b∈R)在 x=1 处的切线方程为 y=(2e1)x-e.
(1)求 a,b 值;
点,则实数 a 的取值范围为(
A.(1,+∞)
B.(-∞,1)
)
C.(0,+∞)
D.(-∞,0)
8.(历年河南新乡三模,理 12)已知函数 f(x)=x2-ax ∈
y=x 对称的点,则实数 a 的取值范围是(
1
e
B. 1,e-
A. e- ,e
C. 1,e-
1
e
D. 1,e
专题04 导数及其应用(解答题)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析. 【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 1,0.f x a x x x ++>(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)ex ∈+∞均有(),2x f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)20,4⎛⎤⎥ ⎝⎦. 【解析】(1)当34a =-时,3()ln 1,04f x x x x =-++>. 31(12)(211)()42141x x f 'x x x x x+-++=-+=++, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得204a <≤.当204a <≤时,()2x f x a ≤等价于2212ln 0x xx a a+--≥. 令1t a=,则22t ≥. 设2()212ln ,22g t t x t x x t =-+-≥,则211()(1)2ln xg t x t x x x+=-+--.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭时,1122x+≤,则 ()(22)84212ln g t g x x x ≥=-+-.记1()4221ln ,7p x x x x x =-+-≥,则 2212121()11x x x x p'x x x x x x +--+=--=++(1)[1(221)]1(1)(12)x x x x x x x x -++-=++++.故x171(,1)71(1,)+∞()p'x-0 +()p x1()7p 单调递减极小值(1)p单调递增所以,()(1)0p x p ≥=.因此,()(22)2()0g t g p x ≥=≥. (ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,12ln (1)()12x x x g t g x x ⎛⎫--++= ⎪ ⎪⎝⎭…. 令211()2ln (1),,e 7q x x x x x ⎡⎤=++∈⎢⎥⎣⎦ , 则ln 2()10x q'x x+=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭….由(i )得,127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()()102q x g t g x x⎛⎫+=-> ⎪ ⎪⎝⎭…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,[22,),()0t g t ∈+∞…, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a …. 综上所述,所求a 的取值范围是20,4⎛⎤⎥ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=.因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【2018年高考全国Ⅲ卷文数】已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e. 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥.【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.【答案】(1)在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --. 令f ′(x )=0解得x =323-或x =323+.当x ∈(–∞,323-)∪(323+,+∞)时,f ′(x )>0; 当x ∈(323-,323+)时,f ′(x )<0.故f (x )在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e xxf x ax a x ax x '=-++=--. 若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞.方法二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 (1,)+∞()f x ' + 0 − ()f x↗极大值↘∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥, ∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 1(1,)a1a1(,)a+∞ ()f x '+ 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x ' + 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x '− 0 + 0 − ()f x↘极小值↗极大值↘∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()63y x t =---有三个互异的公共点,求d 的取值范围. 【答案】(I )x +y =0;(II )函数f (x )的极大值为63;函数f (x )的极小值为−63;(III )d 的取值范围为(,10)(10,)-∞-+∞.【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1, 因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2−3,或x =t 2+3. 当x 变化时,()f x ',f (x )的变化如下表:x(−∞,t 2−3)t 2−3 (t 2−3,t 2+3)t 2+3 (t 2+3,+∞)()f x '+ 0 − 0 + f (x )↗极大值↘极小值↗所以函数f (x )的极大值为f (t 2−3)=(−3)3−9×(−3)=63;函数f (x )的极小值为f (t 2+3)=(3)3− 9×(3)=−63.(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2 −d )+(x −t 2)+ 63=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u +63=0.设函数g (x )=x 3+(1−d 2)x +63,则曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于函数y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=213d --,x 2=213d -.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增. g (x )的极大值g (x 1)=g (213d --)=32223(1)639d -+>0. g (x )的极小值g (x 2)=g (213d -)=−32223(1)639d -+. 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||10d >,此时2||d x >,(||)||630,g d d =+>且312||,(2||)6||2||636210630d x g d d d -<-=--+<-+<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d 的取值范围是(,10)(10,)-∞-+∞.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【2018年高考浙江】已知函数f (x )=x −ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)函数f (x )的导函数11()2f x xx '=-, 由12()()f x f x ''=得1212111122x x x x -=-, 因为12x x ≠,所以121112x x +=. 由基本不等式得4121212122x x x x x x =+≥. 因为12x x ≠,所以12256x x >. 由题意得12112212121()()ln ln ln()2f x f x x x x x x x x x +=-+-=-. 设1()ln 2g x x x =-, 则1()(4)4g x x x'=-, 所以x(0,16)16 (16,+∞)()g x ' −0 +()g x2−4ln2所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <1()a n k nn --≤||1()a n k n +-<0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得ln x x a k x--=.设l (n )x ah xx x --=,则22ln )1)((12xx ag x x x a x h '=--+--+=, 其中2(n )l xg x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2], 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(1)在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得121+2x x =--=-,.当(,12)x ∈-∞--时,()0f x '<;当(12,12)x ∈---+时,()0f x '>;当(12,)x ∈-++∞时,()0f x '<.所以()f x 在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h ′(x )= −x e x<0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x−1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取05412a x --=,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取051,2x -=则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】(1)()f x 的定义域为(0,+),()()1211()221x a x f x a x a x x++'=+++=.若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【2017年高考浙江】已知函数f (x )=(x –21x -)e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.【答案】(1)(1)(212)e 1()()221x x x f x x x ----'=>-;(2)121[0,e ]2-.【解析】(1)因为1(21)121x x 'x --=--,(e )e x x'--=-, 所以1()(1)e (21)e 21x xf x x x x --'=-----(1)(212)e 1()221x x x x x ----=>-.(2)由(1)(212)e ()021x x x f x x ----'==-,解得1x =或52x =.因为x12(12,1) 1 (1,52) 52(52,+∞) ()f x '–0 +–f (x )121e 2-521e 2-又21()(211)e 02x f x x -=--≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果. 21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:x (,)a -∞ (),4a a - (4,)a -+∞()f 'x+-+()f x所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()e x x x x g g'⎧=⎪⎨=⎪⎩, 所以000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--,令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增, 因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.。
专题04导数及其应用选择填空题(解析版)

大数据之十年高考真题(2013-2022)与优质模拟题(新课标文科卷)专题04导数及其应用选择填空题1.【2022年全国甲卷文科08】当x=1时,函数f(x)=alnx+bx取得最大值−2,则f′(2)=()A.−1B.−12C.12D.1【答案】B【解析】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=−2,f′(1)=0,而f′(x)=ax−bx2,所以b=−2,a−b=0,即a=−2,b=−2,所以f′(x)=−2x+2x2,因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,x=1时取最大值,满足题意,即有f′(2)=−1+12=−12.故选:B.2.【2021年全国乙卷文科12】设a≠0,若x=a为函数f(x)=a(x−a)2(x−b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a2【答案】D若a=b,则f(x)=a(x−a)3为单调函数,无极值点,不符合题意,故a≠b.依题意,x=a为函数f(x)=a(x−a)2(x−b)的极大值点,当a<0时,由x>b,f(x)≤0,画出f(x)的图象如下图所示:由图可知b<a,a<0,故ab>a2.真题汇总当a>0时,由x>b时,f(x)>0,画出f(x)的图象如下图所示:由图可知b>a,a>0,故ab>a2.综上所述,ab>a2成立.故选:D3.【2019年新课标3文科07】已知曲线y=ae x+xlnx在点(1,ae)处的切线方程为y=2x+b,则()A.a=e,b=﹣1B.a=e,b=1C.a=e﹣1,b=1D.a=e﹣1,b=﹣1【答案】解:y=ae x+xlnx的导数为y′=ae x+lnx+1,由在点(1,ae)处的切线方程为y=2x+b,可得ae+1+0=2,解得a=e﹣1,又切点为(1,1),可得1=2+b,即b=﹣1,故选:D.4.【2019年新课标2文科10】曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=0【答案】解:由y=2sin x+cos x,得y′=2cos x﹣sin x,∴y′|x=π=2cosπ﹣sinπ=﹣2,∴曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为y+1=﹣2(x﹣π),即2x+y﹣2π+1=0.故选:C.5.【2019年新课标1文科05】函数f(x)=sinx+x在[﹣π,π]的图象大致为()cosx+x2A.B.C.D.【答案】解:∵f(x)=sinx+xcosx+x2,x∈[﹣π,π],∴f(﹣x)=−sinx−xcos(−x)+x2=−sinx+xcosx+x2=−f(x),∴f(x)为[﹣π,π]上的奇函数,因此排除A;又f(π)=sinπ+πcosπ+π2=π−1+π2>0,因此排除B,C;故选:D.6.【2018年新课标1文科06】设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()A.y=﹣2x B.y=﹣x C.y=2x D.y=x【答案】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.7.【2018年新课标2文科03】函数f(x)=e x−e−xx2的图象大致为()A.B.C.D.【答案】解:函数f(﹣x)=e −x−e x(−x)2=−e x−e−xx2=−f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e−1e>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.8.【2018年新课标3文科09】函数y=﹣x4+x2+2的图象大致为()A.B.C .D .【答案】解:函数过定点(0,2),排除A ,B . 函数的导数f ′(x )=﹣4x 3+2x =﹣2x (2x 2﹣1), 由f ′(x )>0得2x (2x 2﹣1)<0, 得x <−√22或0<x <√22,此时函数单调递增, 由f ′(x )<0得2x (2x 2﹣1)>0, 得x >√22或−√22<x <0,此时函数单调递减,排除C ,也可以利用f (1)=﹣1+1+2=2>0,排除A ,B , 故选:D .9.【2017年新课标1文科08】函数y =sin2x1−cosx 的部分图象大致为( )A .B.C.D.【答案】解:函数y=sin2x1−cosx,可知函数是奇函数,排除选项B,当x=π3时,f(π3)=√321−12=√3,排除A,x=π时,f(π)=0,排除D.故选:C.10.【2017年新课标1文科09】已知函数f(x)=lnx+ln(2﹣x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称【答案】解:∵函数f(x)=lnx+ln(2﹣x),∴f(2﹣x)=ln(2﹣x)+lnx,即f(x)=f(2﹣x),即y=f(x)的图象关于直线x=1对称,故选:C.11.【2017年新课标2文科08】函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【答案】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.12.【2017年新课标3文科07】函数y=1+x+sinx的部分图象大致为()x2A.B.C.D.【答案】解:函数y=1+x+sinxx2,可知:f(x)=x+sinxx2是奇函数,所以函数的图象关于原点对称,则函数y=1+x+sinxx2的图象关于(0,1)对称,当x→0+,f(x)>0,排除A、C,当x=π时,y=1+π,排除B.故选:D.13.【2017年新课标3文科12】已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.−12B.13C.12D.1【答案】解:因为f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)=﹣1+(x﹣1)2+a(e x﹣1+1e x−1)=0,所以函数f(x)有唯一零点等价于方程1﹣(x﹣1)2=a(e x﹣1+1e x−1)有唯一解,等价于函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+1e x−1)的图象只有一个交点.①当a=0时,f(x)=x2﹣2x≥﹣1,此时有两个零点,矛盾;②当a<0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,且y=a(e x﹣1+1e x−1)在(﹣∞,1)上递增、在(1,+∞)上递减,所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+1e x−1)的图象的最高点为B(1,2a),由于2a<0<1,此时函数y=1﹣(x﹣1)2的图象与y=a(e x﹣1+1)的图象有两个交点,矛盾;e x−1③当a>0时,由于y=1﹣(x﹣1)2在(﹣∞,1)上递增、在(1,+∞)上递减,)在(﹣∞,1)上递减、在(1,+∞)上递增,且y=a(e x﹣1+1e x−1所以函数y=1﹣(x﹣1)2的图象的最高点为A(1,1),y=a(e x﹣1+1)的图象的最低点为B(1,2a),e x−1由题可知点A与点B重合时满足条件,即2a=1,即a=1,符合条件;2,综上所述,a=12故选:C.14.【2016年新课标1文科09】函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【答案】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.15.【2016年新课标1文科12】若函数f(x)=x−1sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范3围是()A .[﹣1,1]B .[﹣1,13]C .[−13,13]D .[﹣1,−13]【答案】解:函数f (x )=x −13sin2x +a sin x 的导数为f ′(x )=1−23cos2x +a cos x ,由题意可得f ′(x )≥0恒成立, 即为1−23cos2x +a cos x ≥0, 即有53−43cos 2x +a cos x ≥0,设t =cos x (﹣1≤t ≤1),即有5﹣4t 2+3at ≥0, 当t =0时,不等式显然成立; 当0<t ≤1时,3a ≥4t −5t ,由4t −5t 在(0,1]递增,可得t =1时,取得最大值﹣1, 可得3a ≥﹣1,即a ≥−13; 当﹣1≤t <0时,3a ≤4t −5t ,由4t −5t 在[﹣1,0)递增,可得t =﹣1时,取得最小值1, 可得3a ≤1,即a ≤13.综上可得a 的范围是[−13,13].另解:设t =cos x (﹣1≤t ≤1),即有5﹣4t 2+3at ≥0, 由题意可得5﹣4+3a ≥0,且5﹣4﹣3a ≥0, 解得a 的范围是[−13,13]. 故选:C .16.【2014年新课标1文科12】已知函数f (x )=ax 3﹣3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(1,+∞)B .(2,+∞)C .(﹣∞,﹣1)D .(﹣∞,﹣2)【答案】解:∵f (x )=ax 3﹣3x 2+1,∴f ′(x )=3ax 2﹣6x =3x (ax ﹣2),f (0)=1; ①当a =0时,f (x )=﹣3x 2+1有两个零点,不成立;②当a >0时,f (x )=ax 3﹣3x 2+1在(﹣∞,0)上有零点,故不成立; ③当a <0时,f (x )=ax 3﹣3x 2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=2a时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f(2a )=8a2−3•4a2+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.17.【2014年新课标2文科03】函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【答案】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.18.【2014年新课标2文科11】若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【答案】解:f′(x)=k−1x,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥1x,而y=1x在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.19.【2013年新课标1文科09】函数f(x)=(1﹣cos x)sin x在[﹣π,π]的图象大致为()A.B.C.D.【答案】解:由题意可知:f(﹣x)=(1﹣cos x)sin(﹣x)=﹣f(x),故函数f(x)为奇函数,故可排除B,又因为当x∈(0,π)时,1﹣cos x>0,sin x>0,故f(x)>0,可排除A,又f′(x)=(1﹣cos x)′sin x+(1﹣cos x)(sin x)′=sin2x+cos x﹣cos2x=cos x﹣cos2x,故可得f′(0)=0,可排除D,故选:C.20.【2013年新课标2文科11】已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0【答案】解:A 、对于三次函数f (x )=x 3+ax 2+bx +c ,A :由于当x →﹣∞时,y →﹣∞,当x →+∞时,y →+∞, 故∃x 0∈R ,f (x 0)=0,故A 正确;B 、∵f (−2a 3−x )+f (x )=(−2a 3−x )3+a (−2a3−x )2+b (−2a3−x )+c +x 3+ax 2+bx +c =4a 327−2ab 3+2c ,f (−a3)=(−a3)3+a (−a3)2+b (−a3)+c =2a 327−ab 3+c ,∵f (−2a 3−x )+f (x )=2f (−a3),∴点P (−a3,f (−a3))为对称中心,故B 正确. C 、若取a =﹣1,b =﹣1,c =0,则f (x )=x 3﹣x 2﹣x , 对于f (x )=x 3﹣x 2﹣x ,∵f ′(x )=3x 2﹣2x ﹣1∴由f ′(x )=3x 2﹣2x ﹣1>0得x ∈(﹣∞,−13)∪(1,+∞) 由f ′(x )=3x 2﹣2x ﹣1<0得x ∈(−13,1)∴函数f (x )的单调增区间为:(﹣∞,−13),(1,+∞),减区间为:(−13,1),故1是f (x )的极小值点,但f (x )在区间(﹣∞,1)不是单调递减,故C 错误; D :若x 0是f (x )的极值点,根据导数的意义,则f ′(x 0 )=0,故D 正确. 由于该题选择错误的,故选:C .21.【2020年全国1卷文科15】曲线y =lnx +x +1的一条切线的斜率为2,则该切线的方程为______________. 【答案】y =2x【解析】设切线的切点坐标为(x0,y0),y=lnx+x+1,y′=1x+1,y′|x=x0=1x0+1=2,x0=1,y0=2,所以切点坐标为(1,2),所求的切线方程为y−2=2(x−1),即y=2x.故答案为:y=2x.22.【2020年全国3卷文科15】设函数f(x)=e xx+a .若f′(1)=e4,则a=_________.【答案】1【解析】由函数的解析式可得:f′(x)=e x(x+a)−e x(x+a)2=e x(x+a−1)(x+a)2,则:f′(1)=e1×(1+a−1)(1+a)2=ae(a+1)2,据此可得:ae(a+1)2=e4,整理可得:a2−2a+1=0,解得:a=1.故答案为:1.23.【2019年新课标1文科13】曲线y=3(x2+x)e x在点(0,0)处的切线方程为.【答案】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.24.【2018年新课标2文科13】曲线y=2lnx在点(1,0)处的切线方程为.【答案】解:∵y=2lnx,∴y′=2x,当x=1时,y′=2∴曲线y=2lnx在点(1,0)处的切线方程为y=2x﹣2.故答案为:y=2x﹣2.25.【2017年新课标1文科14】曲线y=x2+1x在点(1,2)处的切线方程为.【答案】解:曲线y=x2+1x ,可得y′=2x−1x2,切线的斜率为:k=2﹣1=1.切线方程为:y﹣2=x﹣1,即:x﹣y+1=0.故答案为:x﹣y+1=0.26.【2016年新课标3文科16】已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,则曲线y=f(x)在点(1,2)处的切线方程是.【答案】解:已知f(x)为偶函数,当x≤0时,f(x)=e﹣x﹣1﹣x,设x>0,则﹣x<0,∴f(x)=f(﹣x)=e x﹣1+x,则f′(x)=e x﹣1+1,f′(1)=e0+1=2.∴曲线y=f(x)在点(1,2)处的切线方程是y﹣2=2(x﹣1).即y=2x.故答案为:y=2x.27.【2015年新课标1文科14】已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.【答案】解:函数f(x)=ax3+x+1的导数为:f′(x)=3ax2+1,f′(1)=3a+1,而f(1)=a+2,切线方程为:y﹣a﹣2=(3a+1)(x﹣1),因为切线方程经过(2,7),所以7﹣a﹣2=(3a+1)(2﹣1),解得a=1.故答案为:1.28.【2015年新课标2文科16】已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.,【答案】解:y=x+lnx的导数为y′=1+1x曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a 2﹣8a =0, 解得a =8. 故答案为:8.1.已知函数f (x )=a e x +b (a,b ∈R )在点(0,f (0))处的切线方程为y =3x +2,则2a +b =( )A .1B .2C .4D .5【答案】D 【解析】由f (x )=a e x +b ,则f ′(x )=a e x ,所以{f (0)=2=a +b,f ′(0)=3=a,解得:a =3,b =−1,所以2a +b =5 .故选:D.2.已知函数f (x )=−xln2−x 3,则不等式f (3−x 2)>f (2x −5)的解集为( ) A .(−4,2)B .(−2,2)C .(−∞,−2)∪(2,+∞)D .(−∞,−4)∪(2,+∞)【答案】D 【解析】f(x)的定义域为(−∞,+∞),因为f ′(x)=−ln2−3x 2 <0,所以f(x)在(−∞,+∞)上单调递减,所以不等式f (3−x 2)>f (2x −5)等价于3−x 2<2x −5,解得x <−4或x >2, 所以不等式f (3−x 2)>f (2x −5)的解集为(−∞,−4)∪(2,+∞). 故选:D3.已知x 0是函数f(x)=13x −2sin x cos x 的一个极值点,则tan 2x 0的值是( )A .1B .12C .37D .57【答案】D 【解析】f ′(x)=13−2cos 2x,∴cos 2x 0=16∴2cos 2x 0−1=16, ∴cos 2x 0=712,∴sin 2x 0=1−cos 2x 0=512,模拟好题∴tan2x0=sin2x0cos2x0=57故选:D4.已知函数f(x)=e x−e2lnx,则曲线y=f(x)在点(1,f(1))处的切线方程为()A.e x+2y−e=0B.e x−2y+e=0C.e x−2y−e=0D.e x+2y+e=0【答案】B【解析】∵f′(x)=e x−e2x ,∴f′(1)=e−e2=e2.又f(1)=e1−e2×ln1=e,切点为(1,e)所以曲线y=f(x)在点(1,f(1))处的切线的斜率为k=f′(1)=e2,所以曲线y=f(x)在点(1,f(1))处的切线方程为y−e=e2(x−1),即e x−2y+e=0.故选:B.5.已知函数g(x)=lnx+34x −14x−1,f(x)=x2−2tx+4,若对任意的x1∈(0,2)存在x2∈[1,2],使g(x1)≥f(x2),则实数t的取值范围是()A.[2,178]B.[178,+∞)C.[114,+∞)D.[3√22,+∞)【答案】B【解析】因为对任意的x1∈(0,2)存在x2∈[1,2],使g(x1)≥f(x2)成立,即g(x)min≥f(x)min,由函数g(x)=lnx+34x −14x−1,可得g′(x)=1x−34x2−14=−(x−1)(x−3)4x2,0<x<2,当x∈(0,1)时,g′(x)<0,g(x)单调递减;当x∈(1,2)时,g′(x)>0,g(x)单调递增,所以当x=1时,函数g(x)取得最小值,最小值为g(1)=−12,又由函数f(x)=x2−2tx+4=(x−t)2+4−t2,x∈[1,2],当t<1时,函数f(x)在[1,2]上单调递增,f(x)min=f(1)=5−2t,即5−2t≤−12,解得t≥114,不成立,舍去;当1≤t ≤2时,函数f (x )在[1,t]上单调递减,[t,2]上单调递增,f (x )min =f (t )=4−t 2,即4−t 2≤−12,解得t ≥3√22或t ≤−3√22,不成立,舍去;当t >2时,函数f (x )在[1,2]上单调递减,f (x )min =f (2)=8−4t , 即8−4t ≤−12,解得t ≥178,综上可得,实数t 的取值范围是[178,+∞). 故选:B.6.设直线x =t 与函数f(x)=2x 2,g(x)=lnx 的图像分别交于点M,N ,则|MN |的最小值为( ) A .12+ln2B .3ln2−1C .e2−1D .12【答案】A 【解析】由题意M(t,2t 2),N(t,lnt),所以|MN |=|2t 2−lnt |,令ℎ(t)=2t 2−lnt ,则ℎ′(t)=4t −1t=4t 2−1t ,当0<t <12时,ℎ′(t)<0,当t >12时,ℎ′(t)>0,所以ℎ(t)min =ℎ(12)=12+ln2, 即|MN|的最小值为12+ln2, 故选:A.7.已知函数f (x )=e x +ax 2+2ax 在x ∈(0,+∞)上有最小值,则实数a 的取值范围为( ) A .(12,+∞)B .(−e 2,−12)C .(−1,0)D .(−∞,−12)【答案】D 【解析】解:∵f(x)=e x +ax 2+2ax , ∴f ′(x)=e x +2ax +2a ,若函数f(x)在x ∈(0,+∞)上有最小值, 即f(x)在(0,+∞)先递减再递增, 即f ′(x)在(0,+∞)先小于0,再大于0, 令f ′(x)<0,得e x <−2a(x +1), 令g(x)=e x ,ℎ(x)=−2a(x +1),只需ℎ(x)的斜率−2a 大于过(−1,0)的g(x)的切线的斜率即可,设切点是(x 0,e x 0),则切线方程是:y −e x 0=e x 0(x −a), 将(−1,0)代入切线方程得:x 0=0, 故切点是(0,1),切线的斜率是1,只需−2a >1即可,解得a <−12,即a ∈(−∞,−12), 故选:D .8.已知函数f(x)为定义在R 上的增函数,且对∀x ∈R,f(x)+f(−x)=1,若不等式f(ax)+f(−lnx)≥1对∀x ∈(0,+∞)恒成立,则实数a 的取值范围是( ) A .(0,e ] B .(−∞,e ]C .(0,1e]D .[1e,+∞)【答案】D 【解析】∵∀x ∈R ,f(x)+f(−x)=1,∴f(−lnx)=1−f(lnx), ∵不等式f(ax)+f(−lnx)≥1对∀x ∈(0,+∞)恒成立, ∴f(ax)≥f(lnx)对∀x ∈(0,+∞)恒成立,∵函数f(x)为定义在R 上的增函数,∴ax ≥lnx ,化为:a ≥lnx x,令g(x)=lnx x,x ∈(0,+∞),则g ′(x)=1−lnx x 2,x ∈(0,e)时,g ′(x)>0,此时函数g(x)单调递增;x ∈(e,+∞)时,g ′(x)<0,此时函数g(x)单调递减. ∴x =e 时,函数g(x)取得极大值. g(x)max =g(e )=1e .∴a ≥1e.则实数a 的取值范围是[1e,+∞).故选:D.9.已知函数f (x )=−e x +ax −e 2有两个零点,则实数a 的取值范围为( ) A .(0,e 2) B .(0,e ) C .(e ,+∞) D .(e 2,+∞)【答案】D 【解析】f′(x)=−e x+a,当a≤0时,f′(x)<0,则f(x)单调递减,此时f(x)至多一个零点,不符合题意;当a>0时,令f′(x)=0,则x=lna,当x∈(−∞,lna)时,f′(x)>0,f(x)单调递增,当x∈(lna,+∞)时,f′(x)<0,f(x)单调递减,因为f(x)有两个零点,所以f(lna)=alna−a−e2>0,令g(a)=alna−a−e2,a>0,则g′(a)=lna,令g′(a)<0解得0<a<1,令g′(a)>0,解得a>1,所以g(a)在(0,1)单调递减,在(1,+∞)单调递增,且当0<a<1时,g(a)<0,g(1)=−1−e2<0,g(e2)=0,所以a>e2.故选:D.10.已知x∈(0,π2),且ax<sinx<bx恒成立,则b−a的最小值为()A.1B.π2C.π2−1D.1−2π【答案】D 【解析】由ax<sinx,x∈(0,π2)得:a<sinxx;令f(x)=sinxx (0<x<π2),∴f′(x)=xcosx−sinxx2,令g(x)=xcosx−sinx(0<x<π2),则g′(x)=−xsinx<0,∴g(x)在(0,π2)上单调递减,∴g(x)<g(0)=0,则f′(x)<0,∴f(x)在(0,π2)上单调递减,∴f(x)>f(π2)=2π,∴a≤2π;令ℎ(x)=sinx−bx(0<x<π2),则ℎ′(x)=cosx−b,∵0<x<π2,∴0<cosx<1;当b≤0时,ℎ′(x)>0,∴ℎ(x)在(0,π2)上单调递增,∴ℎ(x)>ℎ(0)=0,不合题意;当b≥1时,ℎ′(x)<0,∴ℎ(x)在(0,π2)上单调递减,∴ℎ(x)<ℎ(0)=0,满足题意;当0<b<1时,∃x0∈(0,π2),使得ℎ′(x0)=0,又ℎ′(x)在(0,π2)上单调递减,∴当x∈(0,x0)时,ℎ′(x)>0,∴ℎ(x )在(0,x 0)上单调递增,则ℎ(x )>ℎ(0)=0,不合题意; 综上所述:b ≥1;∴(b −a )min =b min −a max =1−2π.故选:D.11.若曲线y =−√x +1在点(0,−1)处的切线与曲线y =lnx 在点 P 处的切线垂直,则点 P 的坐标为( ) A .(e ,1) B .(1,0) C .(2,ln2)D .(12,−ln2)【答案】D 【解析】y =−√x +1的导数为y ′=2√x+1,所以曲线y =−√x +1在点(0,−1)处的切线的斜率为k 1=−12. 因为曲线y =−√x +1在点(0,−1)处的切线与曲线y=ln x 在点P 处的切线垂直, 所以曲线y=ln x 在点P 处的切线的斜率k 2=2.而y=ln x 的导数y ′=1x ,所以切点的横坐标为12,所以切点P(12,−ln2). 故选:D12.定义:设函数f (x )的定义域为D ,如果[m,n ]⊆D ,使得f (x )在[m,n ]上的值域为[m,n ],则称函数f (x )在[m,n ]上为“等域函数”,若定义域为[1e ,e 2]的函数g (x )=a x (a >0,a ≠1)在定义域的某个闭区间上为“等域函数”,则a 的取值范围为( ) A .[2e2,1e )B .[2e2,1e]C .[e 2e 2,e 1e )D .[e 2e 2,e 1e ]【答案】C 【解析】当0<a <1时,函数g(x)=a x 在[1e ,e 2]上为减函数,若在其定义域的某个闭区间上为“等域函数”,则存在m ,n ∈[1e,e 2](m <n )使得{a m =n a n =m ,所以{m ln a =ln nn ln a =ln m ,消去lna ,得mlnm =nlnn ,令k(x)=xlnx ,则k ′(x)=lnx +1,当x ∈[1e ,e 2]时,k ′(x)≥0,所以k(x)在[1e ,e 2]上是单调增函数,所以符合条件的m ,n 不存在.当a>1时,函数g(x)=a x在[1e,e2]上为增函数,若在其定义域的某个闭区间上为“等域函数”,则存在m,n∈[1e ,e2](m<n)使得a m=m,a n=n,即方程a x=x在[1e,e2]上有两个不等实根,即lna=lnxx 在[1e,e2]上有两个不等实根,设函数ℎ(x)=lnxx (1e≤x≤e2),则ℎ′(x)=1−lnxx2,当1e≤x<e时,ℎ′(x)>0;当e<x≤e2时,ℎ′(x)<0,所以ℎ(x)在[1e,e)上单调递增,在(e,e2]上单调递减,所以ℎ(x)在x=e处取得极大值,也是最大值,所以ℎ(x)max=ℎ(e)=1e ,又ℎ(1e)=−e,ℎ(e2)=2e2,故2e2≤lna<1e,即e2e2≤a<e1e.故选:C.【点睛】解题的关键是讨论g(x)的单调性,根据题意,整理化简得到新的函数,利用导数求得新函数的单调性和最值,分析即可得答案,考查分析理解,计算求值的能力,属中档题.13.已知x1>x2>0,若不等式e2x1−e2x2x1−x2>m e x1+x2恒成立,则m的取值范围为()A.(−∞,2)B.(−∞,2]C.(−∞,0)D.(−∞,0]【答案】B【解析】解:因为x1>x2>0,不等式e2x1−e2x2x1−x2>m e x1+x2恒成立,等价于e x1−x2−e x2−x1−m(x1−x2)>0恒成立,令t=x1−x2>0,则不等式转化为e t−e−t−mt>0恒成立,令f(t)=e t−e−t−mt(t>0),则f′(t)=e t+e−t−m,显然e t+e−t≥2√e t⋅e−t=2,当且仅当e t=e−t,即t=0时取等号,所以当m≤2时f′(t)>0,即f(t)在(0,+∞)上单调递增,所以f(t)>f(0)=0,符合题意;当m>2时,令g(t)=f′(t)=e t+e−t−m,则g′(t)=e t−e−t>0,故f′(t)在(0,+∞)上单调递增,所以存在t0∈(0,+∞)满足f′(t0)=0,且当0<t<t0时f′(t)<0,当t>t0时f′(t)>0,所以f (t )在(0,t 0)上单调递减,此时f (t )<f (0)=0,与题意矛盾,综上可得m ∈(−∞,2]; 故选:B14.已知奇函数f (x )的导函数为f ′(x ),且f (x )在(0,π2)上恒有f (x )sinx<f ′(x )cosx成立,则下列不等式成立的( )A .√2f (π6)>f (π4)B .f (−π3)<√3f (−π6)C .√3f (−π4)<√2f (−π3)D .√22f (π3)<√3f (π4)【答案】B 【解析】 构造函数F (x )=f (x )sin x,由f (x )在(0,π2)上恒有f(x )sinx<f ′(x )cosx成立,即f ′(x )sin x −f (x )cos x >0,∴F ′(x )=f ′(x )sin x−f (x )cos x(sinx)2>0,∴F (x )在(0,π2)上为增函数,又由F (−x )=f (−x )sin (−x )=−f (x )−sin x=F (x ),∴F (x )为偶函数,∵π6<π4,∴F (π6)<F (π4),∴f(π6)sin π6<f(π4)sin π4,∴√2f (π6)<f (π4),故A 错误.∵偶函数F (x )在(0,π2)上为增函数,∴F (x )在(−π2,0)上为减函数,∵−π3<−π6,∴F (−π3)>F (−π6),∴f (−π3)sin (−π3)>f (−π6)sin (−π6),∴−f (−π3)>−√3f (−π6), ∴f (−π3)<√3f (−π6),故B 正确;F (−π4)<F (−π3),∴f(−π4)sin (−π4)<f(π3)sin (−π),∴−√3f (−π4)<−√2f (−π3),∴√3f (−π4)>√2f (−π3),故C 错误;∵π3>π4,∴F (π3)>F (π4),∴f(π3)sin π3>f(π4)sin π4,∴√2f (π3)>√3f (π4),故D 错误.故选:B15.已知f ′(x )是定义在R 上的函数f (x )的导数,且f (x )−f ′(x )<0,则下列不等式一定成立的是( ) A .e 3f (−2)>f (1) B .f (−2)<e 3f (1) C .e f (1)<f (2) D .f (1)<e f (2)【答案】C 【解析】 设g (x )=f (x )ex,则g ′(x )=f ′(x )−f (x )ex.因为f (x )−f ′(x )<0,所以g ′(x )>0,则g (x )在R 上单调递增. 因为−2<1,所以g (−2)<g (1),即f (−2)e−2<f (1)e,所以3f (−2)<f (1),则A 错误;因为f (−2),f (1)的大小不能确定,所以f (−2),e 3f (1)的大小不能确定,则B 错误; 因为1<2,所以g (1)<g (2),则f (1)e<f (2)e2,所以e f (1)<f (2),则C 正确;因为f (1),f (2)的大小不能确定,所以f (1),e f (2)不能确定,则D 错误. 故选:C16.曲线y =x 3+lnx 在x =1处的切线方程为 _____________ . 【答案】4x −y −3=0 【解析】解:y ′=3x 2+1x , 当x =1时,y ′=4,y =1,所以曲线y =x 3+lnx 在x =1处的切线方程为y −1=4(x −1), 即4x −y −3=0. 故答案为:4x −y −3=0.17.已知函数f (x )=2e −x ,则曲线y =f (x )在点(−2,f (−2))(e ≈2.71828⋅⋅⋅)处的切线方程为______. 【答案】2e 2x +y +2e 2=0 【解析】f ′(x)=−2e −x ,f ′(−2)=−2e 2,f(−2)=2e 2,所以所求切线方程为y −2e 2=−2e 2(x +2),即2e 2x +y +2e 2=0. 故答案为:2e 2x +y +2e 2=0.18.若直线l 与曲线y =x 2和x 2+y 2=49都相切,则l 的斜率为______.【答案】±2√2 【解析】设y =x 2的切点为(m,m 2),f ′(x )=2x ,故f ′(m )=2m , 则切线方程为:y −m 2=2m (x −m ),即2mx −y −m 2=0 圆心到圆的距离为23,即2√1+4m 2=23,解得:m 2=2或−29(舍去)所以m =±√2,则l 的斜率为2m =±2√2 故答案为:±2√2 19.已知函数f (x )=e x +e xe a,g (x )=x −e ae x ,若存在实数x 0,使f (x 0)−g (x 0)=3成立,则实数a =______.【答案】0 【解析】令f(x)−g(x)=e x +e xe a −x +e ae x =e x−a +e a−x +e x −x ,令ℎ(x)=e x −x ,则ℎ′(x)=e x −1, 由ℎ′(x)>0⇒x >0,ℎ′(x)<0⇒x <0,所以函数ℎ(x)在(−∞,0)上单调递减,在(0,+∞)上单调递增, 所以ℎ(x)min =ℎ(0)=1,所以e x−a +e a−x ≥2, 当且仅当e x−a =e a−x 即x =a 时等号成立,即f(x)−g(x)≥3,当且仅当等号同时成立时,等号成立, 故x =a =0,即a =0. 故答案为:0.20.已知函数f(x)=x 2+2x e x −1,则函数f(x)在点(0,f(0))处的切线方程为_____________. 【答案】2x −y −1=0 【解析】由已知f ′(x)=2x +2e x +2x e x ,f ′(0)=2,又f(0)=−1, 所以切线方程为y +1=2x ,即2x −y −1=0. 故答案为:2x −y −1=0.21.已知定义在(0,+∞)上的函数f (x )满足:f(x)={xlnx,0<x ≤12f(x −1),x >1 ,若方程f (x )=kx −12在(0,2]上恰有三个根,则实数k 的取值范围是___________. 【答案】(1−ln2,12) 【解析】方程f (x )=kx −12在(0,2]上恰有三个根,即直线y =kx −12与函数y =f (x )的图像有三个交点, 当0<x ≤1时,f (x )=xlnx ,则f ′(x)=lnx +1, 当0<x <1e时,f ′(x)<0;当1e<x ≤1时,f ′(x )>0,所以f (x )在(0,1e)上单调递减,f (x )在(1e,1]上单调递增.结合函数的“周期现象”得f (x )在(0,2]上的图像如下:由于直线l ;y =kx −12过定点A (0,−12).如图连接A ,B (1,0)两点作直线l 1:y =12x −12,过点A 作f (x )=xlnx (0<x ≤1)的切线l 2,设切点P (x 0,y 0),其中y 0=x 0lnx 0,f ′(x)=lnx +1,则斜率k l 2=lnx 0+1 切线l 2:y −x 0lnx 0=(lnx 0+1)(x −x 0)过点A (0,−12).则−12−x 0lnx 0=(lnx 0+1)(0−x 0),即x 0=12,则k l 2=ln 12+1=1−ln2, 当直线l:y =kx −12绕点A (0,−12)在l 1与l 2之间旋转时.直线l:y =kx −12与函数y =f (x )在[-1,2]上的图像有三个交点,故k ∈(1−ln2,12) 故答案为:(1−ln2,12)22.若曲线y =e x 过点(−2,0)的切线恒在函数f(x)=a e x −x 2+(1e−3)x +2e −1的图象的上方,则实数a的取值范围是__________. 【答案】(−∞,−e 2) 【解析】设曲线y =e x 过点(−2,0)的切线的切点为(x 0,y 0),则切线的斜率k =e x 0=y 0−0x 0−(−2)=e x 0x 0+2, 所以x 0=−1,k =1e,切线方程为y =1e(x +2),所以1e(x +2)>a e x −x 2+(1e−3)x +2e−1恒成立,所以a <x 2+3x+1ex恒成立, 令g(x)=x 2+3x+1ex,则g ′(x)=−(x−1)(x+2)ex因为当x <−2,g ′(x)<0,x >−2,g ′(x)>0,所以x=−2为g(x)的极小值点,又因为x→+∞时,g(x)→0+,g(−2)=−e2<0所以gmin(x)=g(−2)=−e2,所以a<−e2.故答案为:(−∞,−e2).23.若直线y=kx+m是曲线y=ln(x−1)的切线,也是曲线y=e x−3的切线,则k=__________.【答案】1或1e【解析】设y=kx+m与y=e x−3和y=ln(x−1)的切点分别为(x1,e x1−3)、(x2,ln(x2−1));由导数的几何意义可得k=e x1−3=1x2−1,即y=e x1−3⋅x+(1−x1)e x1−3,y=1x2−1x+ln(x2−1)−x2x2−1,∴{e x1−3=1x2−1(1−x1)e x1−3=ln(x2−1)−x2x2−1,∴{x1−3=−ln(x2−1)(1−x1)⋅1x2−1=ln(x2−1)−x2x2−1=3−x1−x2x2−1=2−x1−1x2−1∴2−x1x2−1=2−x1当x2=2时,k=1,当x1=2时,k=1e∴k=1或1e.故答案为:1或1e.24.若存在实数a>0,使得函数f(x)=alnx+x与g(x)=2x2−2x−b的图象有相同的切线,且相同切线的斜率为2,则实数b的最大值为_________.【答案】−1.【解析】设函数f(x)=alnx+x的切点为(x1,y1),函数g(x)=2x2−2x−b的切点为(x2,y2)分别对函数进行求导,f′(x)=ax+1,g′(x)=4x−2由相同切线的斜率为2,得g′(x2)=4x2−2=2⇒x2=1,g(1)=−b故切线方程为y=2x−2−bf′(x1)=ax1+1=2⇒a=x1,f(x1)=x1lnx1+x1故函数f(x)=alnx+x的切点为(x1,x1lnx1+x1).把切点(x 1,x 1lnx 1+x 1)代入y =2x −2−b 中得x 1lnx 1+x 1=2x 1−2−b ⇒b =−x 1lnx 1+x 1−2令ℎ(x)=−xlnx +x −2,ℎ′(x)=−lnx −1+1=−lnx 当x ∈(0,1)时,ℎ′(x)>0,函数ℎ(x)单调递增 当x ∈(1,+∞)时,ℎ′(x)<0,函数ℎ(x)单调递减 故ℎ(x)≤ℎ(1)=−1 故实数b 的最大值为−1 故答案为:−1.25.已知函数f (x )={xe x +1e ,x ≤0,x 2−2x,x >0,则方程f (x )=0的根___________. 【答案】−1或2##2或-1 【解析】当x ≤0时,f (x )=xe x +1e ,所以f ′(x )=e x +xe x =(x +1)e x , 令f ′(x )=0,得x =−1, 当x <−1时,f ′(x )<0, 当−1<x ≤0时,f ′(x )>0,所以函数f (x )在(−∞,−1)上单调递减,在(−1,0)上单调递增, 所以f(x)min =f (−1)=0,故当x ≤0时,f (x )=0有唯一根−1, 当x >0时,f (x )=x 2−2x , 令f (x )=0,解得x =0(舍去)或2, 故当x >0时,f (x )=0的根为2, 综上,f (x )=0根为−1或2. 故答案为:−1或2.。
专题04 导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
有两个不同的零点即 的解的个数为2.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
【题目栏目】导数\导数的综合应用
【题目来源】2021年高考全国甲卷文科·第20题
10.(2021年全国高考乙卷文科·第21题)已知函数 .
(1)讨论 的单调性;
(2)求曲线 过坐标原点的切线与曲线 的公共点的坐标.
【答案】(1)答案见解析;(2) .
解析:(1)由函数的解析式可得: ,
导函数的判别式 ,
即曲线 过坐标原点的切线与曲线 的公共点的坐标为 .
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
【题目栏目】导数\导数的综合应用
【题目来源】2022新高考全国I卷·第22题
5.(2021年新高考全国Ⅱ卷·第22题)已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点
(好题)高中数学选修二第二单元《一元函数的导数及其应用》测试卷(答案解析)(4)

一、选择题1.已知函数ln,1 ()1,12x xf x xx≥⎧⎪=⎨-<⎪⎩,若()[()1]F x f f x m=++两个零点1x,2x,则12x x⋅的取值范围是()A.(),e-∞B.(),e+∞C.(],42ln2-∞-D.[)42ln2,-+∞2.已知函数(),0,,0.lnx xf xkx x>⎧=⎨≤⎩,若x R∃∈使得()()00f x f x-=成立,则实数k的取值范围是()A.(],1-∞B.1,e⎛⎤-∞⎥⎝⎦C.[)1,-+∞D.1,e⎡⎫-+∞⎪⎢⎣⎭3.已知关于x的方程ln2lnx a x-=有三个不等的实数根,则实数a的取值范围是()A.1,2e⎛⎫+∞⎪⎝⎭B.21,4e⎛⎫+∞⎪⎝⎭C.(),e+∞D.()2,e+∞4.已知函数()f x是定义在R上的可导函数,对于任意的实数x,都有()()2xf xef x-=,当0x<时,()()0f x f x+'>,若()()211ae f a f a+≥+,则实数a的取值范围是()A.20,3⎡⎤⎢⎥⎣⎦B.2,03⎡⎤-⎢⎥⎣⎦C.[)0,+∞D.(],0-∞5.对任意的0a b t<<<,都有ln lnb a a b<,则t的最大值为()A.1 B.e C.2e D.1e6.函数y=f(x)的导函数y=f′(x)的图象如图所示,给出下列命题:①-3是函数y=f(x)的极值点;②y=f(x)在区间(-3,1)上单调递增;③-1是函数y=f(x)的最小值点;④y =f (x )在x =0处切线的斜率小于零. 以上正确命题的序号是( ) A .①②B .③④C .①③D .②④7.记函数()cos2f x x =的导函数为()f x ',则函数()23()()g x f x f x '=+在[0,]x π∈内的单调递增区间是( ) A .0,2π⎡⎤⎢⎥⎣⎦B .,2ππ⎡⎤⎢⎥⎣⎦C .511,1212ππ⎡⎤⎢⎥⎣⎦D .5,12ππ⎡⎤⎢⎥⎣⎦8.已知函数f (x )在x =x 0处的导数为12,则000()()lim 3x f x x f x x∆→-∆-=∆( )A .-4B .4C .-36D .369.下列说法正确的是( )A .命题“若21x =,则1x ≠”的否命题是“若21x =,则1x =”B .命题“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->”C .“()y f x =在0x 处有极值”是“0()0f x '=”的充要条件D .命题“若函数2()1f x x ax =-+有零点,则“2a ≥或2a ≤-”的逆否命题为真命题 10.若()()21ln 22f x x b x =-++在[)1,-+∞上是减函数,则b 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .[)1,+∞D .(],1-∞11.函数()22xx f x e-=的图象大致是( ) A . B .C .D .12.已知函数()cos ln f x x x =-+,则()1f '的值为( ) A .sin11- B .1sin1- C .1sin1+ D .1sin1--二、填空题13.若关于x 的不等式220x ax +-<在区间[1,4]上有解,则实数a 的取值范围为________.14.已知()y f x =是奇函数,当(0,2)x ∈时,1()()2f x lnx ax a =->,当(2,0)x ∈-时,()f x 的最小值为1,则a =________.15.已知曲线x xy e=在1x x =处的切线为1l ,曲线ln y x =在2x x =处的切线为2l ,且12l l ⊥,则21x x -的取值范围是_________.16.函数()1ln(12)2xf x x x-=+-的导函数是()f x ',则()f x '=______________. 17.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)=f ________18.已知函数f (x )=ln x -f ′ (12)x 2+3x -4,则f ′(1)=________. 19.已知函数()f x 的导函数为()f x ',且满足()()2ln f x xf e x '=+,则()f e =__________.20.已知()5234501234532x a a x a x a x a x a x -=+++++,则0123452345a a a a a a +++++的值为______三、解答题21.已知函数()1ln 1f x x x =+-,()()1x g x f x e x m x ⎡⎤=-+-⎢⎥⎣⎦.(1)求()f x 的单调区间;(2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,判断函数()g x 的零点个数.22.已知函数()ln f x a x ax =+,2()2g x x x =+,其中a R ∈. (1)求函数()()()h x f x g x =+的极值; (2)若()g x 的图像在()()11,A x g x ,()()()2212,0B x g x xx <<处的切线互相垂直,求21x x -的最小值.23.已知函数2()3(6)ln ()f x x a x a x a R =+--∈ (1)求函数()y f x =的单调区间;(2)当1a =时,证明:对任意的20,()352x x f x e x x >+>++.24.已知函数321()23f x x bx x a =-++,2x =是()f x 的一个极值点. (1)求()f x 的单调递增区间; (2)若当[1,3]x ∈时,22()3f x a ->恒成立,求实数a 的取值范围.25.已知函数32()f x x ax bx c =+++的图象如图所示,x 轴与曲线相切于原点,所围成的区域(阴影)面积为2764.(1)求()f x 的解析式;(2)求函数()f x 在区间[,]()m m >00上的值域. 26.已知函数211()ln (,0)22f x x a x a R a =--∈≠. (1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题中条件,得到()1mf x e-=-有两个根1x ,2x ,不妨设12x x <;令112m t e -=->,得到()122t x x e x =-,12t >,设()()22tg t e t =-,对其求导,判定其单调性,求出值域,即可得出结果. 【详解】 当1≥x 时,()ln 0f x x =>,∴()11f x +≥, 当1x <时,()1122x f x ->=,()312f x +>; ∴()()1ln 1f f x f x +=+⎡⎤⎡⎤⎣⎦⎣⎦,所以()[()1]F x f f x m =++两个零点1x ,2x ,等价于方程()()1ln 10F f x f x m +=++=⎡⎤⎡⎤⎣⎦⎣⎦有两个根1x ,2x , 则()1mf x e-+=,即()1mf x e-=-有两个根1x ,2x (不妨设12x x <),则1≥x 时,2ln 1mx e -=-;当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,112x t -=;所以2tx e =,122x t =-; 则()122t x x e x =-,12t >,设()()22tg t e t =-,12t >,则()2tg t te '=-,当1,2t ⎛⎫∈+∞⎪⎝⎭时,()0g t '<显然恒成立, 所以函数()g t 单调递减,则()12g t g ⎛⎫<= ⎪⎝⎭所以()g x的值域为(-∞,即12x x的取值范围为(-∞. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据函数零点个数结合函数解析式,得到()1mf x e-=-有两个根为1x 和2x ,再构造函数,利用导数的方法求解即可.2.D解析:D 【分析】由已知建立方程,反解出k ,将问题转化为求函数值域问题,然后利用函数的性质求出最值即可求解. 【详解】由题意可得:存在实数00x ≠,使得()()00 f x f x -=成立,假设00x >,则00x -<, 所以有00ln kx x -=, 则0ln x k x =-, 令()ln xh x x=-, 则()2ln 1x h x x -'=, 令()0h x '>,即ln 1x >, 解得x e >,令()0h x '<,即ln 1x <, 解得0x e <<,则()h x 在()0,e 上单调递减,在(),e +∞上单调递增, 所以()()()ln 1min e h x h x h e e e≥==-=-, 所以1k e≥-, 故选:D. 【点睛】关键点睛:本题考查了分段函数的存在性问题,构造函数,利用导函数求最值是解决本题的关键.3.B解析:B 【分析】方程有三个解转化直线ln y x a =-与函数2ln y x =有三个交点,作出函数2ln y x =的图象,作出直线ln y x a =-,可知,只要求得直线ln y x a =-与函数2ln y x =的图象相切a 的什值,即可得结论. 【详解】转为直线ln y x a =-与函数2ln y x =有三个交点.显然当0x <时,有一个交点:当0x >时,只需ln y x a =-与2ln y x =有两个交点即可. 由2'1y x==,得2x =,ln y x a =-与2ln y x =相切时,切点坐标为()2,2ln 2, 此时24e a =. 由图象可知,当2,4e a ⎛⎫∈+∞ ⎪⎝⎭时,关于x 的方程ln 2ln x a x -=有三个不等的实数根. 故选:B .【点睛】关键点点睛:本题考查方程根的个数问题,解题方法是转化为直线与函数图象交点个数,进而转化为研究函数的性质,本题是用导数求出函数的切线方程方程.然后结合图象可得结论.4.B解析:B 【分析】构造函数()()xg x e f x =,根据题意,可得函数()g x 的奇偶性,根据0x <时()()0f x f x +'>,对函数()g x 求导,可得函数()g x 的单调性,将()()211a e f a f a +≥+,左右同乘1a e +,可得()()211211a a e f a e f a +++≥+,即()()211g a g a +≥+,利用()g x 的性质,即可求得答案.【详解】∵()()2x f x e f x -=,∴()()()x x xf xe f x e f x e --==-, 令()()xg x e f x =,则()()g x g x -=,即()g x 为偶函数,当0x <时()()0f x f x +'>,∴()()()'0xx e f x f x g '+⎡⎤⎣⎦>=,即函数()g x 在(),0-∞上单调递增.根据偶函数对称区间上单调性相反的性质可知()g x 在()0,∞+上单调递减, ∵()()211ae f a f a +≥+,∴()()211211a a ef a e f a +++≥+,∴()()211g a g a +≥+,即211a a +≤+, 解得,203a -≤≤, 故选:B . 【点睛】解题的关键是将题干条件转化为()()()x x xf x e f x e f x e--==-,根据左右相同的形式,构造函数()()xg x e f x =,再根据题意,求得函数的奇偶性,单调性;难点在于:由于()()211a e f a f a +≥+,不符合函数()g x 的形式,需左右同乘1a e +,方可利用函数()g x 的性质求解,属中档题.5.B解析:B 【分析】令ln xy x=,问题转化为函数在(0,)t 递增,求出函数的导数,求出函数的单调区间,从而求出t 的最大值即可.【详解】0a b t <<<,ln ln b a a b <,∴ln ln a ba b<,()a b <, 令ln xy x=,则函数在(0,)t 递增, 故21ln 0xy x -'=>, 解得:0x e <<,所以(0,)t 是(0,)e 的子集, 可得0t e <≤,故t 的最大值是e , 故选:B . 【点睛】利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间,a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围.6.A解析:A 【分析】根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率. 【详解】根据导函数图象可知:当(),3x ∈-∞-时,()0f x '<,在()3,1x ∈-时,()0f x '≥∴函数()y f x =在(),3-∞-上单调递减,在()3,1-上单调递增,故②正确;则3-是函数()y f x =的极小值点,故①正确;∵在()3,1-上单调递增,1∴-不是函数()y f x =的最小值点,故③不正确; ∵函数()y f x =在0x =处的导数大于0,∴切线的斜率大于零,故④不正确. 故选:A 【点睛】方法点睛:本题考查导函数图象在函数单调性和极值中的应用,考查导数的几何意义,其中利用导函数判断单调性的步骤为: 先求出原函数的定义域; 对原函数求导;令导数大于零;解出自变量的范围;该范围即为该函数的增区间;同理令导数小于零,得到减区间;若定义域在增区间内,则函数单增;若定义域在减区间内则函数单减,若以上都不满足,则函数不单调.7.C解析:C 【分析】先对函数()f x 求导,再利用辅助角公式化简,然后利用正弦函数图像和性质即可分增区间. 【详解】()cos2f x x =,()'2sin 2f x x ∴=-,2()2sin 24sin 23g x x x x π⎛⎫=-=+⎪⎝⎭, 令2222232k x k πππππ-+≤+≤+, 解得71212k x k ππππ-+≤≤-+, ()g x ∴在[]0,π内的递增区间为511,1212ππ⎡⎤⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查的是正弦复合函数的单调性以及单调区间的求解,以及复合函数的导数的求法,熟练掌握正弦函数图像和性质是解决本题的关键,是中档题.8.A解析:A 【分析】根据题意,由极限的性质可得则000000()()()()1lim =lim 33x x f x x f x f x f x x x x∆→∆→-∆---∆-∆∆,结合导数的定义计算可得答案. 【详解】根据题意,函数()f x 在0x x =处的导数为12,则000000()()()()112lim=lim 4333x x f x x f x f x f x x x x ∆→∆→-∆---∆-=-=-∆∆;故选:A . 【点睛】本题考查极限的计算以及导数的定义,属于容易题.9.D解析:D 【分析】选项A ,否命题,条件否定,结论也要否定;选项B ,命题的否定,只对结论否定;选项C ,()y f x =在0x 处有极值,既要满足0()0f x '=,也要满足函数在0x 两边的单调性要相反;选项D ,若函数2()1f x x ax =-+有零点,等价于0∆≥,原命题与逆否命题同真假. 【详解】选项A ,命题“若21x =,则1x ≠”的否命题是“若21x ≠,则1x =”,错误;选项B ,命题“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x -≥”,错误;选项C ,0()0f x '=不能得到()y f x =在0x 处有极值,例如3()f x x =在0x =时,导数为0,但0x =不是函数极值点,错误;选项D ,若函数2()1f x x ax =-+有零点,即方程210x ax -+=有解,所以0∆≥,解得2a ≥或2a ≤-,所以原命题为真命题,又因为原命题与逆否命题同真假,所以逆否命题也是真命题,正确.2a ≥或2a ≤- 【点睛】本题主要考查命题真假性的判断,涉及到四个命题、充要条件以及特称命题的否定.10.B解析:B 【分析】先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案 【详解】由题意可知()02bf x x x '-+≤+=,在[)1x ∈-+∞,上恒成立, 即()2b x x ≤+在[)1x ∈-+∞,上恒成立, 由于()2y x x =+在[)1,-+∞上是增函数且最小值为1-,所以1b ≤-, 故选:B. 【点睛】本题主要考查导数的正负和原函数的增减性的问题,属于中档题.11.D解析:D 【分析】利用函数()f x 的奇偶性和单调性确定正确选项. 【详解】()f x 的定义域为R ,()()22x x f x f x e--==,所以()f x 为偶函数,排除AB 选项.当0x >时,()22xx f x e-=,()2'22xx x f x e-++=,令'0f x 解得1x =,所以()f x 在()1递增,在)1,+∞上递减.所以C 选项不符合,D 选项符合. 故选:D 【点睛】本小题主要考查函数的奇偶性和单调性,考查利用导数研究函数的单调性.12.C解析:C 【分析】根据导数的运算法则先求出函数的导数()f x '的解析式,再把1x =代入()f x '的解析式运算求得结果. 【详解】∵函数()cos ln f x x x =-+,∴()1sin f x x x'=+, ∴()1sin11f ='+,故选C. 【点睛】本题主要考查求函数的导数,导数的加减法则的应用,属于基础题.二、填空题13.【分析】本题现将不等式运用参变分离化简为再构造新函数求最大值最后求实数a 的取值范围【详解】解:∵不等式在区间上有解∴不等式在区间上有解∴不等式在区间上有解令()则∴当时单调递减∴不等式在区间上有解即 解析:(,1)-∞【分析】本题现将不等式220x ax +-<运用参变分离化简为2a x x<-,再构造新函数2()f x x x=-求最大值,最后求实数a 的取值范围. 【详解】解:∵ 不等式220x ax +-<在区间[1,4]上有解, ∴ 不等式22x a x-<在区间[1,4]上有解,∴ 不等式2a x x<-在区间[1,4]上有解, 令2()f x x x =-,(14x ≤≤),则22'()1f x x=--,∴ 当14x ≤≤时,'()0f x <,()f x 单调递减, ∴ max 2()(1)111f x f ==-= 不等式2a x x<-在区间[1,4]上有解,即max ()a f x∴1a <故答案为:(,1)-∞ 【点睛】本题考查不等式存在性问题,借导函数研究原函数单调性求最大值,是中档题.14.1【分析】根据函数的奇偶性确定在上的最大值为求导函数确定函数的单调性求出最值即可求得的值【详解】是奇函数时的最小值为1在上的最大值为当时令得又令则在上递增;令则在上递减得故答案为:1【点睛】本题考查解析:1 【分析】根据函数的奇偶性,确定()f x 在(0,2)上的最大值为1-,求导函数,确定函数的单调性,求出最值,即可求得a 的值. 【详解】()f x 是奇函数,(2,0)x ∈-时,()f x 的最小值为1,()f x ∴在(0,2)上的最大值为1-,当(0,2)x ∈时,1()f x a x'=-, 令()0f x '=得1x a =,又12a >,102a ∴<<,令()0f x '>,则1x a <,()f x ∴在1(0,)a 上递增;令()0f x '<,则1x a>, ()f x ∴在1(a,2)上递减,111()()1max f x f ln aaaa ∴==-=-,10ln a∴=,得1a =. 故答案为:1. 【点睛】本题考查函数单调性与奇偶性的结合,考查导数知识的运用,考查学生的计算能力,属于中档题.15.【分析】由求导根据得到由得到而然后令用导数法求解【详解】令则所以因为故所以因为故又令则当时为减函数故所以在上恒成立故在上为减函数所以即因此的取值范围是故答案为:【点睛】本题主要考查导数的几何意义导数 解析:(),1-∞-【分析】 由()xx f x e=,()ln g x x =,求导,根据12l l ⊥,得到1121x x x e -=,由20x >,得到11x >.而112111x x x x x e --=-,然后令()1,1xx h x x x e -=->,用导数法求解. 【详解】令()x x f x e =,()ln g x x =,则()1x xf x e -'=,()1g x x'=, 所以1111x xk e -=,221k x =, 因为12l l ⊥,故112111x x e x -⨯=-,所以1121x x x e -=, 因为20x >,故11x >.又112111x x x x x e --=-,令()1,1x x h x x x e -=->,则()221xx xx x e h x e e---=-=', 当()1,x ∈+∞时,2xy x e =--为减函数,故12210x x e e --<--<,所以()0h x '<在()1,+∞上恒成立, 故()h x 在()1,+∞上为减函数,所以()()11h x h <=-,即211x x -<-. 因此,21x x -的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题主要考查导数的几何意义,导数与函数的最值,还考查了运算求解的能力,属于中档题.16.【分析】利用基本函数求导公式和导数运算法则求出导数然后代入求值【详解】解:因为由于且解得:且即的定义域为:即:故答案为:【点睛】本题考查基本函数求导公式和导数运算法则以及复合函数求导考查计算能力解析:23242142x x x x -+--+ 【分析】利用基本函数求导公式和导数运算法则,求出导数,然后代入求值. 【详解】 解:因为()1ln(12)2xf x x x-=+-, 由于20x ≠且120x ->,解得:12x <且0x ≠, 即()f x 的定义域为:()1,00,2⎛⎫-∞⋃ ⎪⎝⎭, ()()11()ln 12()ln 1222x x f x x x x x '--⎡⎤''∴=+-='+-⎡⎤⎣⎦⎢⎥⎣⎦2223222(1)14214122122242x x x x x x x x x x -----+-=-+=+=-+---, 即:()23242142x x f x x x -+-'=-+. 故答案为:23242142x x x x-+--+. 【点睛】本题考查基本函数求导公式和导数运算法则,以及复合函数求导,考查计算能力.17.-1【解析】【分析】首先对函数求导然后利用方程思想求解的值即可【详解】由函数的解析式可得:令可得:则【点睛】本题主要考查导数的运算法则基本初等函数的导数公式方程的数学思想等知识意在考查学生的转化能力解析:-1 【解析】 【分析】首先对函数求导,然后利用方程思想求解()'1f 的值即可. 【详解】由函数的解析式可得:()()1'2'1f x f x=+, 令1x =可得:()()1'12'11f f =+,则()'11f =-. 【点睛】本题主要考查导数的运算法则,基本初等函数的导数公式,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.18.-1【分析】根据题意由函数f (x )的解析式对其求导可得在其中令可得再令即可解可得f′(1)的值【详解】根据题意函数f(x)=lnx -f′()x2+3x -4其导数令令则即答案为-1【点睛】本题考查导数解析:-1 【分析】根据题意,由函数f (x )的解析式对其求导可得112'32f x xf x '=-+()() ,在其中令12x = 可得12f ⎛⎫' ⎪⎝⎭,再令1x =即可解可得f′(1)的值,【详解】根据题意,函数f (x )=ln x -f ′ (12)x 2+3x -4, 其导数112'32f x xf x '=-+()(),令12x =,1111152'3,,1222222f f f '=-⨯⨯+∴'=()()() 令1x =,则15213 1.12f x '=-⨯⨯+=-() 即答案为-1. 【点睛】本题考查导数的计算,注意12f ⎛⎫'⎪⎝⎭为常数. 19.-1【解析】分析:先求导数解得代入解得详解:因为所以所以因此点睛:利用导数的几何意义解题主要是利用导数切点坐标切线斜率之间的关系来进行转化解析:-1. 【解析】分析:先求导数,解得()'f e ,代入解得()f e . 详解:因为()()2'ln f x xf e x =+,所以1()2()f x f e x''=+ 所以11()2()(),f e f e f e e e''+∴=-'= 因此1()2()ln 1.f e e e e=-+=-,点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.20.233【解析】分析:根据题意在(3﹣2x )5=a0+a1x+a2x2+a3x3+a4x4+a5x5中令x=0可得a0=243设y=(3﹣2x )5=a0+a1x+a2x2+a3x3+a4x4+a5x5解析:233 【解析】分析:根据题意,在(3﹣2x )5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5中,令x=0可得a 0=243,设y=(3﹣2x )5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5,求出其导数,分析可得y '=﹣104(32)x -=a 1+2a 2x+3a 3x 2+4a 4x 3+5a 5x 4,令x=1可得a 1+2a 2+3a 3+4a 4+5a 5的值,将其值相加即可得答案.详解:根据题意,(3﹣2x )5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5中, 令x=0可得:35=a 0,即a 0=243,设y=(3﹣2x )5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5, 其导数y′=﹣10(3﹣2x )4=a 1+2a 2x+3a 3x 2+4a 4x 3+5a 5x 4, 令x=1可得:﹣10=a 1+2a 2+3a 3+4a 4+5a 5, 则a 0+a 1+2a 2+3a 3+4a 4+5a 5=243﹣10=233; 故答案为:233点睛:(1)本题主要考查二项式定理的应用和导数,意在考查学生对这些基础知识的掌握能力及分析推理能力基本的计算能力. (2)解答本题的关键有两点,其一是想到赋值法,令x=0可得a 0=243,令x=1可得﹣10=a 1+2a 2+3a 3+4a 4+5a 5.其二是要看到0123452345a a a a a a +++++要想到求导.三、解答题21.(1)增区间为(1,)+∞,减区间为(0,1);(2)当112em e e<-+或m e >时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上没有零点;当112e e m e e-+≤≤时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上有一个零点.【分析】(1)求得函数的导数21()x f x x -'=,根据导函数的符号,即可求得函数的单调区间; (2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,把函数()g x 的零点个数转化为方程(ln 1)xx e x m -+=的根的个数,构造新函数()(ln 1)xh x x e x =-+,利用导数求得函数()h x 的单调性与最值,结合最值,即可求解. 【详解】(1)由题意,函数()1ln 1f x x x=+-的定义域为(0,)+∞ ,且22111()x f x x x x -'=-=令()0f x '>,解得1x >;令()0f x '<,解得01x <<,所以函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1).(2)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的零点个数等价于方程(ln 1)x x e x m -+=的根的个数,令()(ln 1)xh x x e x =-+,则1()ln 11x h x x e x ⎛⎫'=+-+⎪⎝⎭, 由(1)知,()f x 在1,1e ⎛⎫⎪⎝⎭上单调递减,在(1,)e 上单调递增,所以当1,e e x ⎡⎤∈⎢⎥⎣⎦,()(1)0f x f ≥=,即1ln 10x x +-≥在1,x e e ⎡⎤∈⎢⎥⎣⎦上恒成立, 所以()1ln 11011x h x x e x ⎛⎫'=+-+≥+=⎪⎝⎭. 所以()(ln 1)xh x x e x =-+在1,x e e⎡⎤∈⎢⎥⎣⎦上单调递增,所以1min11()2e h x h e e e ⎛⎫==-+ ⎪⎝⎭,max ()()h x h e e ==,当112em e e<-+或m e>时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上没有零点;当112ee m e e-+≤≤时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上有一个零点.【点睛】对于利用导数研究函数的零点问题求解策略:把函数的零点问题转化为两个函数的图象的交点个数或转化为方程根的个数问题; 通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; 利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.求满足函数零点个数的参数范围时,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围. 22.(1)答案见解析;(2)1. 【分析】(1)求导2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=,然后分0a ≥,0a <讨论求解. (2)求导()22g x x '=+,根据()g x 的图像在()()11,A x g x ,()()22,B x g x 处的切线互相垂直,得到()()1222221x x ++=-,即 ()121141x x =--+,然后由()21221141x x x x -=+++,利用基本不等式求解.【详解】(1)函数2()ln (2)h x a x x a x =+++的定义或为(0,)+∞,2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=, 若0a ≥,()0h x '>恒成立,此时()h x 在(0,)+∞上单调递增,无极值;若0a <时,()0h x '=,解得2a x =-, 当02ax <<-时,()0h x '<,()h x 单调递减; 当2ax >-时,()0h x '>,()h x 单调递增. ∴当2a x =-时,()h x 有极小值2ln 224a a ah a a ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,无极大值.(2)()22g x x '=+,则()()1222221x x ++=-,其中,120x x <<,1222022x x ∴+<<+,且()121141x x =--+,210x -<<,()212211141x x x x ∴-=++≥=+,当且仅当21(1,0)2x =-∈-时取等号, ∴当212x =-,132x =-时,21x x -取最小值1.【点睛】结论点睛:(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. 23.(1)答案见解析;(2)证明见解析. 【分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得增减区间;(2)不等式变形为ln 20x e x -->,令()ln 2x h x e x =--,由()h x '的单调确定其有唯一零点0x ,得出0x 为()h x 极小值点,也是最小值点,证明最小值即得. 【详解】(1)由题意知,函数()f x 的定义域为(0,)+∞由已知得26(6)(6)(1)()6(6)a x a x a x a x f x x a x x x+---+=+--==' 当0a 时,()0f x '>,函数()f x 在(0,)+∞上单调递增, 所以函数()f x 的单调递增区间为(0,)+∞ 当0a >时,由()0f x '>,得6a x >,由()0f x '<,得06ax << 所以函数()f x 的单调递增区间为,6a ∞⎛⎫+⎪⎝⎭,单调递减区间为0,6a ⎛⎫ ⎪⎝⎭综上,当0a 时,函数()f x 的单调递增区间为(0,)+∞,0a >时,函数()f x 的单调递增区间为,6a ∞⎛⎫+⎪⎝⎭,单调递减区间为0,6a ⎛⎫⎪⎝⎭. (2)当1a =时,不等式2()352x f x e x x +>++可变为ln 20x e x -->. 令()ln 2xh x e x =--,则1()xh x e x'=-,可知函数()h x '在(0,)+∞单调递增,.. 而131303h e ⎛⎫=-< ⎪'⎝⎭,(1)10h e '=->所以方程()0h x '=在(0,)+∞上存在唯一实根0x ,即01x e x =当()00,x x ∈时,()0h x '<,函数()h x 单调递减;当()0,x x ∈+∞时,()0h x '>,函数()h x 单调递增;所以()00min 00000111()ln 2ln 220x x h x h x e x x x e x ==--=--=+-> 即 ln 20x e x -->在(0,)+∞上恒成立, 所以对任意20,()352x x f x e x x >+>++成立. 【点睛】关键点点睛:本题考查用导数求函数的单调区间,考查不等式恒成立问题.把不等式化简后,引入新函数,由导数得出新函数的最值,证明最值符合不等关系即可证原不等式.这里对导函数的零点不能求得具体数,可以得出其存在性,得出其性质(范围),然后利用导数的零点化简原函数的最值,以证结论. 24.(1)(,1)-∞,(2,+)∞;(2)01a <<. 【分析】(1)根据2x =是()f x 的一个极值点,2x =是2()220f x x bx '=-+=方程的一个根,解得b ,然后令()0f x '>求解. (2)将 [1,3]x ∈时,22()3f x a ->恒成立,转化为22()3f x a >+恒成立,只需2min 2()3f x a >+求解. 【详解】(1)2()22f x x bx '=-+.∵2x =是()f x 的一个极值点, ∴2x =是方程2220x bx -+=的一个根, 解得32b =. 令()0f x '>,则2320x x -+>, 解得1x <或2x >.∴函数()y f x =的单调递增区间为(,?1)-∞,(2,+)∞. (2)∵当(1,2)x ∈时()0f x '<,(2,3)x ∈时()0f x '>, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1,?3]x ∈时,要使22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+, 解得 01a <<. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<. 25.(1)323()2f x x x =-;(2)答案见解析. 【分析】(1)由图知(0)0f =得0c ,x 轴与曲线相切于原点得(0)0f '=,在利用定积分求阴影面积即可;(2)先求出()f x 在R 上的单调性,再根据m 的位置分类讨论,即可求出. 【详解】(1)由(0)0f =得0c,2()32f x x ax b '=++,由(0)0f '=得0b =,∴322()()f x x ax x x a =+=+,令()0f x =,得0x =或x a =-,由图知0a ->,即0a <,则易知图中所围成的区城(阴影)面积为()4343200()4312aaax ax a f x dx x ax dx ---⎛⎫-⎰=-⎰+=-+= ⎪⎝⎭, 即4271264a =,从而得32a =-, ∴323()2f x x x =-. (2)由(1)知2()333(1)f x x x x x '=-=-,令()0f x '=,解得0x =或1x =, 由题310,(1)22f f ⎛⎫==-⎪⎝⎭,,(),()x f x f x '的变化情况如下表:①当01m <<时,()f x 在0,m 上单调递减,所以()()(0)f m f x f ≤≤,即323()02m m f x -≤≤; ②当312m ≤≤时,()f x 在[0,1)上单调递减,在(1,]m 上单调递增,所以(1)()(0)f f x f ≤≤,即1()02f x -≤≤; ③当32m >时,()f x 在[0,1)上单调递减,在(1,]m 上单调递增,所以(1)()()f f x f m ≤≤,即3213()22f x m m -≤≤-, 综上可知:当01m <<时,()f x 值域为323,02m m ⎡⎤-⎢⎥⎣⎦; 当312m ≤≤时,()f x 值域为1,02⎡⎤-⎢⎥⎣⎦; 当32m >时,()f x 值域为3213,22m m ⎡⎤--⎢⎥⎣⎦.【点晴】此题要抓住图像的特征,找寻特殊点,充分体现了函数部分数形结合思想和分类讨论思想. 26.(1)10x y +-=;(2)答案见解析;(3)()(],00,1-∞.【分析】(1)当2a =时,求出函数的导数,利用导数的几何意义即可求曲线()y f x =在点()1,()f x 处的切线方程;(2)求函数的导数,利用函数单调性和导数之间的关系即可求函数()f x 的单调区间; (3)根据函数的单调性求出函数的最小值即可实数a 的取值范围. 【详解】解:(1)2a =时,211()2ln 22f x x x =--,(1)0f =, 2'()f x x x=- ,'(1)1f =-曲线()y f x =在点(1,(1))f 处的切线方程10x y +-=(2)2'()(0)a x af x x x x x-=-=>①当0a <时,2'()0x af x x-=>恒成立,函数()f x 的递增区间为()0,∞+②当0a >时,令'()0f x =,解得x =x =所以函数()f x 的递增区间为+∞,递减区间为(3)对任意的[1,)x ∈+∞,使()0f x ≥成立,只需任意的[1,)x ∈+∞,min ()0f x ≥ ①当0a <时,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= 所以0a <满足题意;②当01a <≤时,01<≤,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= 所以01a <≤满足题意;③当1a >1>,()f x 在上是减函数,)+∞上是增函数,所以只需0f ≥即可 而(1)0f f <= 从而1a >不满足题意;综合①②③实数a 的取值范围为()(],00,1-∞.【点睛】本题主要考查函数切线的求解,以及函数单调性和函数最值的求解,综合考查函数的导数的应用,属于中档题.。
一元函数的导数及其应用(利用导数研究函数图象及性质)(压轴题)(解析版)-高考数学高分必刷必过题

....【答案】B【详解】解:函数()e xxf x =-的定义域为时()0f x <,排除A .1)e xx x -=,当1x <时,()f x '<时,()0f x '>,所以()f x 在(,1)-∞递减,在(1,)+∞........因为()f x 的图像与直线y b =-有三个交点,所以240ea b +<-<,即()24e 0a b -+<<.故选:D.2.(2022·广东佛山·高三阶段练习)已知函数f 相切的直线有三条,则()又()03g =-,()1e g =-,且(g 有3个解,则3e a -<<-.故选:A3.(2022·黑龙江·哈尔滨市第六中学校高二期末)过直线由图可知,0e t <<,故选:C.当0a ≤时,()()f x g x >至多有一个整数解因为()f x 为偶函数,且不等式()()20f x af x +>在[200,200-所以不等式()()20f x af x +>在()0,200内有100个整数解,因为()f x 周期为8,所以()f x 在()0,200内有25个周期,所以不等式()()20f x af x +>在()0,8有4个整数解,要使ln (1)xk x x+≤有且只有两个整数解,则(1)y k x =+与()g x 若交点的横坐标为12x x <,则121234x x <≤<≤<,ln 232ln 3k ⎧≤⎪⎪⎪ln 2ln 3故答案为:22ln 22e ,4e 2⎡⎫-⎪⎢⎣⎭6.(2022·重庆·高三阶段练习)设函数()f x =有两个整数解,则a 的取值范围是______.【答案】2533e 2ea ≤<结合图象可得()()()()()()001122h g h g h g ⎧>⎪->-⎨⎪-≤-⎩,即12123e 35e a a a --->-⎧⎪->-⎨⎪-≤-⎩,解得2533e 2ea ≤<,即a 的取值范围是2533e 2ea ≤<.故答案为;2533e 2ea ≤<.7.(2022·重庆·高二阶段练习)已知函数()(e =x f x x2.(2022·新疆·模拟预测(理))若函数()f x 范围为()A .10,2e 2e ⎛⎤+ ⎥⎝⎦B C .21,12e ⎛⎤-∞+ ⎥⎝⎦D 【答案】B【详解】问题转化为函数32()e g x x ax x =-+,(h 设切点的横坐标为0x .则()()()()0000g x h x g x h x ''⎧=⎪⎨=⎪⎩,即32002032x ax x ax ⎧-+⎪⎨-⎪⎩消去a 得3000e 2ln 10x x x -+-=设3()e 2ln 1x x x x ϕ=-+-22211()3e 3x x x x x x ϕ'=-+=++-即()x ϕ在(0,)+∞上单调递增易知直线(2)y a x =+恒过定点()2,0A -,斜率为a ,当直线与()f x 相切时是一种临界状态,设此时切点的坐标为(C 则()()000122ln 2a y x a x x ⎧==⎪+⎨⎪+=+⎩',解得0e 21e =-⎧⎪⎨=⎪⎩x a ,所以0112ey x ==+',当直线过点()2,ln 4B 时,ln 4ln 2k ==,又方程7()20f x x -+=的根即()y f x =与()127y x =-的交点,有3个交点,且关于()2,0对称,加上()2,0共7个交点,其根之和为故选:A6.(2022·江西抚州·高二阶段练习(理))已知函数()g x由图可知,当10m -<<时,直线因此,实数m 的取值范围是(故选:C.7.(2022·湖南·长沙市南雅中学高二阶段练习)已知函数()()22f x af x a a -+-=因为关于x 的方程()()220f x af x a a -+-=有四个不等实根.则函数()g t 必有两个不同的零点1t 、2t ,不妨设12t t <①若10t =,则21t =,由韦达定理可得()121211t t a a t t a ⎧=-⎨+==⎩②若10t <,则201t <<,则()()()20101210g a a g a a ⎧=-<⎪⎨=-+>⎪⎩,解得9.(2022·北京·北师大二附中高三开学考试)已知函数()22f x x m =+(1)当1m =时,求曲线()y f x =在()()0,0f 处的切线与两坐标轴围成的三角形的面积;(2)若关于x 的方程()()2212e xx f x m =+恰有四个不同的解,求m 的取值范围【答案】(1)1;(2)2211,e 22⎛⎫--- ⎪⎝⎭.(1)当1m =时,()22e xf x x =+,所以()02f =,又()22e xf x x '=+,要使方程()()2212e xx f x m =+恰有四个不同的解,因为1t =与函数()g x 的图象有一个交点,则12t m =--与函数∴24012e m <--<,即2211e 22m --<<-,其中444,ln x D x x ⎛⎫ ⎪⎝⎭,()()00,P x f x ,则1201x x x <<<得11e x mx =,44ln x x m=,因为34ln 4344e e ln ln x x x x x x ==111221e e ln ln e x x x x x x ==,由11<x ,2ln 1x <,因此2x 所以存在满足条件的一个排列,如2i =,3j =11.(2022·辽宁大连·高二期末)已知()ax f x =设()f x 和()g x 的图象交于点A ,则当直线y b =经过点A 时,直线y b =与两条曲线()y f x =和()y g x =共有三个不同的交点,则12301e x x x <<<<<,且12312223ln ln ,,e e x x x x x x b b b x x ====,因为1122ln e x x x b x ==,ln x x直线e y ax =-恒过定点(0,与ln y x x =,0x >相切时,设切点得ln 1y x ¢=+,可得1ln k =+解得0e x =,则切线的斜率为()211y x =--++,0x ≤相切时,直线故有1e b a -≤,解得1eb a ≥-,当且仅当()g x ax b =+恰为ln 1()x f x x+=的图像恒在()g x ax b =+图像的下方,即满足ln 1x ax b x +≤+恒成立,即2ln 1x ax bx ≤+-恒成立切线方程为221e ()e e ey x x =-=-,即2e ,e a b ==-时,ba取得最小值1e -.故答案为:1e-.由(1)中函数()f x 的单调性可知,①当0a <时,()f x 在(0,∞+当0x +→时,()f x →+∞,当所以,()t f x =∈R ,此时g ②当0a >时,()max f x f ⎛= ⎝又''12e ,x a y y x ==,由切点性质知0000e e ln ln x x a x a x a a⎧=⎪⎨⎪=+⎩,所以00ln ln aa x a a x =+即001ln ln x a x =+,故当1e>a 时,()f x 无零点;。
天津市选修二第二单元《一元函数的导数及其应用》测试题(包含答案解析)

一、选择题1.已知函数(),0,,0.lnx x f x kx x >⎧=⎨≤⎩,若0x R ∃∈使得()()00 f x f x -=成立,则实数k 的取值范围是( ) A .(],1-∞B .1,e⎛⎤-∞ ⎥⎝⎦C .[)1,-+∞D .1,e ⎡⎫-+∞⎪⎢⎣⎭2.已知函数2()85f x x x =---,()x e exg x ex+=,实数m ,n 满足0m n <<,若1x ∀∈[],m n ,2x ∃∈()0,∞+,使得()()12f x g x =成立,则n m -的最大值为( )A .7B .6C .D .3.设函数21()9ln 2f x x x =-在区间[]1,1a a -+上单调递减,则实数a 的取值范围是( ) A .(]1,2B .(]0,3C .[)4,+∞D .(],2-∞4.已知奇函数f (x )的定义域为(,),22ππ-且()'f x 是f (x )的导函数.若对任意(,0),2x π∈-都有()cos ()sin 0,f x x f x x '+<则满足()2cos ()3f f πθθ<⋅的θ的取值范围是( )A .(,)23ππ- B .(,)(,)2332ππππ--⋃C .(,)33ππ-D .(,)32ππ5.若()()21ln 22f x x b x =-++在[)1,-+∞上是减函数,则b 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .[)1,+∞D .(],1-∞6.若函数()()22co 102s x f x x f x '=++,则6f π⎛⎫' ⎪⎝⎭的值为( ) A .0B .6πC .3π D .π7.设函数f (x )=24x -a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-28.若函数()33=-f x x x 在区间()5,21a a -+上有最小值,则实数a 的取值范围是( )A .(]1,4-B .()1,4-C .11,2⎛⎤- ⎥⎝⎦D .11,2⎛⎫- ⎪⎝⎭9.已知函数()2sin 3f x xf x π'⎛⎫=- ⎪⎝⎭,则()f x 在,22ππ⎡⎤-⎢⎥⎣⎦上的最小值为( ) A .12π- B .12π+C .12π-- D .12π-+10.已知函数()f x 的导函数()f x ,且满足2()32(2)f x x xf '=+,则(5)f '=( ) A .5B .6C .7D .-1211.设曲线12x y x +=-在点(1,2)-处的切线与直线0ax by c -+=垂直,则ab 的值为( ) A .13B .13-C .3D .-312.R 上的函数()f x 满足:()()1f x f x '+>,()20f =,则不等式2()x x e f x e e <-的解集为( ) A .()(),00,2∞⋃-B .()(),02,-∞+∞C .()0+∞,D .(),2∞-二、填空题13.已知k 为常数,函数2,0()1ln ,0x x f x x x x +⎧≤⎪=-⎨⎪>⎩,若关于x 的函数()()2g x f x kx =--有4个零点,则实数k 的取值范围为________.14.已知函数()332f x x x =+,()2,2x ∈-,如果()()1120f a f a -+-<成立,则实数a 的取值范围为__________.15.已知曲线()f x lnx =在点00())(x f x ,处的切线经过点(0,1),则0x 的值为___. 16.已知函数1()f x x ax=+在(),1-∞-上单调递增,则实数a 的取值范围是_____________.17.曲线2x y e x =-的一条切线方程为0x y a ++=,则a =_____________. 18.若关于x 的不等式220x ax +-<在区间[1,4]上有解,则实数a 的取值范围为________.19.当直线()10kx y k k --+=∈R 和曲线325:(0)3E y ax bx ab =++≠,交于()11,A x y ,()22,B x y ,()33,C x y ,()123x x x <<三点时,曲线E 在点A ,点C 处的切线总是平行的,则点(),b a 的坐标为____________. 20.设定义在上的奇函数满足:时,(其中为常数).若,,,则,,的大小关系是_________.(用“”连接)三、解答题21.已知函数()(1)ln f x x x ax a =++-.(1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若[1,)x ∈+∞时,()0f x ≥,求实数a 的取值范围. 22.已知函数()1ex f x a +=,()ln1xg x a=-,其中0a >. (1)若1a =,在平面直角坐标系xOy 中,过坐标原点O 分别作函数()y f x =与()y g x =的图象的切线1l ,2l ,求1l ,2l 的斜率之积;(2)若()()f x g x ≥在区间()0,∞+上恒成立,求a 的最小值. 23.(1)已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围; (2)已知函数()()=ln f x x mx m m -+∈R .讨论函数()f x 的单调性. 24.已知函数()221xf x xe x x =---.(1)求函数()f x 在[1,1]-上的最大值; (2)证明:当0x >时,()1f x x >--.25.求函数()331f x x x =-+在闭区间[]3,0-上的最大值、最小值.26.2020年5月政府工作报告提出,通过稳就业促增收保民生,提高居民消费意愿和能力.近日,多省市为流动商贩经营提供便利条件,放开“地摊经济”,但因其露天经营的特殊性,易受到天气的影响,一些平台公司纷纷推出帮扶措施,赋能“地摊经济”.某平台为某销售商“地摊经济”的发展和规范管理投入[]()4,8x x ∈万元的赞助费,已知该销售商出售的商品为每件40元,在收到平台投入的x 万元赞助费后,商品的销售量将增加到2102y x λ⎛⎫=⋅- ⎪+⎝⎭万件,[]0.6,1λ∈为气象相关系数,若该销售商出售y 万件商品还需成本费()40530x y ++万元.(1)求收到赞助后该销售商所获得的总利润p 万元与平台投入的赞助费x 万元的关系式;(注:总利润=赞助费+出售商品利润)(2)若对任意[]4,8x ∈万元,当入满足什么条件时,该销售商才能不亏损?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由已知建立方程,反解出k ,将问题转化为求函数值域问题,然后利用函数的性质求出最值即可求解. 【详解】由题意可得:存在实数00x ≠,使得()()00 f x f x -=成立,假设00x >,则00x -<, 所以有00ln kx x -=, 则0ln x k x =-, 令()ln xh x x=-, 则()2ln 1x h x x-'=, 令()0h x '>,即ln 1x >, 解得x e >,令()0h x '<,即ln 1x <, 解得0x e <<,则()h x 在()0,e 上单调递减,在(),e +∞上单调递增, 所以()()()ln 1min e h x h x h e e e≥==-=-, 所以1k e≥-, 故选:D. 【点睛】关键点睛:本题考查了分段函数的存在性问题,构造函数,利用导函数求最值是解决本题的关键.2.B解析:B 【分析】先用导数法研究()y g x =,然后的同一坐标系中作出函数()y f x =与()y g x =的图象,根据[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立求解. 【详解】因为()x e exgx ex+=,所以()()211x x e x e g x ex ex '-⎛⎫'=+= ⎪⎝⎭, 当01x <<时,()0g x '<,当1x >时,()0g x '>,()10g '=, 所以()g x 在1x =处取得极小值,且为定义域内唯一极值,()()min 12g x g ∴==.()22185()4111f x x x x -==---++≤,作函数()y f x =与()y g x =的图象, 如图所示:当()2f x =时,方程两根分别为7-和1-, 则n m -的最大值为:()176---=. 故选:B 【点睛】关键点睛:利用导数和二次函数的性质,作出图像,利用数形结合进行求解,考查了转化化归的的思想、运算求解,以及数形结合的能力,属于中档题.3.A解析:A 【分析】利用()f x 的导函数()'f x ,结合()f x 在区间[1,1]a a -+上的单调性列不等式组求得a的取值范围. 【详解】由()219ln ,(0)2f x x x x =->,则()299,(0)x f x x x x x'-=-=>,当(0,3)x ∈时,()0f x '<,则()f x 单调递减; 当(3,)x ∈+∞时,()0f x '>,则()f x 单调递增,又函数()f x 在区间[1,1]a a -+上单调递减,所以101311a a a a ->⎧⎪+≤⎨⎪+>-⎩,解得12a <≤,故选:A. 【点睛】本题主要考查利用函数的单调性求解参数的取值范围问题,其中导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查都非常突出,从高考来看,对导数的应用的考查主要从以下两个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.4.D解析:D 【分析】 令()()cos f x g x x =,先判断函数()g x 为奇函数,再判断函数()g x 在区间(2π-,)2π上单调递减,由()2cos ()3f f πθθ<⋅,得()()3g g πθ<,即可求出.【详解】 令()()cos f x g x x=,(2x π∈-,)2π,()f x 为奇函数,cos y x =为偶函数,()g x ∴为奇函数.(2x π∀∈-,0),有()cos ()sin 0f x x f x x '+<,2()cos ()sin ()0f x x f x xg x cos x'+∴'=<,()g x ∴在区间(2π-,0)上单调递减,又()g x 为奇函数,()g x ∴在区间(2π-,)2π上单调递减, 当(2x π∈-,)2π,cos 0x >, ()2cos ()3f f πθθ<⋅,∴()()3cos cos 3f f πθπθ<, ()()3g g πθ∴<,∴32ππθ<<故选:D 【点睛】本题主要考查利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.5.B解析:B 【分析】先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案 【详解】由题意可知()02bf x x x '-+≤+=,在[)1x ∈-+∞,上恒成立, 即()2b x x ≤+在[)1x ∈-+∞,上恒成立, 由于()2y x x =+在[)1,-+∞上是增函数且最小值为1-,所以1b ≤-, 故选:B. 【点睛】本题主要考查导数的正负和原函数的增减性的问题,属于中档题.6.B解析:B 【分析】先对函数()f x 求导,采用赋值的方式计算出()0f '的结果,由此计算出6f π⎛⎫' ⎪⎝⎭的值.【详解】因为()()20sin 1f x x f x ''=-+,所以令0x =,则()01f '=,所以()2sin 1f x x x '=-+,则66f ππ⎛⎫'= ⎪⎝⎭, 故选:B. 【点睛】本题考查导数中的计算,采用赋值法求解出函数解析中的未知量是解答的关键,难度一般.7.B解析:B 【解析】f ′(x )=-,故f ′(2)=-=3,因此a =-4.8.C解析:C 【分析】对函数()f x 进行求导,可得函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,可得(1)2f -=-,令()2f x =-,可得1x =-或2x =,可得()f x 的图像,由函数在区间()5,21a a -+上有最小值,数形结合可得关于a的不等式,计算可得答案. 【详解】解:由3()3f x x x =-,可得()2333(1)(1)f x x x x '=-+=--+,当11x -<<,()0f x '>,当1x <-或1x >时,()0f x '<,所以函数()f x 在区间(),1-∞-上单调递减,在区间()1,1-上单调递增,在区间()1,+∞上单调递减,可得(1)2f -=-,令()2f x =-,可得1x =-或2x =,则()f x 的图像如图所示,因为函数在区间()5,21a a -+上有最小值,故51212a a -<-<+, 解得:112a -<, 故选:C. 【点睛】本题主要考查利用导数研究含参函数的最值问题,体现了数形结合的数学思想,考查学生的计算能力,属于中档题.9.D解析:D 【分析】求得函数的导数()2cos 3f x f x π⎛⎫''=- ⎪⎝⎭,得到1()32f π'=,得到()sin f x x x =-,再结合函数的单调性,即可求解.【详解】由题意,函数()2sin 3f x xf x π'⎛⎫=- ⎪⎝⎭,可得()2cos 3f x f x π⎛⎫''=- ⎪⎝⎭, 令3x π=,可得()2cos 333f f πππ'⎛⎫'=-⎪⎝⎭,解得1()32f π'=, 即()sin f x x x =-,则()1cos 0f x x '=-≥,所以()f x 单调递增,当2x π=-,函数取得最小值,最小值为()sin()1222f x πππ=---=-+. 故选:D. 【点睛】本题主要考查了函数的导数的运算及应用,其中解答中熟记导数的运算公式,结合函数的单调性求解是解答的关键,着重考查运算与求解能力.10.B解析:B 【分析】将()2f '看出常数利用导数的运算法则求出()f x ',令2x =求出()2f '代入()f x ',令5x =求出()5f '即可.【详解】 解:()2()322f x x xf '=+,()()622f x x f '∴=+', ()(2)1222f f '∴=+'(2)12f '∴=- ()624f x x '∴=- (5)65246f '∴=⨯-=故选B . 【点睛】本题主要考查了导数的运算法则,解题的关键是弄清()2f '是常数,属于基础题.11.A解析:A 【分析】 求得函数12x y x +=-在点1x =处的导数,结合两直线的位置关系,即可求解. 【详解】由题意,曲线12x y x +=-,可得()()2221322x x y x x ---'==---,所以1|3x y ='=-,即曲线12x y x +=-在点(1,2)-处的切线的斜率为3k =-, 因为曲线12x y x +=-在点(1,2)-处的切线与直线0ax by c -+=垂直, 所以(3)1a b ⨯-=-,解得13a b =. 故选:A. 【点睛】本题主要考查了导数的几何意义的应用,其中解答中熟练应用导数求解曲线在某点处的切线的斜率,结合两直线的位置关系,列出方程求解是解答的关键,着重考查推理与运算能力,属于基础题.12.D解析:D 【分析】构造函数()()xxF x e f x e =-,则由题意可证得()F x 在R 上单调递增,又()20f =,()()22222F e f e e =-=-,故2()x x e f x e e <-可转化为()()2F x F <,解得2x <.【详解】令()()xxF x e f x e =-,则()()()()()1xxxxF x e f x e f x e e f x f x '''=+-=+-⎡⎤⎣⎦,因为()()1f x f x '+>,所以()()()0xF x e f x f x ''=+>⎡⎤⎣⎦,所以函数()F x 在R 上单调递增,又()20f =,所以()()22222F e f e e =-=-故当2()x x e f x e e <-时,有2()x x e f x e e -<-,即()()2F x F <,由()F x 的单调性可知2x <. 故选:D. 【点睛】本题考查导数与函数的应用,考查构造函数法,根据函数的单调性求解不等式,难度一般.二、填空题13.【分析】将x 的函数有4个零点转化为与有4个不同的交点然后利用数形结合法求解【详解】因为函数有4个零点所以与有4个不同的交点在同一坐标系中作出与的图象如图所示:当时单调递减与有一个交点则;所以当时有3 解析:310,e ⎛⎫ ⎪⎝⎭【分析】将x 的函数()()2g x f x kx =--有4个零点,转化为()y f x =与2y kx =+有4个不同的交点,然后利用数形结合法求解. 【详解】因为函数()()2g x f x kx =--有4个零点, 所以()y f x =与2y kx =+有4个不同的交点,在同一坐标系中作出()y f x =与2y kx =+的图象,如图所示:当0x ≤时,311y x =+-单调递减, 与2y kx =+有一个交点,则0k >; 所以当0x >时,有3个交点,求出2y kx =+与|ln |y x =相切时的k 值, 当1x >时,设切点为()00,ln x x , 所以1y x '=,则01k x =,所以切线方程为()0001ln y x x x x -=-, 又因为点()0,2在切线上, 所以则()00012ln 0x x x -=-, 解得30x e =,所以31k e=, 由图像知()()2g x f x kx =--有4个零点,则310k e <<, 故答案为: 310,e ⎛⎫⎪⎝⎭【点睛】方法点睛:函数零点个数问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.14.【详解】因为恒成立所以在R 上递增又所以为奇函数则可化为由递增得解得:0<a <故答案为解析:3(0,)2【详解】因为23+6x 0f x '=()>恒成立,所以f x ()在R 上递增, 又f x f x =(﹣)﹣(),所以f x ()为奇函数,则1120f a f a +(﹣)(﹣)<,可化为121f a f a (﹣)<(﹣), 由f x ()递增,得1212122212a a a a --⎧⎪--⎨⎪--⎩<<<<<,解得:0<a <32,故答案为302⎛⎫⎪⎝⎭,.15.e2【分析】求导得则斜率为写出切线方程切线经过原点代入化简即可得出结果【详解】函数的导数为所以切线斜率为所以切线方程为因为切线过点所以代入切线方程得解得故答案为:【点睛】本题主要考查导数的运算及其几解析:e 2【分析】 求导得1()f x x'=,则斜率为001()k f x x '==,写出切线方程,切线经过原点(0,1)代入化简即可得出结果. 【详解】函数的导数为1()f x x'=,所以切线斜率为001()k f x x '==, 所以切线方程为0001ln ()y x x x x -=-,因为切线过点(0,1), 所以代入切线方程得0ln 2x =,解得20x e =.故答案为:2e . 【点睛】本题主要考查导数的运算及其几何意义,属于基础题.16.【分析】根据题意将问题转化为以在区间上恒成立再分类讨论即可得答案【详解】解:因为函数在上单调递增所以在区间上恒成立当时显然在区间上恒成立当时因为在区间上恒成立所以在区间上恒成立所以在区间上恒成立所以 解析:()[),01,-∞+∞【分析】根据题意将问题转化为以()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立,再分类讨论即可得答案. 【详解】解:因为函数1()f x x ax=+在(),1-∞-上单调递增, 所以()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立, 当0a <时,显然()22211'10ax f x ax ax -=-=≥在区间(),1-∞-上恒成立, 当0a >时,因为()22211'10ax f x ax ax-=-=≥在区间(),1-∞-上恒成立, 所以210ax -≥在区间(),1-∞-上恒成立, 所以21≥a x 在区间(),1-∞-上恒成立, 所以2max11a x ⎛⎫≥= ⎪⎝⎭ 综上实数a 的取值范围是()[),01,-∞+∞故答案为:()[),01,-∞+∞【点睛】本题考查根据函数在区间上单调求参数范围问题,考查化归转化思想与数学运算能力,是中档题.17.【分析】求得函数的导数根据曲线的一条切线方程为求得切点的坐标将切点坐标代入切线方程即可求解【详解】由题意函数可得因为曲线的一条切线方程为令解得当时即切点为将切点代入可得解得故答案为:【点睛】本题主要 解析:1-【分析】求得函数的导数2xy e '=-,根据曲线的一条切线方程为0x y a ++=,求得切点的坐标,将切点坐标代入切线方程,即可求解. 【详解】由题意,函数2xy e x =-,可得2x y e '=-,因为曲线2xy e x =-的一条切线方程为0x y a ++=, 令21x e -=-,解得0x =,当0x =时,01y e ==,即切点为()0,1,将切点()0,1代入0x y a ++=,可得010a ++=,解得1a =-.故答案为:1-. 【点睛】本题主要考查了导数的几何意义及其应用,其中解答熟记曲线在某点处的切线方程的解法是解答的关键,着重考查推理与运算能力,属于基础题.18.【分析】本题现将不等式运用参变分离化简为再构造新函数求最大值最后求实数a 的取值范围【详解】解:∵不等式在区间上有解∴不等式在区间上有解∴不等式在区间上有解令()则∴当时单调递减∴不等式在区间上有解即 解析:(,1)-∞【分析】本题现将不等式220x ax +-<运用参变分离化简为2a x x<-,再构造新函数2()f x x x=-求最大值,最后求实数a 的取值范围. 【详解】解:∵ 不等式220x ax +-<在区间[1,4]上有解, ∴ 不等式22x a x-<在区间[1,4]上有解,∴ 不等式2a x x<-在区间[1,4]上有解, 令2()f x x x =-,(14x ≤≤),则22'()1f x x=--, ∴ 当14x ≤≤时,'()0f x <,()f x 单调递减,∴ max 2()(1)111f x f ==-= 不等式2a x x<-在区间[1,4]上有解,即max ()a f x∴1a <故答案为:(,1)-∞ 【点睛】本题考查不等式存在性问题,借导函数研究原函数单调性求最大值,是中档题.19.【分析】由题意可知直线恒过定点由曲线在处的切线平行可得两点关于的对称中心对称故为的对称中心由对称性可得的方程求出的值即可【详解】∵曲线在点点处的切线总是平行的∴两点关于的对称中心对称故为的对称中心又解析:113⎛⎫- ⎪⎝⎭, 【分析】由题意可知直线恒过定点()1,1,由曲线在,A C 处的切线平行,可得,A C 两点关于()f x的对称中心对称,故B 为()f x 的对称中心,由对称性,可得,a b 的方程,求出,a b 的值即可. 【详解】∵曲线E 在点A ,点C 处的切线总是平行的,∴,A C 两点关于()f x 的对称中心对称,故B 为()f x 的对称中心,又直线()10kx y k k --+=∈R 恒过点()1,1, ∴()f x 的对称中心为()1,1,即()1,1B , ∴513a b ++=……① 由325:(0)3E y ax bx ab =++≠,可得232y ax bx '=+, 令2320y ax bx '=+=,可得223ba-=……② 由①②可得1,13a b ==-. 即(,)b a 的坐标为113⎛⎫- ⎪⎝⎭,, 故答案为:113⎛⎫- ⎪⎝⎭,. 【点睛】本题考查了导数的几何意义,函数对称性的应用,考查方程思想和运算能力,属于中档题.20.a<c<b 【解析】【分析】先利用f0=0求出t 构建新函数gx=xfx 利用导数可判断gx 为-∞0上的增函数从而得到g-e<g-2<g-1即-ef-e<2f2<f1故可得a<c<b 【详解】因为fx 为R 上解析:【解析】 【分析】 先利用求出,构建新函数,利用导数可判断为上的增函数,从而得到即,故可得.【详解】 因为为上的奇函数,故,而,所以,故当时,,令,则为上的偶函数, 当时,,, 当时,则,所以,故,所以为上的增函数,所以 ,即,所以,故.填.【点睛】判断给定的各数的大小,我们可依据它们的形式构建具体的函数,通过函数的单调性来判断它们的大小,而单调性可根据导数的符号来讨论.三、解答题21.(1)440x y --=;(2)2a ≥-. 【分析】(1)先写出当2a =时,()f x 解析式,再求导,根据导数的几何意义可得4k =切,再由点斜式写出切线的方程.(2)先求出()f x ',在求出()f x '',通过分两种情况2a -,2a <-,讨论()f x ''的正负,进而得()f x '的增减性,推出()f x '最小值的范围,进而判断()0f x 是否恒成立,即可得出答案. 【详解】解(1)当2a =时,()(1)ln 22f x x x x =++-,1()ln 2x f x x x+'=++,(1)4f '=,所以切线斜率4k =,又(1)0f =,所以切线方程为4(1)y x =-,即440x y --=. (2)11()ln ln 1x f x x a x a x x +'=++=+++,22111()x f x x x x-''=-=. 当[1,)x ∈+∞时,()0f x ''≥,所以()'f x 在[1,)+∞上单调递增,所以()(1)2f x f a ''≥=+.①当20a +≥即2a ≥-时,()0f x '≥,所以()f x 在[1,)+∞上单调递增,所以()(1)0f x f ≥=,满足题意.②当20a +<即2a <-时,必存在0(1,),x ∈+∞当0[1,),()0x x f x '∈<,0(,),()0x x f x '∈+∞>,所以()f x 在0[1,)x 上单调递减,在0(,)x +∞上单调递增,所以min 0()()(1)0f x f x f =<=,所以()0f x ≥不恒成立,所以2a <-不满足题意.综上,a 的取值范围为2a ≥-. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理. 22.(1)1;(2)21e. 【分析】(1)利用导数的运算法则和公式求得1()e x f x +'=,1()g x x'=,得到切线1l ,2l 的斜率∴111ex l k +=,221l k x =,根据两切线都经过原点,求得121,e x x ==,进而求得两直线的斜率之积;(2)问中是典型的无法分离参数的情况,进行转化并构造函数,1()e x F x x +=,转化为()ln 1x F x F a ⎛⎫≥- ⎪⎝⎭,分类讨论,并注意利用导数进一步研究函数()F x 的单调性,当ln 10,x a ->转化为1max ln 1e x x x x a a +⎛⎫≥-⇒≥ ⎪⎝⎭,进而再次造函数令1()ex x x ϕ+=,利用导数研究单调性并求得其最大值,即得a 的最小值. 【详解】解:(1)当1a =时,()1x f x e=+,()ln 1g x x =-设过原点O 的直线分别切()f x ,()g x 于点()111,P x y ,()222,P x y1()e x f x +'=,1()g x x'=, ∴111e x l k +=,221l k x =且11111122222e e 1e ln 11x x x x x x x x ++⎧=⎪=⎧⎪⇒⎨⎨=-⎩⎪=⎪⎩∴12221e 1e l l k k ⋅=⋅=. (2)由1eln 1x xa a+≥-在(0,)+∞上恒成立得∵0a >,∴111eln x x a a a+≥- ln 1eln 1ln 1e (*)xx ax x x x a a a +⎛⎫⎛⎫≥-=-⋅ ⎪ ⎪⎝⎭⎝⎭令1()e x F x x +=,∴()ln1x F x F a ⎛⎫≥- ⎪⎝⎭①当ln 10xa-≤时,(*)左边0,>右边0,≤显然成立 ②当ln10,xa->注意到1()(1)e 0x F x x +'=+> ∴()F x 在(0,)+∞上∴1maxln1e x x x x a a +⎛⎫≥-⇒≥ ⎪⎝⎭ 令1()e x x x ϕ+=,11221e e 1()e ex x x x x xx ϕ++++--'==,令()0x ϕ'= 得01x <<时,()0x ϕ'>,()x ϕ↗; 当1x >时,()0x ϕ'<,()x ϕ↘ ∴max 21()(1)x e ϕϕ==,∴21a e ≥.【点睛】本题考查求曲线上某点处的切线的斜率问题和利用导数研究不等式恒成立问题,属中档题,难度一般.关键是要熟练掌握导数的运算法则和求导公式,这是一切导数问题的基础,第(2)问中将不等式整理为为ln 1eln 1ln 1e (*)xx ax x x x a a a +⎛⎫⎛⎫≥-=-⋅ ⎪ ⎪⎝⎭⎝⎭令1()e x F x x +=,转化为()ln 1x F x F a ⎛⎫≥- ⎪⎝⎭,是难点也是解决问题的关键点,多次构造函数,并利用函数思想进行转化和求解是本题的显著特点,值得好好体会. 23.(1)1c ≥-.(2)答案见解析. 【分析】(1)不等式变形为()2f x x c -≤,求出()2f x x -的最大值后可得c 的范围;(2)求出导函数()'f x ,确定()'f x 的正负,得()f x 的单调性.【详解】(1)()f x 定义域是(0,)+∞,由()2f x x c ≤+得,2ln 12c x x ≥+-,设()2ln 12g x x x =+-,则22(1)()2x g x x x-'=-=, 当01x <<时,()0g x '>,当1x >时,()0g x '<,∴()g x 在(0,1)上递增,在(1,)+∞上递减, ∴max ()(1)2ln1121g x g ==+-=-,∴1c ≥-. (2)()()=ln f x x mx m m -+∈R ,定义域是(0,)+∞,1()f x m x'=-, 当0m ≤时,()0f x '>,()f x 在(0,)+∞上递增, 当0m >时,1()()m x mf x x-'=,当10x m <<时,()0f x '>,1x m>时,()0f x '<, ∴()f x 在1(0,)m上递增,在1(,)m+∞上递减.综上,0m ≤时,()f x 的增区间是(0,)+∞,0m >时,()f x 的增区间是1(0,)m,减区间是1(,)m+∞. 【点睛】方法点睛:本题考查函数的单调性,考查不等式恒成立问题.(1)已知()f x 的导函数是()'f x ,解不等式()0f x '>可得增区间,()0f x '<可得减区间.(2)()f x m ≥恒成立,则min ()m f x ≤,若()f x m ≤恒成立,则max ()m f x ≥. 24.(1)1e-;(2)证明见解析. 【分析】(1)利用导数得到()f x 单调性,确定()()(){}max max 1,1f x f f =-,进而可得结果; (2)将所证不等式转化为证明10x e x -->,构造函数()1xg x e x =--,利用导数可证得()0g x >,从而得到结论. 【详解】(1)()()()2212x x xf x e xe x x e '=+--=+-,当()1,ln 2x ∈-时,()0f x '<;当()ln 2,1x ∈时,()0f x '>,()f x ∴在[)1,ln 2-上单调递减,在(]ln 2,1上单调递增,()()(){}max max 1,1f x f f ∴=-,又()111121f e e-=--+-=-,()11214f e e =---=-,()()max 11f x f e∴=-=-.(2)要证()1f x x >--,只需证()210xf x x xe x x ++=-->,0x ,∴只需证:10x e x -->.令()1xg x e x =--,则()1xg x e '=-,当0x >时,e 1x >,()0g x '∴>在()0,∞+上恒成立,()g x ∴在()0,∞+上单调递增,()0010g x e ∴>--=,即当0x >时,10x e x -->恒成立,则原命题得证,∴当0x >时,()1f x x >--.【点睛】关键点点睛:本题考查利用导数证明不等式,解题关键是能够通过分析法将所证不等式进行等价转化,从而构造新函数,利用导数求得新函数的最值使得结论得证. 25.最大值为3,最小值为17-. 【分析】 求()'fx ,求出()f x 在闭区间[]3,0-上的极值,与()()3,0f f -比较大小,即得最值.【详解】()()()()3'231,33311f x x x f x x x x =-+∴=-=+-.令'0f x,得1x =-或1x =(舍).由()'0fx >,得31x -≤<-;由()'0f x <,得10-<≤x . ()f x ∴在区间[)3,1--上单调递增,在区间(]1,0-上单调递减, ()f x ∴在[]3,0-上有极大值()13f -=.又()()317,01f f -=-=,()f x ∴在[]3,0-上的最大值为3,最小值为17-.【点睛】本题考查利用导数求函数的最值,属于基础题. 26.(1)2001004402p x x λλ=---+,[]4,8x ∈;(2)当λ满足[]0.9,1λ∈时,该销售商才能不亏损. 【分析】(1)根据总利润=赞助费+出售商品利润和已知得解; (2)由题得()()10225x x xλ++在[]4,8x ∈上恒成立,设()2012f x x x=++,利用导数求出函数()f x 的最大值即可得解.【详解】(1)由题意得20204010405301022p x x x x λλ⎡⎤⎛⎫⎛⎫=+⋅--++⋅- ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦ 2001004402x x λλ=---+,[]4,8x ∈. (2)要使对任意[]4,8x ∈(万元)时,该销售商才能不亏损,即有0p ,变形得()()10225x x xλ++在[]4,8x ∈上恒成立, 而()()210212202012x x x x x x x x ++++==++, 设()2012f x x x =++,()2201f x x =-',令0f x 解得=±x ,所以函数()f x 在4,⎡⎣单调递减,在⎡⎤⎣⎦单调递增,()()(){}max max 4,8f x f f =,因为()()421822.5f f =<=,所以有2522.5λ,解得0.9λ,即当λ满足[]0.9,1λ∈时,该销售商才能不亏损.【点睛】本题主要考查函数和不等式的应用,考查导数的应用,意在考查学生对这些知识的理解掌握水平.。
一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)(解析版)高考数学高分必刷必过题

专题04一元函数的导数及其应用(利用导函数研究不等式问题)(选填压轴题)构造函数法解决导数不等式问题①构造()()n F x x f x =或()()n f x F x x=(n Z ∈,且0n ≠)型②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型③构造()()sin F x f x x =或()()sin f x F x x =型④构造()()cos F x f x x =或()()cos f x F x x=型⑤根据不等式(求解目标)构造具体函数①构造()()n F x x f x =或()()nf x F x x =(n Z ∈,且0n ≠)型1.(2022·安徽师范大学附属中学高二期中)已知定义在R 上的函数()f x 满足()()0xf x f x '+>,且(2)3f =,则()e e 6xxf >的解集为()A .(ln 2,)+∞B .(0,)+∞C .(1,)+∞D .(0,1)【答案】A令()()F x xf x =,可得()()()0F x xf x f x ''=+>,所以()F x 在R 上是增函数,可得(e )e (e )x x x F f =,(2)3f =,(2)2(2)6F f ==,由(e )6ex x f >,可得(e )(2)xF F >,可得:e 2x >,所以ln 2x >,所以不等式的解集为:(ln 2,)+∞,故选:A .2.(2022·河北·沧县中学高二阶段练习)已知定义在()(),00,∞-+∞U 上的偶函数()f x ,在0x >时满足:()()0xf x f x '+>,且()10f =,则()0f x >的解集为()A .()(),11,-∞-⋃+∞B .()(),10,1-∞-⋃C .()0,1D .()1,+∞【答案】A 令()()F x xf x =,所以()()()()()F x x f x xf x F x -=--=-=-所以()F x 是奇函数,在0x >时,()()()0F x xf x f x ''+=>,则在0x >时,()F x 单调递增,由()10f =,可得(1)1(1)0F f =⨯=,(1)(1)0F F -=-=,所求()()0F x f x x =>,等价于()00F x x >⎧⎨>⎩或()00F x x <⎧⎨<⎩,解得1x >或1x <-,所以解集为:()(),11,-∞-⋃+∞.故选:A .3.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)已知()'f x 是偶函数()()R f x x ∈的导函数,(1)1f =.若0x >时,3()()0f x xf x '+>,则使得不等式3(2022)(2022)1x f x -->成立的x 的取值范围是()A .(2021,)+∞B .(,2021)-∞C .(2023,)+∞D .(,2023)-∞【答案】C构造函数()()3g x x f x =,其中R x ∈,则()()()()()33g x x f x x f x g x -=--=-=-,所以,函数()g x 为R 上的奇函数,当0x >时,()()()()()232330g x x f x x f x x f x xf x '''=+=>⎡⎤⎣⎦+,所以,函数()g x 在()0,∞+上为增函数,因为()11f =,则()()111g f ==,由()()3202220221x f x -->得()()20221g x g ->,可得20221x ->,解得2023x >.故选:C4.(2022·河北·邢台市第二中学高二阶段练习)定义在()0,8上的函数()f x 的导函数为()f x ¢,且()()2xf x f x '<,112f ⎛⎫= ⎪⎝⎭,则不等式()24f x x <的解集为()A .1,82⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .()0,1D .10,2⎛⎫ ⎪⎝⎭【答案】A 设()()2f xg x x=,08x <<,则()()()320xf x f x g x x '-'=<,则()g x 在()0,8上单调递减,由()24f x x <,得:()24f x x<,而21124212f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭,所以()12g x g ⎛⎫< ⎪⎝⎭,则182x <<.故不等式()24f x x <的解集为1,82⎛⎫ ⎪⎝⎭.故选:A5.(2022·福建省德化第一中学高二阶段练习)若()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,且()30f -=,则不等式()0xf x >的解集为()A .()()3,00,3-B .()(),33,-∞-+∞C .()(),30,3-∞-⋃D .()()3,03,-⋃+∞【答案】C设()()g x xf x =,则()g x 的定义域为R而()()()()g x xf x xf x g x -=--=-=-,故()g x 为R 上的奇函数,且()()()g x f x xf x ''=+,当0x <时,因为()()0f x xf x '+<,故()0g x ¢<,故()g x 在(),0-∞上为减函数,故()g x 为()0,+∞上的减函数,而()30f -=,故()30g -=,所以()30g =又()0xf x >即为()0g x >,故()00x g x <⎧⎪⎨>⎪⎩或()00x g x >⎧⎪⎨>⎪⎩,故()()03x g x g <⎧⎪⎨>-⎪⎩或()()03x g x g >⎧⎪⎨>⎪⎩,故3x <-或03x <<,故选:C.6.(2022·宁夏吴忠·高二期中(理))()f x 是定义在R 上的奇函数,且()20f =,当0x >时,有()()20xf x f x x '-<恒成立,则()0f x x>的解集为()A .()()2,02,-+∞B .()(),22,-∞+∞C .()()2,00,2-D .()(),20,2-∞- 【答案】C 设函数()()f x g x x=,则()()()2xf x f x g x x'-'=,由题知,当0x >时,()0g x ¢<,∴()()f x g x x=在()0,+∞上单调递减,∵函数()f x 是定义在R 上的奇函数,()()f x f x ∴-=-∴()()()()f x f x g x g x x x---===--,∴函数()g x 是定义在R 上的偶函数,∴()g x 的单调递增区间为(),0-∞,∵()20f =,∴()(2)202f g ==,()20g -=∴当2x <-或2x >时,()0g x <,当20x -<<或02x <<时,()0g x >,∴()()0f x g x x=>的解集为()()2,00,2- .故选:C.7.(2022·西藏·拉萨中学高三阶段练习(文))设函数()f x '是奇函数()()f x x ∈R 的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x <成立的x 的取值范围是()A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--UD .()()0,11,+∞ 【答案】B 设()()f x F x x =,则()()()2xf x f x F x x '-'=,∵当0x >时,()()0xf x f x '-<,当0x >时,()0F x '<,即()F x 在()0,∞+上单调递减.由于()f x 是奇函数,所以()()()()f x f x F x F x x x--===-,()F x 是偶函数,所以()F x 在(),0∞-上单调递增.又()()110f f =-=,所以当1x <-或1x >时,()()0=<f x F x x;当10x -<<或01x <<时,()()0f x F x x=>.所以当10x -<<或1x >时,()0f x <.故选:B.8.(2022·全国·高三专题练习)已知函数()f x 的定义域为()(),00,∞-+∞U ,图象关于y 轴对称,且当0x <时,()()f x f x x'>恒成立,设1a >,则()411af a a ++,(,()411a a f a ⎛⎫+⎪+⎝⎭的大小关系为()A .()(()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭B .()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭C .(()()414111af a a a f a a +⎛⎫>>+ ⎪++⎝⎭D .(()()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭【答案】B解:∵当0x <时,()()f x f x x'>恒成立,∴()()xf x f x '<,∴()()0xf x f x '-<,令()()f x g x x =,∴()()()2xf x f x g x x'-'=,∴()0g x '<,∴()g x 在(),0∞-上单调递减,∵()()f x f x -=,∴()()g x g x -=-,∴()g x 为奇函数,在()0,∞+上单调递减.∵比较()411af a a ++,(,()411a a f a ⎛⎫+ ⎪+⎝⎭的大小,∴()()41411af a ag a a +=++,((4ag =,()441411a a a f ag a a ⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭∵1a >,∴)2110a +->,∴1a +>4411a aa a <++.∴411a a a +>>+,∴()(411a g a g g a ⎛⎫+<< ⎪+⎝⎭,∴()(441441a ag a ag ag a ⎛⎫+<< ⎪+⎝⎭,即()(()414111af a a a f a a +⎛⎫<<+ ⎪++⎝⎭.故选:B .9.(2022·四川雅安·三模(理))定义在R 上的偶函数()f x 的导函数为()'f x ,且当0x >时,()2()0xf x f x '+<.则()A .2(e)(2)4ef f >B .9(3)(1)>f f C .4(2)9(3)-<-f f D .2(e)(3)9e f f ->【答案】D令()()2g x x f x =,因为()f x 是偶函数,所以()g x 为偶函数,当0x >时,()()()()()2220g x xfx x f x x f x xf x '''=+=+<⎡⎤⎣⎦,所以()g x 在()0,+∞单调递减,在(),0-∞单调递增,则()()e 2g g <,即()()22e e 22f f <,则2(e)(2)4ef f <,故A 错误;()()31g g <,即()()931f f <,故B 错误;()()23g g ->-,即4(2)9(3)f f ->-,故C 错误;()()()e 33g g g >=-,即()()2e e 93f f >-,则2(e)(3)9e f f ->,故D 正确.故选:D.②构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型1.(2022·广东·深圳市南山外国语学校(集团)高级中学高二期中)设定义在R 上的函数()f x 的导函数为()f x ',已知()()f x f x '<,且()12e f =,则满足不等式()2e af a <的实数a 的取值范围为()A .()0,∞+B .(),0∞-C .()1,+∞D .(),1-∞【答案】C设()()e x f x g x =,则2()e ()e ()()()(e )e x x x xf x f x f x f xg x ''--'==,因为()()f x f x '<,e 0x >,所以()0g x '<,()g x 是减函数,(1)2e (1)2e ef g ===,不等式()2e af a <化为()2e af a <,即()(1)g a g <,所以1a >.故选:C .2.(2022·安徽省芜湖市教育局模拟预测(文))已知定义在R 上的函数()f x 满足()()20f x f x '->,则下列大小关系正确的是()A .()()2312e 1e 2f f f ⎛⎫>> ⎪⎝⎭B .()()231e 12e 2f f f ⎛⎫>> ⎪⎝⎭C .()()231e 1e 22f f f ⎛⎫>> ⎪⎝⎭D .()()3212e e 12f f f ⎛⎫>> ⎪⎝⎭【答案】A 构造函数()()2e x f x g x =,其中R x ∈,则()()()220e xf x f xg x '-'=>,所以,函数()g x 为R 上的增函数,所以,()()1122g g g ⎛⎫<< ⎪⎝⎭,即()()241122e e ef f f ⎛⎫⎪⎝⎭<<,因此,()()321e e 122ff f ⎛⎫<< ⎪⎝⎭.故选:A.3.(2022·江西·南昌市八一中学三模(文))记定义在R 上的可导函数()f x 的导函数为()f x ',且()()0f x f x '->,()11f =,则不等式()1e xf x ->的解集为______.【答案】()1,+∞设()()xf xg x =e,()()()()()()20x xxx f x f x f x f x g x ''--'==>e e e e ,所以函数()g x 单调递增,且()()111e ef g ==,不等式()()()()11>e 1e e x x f x f x g x g -⇔>⇔>,所以1x >.故答案为:()1,+∞.4.(2022·甘肃·玉门油田第一中学高二期中(理))已知定义在R 上的可导函数()f x 的导函数为()f x ¢,满足()()f x f x '<,且()3f x +为偶函数,()61f =,则不等式()e xf x >的解集为______.【答案】(),0-∞设()()exf xg x =,则()()()exf x f xg x '-'=,又()()f x f x '<,所以()0g x ¢<,即()g x 在R 上是减函数,因为()3f x +为偶函数,所以()3f x +图象关于y 轴对称,而()3f x +向右平移3个单位可得()f x ,所以()f x 对称轴为3x =,则()()061f f ==,所以()()0001e f g ==,不等式()e xf x >等价于()()()10e xf xg x g =>=,故0x <,所以不等式()e xf x >的解集为(),0-∞.故答案为:(),0-∞5.(2022·福建省龙岩第一中学高二阶段练习)已知函数()f x 的导函数为()f x ',()()3f x f x '+<,()03f =,则()3f x >的解集为___________.【答案】(),0∞-因为()()3f x f x '+<,所以()()3x xe f x f x e '+<⎡⎤⎣⎦,令()()3x F x e f x =-⎡⎤⎣⎦,则()()()3x x F x e f x e f x ''=-+⎡⎤⎣⎦,()()30x e f x f x '=+-<⎡⎤⎣⎦,所以()F x 是减函数,又()()00030F e f =-=⎡⎤⎣⎦,()3f x >即()30f x ->,()30x e f x ->⎡⎤⎣⎦,所以()()0F x F >,所以0x <,则()3f x >的解集为(),0∞-故答案为:(),0∞-6.(2022·全国·高三专题练习)若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3xf x e >的解集为________________.【答案】1,3⎛+∞⎫⎪⎝⎭构造()3()x f x F e x =,则()3363()3()()3()x x x xe f x e f x F f x f x e x e ''-=-=',函数()f x 满足()()30f x f x '->,则()0F x '>,故()F x 在R 上单调递增.又∵13f e ⎛⎫= ⎪⎝⎭,则113F ⎛⎫= ⎪⎝⎭,则不等式3()x f x e >⇔3()1x f x e >,即1()3F x F ⎛⎫> ⎪⎝⎭,根据()F x 在R 上单调递增,可知1,3x ⎛⎫∈+∞ ⎪⎝⎭.故答案为:1,3⎛+∞⎫⎪⎝⎭③构造()()sin F x f x x =或()()sin f x F x x=型1.(2022·山西·临汾第一中学校高二期末)若函数()f x 的导函数为()f x ',对任意()0,x π∈,()()sin cos f x x f x x '<恒成立,则()A3546f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭B.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭C3546f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭D.3546f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭【答案】B因为任意()()()0,,sin cos x f x x f x x <'∈π恒成立,即任意()()()0,,sin cos 0x f x x f x x '∈-<π恒成立,所以()()()()2sin cos 0sin sin f x f x x f x xx x ''⎡⎤-=<⎢⎥⎣⎦,()0,x π∈所以()sin f x x在()0,π上单调递减,因为56π34>π,所以536453sin sin 64f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ππππ,即536412f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭ππ5364f ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭ππ,故选:B2.(2022·江苏江苏·高二阶段练习)函数()f x 的定义域是()0,π,其导函数是()f x ',若()()sin cos f x x f x x <-',则关于x()πsin 4x x f ⎛⎫< ⎪⎝⎭的解集为______.【答案】π,π4⎛⎫⎪⎝⎭()()sin cos f x x f x x <-'变形为()()sin cos 0f x x f x x +<',()πsin 4x x f ⎛⎫< ⎪⎝⎭变形为()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭,故可令g (x )=f (x )sin x ,()0,πx ∈,则()()()sin cos 0g x f x x f x x =+''<,∴g (x )在()0,π单调递减,不等式()ππsin sin 44f x x f ⎛⎫< ⎪⎝⎭即为g (x )<g (π4),则π,π4x ⎛⎫∈ ⎪⎝⎭,故答案为:π,π4⎛⎫⎪⎝⎭.3.(2022·全国·高三专题练习)函数()f x 定义在0,2π⎛⎫ ⎪⎝⎭上,6f π⎛⎫= ⎪⎝⎭其导函数是()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()f x >的解集为_____________.【答案】,62ππ⎛⎫⎪⎝⎭解:()()cos sin f x x f x x'< ()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x=,则()()()2sin cos f x x f x xg x sin x'-'=,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x ∴在0,2π⎛⎫⎪⎝⎭单调递增,∴不等式()f x x >,即()61sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>==即()6x g g π⎛>⎫⎪⎝⎭,26x ππ∴<<故不等式的解集为,62ππ⎛⎫⎪⎝⎭.故答案为:,62ππ⎛⎫⎪⎝⎭.4.(2022·全国·高三专题练习)设奇函数()f x 定义在(,0)(0,)ππ- 上,其导函数为()'f x ,且()02f π=,当0πx <<时,()sin ()cos 0f x x f x x '-<,则关于x 的不等式()2()sin 6f x f x π<的解集为.【答案】(,0)(,)66πππ- 设()()sin f x g x x =,∴2()sin ()cos ()sin f x x f x x g x x'='-,∵()f x 是定义在(,0)(0,)ππ- 上的奇函数,∴()()()()sin()sin f x f x g x g x x x--===-,∴()g x 是定义在(,0)(0,)ππ- 上的偶函数,∵当0πx <<时,()sin ()cos 0f x x f x x '-<,∴()0g x '<,∴()g x 在(0,)π上单调递减,()g x 在(,0)π-上单调递增,∵()02f π=,∴(2(02sin 2f g πππ==,∵()2()sin 6f x f x π<,∴()()6g x g π<,(0,)x π∈,或,(,0)x π∈-,∴6x ππ<<或06x π-<<.∴关于x 的不等式()2()sin 6f x f x π<的解集为(,0)(,)66πππ- .④构造()()cos F x f x x =或()()cos f x F x x=型1.(2022·重庆·高二阶段练习)已知定义在区间,22ππ⎛⎫- ⎪⎝⎭上的奇函数()y f x =,对于任意的0,2x π⎡⎫∈⎪⎢⎣⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是()f x 的导函数),则下列不等式中成立的是()A.63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B.63f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭C.43f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D64ππ⎛⎫⎛⎫> ⎪ ⎝⎭⎝⎭【答案】B 构造函数()()cos f x g x x =,其中,22x ππ⎛⎫∈- ⎪⎝⎭,则()()()()()cos cos f x f x g x g x x x --==-=--,所以,函数()()cos f x g x x=为奇函数,当0,2x π⎡⎫∈⎪⎢⎣⎭时,()()()2cos sin 0cos f x x f x x g x x'+'=>,所以,函数()g x 在0,2π⎡⎫⎪⎢⎣⎭上为增函数,故该函数在,02π⎛⎤- ⎥⎝⎦上也为增函数,由题意可知,函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上连续,故函数()g x 在,22ππ⎛⎫- ⎪⎝⎭上为增函数.对于A 选项,63g g ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫⎪ ⎪⎝⎭<,则63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,A 错;对于B 选项,63g g ππ⎛⎫⎛⎫->- ⎪ ⎝⎭⎝⎭6312f f ππ⎛⎫⎛⎫-- ⎪ ⎝⎭>,则63f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,B 对;对于C 选项,43g g ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭43122f f ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭>,则43f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,C 错;对于D 选项,64g g ππ⎫⎫⎛⎛< ⎪ ⎝⎝⎭⎭64f f ππ⎛⎫⎛⎫⎪ ⎪<64ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,D 错.故选:B.2.(2022·福建龙岩·高二期中)设函数()f x '是定义在()0,π上的函数()f x 的导函数,有()()cos sin 0f x x f x x '->,若π6a f ⎛⎫=⎪⎝⎭,1π23b f ⎛⎫=⎪⎝⎭,23π24c f ⎛⎫=- ⎪⎝⎭,则a ,b ,c的大小关系是()A .a b c >>B .b c a>>C .c b a >>D .c a b>>【答案】C因为()()cos sin 0f x x f x x '->,所以设()()cos F x f x x =⋅,则()()()cos sin 0F x f x x f x x ''=⋅->,所以()()cos F x f x x =⋅在()0,π上为增函数,又因为ππ266a f F ⎛⎫⎛⎫== ⎪ ⎝⎭⎝⎭,1ππ233b f F ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,23π3π244c f F ⎛⎫⎛⎫=-= ⎪ ⎝⎭⎝⎭,ππ3π634<<,所以ππ3π634F F F ⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即a b c <<故选:C3.(2022·广东·广州市第四中学高二阶段练习)设函数()f x '是定义在()0π,上的函数()f x的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫==⎪⎝⎭,,34c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是()A .a b c >>B .b c a >>C .c a b >>D .c b a>>【答案】C解:设()()cos g x f x x =,则()()cos ()sin g x f x x f x x ''=-,又因为()cos ()sin 0f x x f x x '->,所以()0g x '>,所以()g x 在(0,)π上单调递增,又0cos(22a f ππ==,1(cos (2333b f f πππ==,333()cos ()2444c f f πππ==,因为3324πππ<<,所以33cos()cos ()cos (332244f f f ππππππ<<,所以c a b >>.故选:C .4.(2022·广西玉林·高二期中(文))函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,()f x '是它的导函数,且()()tan x f x f x '⋅>在定义域内恒成立,则()A .43f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭B 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C .()cos116f f π⎛⎫⋅> ⎪⎝⎭D 46ππ⎛⎫⎛⎫< ⎪ ⎝⎭⎝⎭【答案】D因为0,2x π⎛⎫∈ ⎪⎝⎭,所以sin 0cos 0x x >>,,由()()tan x f x f x '⋅>可得()cos ()sin f x x f x x '<,即()cos ()sin 0f x x f x x '-<,令()cos (),0,2g x x f x x π⎛⎫=⋅∈ ⎪⎝⎭,则()()cos ()sin 0g x f x x f x x ''=-<,所以函数()g x 在0,2π⎛⎫ ⎪⎝⎭上为减函数,则(1)643g g g g πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则cos cos cos(1)(1)cos 664433f f f f ππππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2cos(1)(1)643f f πππ⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D5.(2022·全国·高三专题练习)定义域为,22ππ⎛⎫- ⎝⎭的函数()f x 满足()()0f x f x +-=,其导函数为()f x ',当02x π≤<时,有()()cos sin 0f x x f x x '+<成立,则关于x的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为()A .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .,42ππ⎛⎫ ⎪⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B∵()()0f x f x +-=且,22x ππ⎛⎫∈- ⎪⎝⎭,∴()f x 是奇函数,设()()cos f x g x x =,则02x π≤<时,2()cos ()sin ()0cos f x x f x x g x x '+'=<,∴()g x 在0,2π⎡⎫⎪⎢⎣⎭是减函数.又()f x 是奇函数,∴()()cos f x g x x =也是奇函数,因此()g x 在(,0]2π-是递减,从而()g x 在,22ππ⎛⎫- ⎝⎭上是减函数,不等式()cos 4f x f x π⎛⎫<⋅ ⎪⎝⎭为()4cos cos 4f f x x ππ⎛⎫ ⎪⎝⎭<,即()4g x g π⎛⎫< ⎪⎝⎭,∴42x ππ<<.故选:B .6.(2022·全国·高三专题练习)已知奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,其图象是一段连续不断的曲线,当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,则关于x 的不等式()π2cos 3f x f x ⎛⎫< ⎪⎝⎭的解集为()A .ππ23⎛⎫- ⎪⎝⎭,B .ππ23⎛⎫-- ⎪⎝⎭,C .ππππ2332⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,,D .πππ0332⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,【答案】A 设()()cos f x g x x=,则()()()2cos sin cos f x x f x xg x x'+'=当π02x -<<时,有()()cos sin 0f x x f x x '+>成立,此时()0g x '>所以()()cos f x g x x =在02π⎛⎫- ⎪⎝⎭上单调递增.又()f x 为奇函数,则()00f =,则()()cos f x g x x=为奇函数,又()00g =则()()cos f x g x x =在02π⎛⎫ ⎪⎝⎭,上单调递增,所以()g x 在ππ,22⎛⎫- ⎝⎭上单调递增.当ππ,22x ⎛⎫∈- ⎪⎝⎭,恒有cos 0x >()π2cos 3f x f x ⎛⎫< ⎪⎝⎭可化为()π3πcos cos 3f f x x ⎛⎫ ⎪⎝⎭<,即()3g x g π⎛⎫< ⎪⎝⎭,由()()cos f x g x x =在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以23x ππ-<<故选:A⑤根据不等式(求解目标)构造具体函数1.(2022·重庆·高二阶段练习)定义在R 上的函数()f x 满足()()260f x f x -'-<,且()21e 3=-f ,则满足不等式()2e 3>-x f x 的x 的取值有()A .1-B .0C .1D .2【答案】D 构造函数()()23e x f x F x +=,则()()()226e xf x f x F x '--'=,因为()()260f x f x -'-<,所以()0F x '<,所以()()23exf x F x +=单调递减,又()21e 3=-f ,所以()()21311e f F +==,不等式()2e 3>-xf x 变形为()231e xf x +>,即()()1F x F >,由函数单调性可得:1x >故选:D2.(2022·黑龙江·哈尔滨市第六中学校高二期中)已知()f x '是定义域为R 的函数()f x 的导函数.若对任意实数x 都有()()2f x f x '>-,且()13f =,则不等式()12e x f x -->的解集为()A .(),1-∞B .()1,+∞C .(),e -∞D .()e,+∞【答案】B解:不等式1()2e x f x -->,等价于不等式1()21e x f x -->,构造函数1()2()e x f x g x --=,则1()(()2)()e x f x f x g x -'--'=,若对任意实数x 都有()()2f x f x '>-,则()0g x '>,()g x 在R 上单调递增,又()0(1)211e f g -==,故1()21e x f x -->即()()1g x g >,故不等式的解集是(1,)+∞,故选:B .3.(2022·黑龙江·哈师大附中高二期中)已知定义在R 上的函数()f x 满足()2f x '>-,则不等式()()2122f x f x x -->--的解集为()A .(),1-∞-B .()1,0-C .()0,1D .()1,-+∞【答案】D设()()2g x f x x =+,则()()2g x f x ''=+.因为定义在R 上的函数()f x 满足()2f x '>-,所以()()20g x f x ''=+>,所以函数()g x 在R 上单调递增.又不等式()()2122f x f x x -->--可化为()()()24121f x x f x x +>-+-,即()()21g x g x >-,所以21x x >-,解得1x >-.所以不等式()()2122f x f x x -->--的解集为()1,-+∞.故选:D.4.(2022·江苏·海门中学高二阶段练习)已知R 上的函数()f x 满足()13f =,且()2f x '<,则不等式()21f x x <+的解集为()A .(,1)-∞B .()3,+∞C .()1,+∞D .(2,)+∞【答案】C解:令()()21F x f x x =--,则()()2F x f x ''=-,又()f x 的导数()'f x 在R 上恒有()2f x '<,()()20F x f x ''∴=-<恒成立,()()21F x f x x ∴=--是R 上的减函数,又()()11210F f =--= ,∴当1x >时,()()10F x F <=,即()210f x x --<,即不等式()21f x x <+的解集为(1,)+∞;故选:C .5.(2022·陕西渭南·二模(理))设函数()f x 的定义域为()0,∞+,()'f x 是函数()f x 的导函数,()(ln )()0f x x x f x '+>,则下列不等关系正确的是()A .2(3)log 3(2)f f >B .()ln 033f ππ<C .(3)2(9)f f >D .21(0e )f <【答案】A函数()f x 的定义域为()0,∞+,则1()(ln )()0()()ln 0f x x x f x f x f x x x''+>⇔+>,令()()ln g x f x x =,0x >,则1()()()ln 0g x f x f x x x'=+>,即()g x 在()0,∞+上单调递增,对于A ,(3)(2)g g >,即2(3)ln 3(2)ln 2(3)log 3(2)f f f f >⇔>,A 正确;对于B ,((1)3g g π>,即(3)ln (1)ln103f f π>=,B 不正确;对于C ,(3)(9)g g <,即(3)ln 3(9)ln 92(9)ln 3(3)2(9)f f f f f <=⇔<,C 不正确;对于D ,21()(1)e g g <,即2211()ln (1)ln10e e f f <=,有22112()0()0e e f f -<⇔>,D 不正确.故选:A6.(2022·安徽·南陵中学模拟预测(文))已知函数()2224ln f x x x x ax =++-,若当0m n >>时,()()n f m f m n ->-,则实数a 的取值范围是()A .()0,9B .(],9-∞C .(],8∞-D .[)8,+∞【答案】B()()n f m f m n ->-,即()()f m m f n n ->-,令224l (n )()x x x ax g x f x x -+==+-,由题意得()g x 在(0,)+∞上单调递增,即4()410g x x a x '=++-≥,即441a x x≤++在(0,)+∞上恒成立由基本不等式得44119x x++≥+=,当且仅当44x x =即1x =时等号成立,则9a ≤故选:B7.(2022·安徽·高二阶段练习)已知()()21lg 20221lg 20222n n -+>,求满足条件的最小正整数n的值为___________.【答案】3解:由()()21lg 20221lg 20222n n -+>,两边取对数得()()()21ln 1lg 2022lg 2022lg 2n n -⋅+>⋅,因为n 是正整数,所以()()()ln lg 20221ln 211lg 202221n n +-+>-,令()()()ln 11x f x x x +=>,则()()()2ln 111xx x f x x x -++'=>,令()()ln 11x h x x x =-++,则()()201x h x x -'=<+,所以()h x 在()1,+∞上递减,则()()11ln 202h x h <=-=<,即()0f x '<,所以()f x 在()1,+∞上递减,所以lg 202221n <-,解得()11lg 20222n >+,因为3lg 20224<<,所以最小正整数n 的值为3.故答案为:38.(2022·浙江·高二期中)已知定义在R 上的可导函数()f x 是奇函数,其导函数为()'f x ,当0x <时,(1)()()0x f x xf x '-+>,则不等式()0f x <的解集为_______________.【答案】(0,)+∞()2e e(1)()()()()()e e e e x xx x x x x x x x f x xf x f x f x f x '--+⎡⎤=+'='⎢⎥⎣⎦,因为(1)()()0x f x xf x '-+>,所以()0e x xf x '⎡⎤>⎢⎥⎣⎦,即函数()e x x y f x =在(,0)-∞时单调递增的.因为()f x 的定义域是R ,且e x x在R 上都有意义,所以()e xx y f x =的定义域也是R ,所以在(,0)-∞时00()(0)0e ex x f x f <=,而e xx在(,0)-∞小于0恒成立,即在(,0)-∞时()0f x >.因为()f x 是奇函数,所以在(0,)+∞时()0f x <恒成立.所以()0f x <的解集为(0,)+∞.故答案为:(0,)+∞.9.(2022·四川·成都实外高二阶段练习(理))已知定义在R 上的可导函数()f x 为偶函数,且满足()21f =,若当0x ≥时,()f x x '>,则不等式()2112f x x <-的解集为___________.【答案】(2,2)-设21()()2g x f x x =-,则()()0g x f x x ''=->,0x ≥时,()g x 是增函数,又()f x 是偶函数,所以2211()()()()()22g x f x x f x x g x -=---=-=,()g x 是偶函数,21(2)(2)212g f =-⨯=-,不等式()2112f x x <-即为()(2)g x g <,由()g x 是偶函数,得()(2)g x g <,又0x ≥时,()g x 递增,所以2x <,22x -<<.故答案为:(2,2)-.10.(2022·四川·成都实外高二阶段练习(文))已知定义在R 上的可导函数()f x 满足()21f =,且()f x 的导函数()f x '满足:()1f x x '>-,则不等式()2112f x x x <-+的解集为___________.【答案】(),2∞-因为()1f x x '>-,所以()10f x x '-+>构造()()212F x f x x x =-+,则()()10F x f x x ''=-+>,即()()212F x f x x x =-+在R 上单调递增,因为()21f =,所以()()22221F f =-+=()2112f x x x <-+变形为()2112f x x x -+<,即()()2F x F <,由()F x 的单调性可知:2x <.故答案为:(),2∞-。
数学(文)知识清单-专题04 导数及其应用(原卷+解析版)

ex-1 x>0 , 20.已知奇函数 f(x)= x
h x x<0 ,
则函数 h(x)的最大值为________.
3
高考押题专练 1.曲线 f(x)=xlnx 在点(e,f(e))(e 为自然对数的底数)处的切线方程为( ) A.y=ex-2 B.y=2x+e C.y=ex+2 D.y=2x-e 【解析】本题考查导数的几何意义以及直线的方程.因为 f(x)=xlnx,故 f′(x)=lnx+1,故切线的斜率 k =f′(e)=2,因为 f(e)=e,故切线方程为 y-e=2(x-e),即 y=2x-e,故选 D. 【答案】D
D.
【答案】D
8.已知曲线 C1:y2=tx(y>0,t>0)在点 M
4,2 t
处的切线与曲线
C2:y=ex+1+1
也相切,则
t
的值为
()
A.4e2 B.4e
C.e2 D.e
4
4
【解析】由 y=
tx,得
y′= 2
t ,则切线斜率为 tx
k=4t ,所以切线方程为
y-2=4t
x-4 t
,即
y=4t x+1.
-∞,-4 3
,(0,+∞),故选
C.
【答案】C
7.函数 f(x)=ex-3x-1(e 为自然对数的底数)的图象大致是( )
5
【解析】由题意,知 f(0)=0,且 f′(x)=ex-3,当 x∈(-∞,ln3)时,f′(x)<0,当 x∈(ln3,+∞)时,f′(x)>0,
所以函数 f(x)在(-∞,ln3)上单调递减,在(ln3,+∞)上单调递增,结合图象知只有选项 D 符合题意,故选
3.曲线 y=x3+11 在点 P(1,12)处的切线与两坐标轴围成三角形的面积是( ) A.75 B.75
高二数学《一元函数的导数及其应用》(解析版)

一元函数的导数及其应用【学习目标】1. 掌握导数的概念和导数的基本运算。
2. 体会导数的内涵与思想,感悟极限的思想。
【基础知识】一、导数的概念及运算 1.导数的概念一般地,函数y =f(x)在x =x 0处的瞬时变化率0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆为函数y =f(x)在x =x 0处的导数,记作f′(x 0)或y′0|x x =即f′(x 0)=0000()()lim limx x f x x f x yx x∆→∆→+∆-∆=∆∆. 称函数f′(x)=000()()lim x f x x f x x∆→+∆-∆为f(x)的导函数.2.导数的几何意义函数f(x)在点x 0处的导数f′(x 0)的几何意义是在曲线y =f(x)上点P(x 0,f(x 0))处的切线的斜率.相应地,切线方程为y -f(x 0)=f′(x 0)(x -x 0). 3.基本初等函数的导数公式4.(1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); (3)2()'()()()'()'()[()]f x f x g x g x g x g x g x ⎡⎤-=⎢⎥⎣⎦(g(x)≠0).5.常用结论1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,且(f(x0))′=0.2.1()f x⎡⎤⎢⎥⎣⎦′=-2'()[()]f xf x.3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.二、利用导数研究函数的单调性1.函数的单调性与导数的关系函数y=f(x)在区间(a,b)内可导,(1)若f′(x)>0,则f(x)在区间(a,b)内是单调递增函数;(2)若f′(x)<0,则f(x)在区间(a,b)内是单调递减函数;(3)若恒有f′(x)=0,则f(x)在区间(a,b)内是常数函数.讨论函数的单调性或求函数的单调区间的实质是解不等式,求解时,要坚持“定义域优先”原则. 2.常用结论汇总——规律多一点(1)在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.(2)可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.三、利用导数解决函数的极值最值1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点. 2.函数的最值(1)在闭区间[a ,b]上连续的函数f(x)在[a ,b]上必有最大值与最小值.(2)若函数f(x)在[a ,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 3常用结论1.对于可导函数f(x),“f′(x 0)=0”是“函数f(x)在x =x 0处有极值”的必要不充分条件.2.求最值时,应注意极值点和所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.3.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.四、利用导数研究生活中的优化问题1.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. 2.利用导数解决优化问题的实质是求函数最值. 3.解决优化问题的基本思路是什么? 答案上述解决优化问题的过程是一个典型的数学建模过程.4.对于优化问题,建立模型之后需要对模型进行最大值最小值的求解,从而转化为导数求极值最值问题.【考点剖析】 考点一:导数的概念及其意义例1.曲线x y e =上的点到直线10x y --=的距离的最小值是( )A .0B .1C .2D .3【答案】C 【详解】解:x y e =,所以e x y '=,设曲线在()00,xP x e 处的切线与直线10x y --=平行,则01x e =,所以00x =,切点(0,1)P ,曲线x y e =上的点到直线10x y --=的最短距离,即为切点P 到直线10x y --=的距离|011|22d --==, 故选:C .考点二:导数的运算例2.求下列函数的导数: (1)41y x =(2)34y x (3)3x y = (4)1()2xy =(5)4log y x = (6)12log y x =【答案】 (1) 解:因为441y x x-==,所以()454y x x --''==-; (2)解:因为4343y x x ==,所以413343y x x '⎛⎫'== ⎪⎝⎭;(3)解:因为3x y =,所以3ln 3x y '=; (4)解:因为1()2x y =,所以21()12ln x y '=;(5)解:因为4log y x =,所以1ln 4y x '=; (6) 解:因为12log y x=,所以111ln 2ln2y x x '==-;考点三:导数在研究函数中的应用例3.若函数()3231f x x x mx =+-+在[]2,2-上为单调增函数,则m 的取值范围( )A .[)24,∞-+B .[)1,∞-+C .(],3∞--D .(],0∞-【答案】C 【详解】由函数()3231f x x x mx =+-+在[]22-,上为单调增函数,可得()2360f x x x m '=+-≥在[]22-,上恒成立,即236m x x ≤+在[]22-,上恒成立,即()2min 36m x x ≤+,令22363(1)3t x x x =+=+-,[]2,2x ∈-.所以当1x =-时,min 3t =-,所以3m ≤-. 故选:C .【真题演练】1. 已知函数()f x 在0x x =处可导,若000()()lim12x f x x f x x→+∆-=∆,则0()f x '=____________.【答案】2 【详解】 000000()()()()1limlim 122x x f x x f x f x x f x x x →→+∆-+∆-==∆∆,所以000()()lim 2x f x x f x x→+∆-=∆0000()()()lim2x f x x f x f x x→+∆-'==∆.故答案为:2.2. 已知函数3C :()ln f x x x =+,则曲线在点(1,(1))f 处的切线方程为___________. 【答案】430x y --= 【详解】解:因为21()3f x x x'=+, 所以(1)4k f '==, 又(1)1,f =故切线方程为14(1)y x -=-, 整理为430x y --=,故答案为:430x y --=3. 若函数()f x 的导函数为偶函数,则函数()f x 的解析式可能是( ) A .()1cos f x x =+ B .()2f x x x =+C .()sin 2f x x =D .()xf x e x =-【答案】C 【详解】()1cos f x x =+,则()sin f x x '=-,为奇函数,A 排除; ()2f x x x =+,则()21f x x =+,为非奇非偶函数,B 排除;()sin 2f x x =,则()2cos2f x x '=,为偶函数,C 满足;()e x f x x =-,则()e 1x f x '=-,为非奇非偶函数,D 排除.故选:C. 4. 已知4ln 4a a -=,3ln 3-=bb ,22ln -=c c ,其中4a ≠,3b ≠,2c ≠,则( )A .c b a <<B .c a b <<C .a b c <<D .a c b <<【答案】C 【详解】 由4ln4aa -=,则ln 4ln 4a a -=-,同理ln 3ln3b b -=-,ln 2ln 2c c -=-, 令()ln f x x x =-,则()111x f x x x-'=-=,当()0,01f x x '<<<;当()0,1>>'f x x ,∴()f x 在()0,1上单调递减,()1,+∞单调递增,所以()()()432f f f >>,即可得()()()f a f b f c >>,又4a ≠,3b ≠,2c ≠由图的对称性可知,a b c <<.故选:C5. 下列求导运算正确的是( ) A .2111x x x '⎛⎫+=+ ⎪⎝⎭ B .()e e x x --'=- C .()555log xx x '=D .()2cos sin cos cos x x x xx x '-⎛⎫= ⎪⎝⎭ 【答案】B 【详解】对于A ,2111x x x '⎛⎫+=- ⎪⎝⎭,A 错; 对于B ,()e e x x --'=-,B 对; 对于C ,()'55ln 5x x =,C 错;对于D ,()2cos sin cos cos x x x xx x '+⎛⎫= ⎪⎝⎭,D 错. 故选:B.6. 设()()sin cos xf x e x x =-,其中 02019x π≤≤,则 ()f x 的极大值点个数是( )A .1009B .1010C .2019D .2020【答案】A 【详解】由题意,函数()()sin cos xf x e x x =-,可得()()()'sin cos cos sin 2sin x x xf x e x x e x x e x =-++=,令()0f x '>,即sin 0x >,解得22,k x k k Z πππ<<+∈, 令()0f x '<,即sin 0x <,解得222,k x k k Z ππππ+<<+∈,所以函数()f x 在(2,2)k k πππ+递增,在(2,22),k k k Z ππππ++∈递减, 故函数()f x 的极大值点为2,x k k Z ππ=+∈, 因为02019x π≤≤,即,3,5,7,2017x πππππ=,共1009个.故选:A.7. (多选)设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .(),1-∞-B .()0,1C .()1,0-D .()1,+∞【答案】AB 【详解】解:设()()f xg x x=, 则()()()2''xf x f x g x x -=,当0x >时总有()()'xf x f x <成立, 即当0x >时, ()'g x <0恒成立,∴当0x >时,函数()()f xg x x=为减函数, 又()()()()f x f x g x g x x x---===--,∴函数()g x 为定义域上的偶函数,又()()1101f g --==-,所以不等式()0f x >等价于()·0x g x >, 即()00x g x >⎧⎨>⎩或()00x g x <⎧⎨<⎩,即01x <<或1x <-,所以()0f x > 成立的x 的取值范围是()(),10,1-∞-⋃. 故选:AB .8. 已知函数()ln af x x x=+,()sin x g x e x =+,其中a ∈R . (1)试讨论函数()f x 的单调性; (2)若1a =,证明:()()g x f x x<. 【答案】 (1)()ln af x x x =+的定义域为(0,)+∞221()a x a f x x x x-'=-=当0a ≤时,()0f x '>,()f x 在(0,)+∞上单调递增;当0a >时,令()0f x '>,解得x a >;令()0f x '<,解得0x a <<; 综上所述:当0a ≤时,()f x 在(0,)+∞上单调递增,无减区间; 当0a >时,()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增; (2)1a =,1()ln f x x x ∴=+,即证:1sin ln x e xx x x ++<0x,即证:sin ln 10x e x x x +-->当(0,1)x ∈时,e 1x >,sin 0x >,ln 0x x <sin ln 1110x e x x x ∴+-->-=当[1,)x ∈+∞时,令()sin ln 1x g x e x x x =+--,则()e cos ln 1x g x x x '=+--1()sin 110x g x e x e x''=--≥--> ()cos ln 1x g x e x x '∴=+--在[1,)+∞上单调递增()(1)cos1010g x g e ''∴≥=+-->()sin ln 1x g x e x x x ∴=+--在[1,)+∞上单调递增()(1)sin1010g x g e ∴≥=+-->综上所述:sin ()x e xf x x+<,即()()g x f x x <【过关检测】1. 若曲线3ln y ax x =-在点(1,)a 处的切线斜率为2,则=a ___________. 【答案】1 【详解】213y ax x'=-,132|1x y a ==-∴=',解得1a =. 故答案为:12. 已知函数2()(2)x x f x ae a e x =+--.(1)当0a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()f x 有两个零点,求a 的取值范围. 【答案】(1)解:当0a =时, ()2x f x e x =--,则()21xf x e '=--.所以()00213f e '=--=-,而(0)2f =-,所以曲线()y f x =在点()()0,0f 处的切线方程为3++20x y =. (2)解:因为()f x 有两个零点,所以方程()0f x =有两个不同的根, 即关于x 的方程()22x x xa e +x e e +=,即22x x x +x e a e +e=有两个不同的解, 令()2+2+x x x e x g x e e =,则y a =与()2+2+xx x e xg x e e=的图象有两个交点,且()()()()22++1+21x x x x x e e e g x e e x -'=-.令()+1x x h x e --=,则()'10x h x e --<=,且()0+010h e x --==,所以当()0x ∈-∞,时,()>0h x ,即()>0g x ',()g x 单调递增, 当()0+x ∈∞,时,()0h x <,即()0g x '<,()g x 单调递减, 所以()()000+2001+e g x g e e ≤==,且()()12112110+e g e e---⨯--=<,当+x →∞时,()0g x →,所以要使y a =与()2+2+xx x e xg x e e=的图象有两个交点,则a 的取值范围是()0,1.3. 已知()21πsin 42f x x x ⎛⎫=++ ⎪⎝⎭,()f x '为()f x 的导函数,则()f x '的大致图象是( )A .B .C .D .【答案】A 【详解】∵()221π1sin cos 424f x x x x x ⎛⎫=++=+ ⎪⎝⎭, ∴()1sin 2f x x x '=- 易知()1sin 2f x x x '=-是奇函数,其图象关于原点对称,故排除B 和D , 由ππ106122f ⎛⎫'=-< ⎪⎝⎭,排除C ,所以A 正确. 故选:A.4. 已知()f x '是函数()f x 的导数,且对任意的实数x 都有()()()e 22x f x x f x -'=--,()08f =则不等式()0f x <的解集是( )A .()2,4-B .()(),02,-∞+∞C .()(),42,-∞-+∞ D .()(),24,-∞-+∞【答案】D【详解】设()()x g x e f x =,000)e )8((f g ==,因为()()()e 22x f x x f x -'=--,所以()()e (22)x f x f x x -'+=-, 所以()e ()e ()e (()())22x x x g x f x f x f x f x x '''=+=+=-.因此2()2g x x x c =-+,(0)8g c ==,所以2()28g x x x =-++,228()e xx x f x -++=, 不等式()0f x <即为2280ex x x -++< ,2280x x -->,解得2x <-或4x >. 故选:D . 5. (多选)已知函数()2ln 2x ax f x x +=+.,若()f x 的图象存在两条相互垂直的切线.则a 的值可以是( )A .6-B .5-C .4-D .3-【答案】AB【详解】∵函数()2ln 2x ax f x x +=+,定义域为()0,∞+,∴()12a f x x x '=++, ∴()1222a a f x x x '=++≥+,当且仅当1x x =时,取等号, 要使()f x 的图象存在两条相互垂直的切线,则()12,0,x x ∃∈+∞,()()121f x f x ''=-,所以()12a f x x x'=++的值必有一正一负, 当3a =-时,()1122a f x x x '=++≥,不合题意, 当4a =-时,()102a f x x x '=++≥,不合题意, 当5a =-时,()152f x x x =+-',则()12,0,x x ∃∈+∞,()()121f x f x ''=-,例如()12,0,x x ∃∈+∞,()()11221215115,4242f x x f x x x x ''=+-=-=+-=,故a 的值可以是5-, 当6a =-时,()13f x x x'=+-,则()12,0,x x ∃∈+∞,()()121f x f x ''=-,例如()12,0,x x ∃∈+∞,()()1122121113,344f x x f x x x x ''=+-=-=+-=,故a 的值可以是6-. 所以a 的值可以是5-或6-.故选:AB.6. 已知函数()f x 的解析式唯一,且满足()()()e ,12e x xf x f x f +=='.则函数()f x 的图象在点()()1,1f 处的切线方程为___________.【详解】由()()()'[]xf x f x xf x +=',可得()'[]e x xf x =,设()e x xf x m =+,又由()12e f =,有()1e 2e f m =+=,得e m =,可得()()()()()'22e e e 1e e e e ,,1e x x x x x x f x f x f x x x -+--+='===-, 故所求切线方程为()2e e 1y x -=--,整理为e 3e y x =-+.故答案为:3y ex e =-+7. 已知函数()()2ln 1f x x ax x =-+-+.(1)函数()f x 在区间11,2⎛⎫-- ⎪⎝⎭上是减函数,求实数a 的取值范围: (2)已知函数()f x 既存在极大值点又存在极小值点,求实数a 的取值范围.【答案】(1)函数()f x 定义域为()1,-+∞,()121f x x a x '=-+-+, 由题意1201x a x -+-≤+在区间11,2⎛⎫-- ⎪⎝⎭上恒成立,即()12121x a x ++≥++在区间11,2⎛⎫-- ⎪⎝⎭上恒成立,令110,2t x ⎛⎫=+∈ ⎪⎝⎭,由对勾函数知:()12g t t t =+在区间10,2⎛⎫ ⎪⎝⎭上是减函数,()132g t g ⎛⎫>= ⎪⎝⎭,所以23a +≤,得1a ≤,所以实数a 的取值范围为(],1-∞.(2)()()22211211x a x a f x x a x x -+-+-'=-+-=++, ()f x 既存在极大值又存在极小值等价于方程()22210x a x a -+-+-=在区间()1,-+∞上有两个不相等的实数根, 需满足()()222102142810a a a a a ⎧-+-+-<⎪-⎪>-⎨-⎪⎪-+->⎩解得:2a >-+所求实数a的取值范围为()2-++∞8. 若函数()3231f x x x mx =+-+在[]2,2-上为单调增函数,则m 的取值范围( ) A .[)24,∞-+B .[)1,∞-+C .(],3∞--D .(],0∞-【答案】C【详解】 由函数()3231f x x x mx =+-+在[]22-,上为单调增函数,可得()2360f x x x m '=+-≥在[]22-,上恒成立,即236m x x ≤+在[]22-,上恒成立,即()2min 36m x x ≤+,令22363(1)3t x x x =+=+-,[]2,2x ∈-.所以当1x =-时,min 3t =-,所以3m ≤-.故选:C .9. 已知函数()()ln 1f x a x x a R =+-∈.(1)讨论()f x 的单调性;(2)若函数()e 1x y f ax =-+与()e ln a y x a =+的图像有两个不同的公共点,求a 的取值范围.【答案】(1)()()ln 1f x a x x a R =+-∈,()1a x a f x x x+'∴=+=,()0x >. ①、当0a ≥,()0f x '>,函数()f x 在()0,+∞上单调递增;②、当0a <,令()0f x '=,得x a =-,∴()0,x a ∈-时,()0f x '<;(),x a ∈-+∞时,()0f x '>,∴()f x 在()0,a -上单调递减,在(),a -+∞上单调递增.综上所述:当0a ≥,()f x 的单调递增为()0,+∞,无单调递减区间;当0a <,()f x 的单调递增为(),a -+∞,()f x 的单调递减为()0,a -.(2)根据题意可知:方程()()e 1e ln x a f ax x a -+=+,即()e e ln x a x a =+有两个不同的实根.由()e e ln x a x a =+可得:()ln e eln x a x x x a +=+. 令()e x g x x =,0x 时,()()1e 0x g x x '=+>,所以()g x 在()0,+∞上单调递增,要使()()ln g x g x a =+有两个不同的实根,则需ln x x a =+有两个不同的实根.令()ln h x x x a =--,则()111x h x x x-'=-=, 当()0,1x ∈时,()0h x '<,()h x 单调递减;当()1,x ∈+∞时,()0h x '>,()h x 单调递增, ()()min 11h x h a ∴==-.①、若1a <,则()0h x >,()h x 没有零点;②、若1a =,则()0h x ≥,当且仅当1x =时取等号,()h x 只有一个零点;③、若1a >,则()110h a =-<,()e e 0a a h --=>,()e e 2a a h a =-.令()e 2a a a ϕ=-,则当1a >时,()e 2e 20a a ϕ'=->->,即()a ϕ在()1,+∞上单调递增,所以()()1e 20a ϕϕ>=->,即()e 0a h >.故此时()h x 在()0,1上有一个零点,在()1,+∞上有一个零点,符合条件. 综上可知,实数a 的取值范围是()1,+∞.10. 已知()2123ln 2f x x x x =--,()321ln 6g x x x a x =+-. (1)求()f x 在()()1,1f 处的切线方程;(2)已知()31()6F x g x x =-的两个零点为1212,()x x x x <,且0x 为()F x 的唯一极值点. ①求实数a 的取值范围;②求证:12034x x x +>.【答案】(1) 解:因为21()23ln 2f x x x x =--, 所以定义域为(0,)+∞ 所以33()2,(1)4,(1)2=--=-=-''f x x f f x , 所以切线方程为8250x y +-=;(2)①证明:2()ln F x x a x =-,若0a ≤,则函数2()ln F x x a x =-在其定义域内为单调函数,不可能有两个零点, 所以0a >,由()20a F x x x '=-==,得0x =当x ⎛∈ ⎝,()0F x '<;x ⎫∈+∞⎪⎪⎭,()0F x '>;所以()F x 在⎛ ⎝上单调递减,⎫+∞⎪⎪⎭上单调递增, 因为当x 趋近+∞时,()F x 趋近+∞;当x 趋近0时,()F x 趋近+∞, 要使()F x 有两个零点,只要满足()00F x <,即202e =-<⇒>F a a ;②因为120x x <<>21(1)x t t x =>,由()()12F x F x =, 所以221122ln ln -=-x a x x a x ,即2221111ln ln x a x t x a tx -=-, 因此212ln 1a t x t =-,而要证12034x x x +>,只需证1(31)t x +>即证221(31)8t x a +>,即证22ln (31)81a t t a t +>-, 由0,1a t >>,只需证22(31)ln 880t t t +-+>,令22()(31)ln 88p t t t t =+-+,则1()(186)ln 76p t t t t t'=+-++, 令1()(186)ln 76n t t t t t=+-++,则261()18ln 110(1)t n t t t t -'=++>>, 故()n t 在(1,)+∞上递增,()(1)0n t n >=,故()p t 在(1,)+∞上递增,()(1)0p t p >=,所以12034x x x +>。
专题4 一元函数导数及其应用(含答案解析)

专题4一元函数导数及其应用从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.预测2020年高考命题将保持稳定.主观题应用导数研究函数的性质,备考的面要注意做到全覆盖,如导数几何意义的应用、单调性问题、极(最)值问题、零点问题、不等式的证明、参数范围的确定等.一、单选题1.(2020届山东省潍坊市高三下学期开学考试)函数321y x x mx =+++是R 上的单调函数....,则m 的范围是()A .1(,)3+∞B .1(,3-∞C .1[,)3+∞D .1(,3-∞2.(2020·山东高三下学期开学)已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为()A .y x=-B .2y x =-+C .y x=D .2y x =-3.(2020届山东省济宁市高三3月月考)已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则()A .M 的最小值为25B .M 的最小值为45C .M 的最小值为85D .M 的最小值为1254.(2020·山东滕州市第一中学高三3月模拟)函数()()()2sin xx e e x f x x eππ-+=-≤≤的图象大致为()A .B .C .D .5.(2020届山东省菏泽一中高三2月月考)已知奇函数()f x 是R 上增函数,()()g x xf x =则()A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.(2020届山东省济宁市第一中学高三二轮检测)已知函数()y f x =的导函数()f x '的图象如图所示,则下列判断正确的是()A .函数()y f x =在区间13,2⎛⎫--⎪⎝⎭内单调递增B .当2x =-时,函数()y f x =取得极小值C .函数()y f x =在区间()2,2-内单调递增D .当3x =时,函数()y f x =有极小值7.(2020届山东省青岛市高三上期末)已知奇函数()f x 是R 上增函数,()()g x xf x =则()A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多选题8.(2020届山东省济宁市高三3月月考)设函数()()ln ,01,0x x x f x e x x ⎧>⎪=⎨+≤⎪⎩,若函数()()g x f x b =-有三个零,则实数b 可取的值可能是()A .0B .12C .1D .29.(2020·山东滕州市第一中学高三3月模拟)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =--(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是()A .12B .2C .2e D .10.(2020·2020届山东省淄博市高三二模)已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则()A .MB .当M 最小时,2125x =C .M 的最小值为45D .当M 最小时,265x =三、填空题11.(2020届山东省菏泽一中高三2月月考)已知直线2y x =+与曲线ln()y x a =+相切,则a =12.(2020届山东省烟台市高三模拟)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为__________.13.(2020届山东省淄博市部分学校高三3月检测)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是_____________.14.(2020·山东高三模拟)已知函数()ln 2f x x x a =-在点(1,(1))f 处的切线经过原点,函数()()f x g x x=的最小值为m ,则2m a +=________.15.(2020届山东省济宁市第一中学高三二轮检测)若函数()()1,f x a nx a R =∈与函数()g x =共点处有共同的切线,则实数a 的值为______.16.(2020届山东省济宁市高三3月月考)如图所示,某几何体由底面半径和高均为1的圆柱与半径为1的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为__________.17.(2020届山东省淄博市高三二模)已知函数()f x 的定义域为R ,导函数为()f x ',若()()cos f x x f x =--,且()sin 02xf x '+<,则满足()()0f x f x π++≤的x 的取值范围为______.四、解答题18.(2020届山东省济宁市第一中学高三二轮检测)已知函数()1xf x x ae =-+(1)讨论()f x 的单调性;(2)当1a =-时,设1210,0x x -<<>且()()125f x f x +=-,证明:12124x x e->-+.19.(2019·宁德市高级中学高三月考(理))已知函数)f x =(a e 2x +(a ﹣2)e x ﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.20.(2020·山东高三模拟)已知函数()21()1ln ()2f x m x x m =--∈R .(1)若1m =,求证:()0f x ≥.(2)讨论函数()f x 的极值;(3)是否存在实数m ,使得不等式111()x f x x e->-在(1,)+∞上恒成立?若存在,求出m 的最小值;若不存在,请说明理由.21.(2020届山东省高考模拟)已知函数2()2ln ()f x x ax x a R =-+∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.22.(2020届山东省济宁市高三3月月考)已知函数()()()1xf x ax e a R =-∈.(1)求函数()f x 的单调区间;(2)是否存在一个正实数a ,满足当x ∈R 时,()1f x ≤恒成立,若存在,求出a 的值;若不存在,请说明理由.23.(2020届山东省潍坊市高三模拟一)已知函数()cos sin xf x e x x x =-,()sin x g x x =-,其中e是自然对数的底数.(Ⅰ)12ππ,0,0,22x x ⎡⎤⎡⎤∀∈-∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x m g x ≤+成立,试求实数m 的取值范围;(Ⅱ)若1x >-,求证:()()0f x g x ->.24.(2020届山东省潍坊市高三模拟二)已知函数()ln ,f x x x kx k R =+∈.(1)求()y f x =在点(1,(1))f 处的切线方程;(2)若不等式2()f x x x ≤+恒成立,求k 的取值范围;(3)求证:当*n N ∈时,不等式()2212ln 4121ni n ni n =-->+∑成立.25.(2020届山东省菏泽一中高三2月月考)已知函数()ln 2sin f x x x x =-+,()f x '为()f x 的导函数.(1)求证:()f x '在()0π,上存在唯一零点;(2)求证:()f x 有且仅有两个不同的零点.26.(2020届山东济宁市兖州区高三网络模拟考)已知函数()2ln f x x ax =-,a R ∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当1a =-时,令2()()g x x f x =-,其导函数为()g x ',设12,x x 是函数()g x 的两个零点,判断122x x +是否为()g x '的零点?并说明理由.27.(2020届山东省潍坊市高三下学期开学考试)已知2()2ln(2)(1)f x x x =+-+,()(1)g x k x =+.(1)当2k =时,求证:对于1x ∀>-,()()f x g x <恒成立;(2)若存在01x >-,使得当()01,x x ∈-时,恒有()()f x g x >成立,试求k 的取值范围.28.(2020届山东省淄博市高三二模)(本小题满分12分)设函数()()22ln 11x f x x x =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)如果对所有的x ≥0,都有()f x ≤ax ,求a 的最小值;(Ⅲ)已知数列{}n a 中,11a =,且()()1111n n a a +-+=,若数列{}n a 的前n 项和为n S ,求证:11ln 2n n n na S a a ++>-.29.(2020届山东省烟台市高三模拟)已知函数()()2ln 12a f x x x xb =---,,R a b ∈.(1)当-1b =时,讨论函数()f x 的零点个数;(2)若()f x 在()0,∞+上单调递增,且2a b c e +≤求c 的最大值.30.(2020·山东滕州市第一中学高三3月模拟)已知()ln f x x =,()()2102g x ax bx a =+≠,()()()h x f x g x =-.(Ⅰ)若3,2a b ==,求()h x 的极值;(Ⅱ)若函数()y h x =的两个零点为()1212,x x x x ≠,记1202x x x +=,证明:()00h x '<.31.(2020届山东省泰安市肥城市一模)已知函数()22()xf x e ax x a =++在1x =-处取得极小值.(1)求实数a 的值;(2)若函数()f x 存在极大值与极小值,且函数()()2g x f x x m =--有两个零点,求实数m 的取值范围.(参考数据:e 2.718≈2.236≈)32.(2020·山东高三下学期开学)已知函数()ln 1f x x x =-,()()22g x ax a x =--.(1)设函数()()()H x f x g x '=-,讨论()H x 的单调性;(2)设函数()()()2G x g x a x =+-,若()f x 的图象与()G x 的图象有()11A x y ,,()22B x y ,两个不同的交点,证明:()12ln 2ln 2x x >+.33.(2020届山东省淄博市部分学校高三3月检测)已知函数2()2ln =-f x x x x ,函数2()(ln )=+-ag x x x x,其中a R ∈,0x 是()g x 的一个极值点,且()02g x =.(1)讨论()f x 的单调性(2)求实数0x 和a 的值(3)证明()*11ln(21)2=>+∈nk n n N 34.(2020届山东省六地市部分学校高三3月线考)已知函数()()20f x lnx ax x a =--+≥.()1讨论函数()f x 的极值点的个数;()2若函数()f x 有两个极值点1x ,2x ,证明:()()12322f x f x ln +>-.专题4一元函数导数及其应用从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.预测2021年高考命题将保持稳定.主观题应用导数研究函数的性质,备考的面要注意做到全覆盖,如导数几何意义的应用、单调性问题、极(最)值问题、零点问题、不等式的证明、参数范围的确定等.一、单选题1.(2020届山东省潍坊市高三下学期开学考试)函数321y x x mx =+++是R 上的单调函数....,则m 的范围是()A .1(,)3+∞B .1(,3-∞C .1[,)3+∞D .1(,3-∞【答案】C 【解析】若函数321y x x mx =+++是R 上的单调函数,只需2320y x x m '=++≥恒成立,即141203m m =-≤∴≥ ,.故选:C .2.(2020·山东高三下学期开学)已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为()A .y x =-B .2y x =-+C .y x=D .2y x =-【答案】A 【解析】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A3.(2020届山东省济宁市高三3月月考)已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则()A .M 的最小值为25B .M 的最小值为45C .M 的最小值为85D .M 的最小值为125【答案】B 【解析】由题意,()()221212M x x y y =-+-的最小值可转化为函数ln 2y x x =-+图象上的点与直线242ln 20x y +--=上的点的距离的最小值的平方.ln 2y x x =-+,得11y x'=-,与直线242ln 20x y +--=平行的直线斜率为12-,令1112x -=-,解得2x =,所以切点的坐标为()2ln 2,切点到直线242ln 20x y +--=的距离5d ==即()()221212M x x y y =-+-的最小值为45.故选:B4.(2020·山东滕州市第一中学高三3月模拟)函数()()()2sin xx ee xf x x eππ-+=-≤≤的图象大致为()A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()f x f x -=-,则函数()f x 的图像关于坐标原点对称,据此可排除B 选项,考查函数()x x g x e e -=+,则()()21'x x x xe g x e e e--=-=,当0x >时,()g x 单调递增,则344g g ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,据此有:344f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,据此可排除C 选项;当0πx <<时,0,sin 0x x e e x -+>>,则()0f x >,据此可排除D 选项;本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.5.(2020届山东省菏泽一中高三2月月考)已知奇函数()f x 是R 上增函数,()()g x xf x =则()A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】B 【解析】由奇函数()f x 是R 上的增函数,可得()0f x '≥,以及当0x >时,()0f x >,当0x <时,()0f x <,由()()g x xf x =,则()()()()g x xf x xf x g x -=--==,即()g x 为偶函数.因为()()()g x f x xf x ''=+,所以当0x >时,()0g x '>,当0x <时,()0g x '<.故0x >时,函数()g x 单调递增,0x <时,函数()g x 单调递减.因为()331log log 44g g ⎛⎫= ⎪⎝⎭,2303232221log 4--<<=<所以233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B .6.(2020届山东省济宁市第一中学高三二轮检测)已知函数()y f x =的导函数()f x '的图象如图所示,则下列判断正确的是()A .函数()y f x =在区间13,2⎛⎫--⎪⎝⎭内单调递增B .当2x =-时,函数()y f x =取得极小值C .函数()y f x =在区间()2,2-内单调递增D .当3x =时,函数()y f x =有极小值【答案】BC 【解析】对于A ,函数()y f x =在区间13,2⎛⎫--⎪⎝⎭内有增有减,故A 不正确;对于B ,当2x =-时,函数()y f x =取得极小值,故B 正确;对于C ,当()2,2x ∈-时,恒有()0f x '>,则函数()y f x =在区间()2,2-上单调递增,故C 正确;对于D ,当3x =时,()0f x '≠,故D 不正确.故选:BC7.(2020届山东省青岛市高三上期末)已知奇函数()f x 是R 上增函数,()()g x xf x =则()A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】B 【解析】由奇函数()f x 是R 上的增函数,可得()0f x '≥,以及当0x >时,()0f x >,当0x <时,()0f x <,由()()g x xf x =,则()()()()g x xf x xf x g x -=--==,即()g x 为偶函数.因为()()()g x f x xf x ''=+,所以当0x >时,()0g x '>,当0x <时,()0g x '<.故0x >时,函数()g x 单调递增,0x <时,函数()g x 单调递减.因为()331log log 44g g ⎛⎫= ⎪⎝⎭,2303232221log 4--<<=<所以233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B .二、多选题8.(2020届山东省济宁市高三3月月考)设函数()()ln ,01,0x x x f x e x x ⎧>⎪=⎨+≤⎪⎩,若函数()()g x f x b =-有三个零,则实数b 可取的值可能是()A .0B .12C .1D .2【答案】BC 【解析】由题意,函数()()g x f x b =-有三个零点,则函数()()0g x f x b =-=,即()f x b =有三个根,当0x ≤时,()()1xf x ex =+,则()()()12x x x e x e x x e f =++=+'由()0f x '<得20x +<,即2x <-,此时()f x 为减函数,由()0f x '>得20x +>,即20x -<≤,此时()f x 为增函数,即当2x =-时,()f x 取得极小值()212f e-=-,作出()f x 的图象如图:要使()f x b =有三个根,则01b <≤,则实数b 可取的值可能是12,1故选:BC9.(2020·山东滕州市第一中学高三3月模拟)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()xg x e a =--(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是()A .12B .2C .2e D .【答案】BCD 【解析】令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x 时,()()0T x f x x '='-<,()T x ∴在(],0-∞上单调递减,()T x ∴在R 上单调递减.存在0{|()(1)}x x T x T x ∈- ,∴得00()(1)T x T x - ,001x x - ,即012x,()x g x e a =-- ;1(2x,0x 为函数()y g x =的一个零点;当12x时,()0x g x e '= ,∴函数()g x 在12x 时单调递减,由选项知0a >,取12x =<,又0g e⎛=> ⎝,∴要使()g x 在12x时有一个零点,只需使102g a ⎛⎫=- ⎪⎝⎭,解得2a ,a ∴的取值范围为,2⎡⎫+∞⎪⎢⎪⎣⎭,故选:BCD .10.(2020·2020届山东省淄博市高三二模)已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则()A .MB .当M 最小时,2125x =C .M 的最小值为45D .当M 最小时,265x =【答案】BC 【解析】由111ln 20x x y --+=,得:111ln 2y x x =-+,()()221212x x y y -+-的最小值可转化为函数ln 2y x x =-+图象上的点到直线242ln 20x y +--=上的点的距离的最小值的平方,由ln 2y x x =-+得:11y x'=-,与直线242ln 20x y +--=平行的直线的斜率为12-,则令1112x -=-,解得:2x =,∴切点坐标为()2,ln 2,()2,ln 2∴到直线242ln 20x y +--=的距离5d ==.即函数ln 2y x x =-+上的点到直线242ln 20x y +--=上的点的距离的最小值为5.()()221212M x x y y ∴=-+-的最小值为245d =,过()2,ln 2与242ln 20x y +--=垂直的直线为()ln 222y x -=-,即24ln 20x y --+=.由242ln 2024ln 20x y x y +--=⎧⎨--+=⎩,解得:125x =,即当M 最小时,2125x =.故选:BC.三、填空题11.(2020届山东省菏泽一中高三2月月考)已知直线2y x =+与曲线ln()y x a =+相切,则a =【答案】3【解析】设切点为(x 0,y 0),由题意可得:曲线的方程为y =ln (x+a ),所以y '=1x a+.所以k 切=01x a+=1,并且y 0=x 0+2,y 0=ln (x 0+a ),解得:y 0=0,x 0=﹣2,a =3.故答案为3.12.(2020届山东省烟台市高三模拟)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为__________.【答案】(1,)+∞【解析】设F (x )()xf x e=,则F ′(x )()()'xf x f x e -=,∵()()f x f x '>,∴F ′(x )>0,即函数F (x )在定义域上单调递增.∵()()121x ef x f x -<-∴()()2121xx f x f x ee--<,即F (x )<F (2x 1-)∴x 2x 1-<,即x >1∴不等式()()121x ef x f x -<-的解为()1,+∞故答案为:()1,+∞13.(2020届山东省淄博市部分学校高三3月检测)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是_____________.【答案】2-【解析】分析:首先对函数进行求导,化简求得()()1'4cos 1cos 2f x x x ⎛⎫=+-⎪⎝⎭,从而确定出函数的单调区间,减区间为()52,233k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦,增区间为()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,确定出函数的最小值点,从而求得33sin ,sin222x x =-=-代入求得函数的最小值.详解:()()21'2cos 2cos24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫=+=+-=+-⎪⎝⎭,所以当1cos 2x <时函数单调减,当1cos 2x >时函数单调增,从而得到函数的减区间为()52,233k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦,函数的增区间为()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,所以当2,3x k k Z ππ=-∈时,函数()f x 取得最小值,此时sin ,sin222x x =-=-,所以()min 2222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是2-.14.(2020·山东高三模拟)已知函数()ln 2f x x x a =-在点(1,(1))f 处的切线经过原点,函数()()f x g x x=的最小值为m ,则2m a +=________.【答案】0【解析】()1ln f x x '=+,(1)1f '=,(1)2f a =-,切线1l 的方程:21y a x +=-,又1l 过原点,所以21a =-,()ln 1f x x x =+,1()ln g x x x =+,22111()x g x x x x-'=-=.当(0,1)x ∈时,()0g x '<;当(1,)x ∈+∞时,()0g x '>.故函数()()f x g x x=的最小值(1)1g =,所以1,20m m a =+=.故答案为:0.15.(2020届山东省济宁市第一中学高三二轮检测)若函数()()1,f x a nx a R =∈与函数()g x =共点处有共同的切线,则实数a 的值为______.【答案】2e 【解析】函数()ln f x a x =的定义域为()0,+∞,()af x x '=,()g x '=设曲线()ln f x a x =与曲线()g x =()00,x y ,由于在公共点处有共同的切线,∴0a x =,解得204x a =,0a >.由()()00f x g x =,可得0ln a x =联立2004x a alnx ⎧=⎪⎨=⎪⎩,解得2e a =.故答案为:2e.16.(2020届山东省济宁市高三3月月考)如图所示,某几何体由底面半径和高均为1的圆柱与半径为1的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为__________.【答案】3227π【解析】由题意,设小圆柱体底面半径为cos θ,则高为1sin 0,2πθθ⎛⎫+∈ ⎪⎝⎭,,小圆柱体体积()2cos 1sin V πθθ=⋅⋅+,设()sin 0,1t t θ=∈,,则()()()232111V tt tt t ππ=⋅-+=⋅--++则()()()2321311V t t t t ππ'=⋅--+=⋅-++当13t =时,max 3227V π=故答案为:3227π17.(2020届山东省淄博市高三二模)已知函数()f x 的定义域为R ,导函数为()f x ',若()()cos f x x f x =--,且()sin 02xf x '+<,则满足()()0f x f x π++≤的x 的取值范围为______.【答案】,2π⎡⎫-+∞⎪⎢⎣⎭【解析】依题意,()()()cos cos 22x xf x f x --=--+,令()()cos 2xg x f x =-,则()()g x g x =--,故函数()g x 为奇函数()()()cos sin 022x x g x f x f x '⎡⎤''=-=+<⎢⎥⎣⎦,故函数()g x 在R 上单调递减,则()()()()()cos cos 0022x xf x f x f x f x πππ+++≤⇒+-+-≤()()()()()0g x g x g x g x g x ππ⇔++≤⇔+≤-=-,即x x π+≥-,故2x π≥-,则x 的取值范围为,2π⎡⎫-+∞⎪⎢⎣⎭.故答案为:,2π⎡⎫-+∞⎪⎢⎣⎭四、解答题18.(2020届山东省济宁市第一中学高三二轮检测)已知函数()1xf x x ae =-+(1)讨论()f x 的单调性;(2)当1a =-时,设1210,0x x -<<>且()()125f x f x +=-,证明:12124x x e->-+.【答案】(1)见解析(2)见解析【解析】(1)()1xf x ae ='+,当0a ≥时,()0f x '>,则()f x 在R 上单调递增.当0a <时,令()0f x '>,得1ln x a ⎛⎫<-⎪⎝⎭,则()f x 的单调递增区间为1,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭,令()0f x '<,得1ln x a ⎛⎫>-⎪⎝⎭,则()f x 的单调递减区间为1ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭.(2)证明:(法一)设()()231xg x f x x e x =+=-+-,则()3xg x e =-+',由()0g x '<得ln3x >;由()0g x '>得ln3x <,故()()max ln33ln340g x g ==-<从而得()()20g x f x x =+<,()()()()1222125,2520f x f x f x x f x x +=-∴+=--+< ,即12124x x e->-+.(法二)()()1212125,3xxf x f x x e e x +=-∴=+-- ,12122233x x x x e e x ∴-=+--,设()3xg x e x =-,则()3xg x e '=-,由()0g x '<得ln3x >;由()0g x '>得ln3x <,故()()min ln333ln3g x g ==-.1210,0x x -< ,1121233ln33ln3x x e e-∴->+-=-,3ln3ln274=< ,12124x x e ∴->-+.19.(2019·宁德市高级中学高三月考(理))已知函数)f x =(a e 2x +(a ﹣2)e x ﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)见解析;(2)(0,1).【解析】(1)()f x 的定义域为(),-∞+∞,()()()()2221121xx x x f x aea e ae e =+---'=+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(),-∞+∞单调递减.(ⅱ)若0a >,则由()0f x '=得ln x a =-.当(),ln x a ∈-∞-时,()0f x '<;当()ln ,x a ∈-+∞时,()0f x '>,所以()f x 在(),ln a -∞-单调递减,在()ln ,a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为()1ln 1ln f a a a-=-+.①当1a =时,由于()ln 0f a -=,故()f x 只有一个零点;②当()1,a ∈+∞时,由于11ln 0a a-+>,即()ln 0f a ->,故()f x 没有零点;③当()0,1a ∈时,11ln 0a a-+<,即()ln 0f a -<.又()()4222e2e 22e 20f a a ----=+-+>-+>,故()f x 在(),ln a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>- ⎪⎝⎭,则()()00000000e e 2e 20n n n n f n a a n n n =+-->->->.由于3ln 1ln a a ⎛⎫->-⎪⎝⎭,因此()f x 在()ln ,a -+∞有一个零点.综上,a 的取值范围为()0,1.20.(2020·山东高三模拟)已知函数()21()1ln ()2f x m x x m =--∈R .(1)若1m =,求证:()0f x ≥.(2)讨论函数()f x 的极值;(3)是否存在实数m ,使得不等式111()x f x x e->-在(1,)+∞上恒成立?若存在,求出m 的最小值;若不存在,请说明理由.【答案】(1)证明见解析;(2)见解析;(3)存在,1.【解析】(1)1m =,()21()1ln (0)2f x x x x =-->,211()x f x x x x-'=-+=,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,∴min ()(1)0f x f ==,故()0f x ≥.(2)由题知,0x >,211()mx f x mx x x -'=-+=,①当0m ≤时,21()0mx f x x-'=<,所以()f x 在(0,)+∞上单调递减,没有极值;②当0m >时,21()0mx f xx-'==,得x =,当x⎛∈ ⎝时,()0f x '<;当x ⎫∈+∞⎪⎭时,()0f x '>,所以()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎭上单调递增.故()f x 在x=111ln 222f m m =+-,无极大值.(3)不妨令11111()x x x e xh x x e xe----=-=,设11(),(1,),()10x x u x e x x u x e --'=-∈+∞=->在(1,)+∞恒成立,()u x 在[1,)+∞单调递增,()(1)0u x u ∴>=,10x e x -∴-≥在(1,)+∞恒成立,所以,当(1,)x ∈+∞时,()0h x >,由(2)知,当0,1m x ≤>时,()f x 在(1,)+∞上单调递减,()(1)0f x f <=恒成立;所以不等式111()x f x x e->-在(1,)+∞上恒成立,只能0m >.当01m <<1>,由(1)知()f x 在⎛ ⎝上单调递减,所以(1)0f f<=,不满足题意.当m 1≥时,设()21111()1ln 2x F x m x x x e-=---+,因为1,1m x ≥>,所以11111,1,01,10x x x mx x e e e---≥><<-<-<,322122111111()1x x x x F x mx x x x e x x x---+'=-++->-++-=,即()22(1)1()0x x F x x--'>>,所以()F x 在(1,)+∞上单调递增,又(1)0F =,所以(1,)x ∈+∞时,()0F x >恒成立,即()()0f x h x ->恒成立,故存在m 1≥,使得不等式111()x f x x e->-在(1,)+∞上恒成立,此时m 的最小值是1.21.(2020届山东省高考模拟)已知函数2()2ln ()f x x ax x a R =-+∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.【答案】(1)当4a ≤时,()f x 在(0,)+∞上单调递增;当4a >时,()f x 在160,4a ⎛- ⎪⎝⎭,,4a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增;在,44a a ⎛+ ⎪ ⎪⎝⎭上单调递减;(2)12e e-+【解析】(1)由2()2ln f x x ax x =-+得2()2f x x a x'=-+;因为0x >,所以224x x+≥;因此,当4a ≤时,2()20f x x a x'=-+≥在(0,)+∞上恒成立,所以()f x 在(0,)+∞上单调递增;当4a >时,由2()20f x x a x '=-+>得2220x ax -+>,解得164a a x >或1604a a x <<;由2()20f x x a x '=-+<得161644a a x -+<<;所以()f x在0,4a ⎛⎫ ⎪ ⎪⎝⎭,,4a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增;在,44a a ⎛-+⎝⎭上单调递减;综上,当4a ≤时,()f x 在(0,)+∞上单调递增;当4a >时,()f x在0,4a ⎛- ⎪⎝⎭,,4a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增;在,44a a ⎛-+⎪ ⎪⎝⎭上单调递减;(2)若()f x 有两个极值点()1212,x x x x <,由(1)可得,12,x x 是方程2220x ax -+=的两不等实根,所以122ax x +=,121x x =,因此()()2221222111(2ln )(2ln )f x f x x ax x x ax x -=-+--+222222211212122222211212()()2ln2ln 2ln x x x x x x x x x x x x x x x -++=-+=-+=+-,令22t x =,则2222222111()()2ln 2ln f x f x t t x x x t-=-+=-+;由(1)可知24a x =,当a ≥24x a +=≥=,所以[)22,e t x ∈=+∞,令1()2ln g t t t t=-+,[),t e ∈+∞,则222221221(1)()10t t t g t t t t t-+-'=--+=-=-<在[),t e ∈+∞上恒成立;所以1()2ln g t t t t=-+在[),t e ∈+∞上单调递减,故max 1()()2g t g e e e==-+.即()()21f x f x -的最大值为12e e-+.22.(2020届山东省济宁市高三3月月考)已知函数()()()1xf x ax e a R =-∈.(1)求函数()f x 的单调区间;(2)是否存在一个正实数a ,满足当x ∈R 时,()1f x ≤恒成立,若存在,求出a 的值;若不存在,请说明理由.【答案】(1)0a =时,()f x 的增函数区间为(),-∞+∞,无减函数区间;0a >时,()f x 的增函数区间为1,a a -⎛⎫-∞ ⎪⎝⎭,减函数区间为1,a a -⎛⎫+∞ ⎪⎝⎭;0a <时,()f x 的增函数区间为1,a a -⎛⎫+∞ ⎪⎝⎭,减函数区间为1,a a -⎛⎫-∞ ⎪⎝⎭;(2)存在,1.【解析】(1)函数()(),1xx R f x ax e ∈=-的定义域为R ,()()()11x x x f x ae ax e e ax a '=-+-=-+-①若()()0,,xa f x e f x ==在(),-∞+∞上为增函数;②若0a >,∵0x e >,∴当1a x a -<时,()0f x '>;当1ax a->时,()0f x '<;所以()f x 在1,a a -⎛⎫-∞ ⎪⎝⎭上为增函数,在1,a a -⎛⎫+∞ ⎪⎝⎭上为减函数;③若0a <,∵0x e >,∴当1a x a -<时,()0f x '<;当1ax a->时,()0f x '>;所以()f x 在1,a a -⎛⎫-∞ ⎪⎝⎭上为减函数,在1,a a -⎛⎫+∞ ⎪⎝⎭为增函数综上可知,0a =时,()f x 的增函数区间为(),-∞+∞,无减函数区间;0a >时,()f x 的增函数区间为1,a a -⎛⎫-∞ ⎪⎝⎭,减函数区间为1,a a -⎛⎫+∞ ⎪⎝⎭;0a <时,()f x 的增函数区间为1,a a -⎛⎫+∞⎪⎝⎭,减函数区间为1,a a -⎛⎫-∞ ⎪⎝⎭;(2)由(1)知,0a >时,()f x 的最大值为11aaa f aea --⎛⎫= ⎪⎝⎭,若对任意实数x ,()1f x ≤恒成立,只须使11a aae -≤即可.又因为0a >,所以不等式11a aae -≤等价于:1ln 0aaae-⎛⎫≤⎪⎝⎭,即:1ln 0aa a-+≤,设()()1ln 0ag a a a a -=+>,则()()22111a a a g a a a a----'=+=,∴当01a <<时,()'0g a <;当1a >时,()0g a '>所以,()g a 在()0,1上为减函数,在()1,+∞上为增函数,∴当01a <<时,()()10g a g >=,不等式1ln 0aa a-+≤不成立,当1a >时,()()10g a g >=,不等式1ln 0aa a -+≤不成立,当1a =时,()()10g a g ==,不等式1ln 0aa a-+≤成立,∴存在正实数a 且1a =时,满足当x ∈R 时,()1f x ≤恒成立.23.(2020届山东省潍坊市高三模拟一)已知函数()cos sin xf x e x x x =-,()sin xg x x =-,其中e是自然对数的底数.(Ⅰ)12ππ,0,0,22x x ⎡⎤⎡⎤∀∈-∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x m g x ≤+成立,试求实数m 的取值范围;(Ⅱ)若1x >-,求证:()()0f x g x ->.【答案】(Ⅰ))1,++∞;(Ⅱ)证明见解析.【解析】(Ⅰ)由题意,12ππ,0,0,22x x ⎡⎤⎡⎤∀∈-∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x m g x ≤+成立,等价于[]1max 2max ()()f x mg x ≤+.1分()(cos sin )(sin cos )()cos (1)sin x x x f x e x x x x x e x x e x =----+'+=,当π[,0]2x ∈-时,()0f x '>,故()f x 在区间π[0,]2上单调递增,所以0x =时,()f x 取得最大值1.即max ()1f x =又当π[0,]2x ∈时,()cos xg x x =-',()sin 0xg x x '-'=-<所以()g x '在π[0,]2上单调递减,所以()()010g x g ≤=-'<',故()g x 在区间π[0,2上单调递减,因此,0x =时,max ()(0)g x g ==.所以1m ≤,则1m ≥+.实数m的取值范围是)1,++∞.(Ⅱ)当1x >-时,要证,只要证e cos sin sin 0x x x x x x -->,即证(()ecos 1sin xx x x +>+,由于cos 0,10x x +>+>,只要证e 1x x >+.下面证明1x >-时,不等式e 1x x >+令()()e11xh x x x =>-+,则()()()()22e 1e e 11x xxx x h x x x =+'+-=+,当()1,0x ∈-时,()0h x '<,()h x 单调递减;当()0,x ∈+∞时,()0h x '>,()h x 单调递增.所以当且仅当0x =时,()h x 取最小值为1.法一:k =cos sin k x x =,即sin cos x k x -=,即sin()x ϕ-=1≤,即11k -≤≤,所以max 1k =,而()()min01h x h ==,但当0x =时,()010k h =<=;0x ≠时,()1h x k>≥所以,maxmin e 1x x ⎛⎫> ⎪+⎝⎭,即e 1x x >+综上所述,当1x >-时,成立.法二:令()x ϕ=()cos ,sin A x x与点()B 连线的斜率k ,所以直线AB的方程为:(y k x =+,由于点A 在圆221x y +=上,所以直线AB 与圆221x y +=相交或相切,当直线AB 与圆221x y +=相切且切点在第二象限时,直线AB 取得斜率k 的最大值为1.而当0x =时,()(0)010h ϕ=<=;0x ≠时,()1h x k >≥.所以,minmax ()()h x x ϕ>,即e 1x x >+综上所述,当1x >-时,成立.法三:令()x ϕ=()x ϕ'=,当32,()4x k k N ππ=+∈时,()x ϕ取得最大值1,而()()min01h x h ==,但当0x =时,()()0010h ϕ=<=;0x ≠时,()1h x k >≥所以,minmax ()()h x x ϕ>,即e 1x x >+综上所述,当1x >-时,成立.24.(2020届山东省潍坊市高三模拟二)已知函数()ln ,f x x x kx k R =+∈.(1)求()y f x =在点(1,(1))f 处的切线方程;(2)若不等式2()f x x x ≤+恒成立,求k 的取值范围;(3)求证:当*n N ∈时,不等式()2212ln 4121ni n n i n =-->+∑成立.【答案】(1)(1)1y k x =+-(2)k 2≤(3)证明见解析【解析】(1)函数()y f x =的定义域为(0,)+∞,()1ln f x x k '=++,(1)1f k '=+,∵(1)f k =,∴函数()y f x =在点(1,(1))f 处的切线方程为(1)(1)y k k x -=+-,即(1)1y k x =+-.(2)由2()f x x x ≤+,()ln f x x x kx =+,则2ln x x kx x x +≤+,即ln 1x k x +≤+,设()ln 1g x x x k =-+-,1()1g x x'=-,()0,1x ∈,()0g x '>,()g x 单调递增,()1,x ∈+∞,()0g x '<,()g x 单调递减,∵不等式2()f x x x ≤+恒成立,且0x >,∴ln 10x x k -+-≤,∴max ()(1)20g x g k ==-≤即可,故k 2≤.(3)由(2)可知:当2k =时,ln 1x x ≤-恒成立,令2141x i =--,由于*i N ∈,21041i >-.故,2211ln 14141i i <---,整理得:()221ln 41141i i ->--,变形得:()21ln 411(21)(21)i i i ->-+-,即:()211ln 41122121i i i ⎛⎫->-- ⎪-+⎝⎭1,2,3,,i n = 时,11ln31123⎛⎫>-- ⎪⎝⎭,11ln51123⎛⎫>-- ⎪⎝⎭……,()2111ln 41122121n n n ⎛⎫->-- ⎪-+⎝⎭两边同时相加得:()22211122ln 4112212121ni n n ni n n n n =-⎛⎫->--=> ⎪+++⎝⎭∑,所以不等式在*n N ∈上恒成立.25.(2020届山东省菏泽一中高三2月月考)已知函数()ln 2sin f x x x x =-+,()f x '为()f x 的导函数.(1)求证:()f x '在()0π,上存在唯一零点;(2)求证:()f x 有且仅有两个不同的零点.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)设()()112cos g x f x x x'==-+,当()0,x π∈时,()212sin 0g x x x'=--<,所以()g x 在()0,π上单调递减,又因为31103g ππ⎛⎫=-+>⎪⎝⎭,2102g ππ⎛⎫=-< ⎪⎝⎭所以()g x 在,32ππ⎛⎫⎪⎝⎭上有唯一的零点α,所以命题得证.(2)①由(1)知:当()0,x α∈时,()0f x '>,()f x 在()0,α上单调递增;当(),x απ∈时,()0f x '<,()f x 在(),απ上单调递减;所以()f x 在()0,π上存在唯一的极大值点32ππαα⎛⎫<<⎪⎝⎭所以()ln 2202222f f ππππα⎛⎫>=-+>-> ⎪⎝⎭又因为2222111122sin 220f e e e e ⎛⎫=--+<--+<⎪⎝⎭所以()f x 在()0,α上恰有一个零点.又因为()ln 20fππππ=-<-<所以()f x 在(),απ上也恰有一个零点.②当[),2x ππ∈时,sin 0x ≤,()ln f x x x ≤-设()ln h x x x =-,()110h x x'=-<所以()h x 在[),2ππ上单调递减,所以()()0h x h π≤<所以当[),2x ππ∈时,()()()0f x h x h π≤≤<恒成立所以()f x 在[),2ππ上没有零点.③当[)2,x π∈+∞时,()ln 2f x x x ≤-+设()ln 2x x x ϕ=-+,()110x xϕ'=-<所以()x ϕ在[)2,π+∞上单调递减,所以()()20x ϕϕπ≤<所以当[)2,x π∈+∞时,()()()20f x x ϕϕπ≤≤<恒成立所以()f x 在[)2,π+∞上没有零点.综上,()f x 有且仅有两个零点.26.(2020届山东济宁市兖州区高三网络模拟考)已知函数()2ln f x x ax =-,a R ∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当1a =-时,令2()()g x x f x =-,其导函数为()g x ',设12,x x 是函数()g x 的两个零点,判断122x x +是否为()g x '的零点?并说明理由.【答案】(Ⅰ)当0a ≤时,()f x 在()0,+∞上单调递增;当0a >时,()f x 在2(0,)a 单调递增,在2(,)a+∞上单调递减.(Ⅱ)不是,理由见解析【解析】(Ⅰ)依题意知函数()f x 的定义域为()0,+∞,且()2f x a x'=-,(1)当0a ≤时,()0f x '>,所以()f x 在()0,+∞上单调递增.(2)当0a >时,由()0f x '=得:2x a=,则当20,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>;当2,x a⎛⎫∈+∞ ⎪⎝⎭时()0f x '<.所以()f x 在20,a ⎛⎫ ⎪⎝⎭单调递增,在2,a⎛⎫+∞ ⎪⎝⎭上单调递减.综上,当0a ≤时,()f x 在()0,+∞上单调递增;当0a >时,()f x 在20,a ⎛⎫ ⎪⎝⎭单调递增,在2,a⎛⎫+∞ ⎪⎝⎭上单调递减.(Ⅱ)122x x +不是导函数()g x '的零点.证明如下:当1a =-时,()()222ln g x x f x x x x =-=--.∵1x ,2x 是函数()g x 的两个零点,不妨设120x x <<,22111111222222222ln 02ln 2ln 02ln x x x x x x x x x x x x ⎧⎧--=-=∴⇒⎨⎨--=-=⎩⎩,两式相减得:()()()12121212ln ln x x x x x x -+-=-即:()1212122ln ln 1x x x x x x -+-=-,又()221g x x x-'=-.则()()()121212121212*********ln ln 24421ln ln 2x x x x x x g x x x x x x x x x x x x x x ⎡⎤--+⎛⎫=+--=-=--'⎢⎥⎪+-+-+⎝⎭⎣⎦.设12x t x =,∵120x x <<,∴01t <<,令()()21ln 1t t t t ϕ-=-+,()()()()22211411t t tt t t ϕ-=-=+'+.又01t <<,∴()0t ϕ'>,∴()t ϕ在()0,1上是増函数,则()()10t ϕϕ<=,即当01t <<时,()21ln 01t t t --<+,从而()()1212122ln ln 0x x x x x x ---<+,又121200x x x x <<⇒-<所以()()1212121222ln ln 0x x x x x x x x ⎡⎤--->⎢⎥-+⎣⎦,故1202x x g +⎛⎫>⎪⎝⎭',所以122x x +不是导函数()g x '的零点.27.(2020届山东省潍坊市高三下学期开学考试)已知2()2ln(2)(1)f x x x =+-+,()(1)g x k x =+.(1)当2k =时,求证:对于1x ∀>-,()()f x g x <恒成立;(2)若存在01x >-,使得当()01,x x ∈-时,恒有()()f x g x >成立,试求k 的取值范围.【答案】(1)见解析;(2)(,2)-∞【解析】(1)证明:当2k =时,()2(1)g x x =+。
一元函数的导数及其应用(解析版)高考数学习题与解析

第五章一元函数的导数及其应用一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知函数()sin cos f x x x =+,()π,2πx ∈.若()00f x '=,,则0x =()A .π4B .π2C .3π4D .5π4A .330x y -+=B .220x y -+=C .210x y -+=D .310x y -+=【答案】C 【详解】sin e x y x =+的导数为cos x y x e '=+,在点(0,1)处的切线斜率为0cos 0e 2k =+=,即有在点(0,1)处的切线方程为21y x =+,即210x y -+=.故选:C 3.已知函数2()ln 2a f x xb x =+的图象在点(1,(1))f 处的切线方程是210x y --=,则ab 等于()A .2B .1C .0D .﹣24.已知()a f x x x =-,()0,x ∈+∞,对()12,0,x x ∀∈+∞,且12x x <,恒有12210x x -<,则实数a 的取值范围是().A .12,e -⎛⎤-∞ ⎥⎝⎦B .2,e ⎡⎫+∞⎪⎢⎣⎭C .()2,e -∞D .13e ,⎛⎫+∞ ⎪⎝⎭【答案】B 【详解】设()()2e x g x xf x a x ==-,()e 2xg x a x '=-,对()12,0,x x ∀∈+∞,且12x x <,恒有()()12210f x f x x x -<,即()()12g x g x <,()g x 在()0,∞+上单调递增,故()e 20xg x a x '=-≥恒成立,即2e x x a ≥,设()2e x x F x =,()22e xxF x -'=,当()0,1x ∈时,()0F x '>,函数单调递增;当[)1,x ∞∈+时,()0F x '≤,函数单调递减;故()()max 21e F x F ==,即2ea ≥.故选:B5.已知sin1sin11e e a =+,tan 2tan 21ee b =+,cos3cos31ee c =+,则()A .b a c>>B .b c a >>C .a c b>>D .c a b>>【答案】B 【详解】令()e e x xf x -=+,其定义域为R ,且()()f x f x -=,故为偶函数;又()f x 'e e x x -=-,sin112分别满足112212()A .3e B .4e C .5e D .6e7.已知f x '()是函数f x ()的导数,202e '+>=()(),(),f x f x f 则不等式ln f x x<()的解集是()A .∞(2,+)B .2e +∞(,)C .20e (,)D .2(0,)8.定义在0,2⎛⎫⎪⎝⎭上的函数(),()f x f x '是()f x 的导函数,且()tan ()f x x f x '<-⋅成立,2,,3436a f b c πππ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a ,b ,c 的大小关系为()A .b a c>>B .c b a>>C .c a b>>D .a b c>>二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.已知函数3()1f x x x =-+,则()A .()f x 有两个极值点B .直线2y x =是曲线()y f x =的切线C .()f x 有一个零点D .过点()1,0与曲线()y f x =相切的直线有且只有1条的极值点分别为1212,则下列选项正确的是()A .0a >B .()()122f x f x +=C .若()20f x <,则1a >D .过()0,2仅能做曲线()=y f x 的一条切线对选项A .()0f x ≤恒成立B .()f x 是()0,+∞上的减函数C .()f x 在12e x -=得到极大值12eD .()f x 在区间⎫⎪⎭内只有一个零点,则关于x 的不等式()0f x <的解集可能为()A .()(),10,1-∞-B .()(),e 0,e --∞C .()(),40,4--∞ D .()(),3e 0,3e --∞ 【答案】BC 【详解】因为当0x >时,()()ln 1<+1e 4xx f x x --'<,且()0=0f ,而可以令1ln 2y x x x =-,则1ln 1y x '=-,可以令2e 4x y x x =-,则()2+1e 4x y x -'=,所以()()ln 2e 40x x x x f x x x x --<<>,因为1ln 1y x '=-,所以令1ln 10y x '=->,则e x >,令1ln 10y x '=-<,则e x <,所以1ln 2y x x x =-在(0,e)上递减,在(e,)+∞上递增,且当2e x =时,10y =,所以当)2e ,+x ⎡∈∞⎣时,()ln 20f x x x x ->≥,因为2e 4x y x x =-()0x >,()2+1e 4x y x -'=,故令()+14()e x m x x -=,则()e (2)x m x x '=+,又因为0x >,所以()e (2)0x m x x '=+>,故()m x 在(0,)+∞上递增,设0()0m x =,所以2e 4x y x x =-在0(0,)x 上递减,在0(,)x +∞上递增,且当20y =时,=0x (舍)或ln 4x =,所以当(]0,ln4x ∈时,()e 40xf x x x -<≤,所以当0x >时,()0f x <的解集可能为()0,t ,其中()2ln4,e t ∈,又因为()f x 是奇函数,所以()0f x <的解集可能为()(),0,t t --∞ .而()2ln4,e t ∈,所以()21ln4,e ∉,故A 错误;()2e ln4,e ∈,故B 正确;()24ln4,e ∈,故C正确;()2ln 3e 4,e ∉,故D 错误.故选:BC第II 卷非选择题部分(共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.如图,直线l 是曲线()y f x =在点(4,(4))f 处的切线,则(4)(4)f f '+的值等于______.'是函数的导函数,且R 1e f x f x x f <∈=,,则不等式的解集为________.的最小距离为___________.【解析】由已知,设点00(,)Q x y 曲线2ln 1y x x =--上一点,则有0002ln 1y x x =--,因为2ln 1y x x =--,所以12y x x'=-00012|x x y x x ='-=,所以曲线2ln 1y x x =--在00(,)Q x y 处的切线斜率为0012k x x =-,则曲线2ln 1y x x =--在00(,)Q xy 处的切线方程为020000(ln 1)()12y x x x x x x ---=--,即20000()12ln y x x x x x =---.要求得曲线2ln 1y x x =--上任意一点,到直线3y x =-的最小距离即找到曲线上距离直线最近的点,即00121k x x =-=,解得0=1x 或012x =-(舍去),此时,以点(1,0)Q 为切点,曲线的切线方程为:1y x =-,此时,切点(1,0)Q 为曲线上距离直线3y x =-最近的点,即点P 与点Q 重合,最小距离为直线3y x =-与直线1y x =-之间的距离,设最小距离为d ,所以d ==.16.已知函数2()ln f x ax x x =-+有两个不同的极值点1 x ,2x ,则实数a 的取值范围是______;若不等式()()1212+>++f x f x x x t 有解,则实数t 的取值范围是______.17.某制造商制造并出售球形瓶装的某种饮料,瓶子的制造成本是20.8r π分,其中r (单位:cm )是瓶子的半径.已知每出售1mL 的饮料,制造商可获利0.2分,且制作商能制作的瓶子的最大半径为6cm .(1)瓶子的半径多大时,能使每瓶饮料的利润最大?(2)瓶子的半径多大时,每瓶饮料的利润最小?(3)假设每瓶饮料的利润不为负值,求瓶子的半径的取值范围.189.已知函数()()1e xx f x a x =++.(1)若()f x 单调递增,求a 的取值范围;(2)若()f x 有两个极值点1x ,2x ,其中12x x <,求证:21e e x x a ->-【详解】(1)由()()21e xx f x a x +=++得()1e x x f x a +'=-+,由()f x 单调递增,则()0f x '≥,得1e x a x +≥,设()1ex x g x +=,则()e x xg x '=-,可知0x <时,()0g x '>,()g x 单调递增;0x >时,()0g x '<,()g x 单调递减,则0x =时,()g x 取得极大值()01g =,也为最大值,则1a ≥,所以,a 的取值范围是[)1,+∞(2)由题,函数()f x 有两个极值点,则()0f x '=即1e xx a +=有两个不相等实数根,由(1)可知0x =时,()g x 取得极大值()01g =,(1)0g -=,x 趋向+∞时()g x 趋向于0.故()g x a =有两个不相等实根时,01a <<,且1210x x -<<<,过点()0,1与(),0c 的直线方程为11e y x =-+,构造函数()()11111,(0)e ee x x h x g x x x x +⎛⎫=--+=+-> ⎪⎝⎭,()1e e x x h x '=-+,令()()x1,(0)e ex u x h x x '==-+>,则()()1,0e x x u x x -'=>,则01x <<时,()0u x '<,()u x 即()h x '单调递减;1x >时,()0u x '>,()u x 即()h x '单调递增,所以0x >时,()u x 极小值为()()110u h '==所以0x >时,()()0u x h x '=≥,则()()00h x h >=,即()()110e h x g x x ⎛⎫=--+> ⎪⎝⎭,故当0x >时,()11e g x x >-+,设方程11e x a -+=的根为4x ,则4e e x a =-,构造函数()21,10y x x =--<<,令()()()21,t x g x x =--则()()21111e e e xx x x x t x x x ++⎡⎤=+-=+-⎣⎦,令()()()11e ,10x v x x x =+--<<,则()e 0x v x x '=<,故10x -<<时,()v x 单调递减,则()()00v x v >=,又10x +>,所以,当10x -<<时,()0t x >,故有()21g x x >-,令方程()21,10x a x -=-<<的根为3x ,则3x =,于是有134210x x x x -<<<<<,如图,所以2143e e x x x x a ->-=-+,证毕19.已知函数sin ()e (1)a x f x x =-+,()sin ln(1)g x a x x =-+(1)1a =时,求函数()y g x =在(1,0]-上的单调区间;(2)1a >时,试讨论()y f x =在区间[π,π]-上的零点个数.【详解】(1)1a =时,()sin ln(1)g x x x =-+,∴1()cos 1g x x x '=-+,而()g x '在(1,0]-上单调递增,而(0)0g '=,∴(1,0]x ∈-,()(0)0g x g ''=.∴()g x 在(1,0]-上单调递减,(2)当1a >时:①[π,1]x ∈--时,sin 0a x e >,10x +<∴()0f x >∴()f x 在区间[π,1]--上无零点,②1x >-时,方程()0f x =的解等价于方程()0g x =的解.[1,0]x ∈-时,1()cos 1g x a x x '=-+在[1,0]-单调递增,(0)1g a '=-,而111cos 10g a a a a a a ⎛⎫⎛⎫'-=--<-= ⎪ ⎪⎝⎭⎝⎭,∴∃唯一0[1,0]x ∈-使得()00g x '=且()g x 在(]01,x -单调递减,[]0,0x 单调递增,而111sin 110g a a a ⎛⎫⎛⎫⎛⎫-=-+>⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,(0)0g =,∴()g x 在(1,0]-上有两个零点,③π0,2x ⎛⎤∈ ⎥⎝⎦时,1()cos 1g x a x x '=-+,(0)10g a '=->,令1()()cos 1t x g x a x x ='=-+,则21()sin (1)t x a x x '=-++在π0,2⎡⎤⎢⎥⎣⎦上单调递减,(0)1t '=,2π102π12t a ⎛⎫'=-< ⎪⎝⎭⎛⎫+ ⎪⎝⎭,∃唯一1π20,x ⎛⎫∈ ⎪⎝⎭使得()10t x '=,∴()g x '在()10,x 单调递增,1π,2x ⎛⎫ ⎪⎝⎭上单调递减,而(0)1g a '=-,π100π212g ⎛⎫'=-< ⎪⎝⎭+,∴∃唯一2π0,2x ⎛⎫∈ ⎪⎝⎭使得()20g x '=,∴()g x 在()20,x 单调递增,1π,2x ⎛⎫ ⎪⎝⎭上单调递减,而(0)0g =,π02g ⎛⎫'> ⎪⎝⎭,∴()g x 在π0,2⎛⎤ ⎥⎝⎦上无零点.④π,π2x ⎛⎤∈ ⎥⎝⎦时()0g x '<,∴()g x 在π,π2⎛⎤ ⎥⎝⎦单调递减,而ππln 1022g a ⎛⎫⎛⎫=-+> ⎪ ⎪⎝⎭⎝⎭,(π)ln(π1)0g =-+<,∴∃唯一3π,π2x ⎛⎫∈ ⎪⎝⎭使得()30g x =,综上所述:1a >时,()f x 在区间[π,π]-有三个零点.20.21.设函数()2ln +f x x x ax =+,=1x 是函数()f x 的极值点.(1)求实数a 的值,并求函数()f x 的单调递减区间;(2)设函数()()23g x f x x x =-+,求证:当2x ≥时,()()2114g x x <-;(3)在(2)的条件下,求证:对*n ∈N ,()()()21213512n k n ng k n n +=+>++∑.【解析】(1)因为()2ln +f x x x ax =+,所以()12f x x a x'=++,依题意()1120f a '=++=,解得=3a -,经检验符合题意,()2=ln +3f x x x x ∴-,()0,+x ∈∞,所以()()()221123+1==x x x x f x xx---',令()0f x '<,解得112x <<,所以原函数的单调递减区间为1,12⎛⎫⎪⎝⎭;(2)证明:因为()()222=+3=ln +3+3=ln g x f x x x x x x x x x ---,要证()()21<14g x x -,[)2,+x ∈∞,即证()21ln <14x x -,[)2,+x ∈∞,构造函数()2=4ln +1h x x x -,[)2,+x ∈∞,只需证()0h x <在[)2,+x ∈∞上恒成立,当2x ≥时,()()222=<0x h x x--',所以函数()2=4ln +1h x x x -在区间[)2,∞+单调递减,故3max ()=4ln23=ln16lne <0h x --,不等式成立,结论得证;(3)证明:由(2)知:当2x ≥时,()21ln <14x x -,所以21411>=2ln 11+1x x x x ---⎛⎫ ⎪⎝⎭,即当2k ≥时,()111>21+1g k x x --⎛⎫ ⎪⎝⎭,当2n ≥时:()()()()2+1=211111113+5=++...+>21+=ln2ln3ln +12+1+2+1+2n k n n g k n n n n n --⎛⎫ ⎪⎝⎭∑,又当=1n 时上式也能成立,原命题得证.21.已知函数()(2)e (ln )x f x x k x x =---.(1)当0k =时,求()f x 的极值;(2)证明:当e,1k x >>时,2()f x k >-..(1)求实数a 的值及函数()f x 的极值;(2)用[]t 表示不超过实数t 的最大整数,如:[0.8]0,[ 1.4]2=-=-,若0x >时,()e 2x t x t -<+恒成立,求[]t 的最大值.)。
一元函数的导数及其应用(利用导函数研究单调性(含参)问题)(解答题压轴题)(解析版)高考数学必刷题

专题05一元函数的导数及其应用(利用导函数研究单调性(含参)问题)利用导函数研究单调性(含参)问题①导函数有效部分为一次型(或类一次型)②导函数有效部分为可因式分解的二次型(或类二次型)③导函数有效部分为不可因式分解的二次型①导函数有效部分为一次型(或类一次型)角度1:导函数有效部分为一次型1.(2022·吉林吉林·模拟预测(文))已知函数()()ln f x x ax a R =+∈.判断函数()f x 的单调性:解()ln f x x ax =+的定义域为()0,∞+,()11ax f x a x x'+=+=当0a ≥时,()0f x '>恒成立,()f x 在()0,∞+上单调递增,当0a <时,令()0f x '>,10x a<<-.令()0f x '<,1x a >-,所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.综上,当0a ≥时,()f x 在()0,∞+上单调递增;当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.2.(2022·江苏南通·高二期中)已知函数()ln a f x x x =-,()()e sin x g x x a =+∈R 讨论函数()f x 的单调性;解由题意知:()f x 定义域为()0,∞+,()221a x a f x x x x +'=--=-;当0a ≥时,()0f x '<恒成立,()f x ∴在()0,∞+上单调递减;当0a <时,令()0f x '=,解得:x a =-;∴当()0,x a ∈-时,()0f x '>;当(),x a ∈-+∞时,()0f x '<;()f x ∴在()0,a -上单调递增,在(),a -+∞上单调递减;综上所述:当0a ≥时,()f x 在()0,∞+上单调递减;当0a <时,()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.3.(2022·广东·东涌中学高二期中)已知函数()1ln f x x a x =--(其中a 为参数).求函数()f x 的单调区间:解由题意得:()f x 定义域为()0,∞+,()1a x a f x x x'-=-=;当0a ≤时,()0f x '>,则()f x 的单调递增区间为()0,∞+,无单调递减区间;当0a >时,令()0f x '=,解得:x a =;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴的单调递增区间为(),a +∞;单调递减区间为()0,a ;综上所述:当0a ≤时,()f x 的单调递增区间为()0,∞+,无单调递减区间;当0a >时,()f x 的单调递增区间为(),a +∞;单调递减区间为()0,a .4.(2022·全国·高三专题练习(文))已知函数()()1ln f x ax x a =--∈R .讨论函数()f x 的单调性;()11ax f x a x x-'=-=,()0x >.当0a ≤时,10ax -<,从而()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,若10x a<<,则10ax -<,从而()0f x '<,若1x a >,则10ax ->,从而()0f x '>,从而函数在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.5.(2022·全国·高三专题练习(文))设函数()ln e a f x x x=+讨论函数()f x 的单调性;解:因为()ln e a f x x x =+,定义域为()0,∞+,所以()2e e x a f x x -='.①当0a ≤时,()0f x '>,故()f x 在()0,∞+上单调递增;②当0a >时,若0,e a x ⎛⎫∈ ⎪⎝⎭,则()0f x '<,若,e a x ⎛⎫∈+∞ ⎪⎝⎭,则()0f x '>,∴()f x 在0,e a ⎛⎫ ⎪⎝⎭上单调递减,在,e a ⎛⎫+∞ ⎪⎝⎭上单调递增,∴综上,当0a ≤时,()f x 在()0,∞+上单调递增,当0a >时,()f x 在0,e a ⎛⎫ ⎪⎝⎭上单调递减,在,e a ⎛⎫+∞ ⎪⎝⎭上单调递增.角度2:导函数有效部分为类一次型1.(2022·河南驻马店·高二期中(理))已知函数()e x f x ax a =-+,a 为常数.讨论函数()f x 的单调性;解:因为()f x 定义域为R ,()e x f x a '=-,当0a ≤时,()0f x '>,则()f x 在R 上单调递增,当0a >时,由()0f x '=解得ln x a =,(,ln )x a ∈-∞时,()0f x '<,()f x 单调递减,(ln ,)x a ∈+∞时,()0f x '>,()f x 单调递增综上知:当0a ≤时,()f x 在R 上单调递增,当0a >,()f x 的单调递减区间为(,ln )a -∞,单调递增区间为(ln ,)a +∞.2.(2022·山东·德州市教育科学研究院高二期中)设函数()ax f x x =-e,R a ∈.讨论函数()f x 的单调性;【解析】()f x 的定义域为R ,()1ax f x a '=-e当0a ≤时,()0f x '<,故()f x 在R 上递减.当0a >时,令()0f x '>得ln a x a >-,令()0f x '<得ln a x a<-综上可知:0a ≤时,()f x 在R 上单调递减0a >时,()f x 在ln ,a a ⎛⎫-∞- ⎪⎝⎭上单调递减,在ln ,a a ⎛⎫-+∞ ⎪⎝⎭单调递增3.(2022·四川德阳·三模(文))已知函数() e x f x ax a =++,判定函数()f x 的单调性;【答案】(1)当0a ≥时,函数在R 上单调递增;当0a <时,函数的单调递增区间为(ln(),)a -+∞,单调递减区间为(,ln())a -∞-;解:由题得() e x f x a '=+,当0a ≥时,()0f x '>,所以函数在R 上单调递增;当0a <时,令e 0,x a +>所以ln(),x a >-令e 0,x a +<所以ln(),x a <-所以此时函数的单调递增区间为(ln(),)a -+∞,单调递减区间为(,ln())a -∞-.综上所述,当0a ≥时,函数在R 上单调递增;当0a <时,函数的单调递增区间为(ln(),)a -+∞,单调递减区间为(,ln())a -∞-.4.(2022·湖北武汉·模拟预测)已知函数()(1ln )1()f x x a x a =-+∈R .讨论()f x 的单调性;因为()(1ln )1f x x a x =-+,定义域为(0,)+∞,所以()1ln f x a a x '=--.①当0a >时,令1()1ln 0ln a f x a a x x a-=--=⇔=',解得1e a a x -=即当10,e a a x -⎛⎫∈ ⎪⎝⎭时,()0,()f x f x '>单调递增:当1e ,a a x -⎛⎫∈+∞ ⎪⎝⎭时,()0,()f x f x '<单调递减;②当0a =时()10,()f x f x =>'在(0,)+∞单调递增;③当0a <时令1()1ln 0ln a f x a x x aα-=--=⇔=',解得1e a a x -=,即当10,e a a x -⎛⎫∈ ⎪⎝⎭时,()0,()f x f x '<单调递减;当1e ,a a x -⎛⎫∈+∞ ⎪⎝⎭时,()0,()f x f x '>单调递增;综上:当0a >时,()f x 在10,e a a -⎛⎫ ⎪⎝⎭单调递增,在1e ,a a -⎛⎫+∞ ⎪⎝⎭单调递减;当0a =时,()f x 在(0,)+∞单调递增;当0a <时,()f x 在10,e a a -⎛⎫ ⎪⎝⎭单调递减,在1e ,a a -⎛⎫+∞ ⎪⎝⎭单调递增.5.(2022·全国·模拟预测)已知函数()()1e 3e x xa f x a =++-,其中e 为自然对数的底数,R a ∈.讨论函数()f x 的单调性;函数()f x 的定义域R ,求导得:()()()21e 1e e e x xx x a a a f x a +-'=+-=,若1a <-,由()()1e e 0e x x x a f x ⎛++- ⎝⎭⎝⎭'==,得x =当,ln x ⎛∈-∞ ⎝时,()0f x '>,当x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '<,则()f x在⎛-∞ ⎝上单调递增,在⎛⎫+∞ ⎪ ⎪⎝⎭上单调递减,若10a -≤≤,则对任意R x ∈都有()0f x '>,则()f x 在R 上单调递增,若0a >,当x ⎛∈-∞ ⎝时,()0f x '<,当x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '>,则()f x在⎛-∞ ⎝上单调递减,在⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以,当1a <-时,()f x在,ln ⎛-∞ ⎝上单调递增,在⎛⎫+∞ ⎪ ⎪⎝⎭上单调递减;当10a -≤≤时,()f x 在R 上单调递增;当0a >时,()f x在⎛-∞ ⎝上单调递减,在⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增.②导函数有效部分为可因式分解的二次型(或类二次型)角度1:导函数有效部分为可因式分解的二次型1.(2022·陕西·宝鸡中学模拟预测(文))已知函数()()()21212ln R 2f x ax a x x a =-++∈(1)当1a =-时,求()f x 在点()()1,1f 处的切线方程;(2)当0a >时,求函数()f x 的单调递增区间.【答案】(1)4230--=x y (2)答案见解析(1)解:当1a =-时,21()2ln 2f x x x x =-++,所以2()1f x x x '=-++,所以()12f '=,()112f =,故()f x 在点()()1,1f 处的切线方程是()1212y x -=-,即4230--=x y ;(2)解:因为()()21212ln 2f x ax a x x =-++定义域为()0,∞+,所以2(1)(2)()(21)ax x f x ax a x x --'=-++=,因为0a >,当102a <<,即当12a >时,由()0f x '>,解得10x a<<或2x >,当12a =时,11(2)2()0x x f x x⎛⎫-- ⎪⎝⎭'=≥恒成立,当12a >,即当102a <<时,由()0f x '>,解得02x <<或1x a>,综上,当12a >时,()f x 的递增区间是10,a ⎛⎫ ⎪⎝⎭,(2,)+∞,当12a =时,()f x 的递增区间是(0,)+∞,当102a <<时,()f x 的递增区间是(0,2),1,a ⎛⎫+∞ ⎪⎝⎭;2.(2022·安徽·安庆一中高三阶段练习(文))已知函数()()212ln 22f x x a x ax =---.讨论()f x 的单调性;【答案】函数()f x 的定义域为()0,+∞.()()()()()221122212f x a ax a x ax x ax x x x⎡⎤'=---=---=--+⎣⎦.当0a 时,若01x <<,则()0f x ¢>;若1x >,则()()0.f x f x '<在区间()0,1单调递增,在()1,+∞单调递减.当2a =-时()(),0,f x f x ' 在()0,+∞单调递增.当20a -<<时,21a ->,若01x <<或2x a >-,则()0f x '>;若21x a<<-,则()0f x ¢<.所以()f x 在区间()20,1,,a ∞⎛⎫-+ ⎪⎝⎭单调递增,在区间21,a ⎛⎫- ⎪⎝⎭单调递减.当2a <-时,201a<-<,若20x a <<-或1x >,则()0f x ¢>;若21x a -<<,则()0f x ¢<.所以()f x 在()20,,1,a ∞⎛⎫-+ ⎪⎝⎭单调递增,在2,1a ⎛⎫- ⎪⎝⎭单调递减.综上所述,0a 时,()f x 在()0,1单调递增,在()1,+∞单调递减.2a =-时,()f x 在()0,+∞单调递增.20a -<<时,()f x 在()20,1,,a ∞⎛⎫-+ ⎪⎝⎭单调递增,在21,a ⎛⎫- ⎪⎝⎭单调递减.2a <-时,()f x 在20,a ⎛⎫- ⎪⎝⎭,()1,+∞单调递增,在2,1a ⎛⎫- ⎪⎝⎭单调递减.3.(2022·黑龙江·海伦市第一中学高二期中)已知函数2()ln (1)()2=+-+∈R a f x x x a x a ,2()()(1)2=-++a g x f x x a x .讨论()f x 的单调性;【答案】1(1)(1)()(1)(0)--=+-+=>'ax x f x ax a x x x .当0a ≤时,10ax -<,令()0f x '>,得01x <<;令()0f x '<,得1x >.所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减.当101a <<,即1a >时,令()0f x '>,得10x a<<或1x >;令()0f x '<,得11x a <<.所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减.当11a =,即1a =时,()0f x '≥恒成立,所以()f x 在(0,)+∞上单调递增.当11a >,即01a <<时,令()0f x '>,得01x <<或1x a>;令()0f x '<,得11x a <<.所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减.综上所述,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减;4.(2022·江苏省苏州实验中学高二期中)已知函数()2ln 21x f x x x m m ⎛⎫=-+- ⎪⎝⎭,其中m R ∈.讨论函数f (x )的单调性;【答案】()f x 的定义域为(0,)+∞,依题意可知,0m ≠,12()21f x x mx m '=-+-22(2)1mx m x mx-+-+=(21)(1)x mx mx +-+=,当0m >时,由()0f x '>,得10x m <<,由()0f x '<,得1x m >,所以()f x 在1(0,)m 上单调递增,在1(,)m+∞上单调递减.当0m <时,由()0f x '<恒成立,所以()f x 在定义域(0,)+∞上单调递减,综上所述:当0m >时,()f x 在1(0,)m 上单调递增,在1(,)m +∞上单调递减;当0m <时,()f x 在定义域(0,)+∞上单调递减.5.(2022·河北·沧县中学高二阶段练习)已知函数()ln 2f x x x =-,R a ∈.(1)求()f x 在x =1处的切线方程;(2)设()()2g x f x ax ax =-+,试讨论函数()g x 的单调性.【答案】(1)1y x =--;(2)答案见解析.(1)因为()ln 2f x x x =-,则()12f =-,所以()12f x x'=-,在x =1处()1121f '=-=-.在x =1处切线方程:()21y x +=--,即1y x =--.(2)因为()()()22ln 2g x f x ax ax x ax a x =-+=-+-,所以()()()()1210ax x g x x x +-'=->,①若0a ≥,则当10,2⎛⎫∈ ⎪⎝⎭x 时,()0g x ¢>,()g x 在10,2⎛⎫ ⎪⎝⎭上单调递增;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x ¢<,()g x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递减.②若0a <,()()()1210a x x a g x x x⎛⎫+- ⎪⎝⎭'=->,当2a <-时,在10,a ⎛⎫- ⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭上()0g x ¢>,在11,2a ⎛⎫- ⎪⎝⎭上()0g x ¢<,所以()g x 在10,a ⎛⎫- ⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭上单调递增,在11,2a ⎛⎫- ⎪⎝⎭上单调递减;当2a =-时,()0g x ¢³恒成立,所以()g x 在()0,+∞上单调递增;当20a -<<时,在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上()0g x ¢>,在11,2a ⎛⎫- ⎪⎝⎭上()0g x ¢<,所以()g x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在11,2a ⎛⎫- ⎪⎝⎭上单调递减.综上,0a ≥,()g x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减;20a -<<,()g x 在10,2⎛⎫ ⎪⎝⎭和1,a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在11,2a ⎛⎫- ⎪⎝⎭上单调递减;2a =-,()g x 在()0,+∞上单调递增;2a <-,()g x 在10,a ⎛⎫- ⎪⎝⎭和1,2⎛⎫+∞ ⎪⎝⎭上单调递增,在11,2a ⎛⎫- ⎪⎝⎭上单调递减.6.(2022·内蒙古呼和浩特·二模(理))已知函数()()21ln a f x a x x x +=+++讨论()f x 的单调性;解:由题意可得()f x 的定义域为()0,+∞()()()()()22222112121x a x x a x a a a f x x x x x ----⎡⎤++-+++⎣⎦'=-+==①当21a --=时,即3a =-,()f x 在()0,+∞单调递增.②当21a -->时,即3a <-,()0,1x ∈时,()0f x '>,()f x 单调递增;()1,2x a ∈--时,()0f x '<,()f x 单调递减;()2,x a ∈--+∞时,()0f x '>,()f x 单调递增;③当021a <--<时,即32a -<<-,()0,2x a ∈--时,()0f x '>,()f x 单调递增,()2,1x a ∈--时,()0f x '<,()f x 单调递减,()1,x ∈+∞时,()0f x '>,()f x 单调递增,④当20a --≤时,即2a ≥-,()0,1x ∈时,()0f x '<,()f x 单调递减,()1,x ∈+∞时,()0f x '>,()f x 单调递增;综上可得:当3a <-时,()f x 在()0,1和()2,a --+∞上单调递增,在()1,2a --上单调递减;当3a =-时,()f x 在()0,+∞上单调递增;当32a -<<-时,()f x 在()0,2a --和()1,+∞上单调递增,在()2,1a --上单调递减;当2a ≥-时,()f x 在()0,1上单调递减,在()1,+∞上单调递增;角度2:导函数有效部分为可因式分解的类二次型1.(2022·湖北·蕲春县第一高级中学模拟预测)已知函数()()()e 12e x xa f x a x a =+---∈R 求函数()f x 的单调区间.【答案】由题意,得()()()()e 1e e 1,e e x x x x x a af x a x +-=---='∈R 当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增.当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,所以()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.综上所述,当0a ≤时,()f x 的单调递增区间为R ,无单调递减区间,当0a >时,()f x 的单调递减区间为(,ln )a -∞,单调递增区间为(ln ,)a +∞;2.(2022·辽宁·高二期中)已知函数()()213e 242x f x x ax ax =--++.(1)当a =1时,求()f x 零点的个数;(2)讨论()f x 的单调性.【答案】(1)有3个零点;(2)答案见解析.(1)当a =1时,()()213e 242x f x x x x =--++,则()()()()2e 22e 1x x f x x x x '=--+=--,由()0f x '>,得x <0或x >2,由()0f x '<,得0<x <2,则()f x 在(0,2)上单调递减,在(-∞,0)和(2,+∞)上单调递增,因为()25220e f -=--<,()03410f =-+=>,()22e 60f =-+<,()911310022f =-+=>,所以()f x 有3个零点.(2)由题意可得()()()()2e 22e x x f x x ax a x a '=--+=--,①当a ≤0时,由()0f x '>,得x >2,由()0f x '<,得x <2,则()f x 在(-∞,2)上单调递减,在(2,+∞)上单调递增,②当20e a <<时,由()0f x '>,得1x na <或x >2,由()0f x '<,得ln a <x <2,则()f x 在(ln a ,2)上单调递减,在(-∞,ln a )和(2,+∞)上单调递增,③当2e a =时,()0f x '≥恒成立,则()f x 在(-∞,+∞)上单调递增,④当2e a >时,由()0f x '>,得x <2或x >ln a ,由()0f x '<,得2<x <ln a ,则()f x 在(2,ln a )上单调递减,在(-∞,2)和(ln a ,+∞)上单调递增,综上,当a ≤0时,f (x )在(-∞,2)上单调递减,在(2,+∞)上单调递增;当20<e a <时,()f x 在(ln a ,2)上单调递减,在(-∞,ln a )和(2,+∞)上单调递增;当2e a =时,()f x 在(-∞,+∞)上单调递增;当2e a >时,()f x 在(2,ln a )上单调递减,在(-∞,2)和(ln a ,+∞)上单调递增.3.(2022·辽宁·东北育才学校高二期中)已知函数()()1e e 12x x f x a a x ⎛⎫=+-+ ⎪⎝⎭讨论()f x 的单调性;【答案】()()1e e 12x x f x a a x ⎛⎫=+-+ ⎪⎝⎭的定义域为R,()()()e 1e 1x x f x a '=-++.i.当a ≥-1时,e 10x a ++>.令()0f x '>,解得,()0x ∈+∞;令()0f x '<,解得(,0)x ∈-∞.所以()f x 的单增区间为(0,)+∞,单减区间为(,0)-∞.ii.当1a <-时,令()0f x '=,解得:x =0或x =ln(-a -1).(i )当ln(-a -1)=0,即a =-2时,()()2e 1xf x '=-≥0,所以()f x 在(-∞,+∞)单增.(ii )当ln(-a -1)>0,即a <-2时,由()0f x '>解得:()()(),0ln 1,x a ∈-∞⋃--+∞;由()0f x '<解得:()()0,ln 1x a ∈--.所以()f x 的单增区间为()()(),0,ln 1,a -∞--+∞,()f x 单减区为()()0,ln 1a --.(iii )当ln(-a -1)<0,即-2<a <-1时,由()0f x '>解得:()()(),ln 10,x a ∈-∞--⋃+∞;由()0f x '<解得:()()ln 1,0x a ∈--.所以()f x 的单增区间为()()(),ln 1,0,a -∞--+∞,()f x 的单减区间为()()ln 1,0a --.4.(2022·湖北荆州·高二期中)已知函数()()()1211e 02x f x x a x ax x -=---+>.讨论()f x 的极值.【答案】因为()()()1211e 02x f x x a x ax x -=---+>,所以()()()()1e 10xf x x a x -'=-->.令()0f x '=,得x a =或1x =.①当0a ≤时,由()0f x '>,得1x >,由()0f x '<,得01x <<.则()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以函数有极小值()112f =-,没有极大值.②当01a <<时,由()0f x '>,得0x a <<或1x >,由()0f x '<,得1<<a x .则()f x 在(),1a 上单调递减,在()0,a 和()1,+∞上单调递增,所以函数有极大值()211e 2a f a a -=-,极小值()112f =-.③当1a =时,()0f x '>恒成立,则()f x 在()0,∞+上单调递增,函数无极值.④当1a >时,由()0f x '>,得01x <<或x a >,由()0f x '<,得1x a <<.则()f x 在()1,a 上单调递减,在()0,1和(),a +∞上单调递增,所以函数有极大值()112f =-,极小值()211e 2a f a a -=-.综上,当0a ≤时,函数有极小值()112f =-,无极大值;当01a <<时,函数有极大值()211e 2a f a a -=-,极小值()112f =-;当1a =时,函数无极值;当1a >时,函数有极大值()112f =-,极小值()211e2a f a a -=-.5.(2022·浙江·罗浮中学高二期中)已知函数()()2e 2e xx f x k kx =+--.其中k 为实数.(1)当0k >时,若()f x 两个零点,求k 的取值范围;(2)讨论()f x 的单调性.【答案】(1)01k <<(2)答案不唯一,具体见解析(1)解:因为()()2e 2e xx f x k kx =+--,R x ∈,0k >所以()()22e 2e x xf x k k =+--',令()()()2e e 10x x f x k '=-=+得e 1x =或e 2xk=-(舍去),所以当0x <时()0f x '<,当0x >时()0f x '>故()f x 在()0,∞+上单调递增,在(),0∞-上单调递减,()()min 01f x f k ==-,要使()f x 有两个零点,则()min 0f x <,即100k k -<⎧⎨>⎩,解得01k <<,∴01k <<.(2)解:由(1)得()()22e 2e x xf x k k =+--',令()()()2e e 10x x f x k '=-=+解得e 1x =或e 2xk =-,当()0,12k-∈时,即()2,0k ∈-x ,ln 2k ⎛⎫⎛⎫-∞- ⎪⎪⎝⎭⎝⎭ln 2k ⎛⎫- ⎪⎝⎭ln ,02k ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭0()0,∞+()f x '+0-0+所以()f x 的单调递增区间为,ln 2k ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭和()0,∞+,单调递减区间为ln ,02k ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,当12k-=时,即2k =-,()0f x '≥恒成立,所以()f x 的单调递增区间为R .当12k->时,即2k <-,x (),0∞-00,ln 2k ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭ln 2k ⎛⎫- ⎪⎝⎭ln ,2k ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭()f x '+0-0+所以()f x 的单调递增区间为(),0∞-和ln ,2k ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭,单调递减区间为0,ln 2k ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭.当0k ≥时,x 0x <00x >()f x '-+所以()f x 的单调递增区间为()0,∞+,单调递减区间为(),0∞-.6.(2022·浙江省杭州第二中学高二期中)已知函数2()e (2)e (0)x x f x a ax a =-++>.设02a <<,求函数()f x 的单调区间;【答案】(1)单调增区间是,ln 2a ⎛⎫-∞ ⎪⎝⎭和(0,)+∞,单调减区间是ln ,02a ⎛⎫⎪⎝⎭由题意,函数2()e (2)e (0)x x f x a ax a =-++>,则()()2()2e (2)e 2e e 1x x x x f x a a a =+=-'-+-,当02a <<时,则12a <,令()0f x '>,解得0x >或ln 2a x <;令()0f x '<,解得,ln 02ax <<.故()f x 的单调增区间是,ln 2a ⎛⎫-∞ ⎪⎝⎭和(0,)+∞,单调减区间是ln ,02a ⎛⎫⎪⎝⎭.7.(2022·全国·模拟预测)已知函数()()()()221ln 1ln 02f x x x a x a a =--+>.讨论函数()f x 的单调性;【答案】由题意得()f x 的定义域为()0,∞+,()()ln x a x f x x-'=,令()0f x '=,得1x =或x a =,①若01a <<,则当()0,x a ∈时,()0f x '>,()f x 在()0,a 上单调递增;当(),1x a ∈时,()0f x '<,()f x 在(),1a 上单调递减;当()1,x ∈+∞时,()0f x '>,()f x 在()1,+∞上单调递增.②若1a =,则()0f x '≥(当且仅当1x =时取“=”),()f x 在()0,∞+上单调递增.③若1a >,则当()0,1x ∈时,()0f x '>,()f x 在()0,1上单调递增;当()1,x a ∈时,()0f x '<,()f x 在()1,a 上单调递减;当(),x a ∈+∞时,()0f x '>,()f x 在(),a +∞上单调递增.综上所述,当01a <<时,()f x 在()0,a ,()1,+∞上单调递增,在(),1a 上单调递减;当1a =时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在()0,1,(),a +∞上单调递增,在()1,a 上单调递减.8.(2022·安徽师范大学附属中学模拟预测(理))已知函数()()21ln 6ln 12f x x x a x x ⎛⎫=--- ⎪⎝⎭,a 为常数,R a ∈.讨论函数()f x 的单调性;【答案】()()21ln 6ln 12f x x x a x x ⎛⎫=--- ⎪⎝⎭()2(3)ln f x x a x '∴=-且,()0x ∈+∞当0a ≤时,在(0,1)x ∈上()0f x '<,(1,)x ∈+∞上()0f x '>,当103a <<时,在(0,3)x a ∈上()0f x '>,(3,1)x a ∈上()0f x '<,(1,)x ∈+∞上()0f x '>,当13a =时,在,()0x ∈+∞上()0f x '>,当13a >时,在(0,1)x ∈上()0f x '>,(1,3)x a ∈上()0f x '<,(3,)x a ∈+∞上()0f x '>,综上,0a ≤时()f x 在(0,1)上递减,(1,)+∞上递增,103a <<时()f x 在(0,3)a 上递增,(3,1)a 上递减,(1,)+∞上递增,13a =时()f x 在(0,)+∞上递增,13a >时()f x 在(0,1)上递增,(1,3)a 上递减,(3,)a +∞上递增③导函数有效部分为不可因式分解的二次型1.(2022·天津·南开中学模拟预测)已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x ,讨论()g x 的单调性;【答案】解:由已知可得()1ln g x x a x x =--,故可得()222111a x ax g x x x x -='+=+-.当(]2a ∈-∞,时,()0g x '≥,故()g x 在()0,∞+单调递增;当()2,a ∈+∞时,由()0g x '=,解得x ,或2a +,记1ξ=2ξ=x 变化时,()(),g x g x '的变化情况如下表:x()10,ξ1ξ()12,ξξ2ξ()2,ξ∞+()g x '+0-0+()g x极大值极小值所以,函数()g x 在区间⎛ ⎝⎭单调递增,在区间⎫⎪⎪⎝⎭单调递减,在区间42a a ⎛⎫+∞ ⎪ ⎪⎝⎭单调递增.2.(2022·安徽·蚌埠二中模拟预测(理))已知函数()2ln 2a f x x x ax =+-,a R ∈.讨论函数()f x 的单调性;【答案】显然,函数()f x 的定义域为()0,∞+,且()211ax ax f x ax a x x-+'=+-=,①若0a =,显然()f x 单调递增.②若0a <,令()'0f x =,有x =易知022a a a a <<,当0,2a x a ⎛⎫∈⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增;当,2a x a ⎛⎫∈+∞⎪ ⎪⎝⎭时,()0f x '<,()f x 单调递减.③若04a <≤,则()0f x '≥,()f x 单调递增,④若4a >,令()0f x '=,有x =易知0<<当x ⎛∈ ⎝⎭,()0f x '>,()f x 单调递增;当44,22a a x a a ⎛⎫∈⎪ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当,2a x a ⎛⎫+∈+∞ ⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增.综上所述,若0a <,()f x 的增区间为420,a a ⎛ ⎪ ⎝⎭⎪,减区间为2a a ⎛⎫-+∞ ⎪ ⎪⎝⎭;若04a ≤≤,()f x 的增区间为()0,∞+;若4a >,()f x 的增区间为⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭,减区间为⎝⎭.3.(2022·江苏徐州·模拟预测)已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x .讨论函数()f x 的单调性;【答案】由2()4ln f x x x a x =-+得,函数的定义域为(0,)+∞,且224()24a x x af x x x x-+'=-+=,令()0f x '>,即2240x x a -+>,①当Δ1680a =-≤,即2a ≥时,2240x x a -+≥恒成立,()f x 在(0,)+∞单调递增;②当Δ0>,即2a <时,令12x x ==当02a <<时,120x x <<,()0f x ¢>的解10x x <<或2x x >,故()f x 在()()120,,x x +∞,上单调递增,在()12,x x 上单调递减;当0a ≤时,120x x ≤<,同理()f x 在()20,x 上单调递减,在()2,x +∞上单调递增.4.(2022·河南郑州·三模(理))设函数()()2ln 0f x x x a x a =-+>.求函数()f x 的单调区间;【答案】()f x 的定义域为()0+∞,,()2221a x x af x x x x-+'=-+=,令220x x a -+=,当Δ18a =-≤0时,即a ≥18时,()()0f x f x '≥,在()0+∞,上递增,当180a ∆=->时,即108a <<时,220x x a -+=,解得114x =,214x =,当()0f x '>时解得,104x <<或14x >+,所以函数在104⎛ ⎝⎭,,14∞⎛⎫+ ⎪ ⎪⎝⎭上单调递增,当()0f x '<时解得,144x -<<,所以函数()f x 在⎝⎭上单调递减.综上,当a ≥18时,函数的单调增区间为()0+∞,;当108a <<时,函数的单调递增区间为0⎛ ⎝⎭,∞⎫+⎪⎪⎝⎭,单调递减区间为⎝⎭.5.(2022·河南新乡·高二期中(理))已知函数()()2e e x g xf x =+.若函数()24a x x x f =-+,讨论()g x 的单调性.【答案】若()24f x x x a =-+,则()()224e ,R e x g x x x a x -++∈=,()()()2224e 15e x x g x x x a x a ⎡⎤'=-+-=-+-⎣⎦.当5a ≥时,()0g x ¢³,()g x 在定义域R 上单调递增.当5a <时,令()0g x ¢=.解得11x =21x =若1x <1x >+,()0g x '>,则()g x 在(,1-∞和()1++∞上单调递增;若11x <<()0g x '<,则()g x 在(1上单调递减;6.(2022·全国·模拟预测)已知函数()32f x ax x x =+-.当0a <时,讨论函数()f x 的单调性.【答案】由()32f x ax x x =+-,得()2321f x ax x '=+-.令()23210f x ax x '=+-=,当13a ≤-时,4120a ∆=+≤,因此()23210f x ax x '=+-≤,所以函数()f x 在(),-∞+∞上单调递减;当103-<<a 时,4120a ∆=+>,解得x =所以函数()f x 在⎛-∞ ⎝⎭上单调递减,在⎝⎭上单调递增,在13a ⎛⎫-+∞ ⎪ ⎪⎝⎭上单调递减.综上所述,当13a ≤-时,函数()f x 在(),-∞+∞上单调递减;当103-<<a 时,函数()f x 在⎛-∞ ⎝⎭上单调递减,在⎝⎭上单调递增,在⎫+∞⎪⎪⎝⎭上单调递减.7.(2022·四川南充·三模(理))已知函数()()2112ln 2f x a x ax x =-+-.讨论()f x 的单调性;【答案】解:()()2112ln 2f x a x ax x =-+-的定义域为()0,∞+,且()()()21221a x ax f x a x a x x-+-'=-+-=,当1a =时,()2x f x x-'=,则()f x 在()0,2单调递减,()2,+∞单调递增;当1a >时,由()0f x '=得0x =,()021a x a -+=-,所以()f x 在()0,21a a ⎛-+ ⎪ ⎪-⎝⎭单调递减,()21a a ⎛⎫-+∞ ⎪ ⎪-⎝⎭单调递增;当1a <时,①当0a ≤时,()f x 在()0,∞+单调递减;②当01a <<时,当()()22814240a a a ∆=+-=+-≤时,即04a <≤-+()f x 在()0,∞+单调递减;当()()22814240a a a ∆=+-=+->时,即41a -+<时,由()0f x '=得120x x ==,所以()f x 在⎛ ⎝⎭、⎫+∞⎪⎪⎝⎭单调递减,在()(),2121a a a a ⎛-+--⎪ ⎪--⎝⎭单调递增;综上所述:①当1a >时,()f x 在⎛ ⎝⎭单调递减,在(),21a a ⎛⎫-++∞⎪ ⎪-⎝⎭单调递增;②当1a =时,()f x 在()0,2单调递减,在()2,+∞单调递增;③4a ≤-+()f x 在()0,∞+单调递减;④当41a -+<时,()f x 在()0,21a a ⎛- ⎪ ⎪-⎝⎭、(),21a a ⎛⎫--+∞ ⎪ ⎪-⎝⎭单调递减,在()()2121a a a a ⎛---⎪ ⎪--⎝⎭单调递增;8.(2022·浙江·模拟预测)设函数1()ln ()f x x a x a x=--∈R .讨论()f x 的单调性;【答案】()()2211ln ,x ax f x x a x f x x x '-+=--=①当2a ≤时,221210x ax x x -+≥-+≥,所以()0f x '≥,所以()f x 在(0,)+∞上递增②当2a >时,记210x ax -+=的两根为(0,1),(1,)22a a m n ==∈+∞则当0x m <<时,()0f x '>;当m x n <<时,()0f x '<;当x n >时,()0f x '>综上可知,当2a ≤时,()f x 在(0,)+∞上递增当2a >时,()f x 在(0,)m 上递增,在(,)m n 上递减,在(,)n +∞上递。
(压轴题)高中数学选修二第二单元《一元函数的导数及其应用》测试题(包含答案解析)(4)

一、选择题1.若幂函数()f x 的图象过点21,22⎛⎫ ⎪⎪⎝⎭,则函数()()e x f x g x =的递减区间为( ) A .()0,2 B .(),0-∞和()2,+∞ C .()2,0-D .()(),02,-∞+∞2.设()f x 是定义在()(),00,-∞⋃+∞上的函数,()f x '为其导函数,已知()()1221f x f x -=-,()20f -=,当0x >时,()()xf x f x '-<,则使得()0f x >成立的x 的取值范围是( ) A .()()2,00,2-B .()(),22,-∞-+∞C .()(),20,2-∞-D .()()0,22,+∞3.已知函数f (x )在x =x 0处的导数为12,则000()()lim3x f x x f x x∆→-∆-=∆( )A .-4B .4C .-36D .364.下列说法正确的是( )A .命题“若21x =,则1x ≠”的否命题是“若21x =,则1x =”B .命题“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->”C .“()y f x =在0x 处有极值”是“0()0f x '=”的充要条件D .命题“若函数2()1f x x ax =-+有零点,则“2a ≥或2a ≤-”的逆否命题为真命题5.已知函数()22,22,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩,函数()()g x f x m =-有两个零点,则实数m 的取值范围为( )A .28,e ⎛⎫-∞ ⎪⎝⎭B .28,4e ⎛⎤⎥⎝⎦C .280,e ⎛⎫ ⎪⎝⎭D .[)28,4,e ⎛⎫-∞+∞ ⎪⎝⎭6.如图,()y f x =是可导函数,直线:2l y kx =+是曲线()y f x =在3x =处的切线,令()()g x xf x =,'()g x 是()g x 的导函数,则'(3)g =( ).A .-1B .0C .2D .47.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .8.若函数()()22co 102s x f x x f x '=++,则6f π⎛⎫' ⎪⎝⎭的值为( ) A .0B .6πC .3π D .π9.设函数()()23xf x x e =-,则( )A .()f x 有极大值,且有最大值B .()f x 有极小值,但无最小值C .若方程()f x a =恰有一个实根,则36a e>D .若方程()f x a =恰有三个实根,则360a e<< 10.设函数()e 3x f x x a =+-.若曲线sin y x =上存在点()00,x y ,使得()()00f f y y =,则实数a 的取值范围是( )A .[]1,2e +B .13,1e -⎡⎤-⎣⎦C .[]1,1e +D .13,1e e --⎡⎤+⎣⎦11.已知()f x 的定义域为(0,)+∞,f x 为()f x 的导函数,且满足()()'f x xf x <-,则不等式(1)(1)f x x +>-()21f x -的解集是( )A .0,1B .2,C .1,2D .1,12.已知定义在(0,)+∞上的函数()f x 的导函数()f x '满足()1xf x '>,则( ) A .()()21ln 2f f -< B .()()21ln 2f f -> C .()()211f f -<D .()()211f f ->二、填空题13.若函数3213()(4)32xf x e x kx kx =--+只有一个极值点,则k 的取值范围为________ 14.函数()2ln 2x f x x =-在其定义域内的一个子区间[]1,1k k -+内不是单调函数,则k的取值范围是______________.15.若函数()12sin 2cos 2f x =x x a x ++在R 上递增,则a 的取值范围___________. 16.已知实数x ,y 满足12x >,12y >,且2445ln 521x x y y x -++-=-,则x y +=________.17.函数32()22=-f x x x 在区间[1,2]-上的最大值是___________.18.已知()y f x =是奇函数,当(0,2)x ∈时,1()()2f x lnx ax a =->,当(2,0)x ∈-时,()f x 的最小值为1,则a =________.19.若()ln f x x =与()2g x x ax =+两个函数的图象有一条与直线y x =平行的公共切线,则a =_________.20.已知101098109810()(21)f x x a x a x a x a x a =-=+++++,则222223344C a C a C a ++21010C a ++= _________.三、解答题21.已知函数32()2(,)f x x ax bx a b R =+++∈在1x =-与3x =处均取得极值. (1)求实数a ,b 的值;(2)若函数()f x 在区间(),21m m -上单调递减,求实数m 的取值范围. 22.已知函数()e x f x ax =,a 为非零常数. (1)求()f x 单调递减区间;(2)讨论方程()()21f x x =+的根的个数.23.(1)已知函数f (x )=2ln x +1.若f (x )≤2x +c ,求c 的取值范围; (2)已知函数()()=ln f x x mx m m -+∈R .讨论函数()f x 的单调性.24.已知函数21()2ln (2)2f x x a x a x =+-+. (1)当1a =时,求函数()f x 的单调区间; (2)是否存在实数a ,使函数34()()9g x f x ax x =++在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.25.已知函数()ln f x ax x b =+,()23g x x kx =++,曲线()y f x =在()()1,1f 处的切线方程为1y x =-,a ,b ,R k ∈.(1)若函数()f x 在(),b m 上有最小值,求a ,b 的值及m 的取值范围; (2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,其中 2.718e =⋅⋅⋅,e 为自然对数的底数,若关于x 的不等式()()20f x g x +≥有解,求k 的取值范围.26.若函数24()2ln 3f x ax x x =+-在1x =处取得极值. (1)求a 的值;(2)求函数()f x 的单调区间及极值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据条件先求解出()f x 的解析式,然后利用导数求解出()()ex f x g x =的单调递减区间. 【详解】因为()f x为幂函数,且过点1,22⎛⎫ ⎪ ⎪⎝⎭,所以设()f x x α=,所以1=22α⎛ ⎝⎭,所以2α=,所以()2f x x =,所以2()ex x g x =,则(2)()e xx x g x '-=, 当2x >或0x <时,()0g x '<;当02x <<时,()0g x '>, 所以()()ex f x g x =的递减区间为(),0-∞和()2,+∞,【点睛】关键点点睛:解答本题的关键是求解完()f x 的解析式之后,根据()0f x '<去分析()f x 的单调递减区间.2.B解析:B 【分析】由已知条件得函数()f x 为偶函数,引入()()g x xf x =,利用导数可得(0,)+∞上()g x 为增函数,结合(2)0=g 可解不等式()0>g x ,从而得()0f x >在(0,)+∞上的解,再由偶函数得出结论. 【详解】由()()1221f x f x -=-,可知()f x 为偶函数,构造新函数()()g x xf x =,则()()()g x xf x f x ''=+,当0x >时()0g x '>. 所以()()g x xf x =在()0,∞+上单调递增,又()20f =,即()20g =. 所以由()()0g x xf x =>可得2x >,此时()0f x >.又()f x 为偶函数,所以()0f x >在()(),00,-∞⋃+∞上的解集为()(),22,-∞-+∞.故选:B . 【点睛】本题考查的奇偶性与单调性,考查由导数确定函数的单调性,具有奇偶性的函数的不等式求解时,如果是偶函数,可利用单调性求出(0,)+∞上的解,然后再利用奇偶性得出{|0}x x ≠上的解集,如果是奇函数可由奇函数定义得出函数在R 上的单调性,然后由单调性解不等式.3.A解析:A 【分析】根据题意,由极限的性质可得则000000()()()()1lim =lim 33x x f x x f x f x f x x x x∆→∆→-∆---∆-∆∆,结合导数的定义计算可得答案. 【详解】根据题意,函数()f x 在0x x =处的导数为12,则000000()()()()112lim=lim 4333x x f x x f x f x f x x x x ∆→∆→-∆---∆-=-=-∆∆;故选:A . 【点睛】本题考查极限的计算以及导数的定义,属于容易题.4.D【分析】选项A ,否命题,条件否定,结论也要否定;选项B ,命题的否定,只对结论否定;选项C ,()y f x =在0x 处有极值,既要满足0()0f x '=,也要满足函数在0x 两边的单调性要相反;选项D ,若函数2()1f x x ax =-+有零点,等价于0∆≥,原命题与逆否命题同真假. 【详解】选项A ,命题“若21x =,则1x ≠”的否命题是“若21x ≠,则1x =”,错误;选项B ,命题“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x -≥”,错误;选项C ,0()0f x '=不能得到()y f x =在0x 处有极值,例如3()f x x =在0x =时,导数为0,但0x =不是函数极值点,错误;选项D ,若函数2()1f x x ax =-+有零点,即方程210x ax -+=有解,所以0∆≥,解得2a ≥或2a ≤-,所以原命题为真命题,又因为原命题与逆否命题同真假,所以逆否命题也是真命题,正确.2a ≥或2a ≤- 【点睛】本题主要考查命题真假性的判断,涉及到四个命题、充要条件以及特称命题的否定.5.C解析:C 【分析】当2x ≥时,利用导数研究函数的单调性,()()g x f x m =-有两个零点,即()y f x =的图象与直线y m =有两个交点,结合函数图象,即可求出参数的取值范围; 【详解】解:当2x ≥时,设()22x x x h x e +=,则()()()2222222x x x xx e x x e x h x e e +-+-'==-, 易知当2x >时,()0h x '<,即()h x 是减函数,∴2x =时,()()2max 82h eh x ==, 又x →+∞时,()0h x →且()0h x >,而2x ≤时,()2f x x =+是增函数,()24f =.()()g x f x m =-有两个零点,即()y f x =的图象与直线y m =有两个交点,函数()22,22,2x x xx f x e x x ⎧+>⎪=⎨⎪+≤⎩的图象如下所示:所以280m e <<.故选:C . 【点睛】本题考查利用导数研究函数的单调性,函数方程思想与数形结合思想,属于中档题.6.B解析:B 【分析】将点()3,1的坐标代入切线方程得出k 的值,得出()3f k '=以及()31f =,再对函数()y g x =求导得()()()g x f x xf x ''=+,即可得出()3g '的值.【详解】将点()3,1代入直线2y kx =+的方程得321k +=,得13k =-,所以,()133f k '==-,由于点()3,1在函数()y f x =的图象上,则()31f =, 对函数()()g x xf x =求导得()()()g x f x xf x ''=+,()()()133331303g f f ⎛⎫''∴=+=+⨯-= ⎪⎝⎭,故选B .【点睛】本题考查导数的几何意义,在处理直线与函数图象相切的问题时,抓住以下两点: (1)函数在切点处的导数值等于切线的斜率; (2)切点是切线与函数图象的公共点.7.A解析:A 【分析】利用函数的定义域和函数的值域排除BD ,通过函数的单调性排除C ,推出结果即可. 【详解】令()ln 1g x x x =--,则11()1x g x x x-'=-=, 由()0g x '>得1x >,即函数()g x 在(1,)+∞上单调递增, 由()0g x '<得01x <<,即函数()g x 在(0,1)上单调递减, 所以当1x =时,()()min 10g x g ==, 于是对任意(0,1)(1,)x ∈+∞,有()0g x >,则()0f x >,故排除BD ,因为函数()g x 在()0,1单调递减,则函数()f x 在()0,1递增,故排除C. 故选:A. 【点睛】本题考查利用导数对函数图象辨别,属于中档题.8.B解析:B 【分析】先对函数()f x 求导,采用赋值的方式计算出()0f '的结果,由此计算出6f π⎛⎫' ⎪⎝⎭的值.【详解】因为()()20sin 1f x x f x ''=-+,所以令0x =,则()01f '=,所以()2sin 1f x x x '=-+,则66f ππ⎛⎫'= ⎪⎝⎭, 故选:B. 【点睛】本题考查导数中的计算,采用赋值法求解出函数解析中的未知量是解答的关键,难度一般.9.D解析:D 【分析】先求出导函数,由导数的正负确定单调性,极值,确定函数值的变化趋势可确定最值,及方程()f x a =的根的情形. 【详解】由题意2()(23)(1)(3)xxf x x x e x x e '=+-=-+,∴当3x <-或1x >时,()0f x '>,当31x -<<时,(00f x '<, ()f x 在(,3)-∞-和(1,)+∞上递增,在(3,1)-上递减. ()f x 极大值=36(3)f e-=,()f x 极小值=(1)2f e =-,x <x >()0f x >,x →-∞时,()0f x →,x →+∞时,()f x →+∞,∴(1)f 也是最小值.()f x 无最大值. 作出()y f x =的图象,和直线y a =,如图, 当1a =或36a e >时,()f x a =有一个根,当360a e<<时,()f x a =有三个根. 故选:D .【点睛】本题考查用导数研究函数的极值和最值,研究方程根的个数问题,掌握极值与最值的定义是解题基础.方程根的个数常常转化为函数图象交点个数,由数形结合思想易求解.10.A解析:A 【分析】由题意可得存在0[0y ∈,1],使00()f y y =成立,即()f x x =在[0,1]上有解,即23x a e x x =+-,[0x ∈,1].利用导数可得函数的单调性,根据单调性求函数的值域,可得a 的范围.【详解】由题意可得00sin [1y x =∈-,1],000()3y f y e y a +- 曲线sin y x =上存在点0(x ,0)y 使得00(())f f y y =,∴存在0[0y ∈,1],使00()f y y =成立.函数()3x f x e x a =+- 下面证明00()f y y =.假设00()f y c y =>,则0(())f f y f =(c )00()f y c y >=>,不满足00(())f f y y =. 同理假设00()f y c y =<,则不满足00(())f f y y =. 综上可得:00()f y y =.则问题等价于方程()f x x =,[0,1]x ∈有解,即23x x e x a =+-在[0,1]x ∈有解,分离参数可得23x a e x x =+-,令2()3xg x e x x =+-,∵()320,[0,1]x g x e x x '=+->∈,所以函数()g x 在[0,1]上单调递增, 所以1(0)()(1)2g g x g e =≤≤=+,所以12a e ≤≤+. 故选:A. 【点睛】本题主要考查正弦函数的图象和性质,利用导数研究函数的单调性,由单调性求函数的值域,体现了转化的数学思想,属于中档题.11.B解析:B 【分析】构造函数()()F x xf x =,再根据单调性解不等式,即得结果. 【详解】令()()F x xf x =,则()()()0F x f x xf x ''=+<,所以()F x 在(0,)+∞上单调递减(1)(1)f x x +>-()21f x -,2(1)(1)(1)x f x x ∴++>-()21f x -,2(1)(1)F x F x ∴+>-, 2011,2x x x ∴<+<-∴>,故选:B 【点睛】本题考查利用导数解不等式,考查基本分析求解能力,属中档题.12.B解析:B 【解析】分析:根据题意,由()1xf x '>可得()()'1f x lnx x='>,构造函数()()g x f x lnx =-,可得()()()110xf x g x f x x x-=-=''>',故()g x 单调递增,根据单调性可得结论. 详解:令()(),0g x f x lnx x =->, ∴()()()11xf x g x f x x x=''-'-=, ∵()1xf x '>, ∴()0g x '>,∴函数()g x 在()0,+∞上单调递增, ∴()()21g g >,即()()2211f ln f ln ->-,∴()()21ln2f f ->. 故选B .点睛:本题考查对函数单调性的应用,考查学生的变形应用能力,解题的关键是根据题意构造函数()()g x f x lnx =-,通过判断函数的单调性得到函数值间的关系,从而达到求解的目的.二、填空题13.【分析】函数有只有一个极值点函数只有一个变号零点分别讨论三种情况数形结合分析整理即可得答案【详解】函数有只有一个极值点函数只有一个变号零点则易知①当时显然不合题意;②当时当时为减函数当时为增函数所以解析:[]310,3e e ⎧⎫⋃⎨⎬⎩⎭【分析】函数()f x 有只有一个极值点⇔函数()'f x 只有一个变号零点,分别讨论0k <、0k =、0k >三种情况,数形结合,分析整理,即可得答案. 【详解】函数()f x 有只有一个极值点⇔函数()'f x 只有一个变号零点,则2()(3)3(3)()x xf x e x k k x k x x x e =--+-=-',易知(3)0,(0)3f f ''==-,①当0k <时,,()0,,()0x f x x f x →-∞>→+∞>,显然不合题意; ②当0k =时,()(3)x f x e x -'=,当3x <时()0f x '<,()f x 为减函数, 当3x >时()0f x '>,()f x 为增函数, 所以3x =为函数()f x 唯一极值点,满足题意;③当0k >时,若3x =为()'f x 唯一的零点2(3)30x e x kx kx ⇒--+=,0k >只有唯一解,则3x =,可得0-=xe kx 无解,即(3)xe k x x=≠无解,设()x e h x x =,则2(1)()x e x h x x-'=,当1x <时,()0h x '<,()h x 为减函数, 当1x >时,()0h x '>,()h x 为增函数,min ()(1)h x h e ==, 所以0k e <<,经验证满足题意;④当0k >,若3x =不是()'f x 唯一的零点,()'f x 可能有2个或3个零点,当()'f x 有3个零点时候显然不合题意,当()'f x 有两个零点时,()xe h x x=有一个零点时,k e =,当()x e h x x =有两个零点时,结合题意,3x =为其中一个零点,所以33e k =,经验证满足题意;故答案为:[]310,3k e e ⎧⎫∈⋃⎨⎬⎩⎭【点睛】解题的关键是将()f x 只有一个极值点等价为函数()'f x 只有一个变号零点,分析()'f x 解析式,数形结合,可得答案,易错点为,x=3为x-3=0和0-=x e kx 共同零点时,也符合题意,属中档题.14.【分析】求出函数的定义域利用导数求出函数的极值点由题意可知函数的极值点在区间内结合题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】函数的定义域为令可得列表如下: 极 解析:()1,2【分析】求出函数()f x 的定义域,利用导数求出函数()f x 的极值点,由题意可知,函数()f x 的极值点在区间()1,1k k -+内,结合题意可得出关于实数k 的不等式组,由此可解得实数k 的取值范围. 【详解】函数()2ln 2x f x x =-的定义域为()0,∞+,()211x f x x x x ='-=-. 令()0f x '=,0x ,可得1x =,列表如下:x()0,11()1,+∞()f x '- 0+()f x极小所以,函数()f x 在1x =处取得极小值,由于函数()2ln 2x f x x =-在其定义域内的一个子区间[]1,1k k -+内不是单调函数,则()11,1k k ∈-+,由题意可得111110k k k -<⎧⎪+>⎨⎪->⎩,解得12k <<.因此,实数k 的取值范围是()1,2. 故答案为:()1,2. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 内存在极值点;(4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.15.【分析】根据函数求导由函数在上递增则在上恒成立令转化为在恒成立求解【详解】由函数所以因为函数在上递增所以在上恒成立令所以在恒成立令所以解得故答案为:【点睛】本题主要考查导数与函数单调性的应用还考查了 解析:11a -≤≤【分析】根据函数()12sin 2cos 2f x =x x a x ++,求导()22sin sin 3f x =x a x '--+,由函数()12sin 2cos 2f x =x x a x ++在R 上递增,则22sin sin 30x a x --+≥在R 上恒成立,令[]sin 1,1t x =∈-,转化为2230t at +-≤在[]1,1-恒成立求解. 【详解】 由函数()12sin 2cos 2f x =x x a x ++, 所以()22cos2sin 2sin sin 3f x =x a x=x a x '+---+,因为函数()12sin 2cos 2f x =x x a x ++在R 上递增, 所以22sin sin 30x a x --+≥在R 上恒成立, 令[]sin 1,1t x =∈-,所以2230t at +-≤在[]1,1-恒成立,令()223g t t at =+-,所以()()12301230g a g a ⎧=--≤⎪⎨-=+-≤⎪⎩,解得11a -≤≤, 故答案为:11a -≤≤ 【点睛】本题主要考查导数与函数单调性的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.16.【分析】利用基本不等式及利用导数研究函数的单调性及最值从而得解;【详解】解:因为所以当且仅当即时取等号;当时令则令解得令解得即函数在上单调递增在上单调递减故所以恒成立即当且仅当时取等号即当且仅当时取解析:52【分析】利用基本不等式及利用导数研究函数的单调性及最值,从而得解; 【详解】 解:因为12x >,所以()()222144454214212121x x x x x x x -+-+==-+≥=---,当且仅当()42121x x -=-即32x =时取等号; 当0x >时,令()ln 1g x x x =-+,则()111xg x x x-'=-=,令()0g x '>,解得01x <<,令()0g x '<,解得1x >,即函数()g x 在()0,1上单调递增,在()1,+∞上单调递减,故()()max 10g x g ==,所以()0g x ≤恒成立,即ln 1≤-x x ,当且仅当1x =时取等号,即ln 1y y ≤-,当且仅当1y =时取等号,所以2445ln 521x x y y x -++-≥-,当且仅当32x =,1y =时取等号,所以1y =,32x =所以52x y +=故答案为:52【点睛】本题考查基本不等式及导数的应用,属于中档题.17.8【分析】对函数求导由导数确定单调区间由单调性确定极值再比较极值与函数端点值即可确定函数最值【详解】f′(x)=6x2-4x=2x(3x-2)已知x ∈-12当2≥x>或-1≤x<0时f′(x)>0f解析:8 【分析】对函数求导,由导数确定单调区间,由单调性确定极值,再比较极值与函数端点值,即可确定函数最值. 【详解】f ′(x )=6x 2-4x = 2x (3x -2), 已知x ∈[-1,2],当2 ≥ x >23或-1 ≤ x <0时, f ′(x )>0, f (x )单调递增区间是2[1,0),(,2]3-, 当0<x <23时,f ′(x )<0, f (x )单调递减区间是2(0,)3,故函数在0x =处取极大值,f (0)=0,又f (2)=8,故 f (x )的最大值是8. 故答案为:8 【点睛】本题考查了利用导数求函数的最值,考查了计算能力,属于基础题目.18.1【分析】根据函数的奇偶性确定在上的最大值为求导函数确定函数的单调性求出最值即可求得的值【详解】是奇函数时的最小值为1在上的最大值为当时令得又令则在上递增;令则在上递减得故答案为:1【点睛】本题考查解析:1 【分析】根据函数的奇偶性,确定()f x 在(0,2)上的最大值为1-,求导函数,确定函数的单调性,求出最值,即可求得a 的值. 【详解】()f x 是奇函数,(2,0)x ∈-时,()f x 的最小值为1,()f x ∴在(0,2)上的最大值为1-,当(0,2)x ∈时,1()f x a x'=-, 令()0f x '=得1x a =,又12a >,102a ∴<<,令()0f x '>,则1x a <,()f x ∴在1(0,)a 上递增;令()0f x '<,则1x a>, ()f x ∴在1(a,2)上递减,111()()1max f x f ln aaaa ∴==-=-,10ln a∴=,得1a =. 故答案为:1. 【点睛】本题考查函数单调性与奇偶性的结合,考查导数知识的运用,考查学生的计算能力,属于中档题.19.或【分析】在曲线上取切点利用导数得出得出的值可求出切线的方程再将该切线方程与二次函数解析式联立利用求出实数的取值范围【详解】在曲线上取切点由题意可得得切点坐标为则所求切线方程为由于直线与函数的图象相解析:3或1-. 【分析】在曲线()y f x =上取切点(),ln t t ,利用导数得出()1f t '=得出t 的值,可求出切线的方程,再将该切线方程与二次函数()2g x x ax =+解析式联立,利用0∆=求出实数a 的取值范围. 【详解】在曲线()y f x =上取切点(),ln t t ,()ln f x x =,()1f x x'∴=,由题意可得()11f t t'==,得1t =,切点坐标为()1,0,则所求切线方程为1y x =-. 由于直线1y x =-与函数()2g x x ax =+的图象相切,联立得21y x y x ax =-⎧⎨=+⎩, 消去y 并整理得()2110x a x +-+=,则()2214230a a a ∆=--=--=, 解得1a =-或3,故答案为3或1-. 【点睛】本题考查导数的几何意义,考查利用导数求切线方程,在求解直线与二次函数图象相切的问题,可以将直线方程与二次函数解析式联立,利用判别式为零来求解,考查分析问题和解决问题的能力,属于中等题.20.【解析】【分析】根据f (x )的展开式结合求导出现所求的式子再令x=1则可得到结果【详解】∵∴=20两边再同时进行求导可得:180令x=1则有180∴a2a3a4a10=180【点睛】本题考查了二项式 解析:180【解析】 【分析】根据f (x )的展开式,结合求导出现所求的式子,再令x=1,则可得到结果. 【详解】∵()()10109810981021f x x a x a x a x a x a =-=+++++,∴()f x '=20()998710981211098x a x a x a x a ,-=++++ 两边再同时进行求导可得:180()88761098222110998872x a x a x a x a ⨯-=⨯+⨯+⨯++,令x=1,则有18010982210998872a a a a ⨯=⨯+⨯+⨯++∴22C a 223C +a 324C +a 4210C ++a 10()109821109988722a a a a =⨯+⨯+⨯++=180.【点睛】 本题考查了二项式展开式的应用问题,考查了导数法及赋值法的应用,考查了计算能力,属于中档题.三、解答题21.(1)3a =-,9b =-;(2)(]1,2. 【分析】(1)先对函数求导,根据极值点,列出方程求解,即可得出a ,b ,再检验,即可得出结果;(2)根据(1)的结果,由(2)中条件,列出不等式求解,即可得出结果. 【详解】(1)因为32()2f x x ax bx =+++所以2()32f x x ax b '=++因为函数()f x 在1x =-与3x =处均取得极值所以223(1)2(1)033230a b a b ⎧⨯-+⨯-+=⎨⨯+⨯+=⎩所以39a b =-⎧⎨=-⎩, 此时()()2()369331'=--=-+f x x x x x , 由()0f x '>得1x <-或3x >;由()0f x '<得13x;所以()f x 在(,1)-∞-上单调递增,在(1,3)-上单调递减,在(3,)+∞上单调递增, 因此()f x 在1x =-上取得极大值,在3x =上取得极小值,符合题设; 即所求实数a ,b 的值分别是3-,9-;(2)由(1)知,()f x 在(,1)-∞-上单调递增,在(1,3)-上单调递减,在(3,)+∞上单调递增,若函数()f x 在区间(),21m m -上单调递减, 则1213m m -≤<-≤ 所以12m <≤,即所求实数的取值范围是(]1,2. 【点睛】 思路点睛:由函数极值(极值点)求参数时,一般需要对函数求导,根据极值的定义,结合题中条件,列出方程求解,即可得出结果.(求出的结果要,要注意进行检验)22.(1)当0a >时,()f x 的单调递减区间为(,1)-∞-,当0a <时,()f x 的单调递减区间为(1,)-+∞;(2)当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解. 【分析】(1)求导,对a 分类讨论,利用()0f x '<可解得结果;(2)转化为函数2(1)()exx g x x +=与y a=的图象的交点的个数,利用导数可求得结果. 【详解】(1)()(1)e x x xf x ae axe a x '=+=+,由()0f x '=得1x =-,①若0a >时,由()0f x '<得1x <-,所以()f x 的单调递减区间为(,1)-∞-; ②若0a <时,由()0f x '<得1x >-,所以()f x 的单调递减区间为(1,)-+∞.综上所述,当0a >时,()f x 的单调递减区间为(,1)-∞-;当0a <时,()f x 的单调递减区间为(1,)-+∞.(2)因为方程2()(1)f x x =+等价于2(1)e x x a x +=,令2(1)()e xx g x x +=,所以方程()()21f x x =+的根的个数等于函数2(1)()e xx g x x +=与y a=的图象的交点的个数,因为()2222(1)12(1)(1)()()()ex x x x x x x x xe x e xe g x xe x +++-++=-'=, 由()0g x '=,得1x =-,当(,1)x ∈-∞-,时,()0g x '>,()g x 在(,1)-∞-上单调递增; 当()()1,00,x ∈-+∞时,()0g x '<,所以()g x 在()1,0-,()0,∞+上单调递减,又()10g -=,所以当(,1)x ∈-∞-时,()(),0g x ∈-∞; 当()1,0x ∈-时,()(),0g x ∈-∞; 当()0,x ∈+∞时,()()0,g x ∈+∞.所以,当0a >时,原方程有且仅有一个解; 当0a <时,原方程有两个解. 【点睛】方法点睛:讨论函数零点(或方程根)的个数的常用的方法: (1)直接法:直接求解方程得到方程的根,可得方程根的个数;(2)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解 23.(1)1c ≥-.(2)答案见解析. 【分析】(1)不等式变形为()2f x x c -≤,求出()2f x x -的最大值后可得c 的范围;(2)求出导函数()'f x ,确定()'f x 的正负,得()f x 的单调性.【详解】(1)()f x 定义域是(0,)+∞,由()2f x x c ≤+得,2ln 12c x x ≥+-,设()2ln 12g x x x =+-,则22(1)()2x g x x x-'=-=, 当01x <<时,()0g x '>,当1x >时,()0g x '<,∴()g x 在(0,1)上递增,在(1,)+∞上递减, ∴max ()(1)2ln1121g x g ==+-=-,∴1c ≥-. (2)()()=ln f x x mx m m -+∈R ,定义域是(0,)+∞,1()f x m x'=-, 当0m ≤时,()0f x '>,()f x 在(0,)+∞上递增, 当0m >时,1()()m x mf x x-'=,当10x m <<时,()0f x '>,1x m>时,()0f x '<, ∴()f x 在1(0,)m上递增,在1(,)m+∞上递减.综上,0m ≤时,()f x 的增区间是(0,)+∞,0m >时,()f x 的增区间是1(0,)m,减区间是1(,)m+∞. 【点睛】方法点睛:本题考查函数的单调性,考查不等式恒成立问题.(1)已知()f x 的导函数是()'f x ,解不等式()0f x '>可得增区间,()0f x '<可得减区间.(2)()f x m ≥恒成立,则min ()m f x ≤,若()f x m ≤恒成立,则max ()m f x ≥. 24.(1)()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2(2)存在,724a ≥【分析】(1)求出导函数'()f x ,由'()0f x >确定增区间,由'()0f x <确定减区间;(2)求出导函数'()g x ,假设存在,则'()0g x ≥在(0,)+∞上恒成立,而不等式恒成立,又可用分离参数法转化为求函数的最值. 【详解】(1)当1a =时,21()2ln 3(0)2f x x x x x =+->. 所以2()3f x x x '=+-=232(2)(1)x x x x x x-+--=令()0f x '≥,则01x <≤或2x ≥,令()0f x '<,则12x <<, 所以()f x 的单调递增区间为(]0,1和[)2,+∞,单调递减区间为()1,2 (2)存在724a ≥,满足题设, 因为函数34()()9g x f x ax x =++=23142ln 229x a x x x +-+ 所以224()23a g x x x x '=+-+ 要使函数()g x 在0,∞(+)上单调递增,224()20,(0,)3a g x x x x x '=+-≥+∈+∞ 即3243660x x x a +-+≥,(0,)x ∈+∞⇔324366x x xa +-≥-,(0,)x ∈+∞令32436()6x x xh x +-=,(0,)x ∈+∞,则2()21(21)(1)h x x x x x '=+-=-+,所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 在10,2⎛⎫ ⎪⎝⎭上单调递减, 当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,()h x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 所以12x =是()h x 的极小值点,也是最小值点,且17224h ⎛⎫=- ⎪⎝⎭, ∴324366x x x +--在(0,)+∞上的最大值为724. 所以存在724a ≥,满足题设. 【点睛】本题考查研究函数的单调性,研究函数的最值.一般情况下,我们用'()0f x >确定增区间,用'()0f x <确定减区间,另外用导数研究不等式恒成立问题,都是转化为求函数的最值,为此分离参数法用得较多.25.(1)1,0,a b =⎧⎨=⎩;1,e ⎛⎫+∞ ⎪⎝⎭;(2)2321e e k e -+≥-. 【分析】(1)求出函数的导数,得到关于a ,b 的方程组,求出a ,b 的值,解关于导函数的不等式,求出函数的最小值,进而可得m 的取值范围;(2)问题等价于不等式22ln 3x x x k x++≥-在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解,设()22ln 3x x x h x x ++=-,1,x e e ⎡⎤∈⎢⎥⎣⎦,求导可得函数的最值,进而可得k 的取值范围. 【详解】(1)()()ln 1f x a x '=+,由题意得()()1011f f ⎧=⎪⎨='⎪⎩,解得:10a b =⎧⎨=⎩, 故()ln 1f x x '=+,当()0f x '>,即1x e >时,()f x 单调递增, 当()0f x '<,即10x e<<时,()f x 单调递减, 因为()f x 在()0,m 上有最小值,所以m 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭; (2)关于x 的不等式()()20f x g x +≥在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解,即232ln 0x x x kx ++≥+在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解, 等价于不等式22ln 3x x x k x++≥-在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解, 设()22ln 3x x x h x x ++=-,1,x e e ⎡⎤∈⎢⎥⎣⎦, ()2223x x h x x +-'∴=-, 当()0h x '>,即11x e<<时,()h x 单调递增, 当()0h x '<,即1x e <<时,()h x 单调递减, 又21321e h e e e -+⎛⎫=- ⎪⎝⎭,()2e 2e 3e e h ++=-, 所以()()22222211233212420e e e e e e e e h h e e e e e e ---++-+-++⎛⎫-=-==< ⎪⎝⎭, 故()2min 1321e e h x h e e -+⎛⎫==- ⎪⎝⎭, 所以2321e e k e-+≥-. 【点睛】本题考查函数的单调性,最值问题,考查导数的应用,是一道中档题.26.(1)13-(2)单调递增区间是(1,2),单调递减区间是(0,1),(2,)+∞,极小值为5(1)3f =,极大值为84(2)ln 233f =-. 【详解】 试题分析:(1)求出原函数的导函数,由函数在x=1时的导数为0列式求得a 的值;(2)把(1)中求出的a 值代入24()a 2ln 3f x x x x =+-,求其导函数,得到导函数的零点,由导函数的零点对定义域分段,利用导函数在不同区间段内的符号求单调期间,进一步求得极值点,代入原函数求得极值.试题(1)4()223f x ax x +-'=,由2(1)203f a ='+=,得13a =-. (2)214()2ln (0)33f x x x x x =-+->,242(1)(2)()2333x x f x x x x----'=-+=. 由()0f x '=,得1x =或2x =.当()0f x '>时12x <<;②当()0f x '<时01x <<或2x >.当x 变化时()'f x ,()f x 的变化情况如下表:因此,的单调递增区间是,单调递减区间是(0,1),(2,)+∞. 函数的极小值为5(1)3f =,极大值为84(2)ln 233f =-. 考点:利用导数求过曲线上某点处的切线方程;利用导数研究函数的单调性。
福州市选修二第二单元《一元函数的导数及其应用》测试(答案解析)

一、选择题1.已知函数2()85f x x x =---,()x e exg x ex+=,实数m ,n 满足0m n <<,若1x ∀∈[],m n ,2x ∃∈()0,∞+,使得()()12f x g x =成立,则n m -的最大值为( )A .7B .6C .D .2.已知函数()f x 是定义在R 上的可导函数,对于任意的实数x ,都有()()2x f x e f x -=,当0x <时,()()0f x f x +'>,若()()211ae f a f a +≥+,则实数a 的取值范围是( )A .20,3⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C .[)0,+∞D .(],0-∞3.已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是( )A .(]0,1B .()1,+∞C .()0,1D .[)1,+∞4.记函数()cos2f x x =的导函数为()f x ',则函数()()()g x x f x '=+在[0,]x π∈内的单调递增区间是( )A .0,2π⎡⎤⎢⎥⎣⎦B .,2ππ⎡⎤⎢⎥⎣⎦C .511,1212ππ⎡⎤⎢⎥⎣⎦D .5,12ππ⎡⎤⎢⎥⎣⎦5.设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为( ) A .()1,0- B .()1,-+∞ C .()0,∞+D .()(),10,-∞-+∞6.已知函数f (x )(x ∈R )满足(1)1f =,且()f x 的导数f ′(x )>12,则不等式1()22x f x <+的解集( ) A .(-∞,1) B .(1,+∞)C .(-∞,-1]∪[1,+∞)D .(-1,1)7.已知()3216132m f x x x x =-++在()1,1-单调递减,则m 的取值范围为( ) A .[33]-,B .(-3,3)C .[55]-,D .(-5,5)8.设函数()'f x 是奇函数()()f x x R ∈的导函数,当0x >时,()()ln 'x x f x f x ⋅<-,则使得()()240x f x ->成立的x 的取值范围是( )A .()()2,00,2-⋃B .()(),22,-∞-⋃+∞C .()()2,02,-⋃+∞D .()(),20,2-∞-⋃9.若()()21ln 22f x x b x =-++在[)1,-+∞上是减函数,则b 的取值范围是( ) A .[)1,-+∞ B .(],1-∞-C .[)1,+∞D .(],1-∞10.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .11.已知函数()y f x =对任意的(,)22x ππ∈-满足()cos ()sin 0f x x f x x '+>(其中()'f x 是函数()f x 的导函数),则下列不等式成立的是( ) A .(0)2()4f π>B 2()()34f ππ< C .(0)2()3f f π>D 2()()34f ππ-<-12.已知函数2()f x x ax =-(1x e e≤≤,e 为自然对数的底数)与()x g x e =的图象上存在关于直线y x =对称的点,则实数a 的取值范围是( )A .11,e e⎡⎤+⎢⎥⎣⎦B .11,e e ⎡⎤-⎢⎥⎣⎦C .11,e e e e ⎡⎤-+⎢⎥⎣⎦D .1,e e e ⎡⎤-⎢⎥⎣⎦二、填空题13.已知曲线()32351f x x x x =+-+,过点()1,0的直线l 与曲线()y f x =相切于点P ,则点P 的横坐标为______________.14.已知函数()332f x x x =+,()2,2x ∈-,如果()()1120f a f a -+-<成立,则实数a 的取值范围为__________.15.sin ),()sin cos ,(0)a x dx f x x x x x a ==+≤≤,则()f x 的最大值为_____________.16.若点P 是函数2()ln f x x x =-上任意一点,则点P 到直线x ﹣y ﹣2=0的最小距离为_____. 17.函数()1ln(12)2xf x x x-=+-的导函数是()f x ',则()f x '=______________. 18.已知32()3f x x x a =-+(,a R ∈a 为常数),在]2,2⎡-⎣上有最大值4,那么此函数在]2,2⎡-⎣上的最小值为_______.19.已知函数322()3f x x ax bx a =+++,若函数()()sin 2g x f x x =+在点(0,(0))g 处的切线平行于x 轴,则实数b 的值是________.20.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.三、解答题21.已知函数()ln ()f x x ax a R =-∈. (1)讨论函数()f x 的单调性;(2)证明不等式2()x e ax f x --≥恒成立.22.已知函数()1ln 1f x x x =+-,()()1x g x f x e x m x ⎡⎤=-+-⎢⎥⎣⎦.(1)求()f x 的单调区间;(2)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,判断函数()g x 的零点个数.23.已知函数321()2()32a f x x x x a R =-+-∈. (1)当3a =时,求函数()f x 的单调递减区间;(2)若对于任意[)1,x ∈+∞都有()()21f x a '<-成立,求实数a 的取值范围. 24.已知函数()221xf x xe x x =---.(1)求函数()f x 在[1,1]-上的最大值; (2)证明:当0x >时,()1f x x >--.25.(1)求曲线2xy x =+在点()1,1--处的切线方程. (2)求函数()316f x x x =+-过点()0,0的切线方程.26.2020年5月政府工作报告提出,通过稳就业促增收保民生,提高居民消费意愿和能力.近日,多省市为流动商贩经营提供便利条件,放开“地摊经济”,但因其露天经营的特殊性,易受到天气的影响,一些平台公司纷纷推出帮扶措施,赋能“地摊经济”.某平台为某销售商“地摊经济”的发展和规范管理投入[]()4,8x x ∈万元的赞助费,已知该销售商出售的商品为每件40元,在收到平台投入的x 万元赞助费后,商品的销售量将增加到2102y x λ⎛⎫=⋅- ⎪+⎝⎭万件,[]0.6,1λ∈为气象相关系数,若该销售商出售y 万件商品还需成本费()40530x y ++万元.(1)求收到赞助后该销售商所获得的总利润p 万元与平台投入的赞助费x 万元的关系式;(注:总利润=赞助费+出售商品利润)(2)若对任意[]4,8x ∈万元,当入满足什么条件时,该销售商才能不亏损?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先用导数法研究()y g x =,然后的同一坐标系中作出函数()y f x =与()y g x =的图象,根据[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立求解. 【详解】因为()x e exg x ex+=,所以()()211x x e x e g x ex ex '-⎛⎫'=+= ⎪⎝⎭, 当01x <<时,()0g x '<,当1x >时,()0g x '>,()10g '=, 所以()g x 在1x =处取得极小值,且为定义域内唯一极值,()()min 12g x g ∴==.()22185()4111f x x x x -==---++≤,作函数()y f x =与()y g x =的图象,如图所示:当()2f x =时,方程两根分别为7-和1-, 则n m -的最大值为:()176---=. 故选:B 【点睛】关键点睛:利用导数和二次函数的性质,作出图像,利用数形结合进行求解,考查了转化化归的的思想、运算求解,以及数形结合的能力,属于中档题.2.B解析:B 【分析】构造函数()()xg x e f x =,根据题意,可得函数()g x 的奇偶性,根据0x <时()()0f x f x +'>,对函数()g x 求导,可得函数()g x 的单调性,将()()211a e f a f a +≥+,左右同乘1a e +,可得()()211211a a e f a e f a +++≥+,即()()211g a g a +≥+,利用()g x 的性质,即可求得答案.【详解】 ∵()()2x f x e f x -=,∴()()()x x xf xe f x e f x e --==-, 令()()xg x e f x =,则()()g x g x -=,即()g x 为偶函数, 当0x <时()()0f x f x +'>,∴()()()'0xx e f x f x g '+⎡⎤⎣⎦>=,即函数()g x 在(),0-∞上单调递增.根据偶函数对称区间上单调性相反的性质可知()g x 在()0,∞+上单调递减, ∵()()211ae f a f a +≥+,∴()()211211a a ef a e f a +++≥+,∴()()211g a g a +≥+,即211a a +≤+,解得,203a -≤≤, 故选:B .【点睛】解题的关键是将题干条件转化为()()()x x xf x e f x e f x e --==-,根据左右相同的形式,构造函数()()xg x e f x =,再根据题意,求得函数的奇偶性,单调性;难点在于:由于()()211a e f a f a +≥+,不符合函数()g x 的形式,需左右同乘1a e +,方可利用函数()g x 的性质求解,属中档题.3.D解析:D 【分析】根据条件()()12122f x f x x x ->-可变形为112212()2[()]20f x x f x x x x --->-,构造函数()21()2ln ()202g x f x x a x a x x =-=+>-,利用其为增函数即可求解. 【详解】 根据1212()()2f x f x x x ->-可知112212()2[()]20f x x f x x x x --->-, 令()21()2ln ()202g x f x x a x a x x =-=+>- 由112212()2[()]20f x x f x x x x --->-知()g x 为增函数, 所以()()'200,0ag x x x a x=+-≥>>恒成立, 分离参数得()2a x x ≥-,而当0x >时,()2x x -在1x =时有最大值为1, 故1a ≥. 故选:D 【点睛】关键点点睛:本题由条件()()12122f x f x x x ->-恒成立,转化为112212()2[()]20f x x f x x x x --->-恒成立是解题的关键,再根据此式知函数()21()2ln ()202g x f x x a x a x x =-=+>-为增函数,考查了推理分析能力,属于中档题.4.C解析:C 【分析】先对函数()f x 求导,再利用辅助角公式化简,然后利用正弦函数图像和性质即可分增区间. 【详解】()cos2f x x =, ()'2sin 2f x x ∴=-,2()23cos22sin 24sin 23g x x x x π⎛⎫=-=+⎪⎝⎭, 令2222232k x k πππππ-+≤+≤+, 解得71212k x k ππππ-+≤≤-+, ()g x ∴在[]0,π内的递增区间为511,1212ππ⎡⎤⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查的是正弦复合函数的单调性以及单调区间的求解,以及复合函数的导数的求法,熟练掌握正弦函数图像和性质是解决本题的关键,是中档题.5.B解析:B 【详解】()21ln 2f x x ax bx =--,,,由得,()()()1111ax x f x ax a x x+-=-+-=-', 若,由,得,当时,,此时单调递增;1x > 时,,此时单调递减;所以是的极大值点.若,则由,得或.时的极大值点, ,解得.综上:,的取值范围时.故选B .【点晴】本题是一道关于函数极值的题目,考虑运用导数求函数的极值.对求导,得,由得,将代入到导函数中,可得()()()1111ax x f x ax a x x+-=-+-=-',接下来分和两种情况,结合函数的单调性,分别求出的极大值点,从而建立的不等式求解即可.6.A解析:A 【分析】 根据f ′(x )>12,构造函数 ()()122x g x f x =-- ,又()()1111022=--=g f ,然后将不等式1()22x f x <+,转化为1()022--<x f x ,利用单调性的定义求解. 【详解】 因为f ′(x )>12, 所以()102f x '->所以()()()()()110222x g x f x g x f x g x =--⇒=->⇒'' 在R 上递增, 又()()1111022=--=g f , 所以不等式1()22x f x <+,即为1()022--<x f x , 即为:()()1g x g <, 所以1x <, 故选:A 【点睛】本题主要考查函数的单调性与导数以及单调性的应用,还考查了构造转化求解问题的能力,属于中档题.7.C解析:C 【分析】依题意得,(1,1)x ∈-时,2()60f x x mx '=+-恒成立,得到(1)0(1)0f f '-⎧⎨'⎩,解之即可.【详解】 解:()3216132mf x x x x -+=+,()26f x x x m '∴=-+,要使函数()f x 在()1,1-单调递减, 则()0f x '≤在()1,1x ∈-上恒成立, 即260x mx -+≤在()1,1x ∈-上恒成立,则:()()1010f f ⎧-≤⎪⎨≤''⎪⎩,即:160160m m --≤⎧⎨+-≤⎩,解得:55m -≤≤则m 的取值范围为:[]55-,. 故选:C . 【点睛】本题考查利用导数研究函数的单调性,依题意得到(1)0(1)0f f '-⎧⎨'⎩是关键,考查化归思想与运算能力,属于中档题. 8.D解析:D 【分析】构造函数()ln (),g x xf x = 根据()g x '的符号判断函数单调性,结合函数单调性的特点,得当0x >时,f (x )<0, 当0x <时,f (x )>0,再解不等式即可. 【详解】构造函数()ln (),g x xf x =则()()()()ln ()ln f x f x x xf x g x xf x xx+''=+'=,已知当0x >时,()()ln 'x x f x f x ⋅<-,所以在x>0时,()g x '<0,即g (x )在(0,+∞)上是减函数,因为y=lnx 在(0,+∞)上是增函数,所以f (x )在(0,+∞)上是减函数 已知()()f x x R ∈是奇函数,所以f (x )在(-∞,0)上也是减函数,f (0)=0, 故当0x >时,f (x )<0, 当0x <时,f (x )>0,由()()240x f x ->得224040()0()0x x f x f x ⎧⎧->-<⎨⎨><⎩⎩或 ,解得x<-2或0<x<2 故选D. 【点睛】本题考查了函数的导数与函数的单调性的关系,考查了奇函数,以及不等式的解法,关键是构造函数,根据函数单调性分析f (x )>0与f (x )<0的解集.9.B解析:B 【分析】先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案 【详解】由题意可知()02bf x x x '-+≤+=,在[)1x ∈-+∞,上恒成立, 即()2b x x ≤+在[)1x ∈-+∞,上恒成立, 由于()2y x x =+在[)1,-+∞上是增函数且最小值为1-,所以1b ≤-, 故选:B. 【点睛】本题主要考查导数的正负和原函数的增减性的问题,属于中档题.10.A解析:A 【分析】利用函数的定义域和函数的值域排除BD ,通过函数的单调性排除C ,推出结果即可. 【详解】令()ln 1g x x x =--,则11()1x g x x x-'=-=, 由()0g x '>得1x >,即函数()g x 在(1,)+∞上单调递增, 由()0g x '<得01x <<,即函数()g x 在(0,1)上单调递减, 所以当1x =时,()()min 10g x g ==, 于是对任意(0,1)(1,)x ∈+∞,有()0g x >,则()0f x >,故排除BD ,因为函数()g x 在()0,1单调递减,则函数()f x 在()0,1递增,故排除C. 故选:A. 【点睛】本题考查利用导数对函数图象辨别,属于中档题.11.D解析:D 【分析】 构造函数()()cos f x F x x=,利用函数()'F x 导数判断函数()F x 的单调性,将ππππ0,,,,3434x =--代入函数()F x ,根据单调性选出正确的选项.【详解】构造函数()()cos f x F x x=,依题意()()()2cos sin 0cos f x x f x xF x x+='>',故函数在定义域上为增函数,由()π04F F ⎛⎫< ⎪⎝⎭得()π04πcos 0cos4f f ⎛⎫ ⎪⎝⎭<,即()π04f ⎛⎫< ⎪⎝⎭,排除A 选项.由ππ34F F ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭得ππ34ππcos cos34f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>ππ34f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,排除B 选项.由()π03F F ⎛⎫< ⎪⎝⎭得()π03πcos 0cos3f f ⎛⎫ ⎪⎝⎭<,即()π023f f⎛⎫< ⎪⎝⎭,排除C ,选项. 由ππ34F F ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭得ππ34ππcos cos 34f f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ππ34f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,D 选项正确,故选D. 【点睛】本小题主要考查构造函数法比较大小,考查函数导数的概念,考查函数导数运算,属于基础题.12.A解析:A 【分析】根据题意可将问题转化为方程2ln x ax x -=在1,e e⎡⎤⎢⎥⎣⎦上有解,分离参数可得2ln x x a x -=,令()2ln x xh x x-=,利用导数求出()h x 值域即可求解. 【详解】因为函数2()f x x ax =-(1x e e≤≤)与()x g x e =的图象上存在关于直线y x =对称的点, 则函数2()f x x ax =-(1x e e≤≤,e 为自然对数的底数) 与函数()ln g x x =的图象有交点,即2ln x ax x -=在1,e e ⎡⎤⎢⎥⎣⎦上有解,即2ln x x a x-=在1,e e ⎡⎤⎢⎥⎣⎦上有解,令()2ln x xh x x-=,(1x e e ≤≤),()221ln x xh x x-+'=, 当11x e≤<时,()0h x '<,函数为减函数, 当1x e <≤时,()0h x '>,函数为增函数, 故1x =时,函数取得最小值1, 当1=x e 时,11h e e e ⎛⎫=+ ⎪⎝⎭,当x e =时,()h e e =, 故实数a 的取值范围是11,e e⎡⎤+⎢⎥⎣⎦.故选:A 【点睛】本题考查了利用导数求函数的最值,考查了转化与化归的思想,考查了计算求解能力,属于中档题.二、填空题13.0或或【分析】设切点的坐标由求出切线方程把代入切线方程可求得切点坐标【详解】设的坐标为过点的切线方程为代入点的坐标有整理为解得或或故答案为:0或或【点睛】本题考查导数的几何意义求函数图象的切线方程要解析:0或1-或53【分析】设切点P 的坐标,由P 求出切线方程,把(1,0)代入切线方程可求得切点坐标. 【详解】设P 的坐标为()32,351m m m m +-+,2()9101f x x x +'=-,过点P 的切线方程为()()3223519101()m m m m x y m m +-+=+---,代入点()1,0的坐标有()()()32235191011mm m mm m --+-+=+--,整理为323250m m m --=,解得0m =或1m =-或53m =, 故答案为:0或1-或53. 【点睛】本题考查导数的几何意义.求函数图象的切线方程要分两种情况:(1)函数()y f x =图象在点00(,)P x y 处的切线方程,求出导函数,得出切线方程000()()y y f x x x '-=-;(2)函数()y f x =图象过点00(,)P x y 处的切线方程:设切线坐标11(,)x y ,求出切线方程为111()()y y f x x x '-=-,代入00(,)x y 求得11,x y ,从而得切线方程.14.【详解】因为恒成立所以在R 上递增又所以为奇函数则可化为由递增得解得:0<a <故答案为解析:3(0,)2【详解】因为23+6x 0f x '=()>恒成立,所以f x ()在R 上递增, 又f x f x =(﹣)﹣(),所以f x ()为奇函数,则1120f a f a +(﹣)(﹣)<,可化为121f a f a (﹣)<(﹣), 由f x ()递增,得1212122212a a a a --⎧⎪--⎨⎪--⎩<<<<<,解得:0<a <32,故答案为302⎛⎫ ⎪⎝⎭,.15.【分析】根据定积分的几何意义以及定积分性质求得再求得利用导数分析函数单调性即可求得最大值【详解】令则又即故为半径为的半圆面积故;又是奇函数根据定积分性质则故则故当时单调递增;当时单调递减故故答案为:解析:2π 【分析】 根据定积分的几何意义以及定积分性质,求得a ,再求得f x ,利用导数分析函数单调性,即可求得最大值. 【详解】令m =,)n x dx =,则a m n =+,又y =222x y +=,故m的半圆面积,故212m ππ=⨯=; 又y sinx =是奇函数,根据定积分性质,则0n =.故a π=.则()(),0f x xsinx cosx x π=+≤≤,()f x xcosx =',故当0,2x π⎛⎫∈ ⎪⎝⎭时,0f x,()f x 单调递增;当,2x ππ⎛⎫∈⎪⎝⎭时,0f x,()f x 单调递减.故()22maxf x f ππ⎛⎫== ⎪⎝⎭. 故答案为:2π 【点睛】本题考查利用定积分的几何意义求定积分,以及定积分的性质,涉及利用导数求函数的最大值,属综合中档题.16.【分析】结合图象可得P 为与直线x ﹣y ﹣2=0平行且与函数f (x )相切的切线的切点根据导数几何意义求得点P 坐标最后根据点到直线距离公式得结果【详解】设x ﹣y+m=0与函数的图象相切于点P (x0y0)所【分析】结合图象可得P 为与直线x ﹣y ﹣2=0平行且与函数f (x )相切的切线的切点,根据导数几何意义求得点P 坐标,最后根据点到直线距离公式得结果. 【详解】设x ﹣y +m =0与函数2()ln f x x x =-的图象相切于点P (x 0,y 0).1()2f x x x'=-所以00121x x -=,x 0>0,解得x 0=1.∴y 0=1,∴点P (1,1)到直线x ﹣y ﹣2=0的距离为最小距离d ==. 【点睛】本题考查导数几何意义以及点到直线距离公式,考查基本分析求解能力,属中档题.17.【分析】利用基本函数求导公式和导数运算法则求出导数然后代入求值【详解】解:因为由于且解得:且即的定义域为:即:故答案为:【点睛】本题考查基本函数求导公式和导数运算法则以及复合函数求导考查计算能力解析:23242142x x x x -+--+ 【分析】利用基本函数求导公式和导数运算法则,求出导数,然后代入求值. 【详解】 解:因为()1ln(12)2xf x x x-=+-, 由于20x ≠且120x ->,解得:12x <且0x ≠,即()f x 的定义域为:()1,00,2⎛⎫-∞⋃ ⎪⎝⎭, ()()11()ln 12()ln 1222x x f x x x x x '--⎡⎤''∴=+-='+-⎡⎤⎣⎦⎢⎥⎣⎦2223222(1)14214122122242x x x x x x x x x x -----+-=-+=+=-+---, 即:()23242142x x f x x x -+-'=-+. 故答案为:23242142x x x x-+--+. 【点睛】本题考查基本函数求导公式和导数运算法则,以及复合函数求导,考查计算能力.18.【解析】【分析】利用导数二次函数的性质研究函数的单调性由单调性求得函数在上的最值【详解】因为所以利用导数的符号可得函数的增区间为减区间为因为所以在上单调递增在上单调递减当时函数取得最大值所以所以可得 解析:16-【解析】 【分析】利用导数、二次函数的性质研究函数的单调性,由单调性求得函数在[2,2]-上的最值. 【详解】因为32()3f x x x a =-+,所以2'()363(2)f x x x x x =-=-,利用导数的符号,可得函数的增区间为(,0),(2,)-∞+∞,减区间为(0,2), 因为[2,2]x ∈-,所以()f x 在[2,0]-上单调递增,在[0,2]上单调递减, 当0x =时,函数取得最大值4a =, 所以32()34f x x x =-+,所以(2)812416f -=--+=-,(2)81240f =-+=, 可得当2x =-时,函数取得最小值为16-, 故答案是:16-. 【点睛】该题考查的是有关求函数在某个区间上的最小值的问题,涉及到的知识点有应用导数研究函数最值问题,属于简单题目.19.【分析】求g (x )的导数可得x=0处切线的斜率由两直线平行的条件:斜率相等得方程解方程可得b 的值【详解】函数g (x )=f (x )+sin2x=x3+2ax2+bx+a2+sin2x 则g′(x )=3x2 解析:2-【分析】求g (x )的导数,可得x=0处,切线的斜率,由两直线平行的条件:斜率相等,得方程,解方程可得b 的值. 【详解】函数g (x )=f (x )+sin2x=x 3+2ax 2+bx+a 2+sin2x 则g′(x )=3x 2+4ax+b+2cos2x ,可得g (x )在x=0处的切线的斜率为b+2,由题意可得b+2=0,可得b=-2. 【点睛】本题考查了通过导数求切线的斜率,考查了两直线平行的条件:斜率相等;解答本题的关键是列出函数的导数等于切线斜率的方程.20.【分析】先求导数再根据导数几何意义得切线斜率最后根据点斜式求切线方程【详解】【点睛】求曲线的切线要注意过点P 的切线与在点P 处的切线的差异过点P 的切线中点P 不一定是切点点P 也不一定在已知曲线上而在点P 解析:2y x =【分析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程. 【详解】2222101y k y x x =∴==∴=+'+ 【点睛】求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.三、解答题21.(1)答案见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性;(2)构造函数2()ln x x e x ϕ-=-,利用导数可得()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则可得()0()0x x ϕϕ≥>,即得证.【详解】 (1)11()(0)ax f x a x x x-'=-=>, 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当1,x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.(2)设函数2()ln x x e x ϕ-=-,则21()x x exϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增. 又由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一实数根0x ,且012x <<,则()020010x x e x ϕ-'=-=,即0201x e x -=.当()00,x x ∈时,()0x ϕ'<,()ϕx 单调递减; 当()0x x ∈+∞时,()0x ϕ'>,()ϕx 单调递增;所以()0200()ln x x x ex ϕϕ-≥=-,结合021x e x -=,知002ln x x -=-, 所以()()22000000001211()20x x x x x x x x x ϕϕ--+≥=+-==>,则2()ln 0x x e x ϕ-=->, 即不等式2()x e ax f x --≥恒成立.【点睛】关键点睛:本题考查不等式恒成立的证明,解题的关键是转化为证明2()ln x x e x ϕ-=-的最小值大于0.22.(1)增区间为(1,)+∞,减区间为(0,1);(2)当112em e e<-+或m e >时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上没有零点;当112e e m e e-+≤≤时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上有一个零点.【分析】(1)求得函数的导数21()x f x x -'=,根据导函数的符号,即可求得函数的单调区间; (2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,把函数()g x 的零点个数转化为方程(ln 1)xx e x m -+=的根的个数,构造新函数()(ln 1)xh x x e x =-+,利用导数求得函数()h x 的单调性与最值,结合最值,即可求解. 【详解】(1)由题意,函数()1ln 1f x x x=+-的定义域为(0,)+∞ ,且22111()x f x x x x -'=-=令()0f x '>,解得1x >;令()0f x '<,解得01x <<,所以函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1).(2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,函数()g x 的零点个数等价于方程(ln 1)xx e x m -+=的根的个数,令()(ln 1)xh x x e x =-+,则1()ln 11x h x x e x ⎛⎫'=+-+⎪⎝⎭, 由(1)知,()f x 在1,1e ⎛⎫⎪⎝⎭上单调递减,在(1,)e 上单调递增,所以当1,e e x ⎡⎤∈⎢⎥⎣⎦,()(1)0f x f ≥=,即1ln 10x x +-≥在1,x e e ⎡⎤∈⎢⎥⎣⎦上恒成立, 所以()1ln 11011x h x x e x ⎛⎫'=+-+≥+=⎪⎝⎭. 所以()(ln 1)xh x x e x =-+在1,x e e⎡⎤∈⎢⎥⎣⎦上单调递增,所以1min11()2e h x h e e e ⎛⎫==-+ ⎪⎝⎭,max ()()h x h e e ==,当112em e e<-+或m e>时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上没有零点;当112ee m e e-+≤≤时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上有一个零点.【点睛】对于利用导数研究函数的零点问题求解策略:把函数的零点问题转化为两个函数的图象的交点个数或转化为方程根的个数问题; 通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; 利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.求满足函数零点个数的参数范围时,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围.23.(1)(),1-∞和()2,+∞;(2)()1,8-. 【分析】(1)求出函数的导数,令导数小于0,解出不等式即得单调递减区间;(2)可得不等式等价于220x ax a -+>对于任意[)1,x ∈+∞恒成立,讨论对称轴的范围,令22x ax a -+在[)1,x ∈+∞的最小值大于0即可求出. 【详解】(1)当3a =时,3213()232f x x x x =-+-, 则()()()23212f x x x x x '=-+-=---,令()0f x '<,解得1x <或 2x >,()f x ∴的单调递减区间为(),1-∞和()2,+∞;(2)()22'=-+-f x x ax ,则()2221x ax a -+-<-,即 220x ax a -+>对于任意[)1,x ∈+∞恒成立,令()22g x x ax a =-+,对称轴为 2ax =,开口向上, 当12a≤,即2a ≤时,()g x 在 [)1,+∞单调递增, ∴()()min 1120g x g a a ==-+>,解得 1a >-,12a ∴-<≤;当12a >,即2a >时,()2min 20242a aa g x g a a ⎛⎫==-⨯+> ⎪⎝⎭,解得 08a <<, 28a ∴<<,综上,18a -<<. 【点睛】方法点睛:解决一元二次不等式在给定区间的恒成立问题的方法:构造二次函数,求出函数的对称轴和开口方向,讨论对称轴的范围,结合二次函数的单调性求出最值,然后列出不等式即可求解.24.(1)1e-;(2)证明见解析. 【分析】(1)利用导数得到()f x 单调性,确定()()(){}max max 1,1f x f f =-,进而可得结果; (2)将所证不等式转化为证明10x e x -->,构造函数()1xg x e x =--,利用导数可证得()0g x >,从而得到结论. 【详解】(1)()()()2212xxxf x e xe x x e '=+--=+-,当()1,ln 2x ∈-时,()0f x '<;当()ln 2,1x ∈时,()0f x '>,()f x ∴在[)1,ln 2-上单调递减,在(]ln 2,1上单调递增,()()(){}max max 1,1f x f f ∴=-,又()111121f e e-=--+-=-,()11214f e e =---=-,()()max 11f x f e∴=-=-.(2)要证()1f x x >--,只需证()210xf x x xe x x ++=-->,0x ,∴只需证:10x e x -->.令()1xg x e x =--,则()1xg x e '=-,当0x >时,e 1x >,()0g x '∴>在()0,∞+上恒成立,()g x ∴在()0,∞+上单调递增,()0010g x e ∴>--=,即当0x >时,10x e x -->恒成立,则原命题得证,∴当0x >时,()1f x x >--.【点睛】关键点点睛:本题考查利用导数证明不等式,解题关键是能够通过分析法将所证不等式进行等价转化,从而构造新函数,利用导数求得新函数的最值使得结论得证. 25.(1)21y x =+;(2)13y x = 【分析】(1)对函数求导,代入切点横坐标即可得出斜率,进而可得结果.(2)设切点坐标3000(,16)+-P x x x ,用导数求出切线斜率,再用两点坐标求出斜率,列方程,即可求出切点坐标,进而求出切线方程. 【详解】 (1)()()222222x xy x x +-==++',1|2x k y =-'==切线方程为:(1)2(+1)--=y x ,即2+1=y x(2)设切点为3000(,16)+-P x x x2'()3+1=f x x ,()3200001631x x k f x x x +-=='=+,解得0-2=x (-2,-26)P ,切线方程为:(26)13(2)--=+y x ,即13y x =【点睛】本题考查了导数得几何意义,考查了计算能力,属于基础题目. 26.(1)2001004402p x x λλ=---+,[]4,8x ∈;(2)当λ满足[]0.9,1λ∈时,该销售商才能不亏损. 【分析】(1)根据总利润=赞助费+出售商品利润和已知得解; (2)由题得()()10225x x xλ++在[]4,8x ∈上恒成立,设()2012f x x x=++,利用导数求出函数()f x 的最大值即可得解. 【详解】(1)由题意得20204010405301022p x x x x λλ⎡⎤⎛⎫⎛⎫=+⋅--++⋅- ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦ 2001004402x x λλ=---+,[]4,8x ∈.(2)要使对任意[]4,8x ∈(万元)时,该销售商才能不亏损,即有0p ,变形得()()10225x x xλ++在[]4,8x ∈上恒成立, 而()()210212202012x x x x x x x x ++++==++, 设()2012f x x x =++,()2201f x x =-',令0f x 解得=±x ,所以函数()f x 在4,⎡⎣单调递减,在⎡⎤⎣⎦单调递增,()()(){}max max 4,8f x f f =,因为()()421822.5f f =<=,所以有2522.5λ,解得0.9λ,即当λ满足[]0.9,1λ∈时,该销售商才能不亏损.【点睛】本题主要考查函数和不等式的应用,考查导数的应用,意在考查学生对这些知识的理解掌握水平.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题4一元函数导数及其应用从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.预测2020年高考命题将保持稳定.主观题应用导数研究函数的性质,备考的面要注意做到全覆盖,如导数几何意义的应用、单调性问题、极(最)值问题、零点问题、不等式的证明、参数范围的确定等.一、单选题1.(2020届山东省潍坊市高三下学期开学考试)函数321y x x mx =+++是R 上的单调函数....,则m 的范围是()A .1(,)3+∞B .1(,3-∞C .1[,)3+∞D .1(,3-∞2.(2020·山东高三下学期开学)已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为()A .y x=-B .2y x =-+C .y x=D .2y x =-3.(2020届山东省济宁市高三3月月考)已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则()A .M 的最小值为25B .M 的最小值为45C .M 的最小值为85D .M 的最小值为1254.(2020·山东滕州市第一中学高三3月模拟)函数()()()2sin xx e e x f x x eππ-+=-≤≤的图象大致为()A .B .C .D .5.(2020届山东省菏泽一中高三2月月考)已知奇函数()f x 是R 上增函数,()()g x xf x =则()A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.(2020届山东省济宁市第一中学高三二轮检测)已知函数()y f x =的导函数()f x '的图象如图所示,则下列判断正确的是()A .函数()y f x =在区间13,2⎛⎫--⎪⎝⎭内单调递增B .当2x =-时,函数()y f x =取得极小值C .函数()y f x =在区间()2,2-内单调递增D .当3x =时,函数()y f x =有极小值7.(2020届山东省青岛市高三上期末)已知奇函数()f x 是R 上增函数,()()g x xf x =则()A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭二、多选题8.(2020届山东省济宁市高三3月月考)设函数()()ln ,01,0x x x f x e x x ⎧>⎪=⎨+≤⎪⎩,若函数()()g x f x b =-有三个零,则实数b 可取的值可能是()A .0B .12C .1D .29.(2020·山东滕州市第一中学高三3月模拟)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a =--(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是()A .12B .2C .2e D .10.(2020·2020届山东省淄博市高三二模)已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则()A .MB .当M 最小时,2125x =C .M 的最小值为45D .当M 最小时,265x =三、填空题11.(2020届山东省菏泽一中高三2月月考)已知直线2y x =+与曲线ln()y x a =+相切,则a =12.(2020届山东省烟台市高三模拟)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为__________.13.(2020届山东省淄博市部分学校高三3月检测)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是_____________.14.(2020·山东高三模拟)已知函数()ln 2f x x x a =-在点(1,(1))f 处的切线经过原点,函数()()f x g x x=的最小值为m ,则2m a +=________.15.(2020届山东省济宁市第一中学高三二轮检测)若函数()()1,f x a nx a R =∈与函数()g x =共点处有共同的切线,则实数a 的值为______.16.(2020届山东省济宁市高三3月月考)如图所示,某几何体由底面半径和高均为1的圆柱与半径为1的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为__________.17.(2020届山东省淄博市高三二模)已知函数()f x 的定义域为R ,导函数为()f x ',若()()cos f x x f x =--,且()sin 02xf x '+<,则满足()()0f x f x π++≤的x 的取值范围为______.四、解答题18.(2020届山东省济宁市第一中学高三二轮检测)已知函数()1xf x x ae =-+(1)讨论()f x 的单调性;(2)当1a =-时,设1210,0x x -<<>且()()125f x f x +=-,证明:12124x x e->-+.19.(2019·宁德市高级中学高三月考(理))已知函数)f x =(a e 2x +(a ﹣2)e x ﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.20.(2020·山东高三模拟)已知函数()21()1ln ()2f x m x x m =--∈R .(1)若1m =,求证:()0f x ≥.(2)讨论函数()f x 的极值;(3)是否存在实数m ,使得不等式111()x f x x e->-在(1,)+∞上恒成立?若存在,求出m 的最小值;若不存在,请说明理由.21.(2020届山东省高考模拟)已知函数2()2ln ()f x x ax x a R =-+∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.22.(2020届山东省济宁市高三3月月考)已知函数()()()1xf x ax e a R =-∈.(1)求函数()f x 的单调区间;(2)是否存在一个正实数a ,满足当x ∈R 时,()1f x ≤恒成立,若存在,求出a 的值;若不存在,请说明理由.23.(2020届山东省潍坊市高三模拟一)已知函数()cos sin xf x e x x x =-,()sin x g x x =-,其中e是自然对数的底数.(Ⅰ)12ππ,0,0,22x x ⎡⎤⎡⎤∀∈-∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x m g x ≤+成立,试求实数m 的取值范围;(Ⅱ)若1x >-,求证:()()0f x g x ->.24.(2020届山东省潍坊市高三模拟二)已知函数()ln ,f x x x kx k R =+∈.(1)求()y f x =在点(1,(1))f 处的切线方程;(2)若不等式2()f x x x ≤+恒成立,求k 的取值范围;(3)求证:当*n N ∈时,不等式()2212ln 4121ni n ni n =-->+∑成立.25.(2020届山东省菏泽一中高三2月月考)已知函数()ln 2sin f x x x x =-+,()f x '为()f x 的导函数.(1)求证:()f x '在()0π,上存在唯一零点;(2)求证:()f x 有且仅有两个不同的零点.26.(2020届山东济宁市兖州区高三网络模拟考)已知函数()2ln f x x ax =-,a R ∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当1a =-时,令2()()g x x f x =-,其导函数为()g x ',设12,x x 是函数()g x 的两个零点,判断122x x +是否为()g x '的零点?并说明理由.27.(2020届山东省潍坊市高三下学期开学考试)已知2()2ln(2)(1)f x x x =+-+,()(1)g x k x =+.(1)当2k =时,求证:对于1x ∀>-,()()f x g x <恒成立;(2)若存在01x >-,使得当()01,x x ∈-时,恒有()()f x g x >成立,试求k 的取值范围.28.(2020届山东省淄博市高三二模)(本小题满分12分)设函数()()22ln 11x f x x x =+++.(Ⅰ)讨论函数()f x 的单调性;(Ⅱ)如果对所有的x ≥0,都有()f x ≤ax ,求a 的最小值;(Ⅲ)已知数列{}n a 中,11a =,且()()1111n n a a +-+=,若数列{}n a 的前n 项和为n S ,求证:11ln 2n n n na S a a ++>-.29.(2020届山东省烟台市高三模拟)已知函数()()2ln 12a f x x x xb =---,,R a b ∈.(1)当-1b =时,讨论函数()f x 的零点个数;(2)若()f x 在()0,∞+上单调递增,且2a b c e +≤求c 的最大值.30.(2020·山东滕州市第一中学高三3月模拟)已知()ln f x x =,()()2102g x ax bx a =+≠,()()()h x f x g x =-.(Ⅰ)若3,2a b ==,求()h x 的极值;(Ⅱ)若函数()y h x =的两个零点为()1212,x x x x ≠,记1202x x x +=,证明:()00h x '<.31.(2020届山东省泰安市肥城市一模)已知函数()22()xf x e ax x a =++在1x =-处取得极小值.(1)求实数a 的值;(2)若函数()f x 存在极大值与极小值,且函数()()2g x f x x m =--有两个零点,求实数m 的取值范围.(参考数据:e 2.718≈2.236≈)32.(2020·山东高三下学期开学)已知函数()ln 1f x x x =-,()()22g x ax a x =--.(1)设函数()()()H x f x g x '=-,讨论()H x 的单调性;(2)设函数()()()2G x g x a x =+-,若()f x 的图象与()G x 的图象有()11A x y ,,()22B x y ,两个不同的交点,证明:()12ln 2ln 2x x >+.33.(2020届山东省淄博市部分学校高三3月检测)已知函数2()2ln =-f x x x x ,函数2()(ln )=+-ag x x x x,其中a R ∈,0x 是()g x 的一个极值点,且()02g x =.(1)讨论()f x 的单调性(2)求实数0x 和a 的值(3)证明()*11ln(21)2=>+∈nk n n N 34.(2020届山东省六地市部分学校高三3月线考)已知函数()()20f x lnx ax x a =--+≥.()1讨论函数()f x 的极值点的个数;()2若函数()f x 有两个极值点1x ,2x ,证明:()()12322f x f x ln +>-.专题4一元函数导数及其应用从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.预测2021年高考命题将保持稳定.主观题应用导数研究函数的性质,备考的面要注意做到全覆盖,如导数几何意义的应用、单调性问题、极(最)值问题、零点问题、不等式的证明、参数范围的确定等.一、单选题1.(2020届山东省潍坊市高三下学期开学考试)函数321y x x mx =+++是R 上的单调函数....,则m 的范围是()A .1(,)3+∞B .1(,3-∞C .1[,)3+∞D .1(,3-∞【答案】C 【解析】若函数321y x x mx =+++是R 上的单调函数,只需2320y x x m '=++≥恒成立,即141203m m =-≤∴≥ ,.故选:C .2.(2020·山东高三下学期开学)已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为()A .y x =-B .2y x =-+C .y x=D .2y x =-【答案】A 【解析】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A3.(2020届山东省济宁市高三3月月考)已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则()A .M 的最小值为25B .M 的最小值为45C .M 的最小值为85D .M 的最小值为125【答案】B 【解析】由题意,()()221212M x x y y =-+-的最小值可转化为函数ln 2y x x =-+图象上的点与直线242ln 20x y +--=上的点的距离的最小值的平方.ln 2y x x =-+,得11y x'=-,与直线242ln 20x y +--=平行的直线斜率为12-,令1112x -=-,解得2x =,所以切点的坐标为()2ln 2,切点到直线242ln 20x y +--=的距离5d ==即()()221212M x x y y =-+-的最小值为45.故选:B4.(2020·山东滕州市第一中学高三3月模拟)函数()()()2sin xx ee xf x x eππ-+=-≤≤的图象大致为()A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()f x f x -=-,则函数()f x 的图像关于坐标原点对称,据此可排除B 选项,考查函数()x x g x e e -=+,则()()21'x x x xe g x e e e--=-=,当0x >时,()g x 单调递增,则344g g ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,据此有:344f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,据此可排除C 选项;当0πx <<时,0,sin 0x x e e x -+>>,则()0f x >,据此可排除D 选项;本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.5.(2020届山东省菏泽一中高三2月月考)已知奇函数()f x 是R 上增函数,()()g x xf x =则()A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】B 【解析】由奇函数()f x 是R 上的增函数,可得()0f x '≥,以及当0x >时,()0f x >,当0x <时,()0f x <,由()()g x xf x =,则()()()()g x xf x xf x g x -=--==,即()g x 为偶函数.因为()()()g x f x xf x ''=+,所以当0x >时,()0g x '>,当0x <时,()0g x '<.故0x >时,函数()g x 单调递增,0x <时,函数()g x 单调递减.因为()331log log 44g g ⎛⎫= ⎪⎝⎭,2303232221log 4--<<=<所以233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B .6.(2020届山东省济宁市第一中学高三二轮检测)已知函数()y f x =的导函数()f x '的图象如图所示,则下列判断正确的是()A .函数()y f x =在区间13,2⎛⎫--⎪⎝⎭内单调递增B .当2x =-时,函数()y f x =取得极小值C .函数()y f x =在区间()2,2-内单调递增D .当3x =时,函数()y f x =有极小值【答案】BC 【解析】对于A ,函数()y f x =在区间13,2⎛⎫--⎪⎝⎭内有增有减,故A 不正确;对于B ,当2x =-时,函数()y f x =取得极小值,故B 正确;对于C ,当()2,2x ∈-时,恒有()0f x '>,则函数()y f x =在区间()2,2-上单调递增,故C 正确;对于D ,当3x =时,()0f x '≠,故D 不正确.故选:BC7.(2020届山东省青岛市高三上期末)已知奇函数()f x 是R 上增函数,()()g x xf x =则()A .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭C .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【答案】B 【解析】由奇函数()f x 是R 上的增函数,可得()0f x '≥,以及当0x >时,()0f x >,当0x <时,()0f x <,由()()g x xf x =,则()()()()g x xf x xf x g x -=--==,即()g x 为偶函数.因为()()()g x f x xf x ''=+,所以当0x >时,()0g x '>,当0x <时,()0g x '<.故0x >时,函数()g x 单调递增,0x <时,函数()g x 单调递减.因为()331log log 44g g ⎛⎫= ⎪⎝⎭,2303232221log 4--<<=<所以233231log 224g g g --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:B .二、多选题8.(2020届山东省济宁市高三3月月考)设函数()()ln ,01,0x x x f x e x x ⎧>⎪=⎨+≤⎪⎩,若函数()()g x f x b =-有三个零,则实数b 可取的值可能是()A .0B .12C .1D .2【答案】BC 【解析】由题意,函数()()g x f x b =-有三个零点,则函数()()0g x f x b =-=,即()f x b =有三个根,当0x ≤时,()()1xf x ex =+,则()()()12x x x e x e x x e f =++=+'由()0f x '<得20x +<,即2x <-,此时()f x 为减函数,由()0f x '>得20x +>,即20x -<≤,此时()f x 为增函数,即当2x =-时,()f x 取得极小值()212f e-=-,作出()f x 的图象如图:要使()f x b =有三个根,则01b <≤,则实数b 可取的值可能是12,1故选:BC9.(2020·山东滕州市第一中学高三3月模拟)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()xg x e a =--(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是()A .12B .2C .2e D .【答案】BCD 【解析】令函数21()()2T x f x x =-,因为2()()f x f x x -+=,22211()()()()()()()022T x T x f x x f x x f x f x x ∴+-=-+---=+--=,()T x ∴为奇函数,当0x 时,()()0T x f x x '='-<,()T x ∴在(],0-∞上单调递减,()T x ∴在R 上单调递减.存在0{|()(1)}x x T x T x ∈- ,∴得00()(1)T x T x - ,001x x - ,即012x,()x g x e a =-- ;1(2x,0x 为函数()y g x =的一个零点;当12x时,()0x g x e '= ,∴函数()g x 在12x 时单调递减,由选项知0a >,取12x =<,又0g e⎛=> ⎝,∴要使()g x 在12x时有一个零点,只需使102g a ⎛⎫=- ⎪⎝⎭,解得2a ,a ∴的取值范围为,2⎡⎫+∞⎪⎢⎪⎣⎭,故选:BCD .10.(2020·2020届山东省淄博市高三二模)已知111ln 20x x y --+=,22242ln 20x y +--=,记()()221212M x x y y =-+-,则()A .MB .当M 最小时,2125x =C .M 的最小值为45D .当M 最小时,265x =【答案】BC 【解析】由111ln 20x x y --+=,得:111ln 2y x x =-+,()()221212x x y y -+-的最小值可转化为函数ln 2y x x =-+图象上的点到直线242ln 20x y +--=上的点的距离的最小值的平方,由ln 2y x x =-+得:11y x'=-,与直线242ln 20x y +--=平行的直线的斜率为12-,则令1112x -=-,解得:2x =,∴切点坐标为()2,ln 2,()2,ln 2∴到直线242ln 20x y +--=的距离5d ==.即函数ln 2y x x =-+上的点到直线242ln 20x y +--=上的点的距离的最小值为5.()()221212M x x y y ∴=-+-的最小值为245d =,过()2,ln 2与242ln 20x y +--=垂直的直线为()ln 222y x -=-,即24ln 20x y --+=.由242ln 2024ln 20x y x y +--=⎧⎨--+=⎩,解得:125x =,即当M 最小时,2125x =.故选:BC.三、填空题11.(2020届山东省菏泽一中高三2月月考)已知直线2y x =+与曲线ln()y x a =+相切,则a =【答案】3【解析】设切点为(x 0,y 0),由题意可得:曲线的方程为y =ln (x+a ),所以y '=1x a+.所以k 切=01x a+=1,并且y 0=x 0+2,y 0=ln (x 0+a ),解得:y 0=0,x 0=﹣2,a =3.故答案为3.12.(2020届山东省烟台市高三模拟)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为__________.【答案】(1,)+∞【解析】设F (x )()xf x e=,则F ′(x )()()'xf x f x e -=,∵()()f x f x '>,∴F ′(x )>0,即函数F (x )在定义域上单调递增.∵()()121x ef x f x -<-∴()()2121xx f x f x ee--<,即F (x )<F (2x 1-)∴x 2x 1-<,即x >1∴不等式()()121x ef x f x -<-的解为()1,+∞故答案为:()1,+∞13.(2020届山东省淄博市部分学校高三3月检测)已知函数()2sin sin 2f x x x =+,则()f x 的最小值是_____________.【答案】2-【解析】分析:首先对函数进行求导,化简求得()()1'4cos 1cos 2f x x x ⎛⎫=+-⎪⎝⎭,从而确定出函数的单调区间,减区间为()52,233k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦,增区间为()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,确定出函数的最小值点,从而求得33sin ,sin222x x =-=-代入求得函数的最小值.详解:()()21'2cos 2cos24cos 2cos 24cos 1cos 2f x x x x x x x ⎛⎫=+=+-=+-⎪⎝⎭,所以当1cos 2x <时函数单调减,当1cos 2x >时函数单调增,从而得到函数的减区间为()52,233k k k Z ππππ⎡⎤--∈⎢⎥⎣⎦,函数的增区间为()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,所以当2,3x k k Z ππ=-∈时,函数()f x 取得最小值,此时sin ,sin222x x =-=-,所以()min 2222f x ⎛⎫=⨯--=- ⎪ ⎪⎝⎭,故答案是2-.14.(2020·山东高三模拟)已知函数()ln 2f x x x a =-在点(1,(1))f 处的切线经过原点,函数()()f x g x x=的最小值为m ,则2m a +=________.【答案】0【解析】()1ln f x x '=+,(1)1f '=,(1)2f a =-,切线1l 的方程:21y a x +=-,又1l 过原点,所以21a =-,()ln 1f x x x =+,1()ln g x x x =+,22111()x g x x x x-'=-=.当(0,1)x ∈时,()0g x '<;当(1,)x ∈+∞时,()0g x '>.故函数()()f x g x x=的最小值(1)1g =,所以1,20m m a =+=.故答案为:0.15.(2020届山东省济宁市第一中学高三二轮检测)若函数()()1,f x a nx a R =∈与函数()g x =共点处有共同的切线,则实数a 的值为______.【答案】2e 【解析】函数()ln f x a x =的定义域为()0,+∞,()af x x '=,()g x '=设曲线()ln f x a x =与曲线()g x =()00,x y ,由于在公共点处有共同的切线,∴0a x =,解得204x a =,0a >.由()()00f x g x =,可得0ln a x =联立2004x a alnx ⎧=⎪⎨=⎪⎩,解得2e a =.故答案为:2e.16.(2020届山东省济宁市高三3月月考)如图所示,某几何体由底面半径和高均为1的圆柱与半径为1的半球对接而成,在该封闭几何体内部放入一个小圆柱体,且小圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为__________.【答案】3227π【解析】由题意,设小圆柱体底面半径为cos θ,则高为1sin 0,2πθθ⎛⎫+∈ ⎪⎝⎭,,小圆柱体体积()2cos 1sin V πθθ=⋅⋅+,设()sin 0,1t t θ=∈,,则()()()232111V tt tt t ππ=⋅-+=⋅--++则()()()2321311V t t t t ππ'=⋅--+=⋅-++当13t =时,max 3227V π=故答案为:3227π17.(2020届山东省淄博市高三二模)已知函数()f x 的定义域为R ,导函数为()f x ',若()()cos f x x f x =--,且()sin 02xf x '+<,则满足()()0f x f x π++≤的x 的取值范围为______.【答案】,2π⎡⎫-+∞⎪⎢⎣⎭【解析】依题意,()()()cos cos 22x xf x f x --=--+,令()()cos 2xg x f x =-,则()()g x g x =--,故函数()g x 为奇函数()()()cos sin 022x x g x f x f x '⎡⎤''=-=+<⎢⎥⎣⎦,故函数()g x 在R 上单调递减,则()()()()()cos cos 0022x xf x f x f x f x πππ+++≤⇒+-+-≤()()()()()0g x g x g x g x g x ππ⇔++≤⇔+≤-=-,即x x π+≥-,故2x π≥-,则x 的取值范围为,2π⎡⎫-+∞⎪⎢⎣⎭.故答案为:,2π⎡⎫-+∞⎪⎢⎣⎭四、解答题18.(2020届山东省济宁市第一中学高三二轮检测)已知函数()1xf x x ae =-+(1)讨论()f x 的单调性;(2)当1a =-时,设1210,0x x -<<>且()()125f x f x +=-,证明:12124x x e->-+.【答案】(1)见解析(2)见解析【解析】(1)()1xf x ae ='+,当0a ≥时,()0f x '>,则()f x 在R 上单调递增.当0a <时,令()0f x '>,得1ln x a ⎛⎫<-⎪⎝⎭,则()f x 的单调递增区间为1,ln a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭,令()0f x '<,得1ln x a ⎛⎫>-⎪⎝⎭,则()f x 的单调递减区间为1ln ,a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭.(2)证明:(法一)设()()231xg x f x x e x =+=-+-,则()3xg x e =-+',由()0g x '<得ln3x >;由()0g x '>得ln3x <,故()()max ln33ln340g x g ==-<从而得()()20g x f x x =+<,()()()()1222125,2520f x f x f x x f x x +=-∴+=--+< ,即12124x x e->-+.(法二)()()1212125,3xxf x f x x e e x +=-∴=+-- ,12122233x x x x e e x ∴-=+--,设()3xg x e x =-,则()3xg x e '=-,由()0g x '<得ln3x >;由()0g x '>得ln3x <,故()()min ln333ln3g x g ==-.1210,0x x -< ,1121233ln33ln3x x e e-∴->+-=-,3ln3ln274=< ,12124x x e ∴->-+.19.(2019·宁德市高级中学高三月考(理))已知函数)f x =(a e 2x +(a ﹣2)e x ﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【答案】(1)见解析;(2)(0,1).【解析】(1)()f x 的定义域为(),-∞+∞,()()()()2221121xx x x f x aea e ae e =+---'=+,(ⅰ)若0a ≤,则()0f x '<,所以()f x 在(),-∞+∞单调递减.(ⅱ)若0a >,则由()0f x '=得ln x a =-.当(),ln x a ∈-∞-时,()0f x '<;当()ln ,x a ∈-+∞时,()0f x '>,所以()f x 在(),ln a -∞-单调递减,在()ln ,a -+∞单调递增.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点.(ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为()1ln 1ln f a a a-=-+.①当1a =时,由于()ln 0f a -=,故()f x 只有一个零点;②当()1,a ∈+∞时,由于11ln 0a a-+>,即()ln 0f a ->,故()f x 没有零点;③当()0,1a ∈时,11ln 0a a-+<,即()ln 0f a -<.又()()4222e2e 22e 20f a a ----=+-+>-+>,故()f x 在(),ln a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>- ⎪⎝⎭,则()()00000000e e 2e 20n n n n f n a a n n n =+-->->->.由于3ln 1ln a a ⎛⎫->-⎪⎝⎭,因此()f x 在()ln ,a -+∞有一个零点.综上,a 的取值范围为()0,1.20.(2020·山东高三模拟)已知函数()21()1ln ()2f x m x x m =--∈R .(1)若1m =,求证:()0f x ≥.(2)讨论函数()f x 的极值;(3)是否存在实数m ,使得不等式111()x f x x e->-在(1,)+∞上恒成立?若存在,求出m 的最小值;若不存在,请说明理由.【答案】(1)证明见解析;(2)见解析;(3)存在,1.【解析】(1)1m =,()21()1ln (0)2f x x x x =-->,211()x f x x x x-'=-+=,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,∴min ()(1)0f x f ==,故()0f x ≥.(2)由题知,0x >,211()mx f x mx x x -'=-+=,①当0m ≤时,21()0mx f x x-'=<,所以()f x 在(0,)+∞上单调递减,没有极值;②当0m >时,21()0mx f xx-'==,得x =,当x⎛∈ ⎝时,()0f x '<;当x ⎫∈+∞⎪⎭时,()0f x '>,所以()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎭上单调递增.故()f x 在x=111ln 222f m m =+-,无极大值.(3)不妨令11111()x x x e xh x x e xe----=-=,设11(),(1,),()10x x u x e x x u x e --'=-∈+∞=->在(1,)+∞恒成立,()u x 在[1,)+∞单调递增,()(1)0u x u ∴>=,10x e x -∴-≥在(1,)+∞恒成立,所以,当(1,)x ∈+∞时,()0h x >,由(2)知,当0,1m x ≤>时,()f x 在(1,)+∞上单调递减,()(1)0f x f <=恒成立;所以不等式111()x f x x e->-在(1,)+∞上恒成立,只能0m >.当01m <<1>,由(1)知()f x 在⎛ ⎝上单调递减,所以(1)0f f<=,不满足题意.当m 1≥时,设()21111()1ln 2x F x m x x x e-=---+,因为1,1m x ≥>,所以11111,1,01,10x x x mx x e e e---≥><<-<-<,322122111111()1x x x x F x mx x x x e x x x---+'=-++->-++-=,即()22(1)1()0x x F x x--'>>,所以()F x 在(1,)+∞上单调递增,又(1)0F =,所以(1,)x ∈+∞时,()0F x >恒成立,即()()0f x h x ->恒成立,故存在m 1≥,使得不等式111()x f x x e->-在(1,)+∞上恒成立,此时m 的最小值是1.21.(2020届山东省高考模拟)已知函数2()2ln ()f x x ax x a R =-+∈.(1)讨论()f x 的单调性;(2)若()f x 有两个极值点()1212,x x x x <,当a ≥()()21f x f x -的最大值.【答案】(1)当4a ≤时,()f x 在(0,)+∞上单调递增;当4a >时,()f x 在160,4a ⎛- ⎪⎝⎭,,4a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增;在,44a a ⎛+ ⎪ ⎪⎝⎭上单调递减;(2)12e e-+【解析】(1)由2()2ln f x x ax x =-+得2()2f x x a x'=-+;因为0x >,所以224x x+≥;因此,当4a ≤时,2()20f x x a x'=-+≥在(0,)+∞上恒成立,所以()f x 在(0,)+∞上单调递增;当4a >时,由2()20f x x a x '=-+>得2220x ax -+>,解得164a a x >或1604a a x <<;由2()20f x x a x '=-+<得161644a a x -+<<;所以()f x在0,4a ⎛⎫ ⎪ ⎪⎝⎭,,4a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增;在,44a a ⎛-+⎝⎭上单调递减;综上,当4a ≤时,()f x 在(0,)+∞上单调递增;当4a >时,()f x在0,4a ⎛- ⎪⎝⎭,,4a ⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增;在,44a a ⎛-+⎪ ⎪⎝⎭上单调递减;(2)若()f x 有两个极值点()1212,x x x x <,由(1)可得,12,x x 是方程2220x ax -+=的两不等实根,所以122ax x +=,121x x =,因此()()2221222111(2ln )(2ln )f x f x x ax x x ax x -=-+--+222222211212122222211212()()2ln2ln 2ln x x x x x x x x x x x x x x x -++=-+=-+=+-,令22t x =,则2222222111()()2ln 2ln f x f x t t x x x t-=-+=-+;由(1)可知24a x =,当a ≥24x a +=≥=,所以[)22,e t x ∈=+∞,令1()2ln g t t t t=-+,[),t e ∈+∞,则222221221(1)()10t t t g t t t t t-+-'=--+=-=-<在[),t e ∈+∞上恒成立;所以1()2ln g t t t t=-+在[),t e ∈+∞上单调递减,故max 1()()2g t g e e e==-+.即()()21f x f x -的最大值为12e e-+.22.(2020届山东省济宁市高三3月月考)已知函数()()()1xf x ax e a R =-∈.(1)求函数()f x 的单调区间;(2)是否存在一个正实数a ,满足当x ∈R 时,()1f x ≤恒成立,若存在,求出a 的值;若不存在,请说明理由.【答案】(1)0a =时,()f x 的增函数区间为(),-∞+∞,无减函数区间;0a >时,()f x 的增函数区间为1,a a -⎛⎫-∞ ⎪⎝⎭,减函数区间为1,a a -⎛⎫+∞ ⎪⎝⎭;0a <时,()f x 的增函数区间为1,a a -⎛⎫+∞ ⎪⎝⎭,减函数区间为1,a a -⎛⎫-∞ ⎪⎝⎭;(2)存在,1.【解析】(1)函数()(),1xx R f x ax e ∈=-的定义域为R ,()()()11x x x f x ae ax e e ax a '=-+-=-+-①若()()0,,xa f x e f x ==在(),-∞+∞上为增函数;②若0a >,∵0x e >,∴当1a x a -<时,()0f x '>;当1ax a->时,()0f x '<;所以()f x 在1,a a -⎛⎫-∞ ⎪⎝⎭上为增函数,在1,a a -⎛⎫+∞ ⎪⎝⎭上为减函数;③若0a <,∵0x e >,∴当1a x a -<时,()0f x '<;当1ax a->时,()0f x '>;所以()f x 在1,a a -⎛⎫-∞ ⎪⎝⎭上为减函数,在1,a a -⎛⎫+∞ ⎪⎝⎭为增函数综上可知,0a =时,()f x 的增函数区间为(),-∞+∞,无减函数区间;0a >时,()f x 的增函数区间为1,a a -⎛⎫-∞ ⎪⎝⎭,减函数区间为1,a a -⎛⎫+∞ ⎪⎝⎭;0a <时,()f x 的增函数区间为1,a a -⎛⎫+∞⎪⎝⎭,减函数区间为1,a a -⎛⎫-∞ ⎪⎝⎭;(2)由(1)知,0a >时,()f x 的最大值为11aaa f aea --⎛⎫= ⎪⎝⎭,若对任意实数x ,()1f x ≤恒成立,只须使11a aae -≤即可.又因为0a >,所以不等式11a aae -≤等价于:1ln 0aaae-⎛⎫≤⎪⎝⎭,即:1ln 0aa a-+≤,设()()1ln 0ag a a a a -=+>,则()()22111a a a g a a a a----'=+=,∴当01a <<时,()'0g a <;当1a >时,()0g a '>所以,()g a 在()0,1上为减函数,在()1,+∞上为增函数,∴当01a <<时,()()10g a g >=,不等式1ln 0aa a-+≤不成立,当1a >时,()()10g a g >=,不等式1ln 0aa a -+≤不成立,当1a =时,()()10g a g ==,不等式1ln 0aa a-+≤成立,∴存在正实数a 且1a =时,满足当x ∈R 时,()1f x ≤恒成立.23.(2020届山东省潍坊市高三模拟一)已知函数()cos sin xf x e x x x =-,()sin xg x x =-,其中e是自然对数的底数.(Ⅰ)12ππ,0,0,22x x ⎡⎤⎡⎤∀∈-∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x m g x ≤+成立,试求实数m 的取值范围;(Ⅱ)若1x >-,求证:()()0f x g x ->.【答案】(Ⅰ))1,++∞;(Ⅱ)证明见解析.【解析】(Ⅰ)由题意,12ππ,0,0,22x x ⎡⎤⎡⎤∀∈-∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x m g x ≤+成立,等价于[]1max 2max ()()f x mg x ≤+.1分()(cos sin )(sin cos )()cos (1)sin x x x f x e x x x x x e x x e x =----+'+=,当π[,0]2x ∈-时,()0f x '>,故()f x 在区间π[0,]2上单调递增,所以0x =时,()f x 取得最大值1.即max ()1f x =又当π[0,]2x ∈时,()cos xg x x =-',()sin 0xg x x '-'=-<所以()g x '在π[0,]2上单调递减,所以()()010g x g ≤=-'<',故()g x 在区间π[0,2上单调递减,因此,0x =时,max ()(0)g x g ==.所以1m ≤,则1m ≥+.实数m的取值范围是)1,++∞.(Ⅱ)当1x >-时,要证,只要证e cos sin sin 0x x x x x x -->,即证(()ecos 1sin xx x x +>+,由于cos 0,10x x +>+>,只要证e 1x x >+.下面证明1x >-时,不等式e 1x x >+令()()e11xh x x x =>-+,则()()()()22e 1e e 11x xxx x h x x x =+'+-=+,当()1,0x ∈-时,()0h x '<,()h x 单调递减;当()0,x ∈+∞时,()0h x '>,()h x 单调递增.所以当且仅当0x =时,()h x 取最小值为1.法一:k =cos sin k x x =,即sin cos x k x -=,即sin()x ϕ-=1≤,即11k -≤≤,所以max 1k =,而()()min01h x h ==,但当0x =时,()010k h =<=;0x ≠时,()1h x k>≥所以,maxmin e 1x x ⎛⎫> ⎪+⎝⎭,即e 1x x >+综上所述,当1x >-时,成立.法二:令()x ϕ=()cos ,sin A x x与点()B 连线的斜率k ,所以直线AB的方程为:(y k x =+,由于点A 在圆221x y +=上,所以直线AB 与圆221x y +=相交或相切,当直线AB 与圆221x y +=相切且切点在第二象限时,直线AB 取得斜率k 的最大值为1.而当0x =时,()(0)010h ϕ=<=;0x ≠时,()1h x k >≥.所以,minmax ()()h x x ϕ>,即e 1x x >+综上所述,当1x >-时,成立.法三:令()x ϕ=()x ϕ'=,当32,()4x k k N ππ=+∈时,()x ϕ取得最大值1,而()()min01h x h ==,但当0x =时,()()0010h ϕ=<=;0x ≠时,()1h x k >≥所以,minmax ()()h x x ϕ>,即e 1x x >+综上所述,当1x >-时,成立.24.(2020届山东省潍坊市高三模拟二)已知函数()ln ,f x x x kx k R =+∈.(1)求()y f x =在点(1,(1))f 处的切线方程;(2)若不等式2()f x x x ≤+恒成立,求k 的取值范围;(3)求证:当*n N ∈时,不等式()2212ln 4121ni n n i n =-->+∑成立.【答案】(1)(1)1y k x =+-(2)k 2≤(3)证明见解析【解析】(1)函数()y f x =的定义域为(0,)+∞,()1ln f x x k '=++,(1)1f k '=+,∵(1)f k =,∴函数()y f x =在点(1,(1))f 处的切线方程为(1)(1)y k k x -=+-,即(1)1y k x =+-.(2)由2()f x x x ≤+,()ln f x x x kx =+,则2ln x x kx x x +≤+,即ln 1x k x +≤+,设()ln 1g x x x k =-+-,1()1g x x'=-,()0,1x ∈,()0g x '>,()g x 单调递增,()1,x ∈+∞,()0g x '<,()g x 单调递减,∵不等式2()f x x x ≤+恒成立,且0x >,∴ln 10x x k -+-≤,∴max ()(1)20g x g k ==-≤即可,故k 2≤.(3)由(2)可知:当2k =时,ln 1x x ≤-恒成立,令2141x i =--,由于*i N ∈,21041i >-.故,2211ln 14141i i <---,整理得:()221ln 41141i i ->--,变形得:()21ln 411(21)(21)i i i ->-+-,即:()211ln 41122121i i i ⎛⎫->-- ⎪-+⎝⎭1,2,3,,i n = 时,11ln31123⎛⎫>-- ⎪⎝⎭,11ln51123⎛⎫>-- ⎪⎝⎭……,()2111ln 41122121n n n ⎛⎫->-- ⎪-+⎝⎭两边同时相加得:()22211122ln 4112212121ni n n ni n n n n =-⎛⎫->--=> ⎪+++⎝⎭∑,所以不等式在*n N ∈上恒成立.25.(2020届山东省菏泽一中高三2月月考)已知函数()ln 2sin f x x x x =-+,()f x '为()f x 的导函数.(1)求证:()f x '在()0π,上存在唯一零点;(2)求证:()f x 有且仅有两个不同的零点.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)设()()112cos g x f x x x'==-+,当()0,x π∈时,()212sin 0g x x x'=--<,所以()g x 在()0,π上单调递减,又因为31103g ππ⎛⎫=-+>⎪⎝⎭,2102g ππ⎛⎫=-< ⎪⎝⎭所以()g x 在,32ππ⎛⎫⎪⎝⎭上有唯一的零点α,所以命题得证.(2)①由(1)知:当()0,x α∈时,()0f x '>,()f x 在()0,α上单调递增;当(),x απ∈时,()0f x '<,()f x 在(),απ上单调递减;所以()f x 在()0,π上存在唯一的极大值点32ππαα⎛⎫<<⎪⎝⎭所以()ln 2202222f f ππππα⎛⎫>=-+>-> ⎪⎝⎭又因为2222111122sin 220f e e e e ⎛⎫=--+<--+<⎪⎝⎭所以()f x 在()0,α上恰有一个零点.又因为()ln 20fππππ=-<-<所以()f x 在(),απ上也恰有一个零点.②当[),2x ππ∈时,sin 0x ≤,()ln f x x x ≤-设()ln h x x x =-,()110h x x'=-<所以()h x 在[),2ππ上单调递减,所以()()0h x h π≤<所以当[),2x ππ∈时,()()()0f x h x h π≤≤<恒成立所以()f x 在[),2ππ上没有零点.③当[)2,x π∈+∞时,()ln 2f x x x ≤-+设()ln 2x x x ϕ=-+,()110x xϕ'=-<所以()x ϕ在[)2,π+∞上单调递减,所以()()20x ϕϕπ≤<所以当[)2,x π∈+∞时,()()()20f x x ϕϕπ≤≤<恒成立所以()f x 在[)2,π+∞上没有零点.综上,()f x 有且仅有两个零点.26.(2020届山东济宁市兖州区高三网络模拟考)已知函数()2ln f x x ax =-,a R ∈.(Ⅰ)讨论()f x 的单调性;(Ⅱ)当1a =-时,令2()()g x x f x =-,其导函数为()g x ',设12,x x 是函数()g x 的两个零点,判断122x x +是否为()g x '的零点?并说明理由.【答案】(Ⅰ)当0a ≤时,()f x 在()0,+∞上单调递增;当0a >时,()f x 在2(0,)a 单调递增,在2(,)a+∞上单调递减.(Ⅱ)不是,理由见解析【解析】(Ⅰ)依题意知函数()f x 的定义域为()0,+∞,且()2f x a x'=-,(1)当0a ≤时,()0f x '>,所以()f x 在()0,+∞上单调递增.(2)当0a >时,由()0f x '=得:2x a=,则当20,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>;当2,x a⎛⎫∈+∞ ⎪⎝⎭时()0f x '<.所以()f x 在20,a ⎛⎫ ⎪⎝⎭单调递增,在2,a⎛⎫+∞ ⎪⎝⎭上单调递减.综上,当0a ≤时,()f x 在()0,+∞上单调递增;当0a >时,()f x 在20,a ⎛⎫ ⎪⎝⎭单调递增,在2,a⎛⎫+∞ ⎪⎝⎭上单调递减.(Ⅱ)122x x +不是导函数()g x '的零点.证明如下:当1a =-时,()()222ln g x x f x x x x =-=--.∵1x ,2x 是函数()g x 的两个零点,不妨设120x x <<,22111111222222222ln 02ln 2ln 02ln x x x x x x x x x x x x ⎧⎧--=-=∴⇒⎨⎨--=-=⎩⎩,两式相减得:()()()12121212ln ln x x x x x x -+-=-即:()1212122ln ln 1x x x x x x -+-=-,又()221g x x x-'=-.则()()()121212121212*********ln ln 24421ln ln 2x x x x x x g x x x x x x x x x x x x x x ⎡⎤--+⎛⎫=+--=-=--'⎢⎥⎪+-+-+⎝⎭⎣⎦.设12x t x =,∵120x x <<,∴01t <<,令()()21ln 1t t t t ϕ-=-+,()()()()22211411t t tt t t ϕ-=-=+'+.又01t <<,∴()0t ϕ'>,∴()t ϕ在()0,1上是増函数,则()()10t ϕϕ<=,即当01t <<时,()21ln 01t t t --<+,从而()()1212122ln ln 0x x x x x x ---<+,又121200x x x x <<⇒-<所以()()1212121222ln ln 0x x x x x x x x ⎡⎤--->⎢⎥-+⎣⎦,故1202x x g +⎛⎫>⎪⎝⎭',所以122x x +不是导函数()g x '的零点.27.(2020届山东省潍坊市高三下学期开学考试)已知2()2ln(2)(1)f x x x =+-+,()(1)g x k x =+.(1)当2k =时,求证:对于1x ∀>-,()()f x g x <恒成立;(2)若存在01x >-,使得当()01,x x ∈-时,恒有()()f x g x >成立,试求k 的取值范围.【答案】(1)见解析;(2)(,2)-∞【解析】(1)证明:当2k =时,()2(1)g x x =+。