活性炭过滤器设计计算

合集下载

活性炭罐设计尺寸计算公式

活性炭罐设计尺寸计算公式

活性炭罐设计尺寸计算公式活性炭罐是一种用于去除水中有机物质、氯、异味和色度的设备,广泛应用于饮用水处理、工业废水处理和污水处理等领域。

为了确保活性炭罐的效果,设计尺寸的计算是非常重要的。

本文将介绍活性炭罐设计尺寸的计算公式及其相关知识。

活性炭罐设计尺寸的计算公式通常包括以下几个方面,活性炭罐的直径、高度、填料层高度、活性炭质量等。

在进行计算之前,需要明确活性炭罐的设计参数,如流量、处理水质等。

首先,我们来看活性炭罐直径的计算公式。

活性炭罐的直径可以通过以下公式计算:D = Q / (2.5 v)。

其中,D为活性炭罐的直径(m),Q为水处理流量(m³/h),v为水的线速度(m/h)。

根据实际情况选择合适的线速度,通常在10-20m/h之间。

接下来是活性炭罐的高度计算公式。

活性炭罐的高度可以通过以下公式计算:H = t Q / (3.14 D d)。

其中,H为活性炭罐的高度(m),t为活性炭接触时间(h),Q为水处理流量(m³/h),D为活性炭罐的直径(m),d为填料的密度(kg/m³)。

填料的密度可以根据实际情况选取。

然后是填料层高度的计算公式。

填料层高度可以通过以下公式计算:L = H (1 ε)。

其中,L为填料层高度(m),H为活性炭罐的高度(m),ε为填料的孔隙率。

填料的孔隙率可以根据实际情况选取。

最后是活性炭质量的计算公式。

活性炭质量可以通过以下公式计算:M = Q t C。

其中,M为活性炭质量(kg),Q为水处理流量(m³/h),t为活性炭接触时间(h),C为活性炭的用量(kg/m³)。

活性炭的用量可以根据实际情况选取。

通过以上计算公式,可以得到活性炭罐的设计尺寸。

在实际应用中,还需要考虑到工艺条件、设备结构、运行维护等因素,进行合理的调整和优化。

除了设计尺寸的计算公式,还需要注意活性炭罐的选材、制造工艺、安装调试等方面。

活性炭罐的选材应选择耐腐蚀、耐压、密封性好的材料,制造工艺应符合相关标准,安装调试应严格按照设计要求进行,以确保活性炭罐的正常运行和长期稳定性。

活性炭吸附装置设计计算

活性炭吸附装置设计计算

活性炭吸附床计序号名称符号单位项目符号意义1 VOC 处理风量 Q m3/h 2VOC 气体的浓度 C 0 mg/m3 3 VOC 气体 VOC 气体的温度 T℃ 4 VOC 气体的压力 P Pa 5 原始数据VOC 气体的密度 ρ 0kg/m3 6 VOC 气体的黏度 μ Pa.S 7 VOC 气体的比热容 Cp kJ/(kg. C) 8 蜂窝状活性炭堆积密度 ρs kg/m3 9 蜂窝状活性炭静态活性 X T % 10蜂窝状活性炭动态活性 X T1%11 活性炭 蜂窝状活性炭孔隙率 ε12 数据蜂窝状活性炭比表面积 a m2/g 13 蜂窝状活性炭使用温度 T S ℃ 14 蜂窝状活性炭抗压强度 Mpa 15 蜂窝状活性炭外形规格 mm 16 吸附器吸附效率 η % 17 吸附器的空塔截面流速 um/s 18 固定床 吸附器的截面有效面积 A m2 19 吸附器活性炭层有效高度 Zm 数据及20 活性炭层的容积 Vsm3 计算 21 吸附器的截面有效长度 L m 22 吸附器的截面有效宽度 B m 23 活性炭作用时间 th 24 吸附时间在吸附作用时间内的吸附量Xkg 25 计算吸附波的移动速度 Ucm/s 26 有效高度下的活性炭作用时间 t'h 27 经验公式 活性炭层有效高度 Z m 28 压降计算活性炭床压降△PPa 29活性炭细管内的流速 u1m/s30 细管的当量直径 de31 活性炭平均直径d p3233当量直径34压降计算3536 雷诺数 Re37 当Re/(1- ε) ≤2500时按下式计算38 活性炭床压降△Pm m ABCD Pa附床计算公式算值备注30000500401031251.1272651.91616E-051.002500kg吸附质 /kg 吸附剂(厂家提供)0.35kg吸附质 /kg 吸附剂(实验获得)0.1 取值0.5700≤400≤0.8100x100x1000.93(Q/3600)/A 1.780626781L*B 4.680.5 0.5m~0.9m A*Z(或 L*B*Z) 2.34取值 2.6取值 1.8( Vs* ρs*XT1)/(C/1000000*Q* η) 8.387096774C0*Q/1000000* η*t 117(u* C0/1000000)/( ρs*XT1) 1.78063E-05Z/Uc/3600 7.8 t' 接近t0.5经验公式: 945.1*u 1.055×Z868.5647061u/ ε 3.561253561 1、废气成分:乙酸乙酯、异丙醇、醋酸酯、丙醇等1.一般空塔流速 0.8~1.2m/s 时,动活性XT1=(0.75~0.8)XT ,流速越快,动活性越小,公司取 8%~10%标准上规定:固定床吸附剂颗粒性炭 0.2-0.6 纤维状吸附剂(活性炭纤维毡) 0.1-0.15 蜂窝状吸附剂 0.7-1.2层高中间需要留一定空间,使热量分散,局部碳层过热烧炭被吸附物沸点升高,吸附量增加(规(4* ε) /[a*(1-ε)]6/a2 3(1- ε)/ εμ*u/d p2(1- ε)/ ε2ρ0*u 2/d pd p* ρ0*u/ μ△P=(150*A*B+1.75*C*D)*Z 0.0057142860.00857142920.4644054882416.9832542897.8861464 1795.772293 ≤2500 799.3815182、醋酸正丙活性速越快,动活性越小,颗粒型活维状吸附剂(活性炭蜂窝状吸附剂 0.7- .2使热量均匀热烧炭加(规律)。

活性炭吸附塔-计算书

活性炭吸附塔-计算书

科文环境科技有限公司计算书工程名称: 活性炭吸附塔工程代号:专业: 工艺计算:校对:审核:2016年5月13日1、设计风量:Q =20000m 3/h =5.56m 3/s 。

2、参数设计要求:①管道风速:V 1=10~20m/s ,②空塔气速为气体通过吸附器整个横截面的速度。

空塔风速:V 2=0.8~1.2m/s , ③过滤风速:V 3=0.2~0.6m/s , ④过滤停留时间:T 1=0.2~2s , ⑤碳层厚度:h =0.2~0.5m , ⑥碳层间距:0.3~0.5m 。

活性炭颗粒性质:平均直径d p =0.003m ,表观密度ρs =670kg/3m ,堆积密度ρB =470 kg/3m 孔隙率0.5~0.75,取0.753、(1)管道直径d 取0.8m ,则管道截面积A 1=0.50m 2 则管道流速V 1=5.56÷0.50=11.12m/s ,满足设计要求。

(2)取炭体宽度B=2.2m ,塔体高度H=2.5m ,则空塔风速V 2=5.56÷2.2÷2.5=1.01m/s ,满足设计要求。

(3)炭层长度L 1取4.3m ,2层炭体,则过滤风速V 3=5.56÷2.2÷4.3÷2÷0.75=0.392m/s ,满足设计要求。

(4)取炭层厚度为0.35m ,炭层间距取0.5m ,则过滤停留时间T 1=0.35÷0.392=0.89s ,满足设计要求。

(5)塔体进出口与炭层距离取0.1m ,则塔体主体长度L’=4.3+0.2=4.5m两端缩口长L”=⎪⎪⎭⎫ ⎝⎛+2d -2H B 3322=⎪⎪⎭⎫ ⎝⎛+20.8-25.22.23322=0.73m 则塔体长度L=4.5+0.73×2=5.96m4、考虑安装的实际情况:塔体尺寸L×B×H =6m×2.2m×2.5m1、设计风量:Q =20000m 3/h =5.56m 3/s 。

有机废气处理--活性炭吸附详细计算

有机废气处理--活性炭吸附详细计算

活性炭吸附脱附及附属设备选型详细计算书目录1.绪论 (1)1.1概述 (1)1.1.1有机废气的来源 (1)1.1.2有机物对大气的破坏和对人类的危害 (1)1.2有机废气治理技术现状及进展 (2)1.2.1各种净化方法的分析比较 (2)2设计任务说明 (4)2.1设计任务 (4)2.2设计进气指标 (4)2.3设计出气指标 (4)2.4设计目标 (4)3工艺流程说明 (5)3.1工艺选择 (5)3.2工艺流程 (5)4设计与计算 (7)4.1基本原理 (7)4.1.1吸附原理 (7)4.1.2吸附机理 (7)4.1.3吸附等温线与吸附等温方程式 (8)4.1.4吸附量 (10)4.1.5吸附速率 (11)4.2吸附器选择的设计计算 (11)4.2.1吸附器的确定 (11)4.2.2吸附剂的选择 (13)4.2.3空塔气速和横截面积的确定 (15)4.2.4固定床吸附层高度的计算 (15)4.2.5吸附剂(活性炭)用量的计算 (17)4.2.6床层压降的计算]15[ (17)4.2.7活性炭再生的计算]16[ (18)4.3集气罩的设计计算 (19)4.3.1集气罩气流的流动特性 (19)4.3.2集气罩的分类及设计原则 (20)4.3.3集气罩的选型 (20)4.4吸附前的预处理 (22)4.5管道系统设计计算 (23)4.5.1管道系统的配置 (23)4.5.2管道内流体流速的选择 (24)4.5.3管道直径的确定 (24)4.5.4管道内流体的压力损失 (25)4.5.5风机和电机的选择 (25)5工程核算 (28)5.1工程造价 (28)5.2运行费用核算 (28)5.2.1价格标准 (28)5.2.2运行费用 (29)6结论与建议 (30)6.1结论 (30)6.2建议 (30)致谢 (33)1.绪论1.1概述1.1.1有机废气的来源有机废气的来源主要有固定源和移动源两种。

移动源主要有汽车、轮船和飞机等以石油产品为燃料的交通工具的排放气;固定源的种类极多,主要为石油化工工艺过程和储存设备等的排出物及各种使用有机溶剂的场合,如喷漆、印刷、金属除油和脱脂、粘合剂、制药、塑料、涂料和橡胶加工等。

活性炭设计参数

活性炭设计参数
5~60
≤0.6
0.157
8~10
600
330×1370
30
SJL-1.8 B 0.6 HGL/B
350
1.8
5~60
≤0.6
0.183
8~10
700
355×1650
45
SJL-2.3 B 0.6 HGL/B
400
2.3
5~60
≤0.6
0.229
8~10
700
405×1650
50
SJL-4.0 B 0.6 HGL/B
3970
SJL-100.0 B 0.6 HGL/B
3000
100.0
5~60
≤0.6
10.121
Байду номын сангаас8~10
1000
3024×4500
5700
SJL-120.0 B 0.6 HGL/B
3200
120.0
5~60
≤0.6
12.110
8~10
1000
3224×4550
6500
(活性炭过滤器如产品更新换代,设备规格有所变动,恕不另行通知)
≤0.6
2.611
8~10
1000
1515×3840
1430
SJL-45.0 B 0.6 HGL/B
2000
45.0
5~60
≤0.6
4.550
8~10
1000
2016×4090
2500
SJL-70.0 B 0.6 HGL/B
2500
70.0
5~60
≤0.6
7.002
8~10
1000
2520×4270

活性炭吸附VOCs计算公式

活性炭吸附VOCs计算公式

活性炭吸附VOCs计算公式
有机废气吸附通常采用活性炭吸附剂进行处理。

活性炭用量的计算涉及到多个因素,包括废气流量、废气中污染物的浓度和性质、活性炭的吸附性能等。

下面提供一个简单的计算方法,但需要注意这只是一种粗略的估算方法,实际应用中需要根据具体情况进行调整和验证。

1)确定废气流量Q,单位为m3/h。

2)确定废气中目标有机污染物的浓度C,单位为mg/n?。

3)确定活性炭的吸附容量(即单位质量活性炭对目标污染物的吸附量),单位为mg∕g o
4)计算活性炭用量V,单位为kg,公式为:
V=Q×C×t∕(1000×S]
式中:
t为废气处理时间,单位为h;
S为活性炭的吸附容量,单位为mg/g。

5)确定活性炭的压缩密度,单位为g∕cπ?,然后将V转换为体积Vi,单位为n?,公式为:
V1=V∕(压缩密度)
6)根据实际情况,选取合适的活性炭颗粒直径和层数,计算需要的活性炭吸附塔的体积。

7)需要注意的是,上述计算中的参数都需要根据实际情况进行调整和验证, 包括废气中的污染物种类和浓度、废气流量和处理时间、活性炭的吸附性能等。

此外,还需要考虑活性炭的再生和更换周期等因素,以确保废气处理效果和经济效益。

活性炭过滤器的设计

活性炭过滤器的设计

活性炭过滤器的设计活性炭过滤器的设计是为了去除水中的有害物质和异味,提供干净、可饮用的水源。

活性炭过滤器通过利用活性炭的吸附性能去除水中的污染物质,如氯、有机化合物、重金属等。

本文将介绍活性炭过滤器的设计原理、设计步骤及其应用领域。

一、活性炭过滤器的设计原理活性炭是一种多孔性材料,具有很大的表面积和吸附能力。

活性炭的表面有许多孔隙,这些孔隙能吸附水中的污染物质,从而净化水质。

活性炭的吸附性能受到许多因素的影响,如活性炭的孔径分布、物理性能和化学性质等。

设计活性炭过滤器需要考虑以下几个主要因素:1.活性炭的选择:根据水质情况选择合适的活性炭,常见的有粉状活性炭、颗粒状活性炭和块状活性炭等。

2.活性炭层数和厚度:根据水质要求和处理流量选择合适的活性炭层数和厚度,一般常用的活性炭层数为2-3层。

3.水流速度和接触时间:活性炭的吸附效果与水流速度和接触时间有关,一般要求水流速度不超过2米/小时,接触时间为30分钟至1小时。

二、活性炭过滤器的设计步骤1.确定水质要求和处理流量:根据所要处理的水质要求和处理流量确定活性炭过滤器的设计参数,包括活性炭的选择、数量和床层厚度等。

2.选择合适的活性炭:根据水质情况选择合适的活性炭,一般根据水中污染物质的种类和浓度选择活性炭的类型和颗粒度。

3.确定活性炭层数和床层厚度:根据处理流量和吸附效果要求确定活性炭的层数和床层厚度,一般常用的活性炭层数为2-3层,床层厚度为10-20厘米。

4.设计过滤器结构:根据所选取的活性炭和处理流量确定过滤器的尺寸和结构,包括过滤器的高度、直径、进出水口的位置和尺寸等。

5.安装过滤器:按照设计要求制作和安装活性炭过滤器,注意安装过程中的密封性和连接性,保证过滤器的正常运行。

三、活性炭过滤器的应用领域1.家用水处理:活性炭过滤器可以应用于家用自来水处理,去除水中的氯、异味和有害物质,提供干净的饮用水。

2.工业废水处理:活性炭过滤器可以用于工业废水处理,去除水中的有机化合物、重金属和其他有害物质,达到环保排放标准。

毕业论文-活性炭滤池

毕业论文-活性炭滤池

活性炭滤池的设计计算活性炭工艺部分及池体设计参数处理水量为Q = 54000m3/d = 2250m3/h =625L/s,滤池采用下向流V型滤池,空床流速8-12m/h,本设计采用8m/h。

共设计四座滤池,分两组布置。

活性炭滤层厚H n =1.5m。

采用两段式气水反冲洗,第一步气冲冲洗强度q气1 =12Ls.m2,第二步水冲洗强度q水2 =8L/(S m2),第一步气冲洗时间t气=5mi n,第二步水冲时间t水=7min ;冲洗时间共计为:t=12min = 0.2h ;冲洗周期T =144h =6d。

设计计算由于生物活性炭是再贫营养的环境下降解有机物,氧气需要量不大。

原水中含有一定的溶解氧,同时臭氧分解产生的氧气也增加了水中溶解氧的含量。

所以在活性炭滤池内谁的溶解氧量是足够的,不需设置曝气系统。

池体设计1、活性炭滤池总面积F = ― = 2250 =281.3m2V L82、活性炭滤池个数采用四池并联运行,N L =4,每池面积为f n^^^OSm2。

采用双格V4型滤池,池宽按规范标准B=3.5m ,长L单=10m,单格面积35m2,每座滤池面积70m2,总面积280m2H 1 53、接触时间T L二―二15 =0.19h =11.4min满足空床接触时间6-20minV L 84、每座活性炭充填体积V3V=FH n=70 1.5=105m5、每座填充活性炭的质量G活性炭填充密度T =0.5t/m3,贝U G =105 0.5 = 52.5t6活性炭每年更换次数n由于没有水厂实测数据,因此根据经验值,每年更换活性炭一次7、活性炭滤池的高度H L炭滤池总高度由计算式求得H 总h2 H h3h4式中H总—吸附滤池的总高度mh1 — -配水系统咼度m,取1.0mh2 - -承托垫层厚度m ,采用长柄滤头系统,承托层采用砾石分层级配粒径2-16mm承托层厚度为0.35m 层次(自上而下)粒径(mm承托层厚度(mm 12-45024-65036-85048-1050510-1250612-1450714-1650H —碳滤层厚度2.0mh3 —碳滤层上水深m 取1.8mh4 —保护高度,取0.85m炭滤池总高度H 总=1.0 0.35 2.0 1.8 0.85 = 6m滤池实际工作时间' 24 24t = 24—t —=24—0.2 汇一吒24hT 144校核强制滤速v':10.7 m/ h .符合要求v = Nv = —8 =N -1 4 -1水封井的设计:滤池采用单层活性炭滤料,粒径1.0-2.5mm,清洁滤料层的水头损失按下式计算:根据经验,滤速为8-10m/h时,清洁滤料层水头损失一般为0.3-0.4m ,计算值比经验值低,取经验值的底限0.3m为清洁滤料层的过滤水头损失.正常过滤时,通过滤头的水头损失0.22m,忽略其他水头损失,则每次反冲洗后刚开始过滤时的水头损失为:H开始=0.3 0.22 = 0.52m.为保证滤池正常过滤时池内的液面高出滤料层,水封井出水堰顶标高与滤料层相同。

活性炭吸附塔-计算方案(20200903165233)

活性炭吸附塔-计算方案(20200903165233)

活性炭吸附塔1、 设计风量:Q= 20000nVh = s 。

2、 参数设计要求:① 管道风速:V i = 10~20m/s ,② 空塔气速为气体通过吸附器整个横截面的速度。

空塔风速:V 2= ~s , ③ 过滤风速:V 3= ~s ,④ 过滤停留时间:T 1 = ~2s ,⑤ 碳层厚度:h =〜,⑥ 碳层间距:〜。

活性炭颗粒性质:平均直径d p =,表观密度p s =670kg/m 3,堆积密度p B =470kg/m 3孔隙率〜,取3、 ( 1)管道直径d 取,则管道截面积 A=则管道流速V 1=* =s ,满足设计要求。

(2) 取炭体宽度B=,塔体高度H=,则空塔风速V a =** =S ,满足设计要求。

(3) 炭层长度L 1取,2层炭体,则过滤风速V 3=*** 2— =s ,满足设计要求。

(4) 取炭层厚度为,炭层间距取,则过滤停留时间「=* =,满足设计要求。

(5)塔体进出口与炭层距离取,则塔体主体长度L ' =+=则塔体长度L=+x 2= 4、考虑安装的实际情况:塔体尺寸 L X BX H= 6m KX活性炭吸附塔1、 设计风量:Q= 20000nVh = s 。

2、 参数设计要求:① 管道风速:V i = 10〜20m/s ,② 空塔气速为气体通过吸附器整个横截面的速度。

空塔风速:V 2= ~s ,两端缩口长L ” 、3 .. B 2 H 2 、3 2.22 2.52 0.8③过滤风速:V3= ~s,XV= CQt x 10-9Wd式中:V —活性炭的装填量, m 3C —进口气污染物的浓度, mg/ m 3Q-气流量, m 3/ht —活性炭的使用时间,hV —活性炭原粒度的中重量穿透炭容,%d —活性炭的堆密度 m 3v=2 = ?o 型 =20 m 3V sp 1000污染物每小时的排放量:(取污染物 100mg/m )p 0= 100x 20000X 10 6 = h假设吸附塔吸附效率为 90%则达标排放时需要吸附总的污染物的量为:x 90%= hVWd x 10 9 = 20 10% o.8CQ 100 20000 9 109=800h则在吸附作用时间内的吸附量:X=x 800= 1440 kg根据 X=aSL b 得:L =aS b④ 过滤停留时间:T i =〜2s ,⑤ 碳层厚度:h =〜,⑥ 碳层间距:〜。

活性炭计算书

活性炭计算书

m3/h m /h m /h m /h %
3 3 3
m3 m3
3 2 2
活性炭过滤器计算书 计算人: 校核人: 数据 设计原始条件 120 5 3 24 设备规格 3000 2 1 滤料填充量 1500 10.60 4.24 31.81 单台设备面积S= 校和滤速V= 直筒高度 石英砂层高 单台过滤器石英砂体积 单台过滤器石英砂重量 总石英砂体积 m2 m/h mm mm m t m t
3ห้องสมุดไป่ตู้
日期: 单位 m/h min min % 数据 10 15 10 45 7.07 8.5 2175 300 2.12 3.71 6.36 11.13 31.8 12.7
项目
设计滤速V= 水反洗历时 正洗历时 反洗膨胀率
3
3
12.72 总石英砂重量 水、气耗量 127 1.3 76.3 0.5 3.093 一次正洗用水量 一次反洗用水量
项目名称: 项目 出力Q= 水反洗强度 正洗强度 反洗周期 设备直径φ = 工作设备数量n= 备用设备数量n= 活性碳层高 单台过滤器活性炭体积 单台过滤器活性炭重量 总活性炭体积 总活性炭重量 反洗流量 反洗流量平均值 正洗流量 正洗流量平均值 耗水占进水的百分比 单位 m3/h l/(m .s) l/(m .s) h mm 台 台 mm m t m t

活性炭过滤器设计

活性炭过滤器设计

活性炭过滤器设计引言活性炭过滤器是一种常用的水处理设备,它能有效去除水中的有机物、异味和重金属等有害物质。

在本文中,我们将详细介绍活性炭过滤器的设计原理、结构和工作原理,并探讨如何选择和更换活性炭。

设计原理活性炭过滤器的设计原理是利用活性炭对污染物的吸附作用进行水处理。

活性炭是一种多孔性的吸附材料,具有较大的比表面积和丰富的孔隙结构,能够吸附和储存大量的有机物和气体分子。

在过滤器中,水通过活性炭层时,有机物和其他污染物被活性炭表面的孔隙吸附。

这些吸附物会留在活性炭层中,而清洁的水则通过过滤器流出。

结构和工作原理活性炭过滤器通常由以下几部分组成:1.进水口:用于将待处理的水引入过滤器中。

2.活性炭层:主要由活性炭填充而成,用于吸附有机物和其他污染物。

3.出水口:处理后的水通过这里流出。

4.过滤器壳体:将以上组件装配在一起,并提供结构支持和密封。

活性炭过滤器的工作原理如下:1.水从进水口进入过滤器,并通过活性炭层。

2.水中的有机物和其他污染物被活性炭吸附。

3.清洁的水通过活性炭层并从出水口流出。

4.随着时间的推移,活性炭会因吸附物的积累而逐渐饱和。

此时,活性炭需要更换。

活性炭的选择和更换选择适合的活性炭材料和更换周期对活性炭过滤器的性能至关重要。

活性炭材料选择活性炭的选择应考虑以下几个关键因素:1.孔径大小:孔径大小直接影响到活性炭对不同分子的吸附能力。

通常,可选择具有不同孔径的活性炭组合以增加吸附效果。

2.比表面积:活性炭的比表面积越大,吸附能力越强。

因此,选择比表面积较大的活性炭可以提高过滤器的效果。

3.饱和容量:活性炭的饱和容量是指活性炭吸附物质的最大数量。

选择具有较高饱和容量的活性炭可以延长更换周期。

更换周期活性炭的更换周期应根据实际情况来确定。

一般来说,更换周期取决于以下因素:1.水质:水中的有机物和污染物含量越高,活性炭的吸附速度就越快,更换周期就越短。

2.处理量:活性炭的更换周期还取决于处理的水量。

活性炭过滤器的滤料高度和整个罐体的高度如何计算

活性炭过滤器的滤料高度和整个罐体的高度如何计算

活性炭过滤器的滤料高度和整个罐体的高度如何计算活性炭过滤器的滤料高度和整个罐体的高度如何计算?活性炭过滤器的滤料层900~1200的甚至1600的都有,要看想去除什么及滤速。

下布水孔板水帽布水的,罐体高就是直边高加上下封头高。

直边高为滤料高乘2,活性炭在反洗时,反洗膨胀高度是100%。

如果漏斗上布水,还要加漏斗、弯管高,这种结构采用的越来越少了。

下布水穹型板加级配石英砂垫层的,基本差不多,按垫层总高与下封头高之差调整一下。

整个罐体的高度就是罐高加支腿高。

支腿三条的高些,四条的可矮些。

活性炭过滤器有什么作用?运行时要注意些什么?(1)利用活性炭的活性表面除去水中的游离氯,以避免化学水处理系统中的离子交换树脂,特别是阳离子交换树脂受到游离氯的氧化作用。

(2)除去水中的有机物,如腐殖酸等,以减轻有机物对强碱性阴离子交换树脂的污染。

据统计,通示活性炭过滤器,可以除去水中60%~80%的胶体物质:50%左右的铁和50%~60%的有机物等。

活性炭过滤器在实际运行中,主要考虑入床水浑浊度,反洗周期,反洗强度等关系。

(1)入床水浑浊度。

入床水浑浊度高,会带给活性炭滤层过多的杂质,这些杂质被截留在活性炭滤层中,并堵塞滤池间隙及活性炭表面,阻碍其吸附效果的发挥。

长期运行下去,截留物就停留在活性炭滤层间,形成冲不掉的泥膜,造成活性炭老化失效。

所以进入活性炭过滤器的水,最好把浑浊度控制在5mg/L以下,以保证其正常的运行。

(2)反洗周期。

反洗周期的长短是关系到滤池效果好坏的主要因素。

反洗周期过短,浪费反洗水;反洗周期过长则影响活性炭吸附效果:一般讲,当入床水浑浊度在5mg/L以下时,应4~5天反洗一次。

(3)反洗强度。

活性炭过滤器在反洗中,滤层膨胀率对滤层冲洗是否彻底,影响较大。

滤层膨胀率过小,下层的活性炭悬浮不起来,其表面冲洗不干净;当膨胀率过大,容易跑“炭”。

在运行中一般控制其膨胀率为40%~50%。

(4)反洗时间。

活性炭吸附塔-计算方案

活性炭吸附塔-计算方案

活性炭吸附塔计算书活性炭吸附塔1、设计风量:Q =20000m 3/h =s 。

2、参数设计要求:①管道风速:V 1=10~20m/s ,②空塔气速为气体通过吸附器整个横截面的速度。

空塔风速:V 2=~s ,③过滤风速:V 3=~s ,④过滤停留时间:T 1=~2s ,⑤碳层厚度:h =~,⑥碳层间距:~。

活性炭颗粒性质:平均直径d p =,表观密度ρs =670kg/3m ,堆积密度ρB =470kg/3m孔隙率~,取3、(1)管道直径d 取,则管道截面积A 1=则管道流速V 1=÷=s,满足设计要求。

(2)取炭体宽度B=,塔体高度H=,则空塔风速V 2=÷÷=s,满足设计要求。

(3)炭层长度L 1取,2层炭体,则过滤风速V 3=÷÷÷2÷=s,满足设计要求。

(4)取炭层厚度为,炭层间距取,则过滤停留时间T 1=÷=,满足设计要求。

(5)塔体进出口与炭层距离取,则塔体主体长度L’=+= 两端缩口长L”=⎪⎪⎭⎫ ⎝⎛+2d -2H B 3322=⎪⎪⎭⎫ ⎝⎛+20.8-25.22.23322= 则塔体长度L=+×2=4、考虑安装的实际情况:塔体尺寸L×B×H=6m××活性炭吸附塔1、设计风量:Q =20000m 3/h =s 。

2、参数设计要求:①管道风速:V 1=10~20m/s ,②空塔气速为气体通过吸附器整个横截面的速度。

空塔风速:V 2=~s ,③过滤风速:V 3=~s ,④过滤停留时间:T 1=~2s ,⑤碳层厚度:h =~,⑥碳层间距:~。

活性炭颗粒性质:平均直径d p =,表观密度ρs =670kg/3m ,堆积密度ρB =470kg/3m3、(1)管道直径d 取,则管道截面积A 1=则管道流速V 1=÷=s,满足设计要求。

(2)取炭体宽度B=,塔体高度H=,则空塔风速V 2=÷÷=s,满足设计要求。

活性炭吸附处理VOC废气计算书

活性炭吸附处理VOC废气计算书

活性炭吸附处理VOC废气计算书0、前言尽管本篇文章是关于活性炭吸附处理有机废气的计算,但本人对该方法保留非常负面的态度。

通常,单独的活性炭吸附工艺用于低浓度大风量的场合。

如果是浓度高度,应该是采用带脱附催化燃烧的的沸石转轮吸附工艺,浓度再高则用直接燃烧,如RTO。

随便说一下现在市场上那种用活性炭吸附+催化燃烧的工艺,本人认为属于一种欺骗工艺。

该工艺种用活性炭吸附低浓度VOC废气,然后定期用热空气吹脱再生,吹脱出来高浓度VOC废气催化燃烧。

但是,活性炭吸附VOC后,极易在局部形成活性点位,热空气吹脱时易点燃烧吸附有有机溶剂的活性炭,也发生过不少事故。

因此,现在吹脱过程温度一般控制在80℃以下(应付检查时可能会调高到100℃左右,但平时谁也不敢拿安全当儿戏)。

但这么低的温度对活性炭脱附效果非常有限,没几个周期活性炭就再生不了,和单用活性炭没有什么区别。

可能唯一区别就是单独的活性炭吸附2-3年都不更换活性炭实在说不过去,但加了脱附催化燃烧可以在有人检查时可以说出不换炭的理由。

回到活性炭吸附工艺,其实是极易失效的。

这里的失效,是指VOC污染物穿透活性炭层,不是说活性炭完全饱和,如果活性炭层很薄,风速又大,可能未使用已穿透。

而事实上,目前我所见过的活性炭吸附箱,活性炭层都很薄,很多只有50-200mm,因为厚了,不单活性炭装得多,阻力也非常大,风机能耗高。

所以很多环评什么的,活性炭更换时间按静态吸附量为活性炭20%-30%计算,完全是个笑话。

动态穿透吸附量能达到5%-10%我认为都很难达到。

然后算出来活性炭1-2年更换一次,更是无法理解。

就算拿活性炭直接吸附空气,都不能坚持半年吧。

最后,活性炭吸附处理挥发性有机废气的工艺,真的只能用在可有可无的地方,不要对它的效果能否持续多久抱有希望,只能是废气检测前几天更换活性炭才能保证效果。

大多数使用场合也就是在产生源头已达标,但环保部门一定要它有个处理施的,反正加不加活性炭箱都达标的这种情况。

压力式活性炭过滤器的设计参数

压力式活性炭过滤器的设计参数

压力式活性炭过滤器的设计参数长期以来,采用水性漆修补碰伤,都必须由专业人士进行。

另外,很多人都知道目前还没有避免“水”的方法。

上述情况促成了有关环境保护的法律在车身修理厂的实行。

关键因素之一是空气净化:空气是车身修理厂中的主要能量载体之一。

它由压缩机产生,然后被送入供气管路。

在此同时,润滑油等污染物也被带给了用户。

它们通常不会对气动工具(例如螺钉刀或磨光器等)产生影响。

但是对于高品质喷涂工作来说,残油和冷凝水,即使是极少量的残油或冷凝水,也会造成涂膜缺陷。

它们通常会产生极细小的洼坑等现象,从而不可避免地引发涂膜质量的投诉。

这时,必须返工,造成巨大的成本浪费。

不仅传统的溶剂涂料会产生这些问题,水溶性涂料也会产生上述问题。

现在,带有多节过滤器的过滤器系统成为的汽车修理厂合格的必备装置。

它们能把污染物从所需的压缩空气中分离出来(如:残油、冷凝水及悬浮物质等),过滤等级小于0.01微米。

当特别精细的油蒸汽冲入气流中时,通常会有臭味,这就表明上述设备已经达到了极限。

这些微小的油残渣可能会引起麻烦。

在这种情况下,增加一个活性碳过滤器,就可以解决问题了。

必须使用媒介(例如使用供气式呼吸面罩),确保用户不会接触到油残渣,即使是极少量的油残渣。

活性炭过滤器还可以用于净化喷涂空气,对此没有任何限制。

它们可以采用绝对可靠的方式把各种油残渣从所需的空气中隔离出来。

活性碳过滤器的滤芯饱和后,必须立即更换。

活性炭过滤器采用模块化结构,可以方便地与任何现有和过去的SATA过滤装置连接起来。

显示条前面有一块小玻璃板保护。

它能够通过改变颜色,在SATA活性碳过滤器0/464上持续显示性能等级和使用寿命。

这样能够方便维护保养,确保安全,以免错过适当的过滤器滤芯更换时间。

活性炭工作过程可简单的总结为:Ⅰ采水:生水自活性炭塔槽上方流入,经活性炭过滤装置下方流出,而得到去除杂质、臭味等水质。

Ⅱ逆洗:目的为逐出活性炭上方之沉积物。

经一段时间的过滤后,若干杂质沉积在活性炭上方排出并除去。

活性炭剩余浓度计算公式

活性炭剩余浓度计算公式

活性炭剩余浓度计算公式活性炭是一种具有高度孔隙结构和吸附能力的碳质材料,常用于水处理、空气净化和化学品分离等领域。

在水处理中,活性炭通常用于去除有机物、氯、氯胺、异味和色素等。

为了正确使用活性炭并保证其吸附效果,需要对其剩余浓度进行计算。

本文将介绍活性炭剩余浓度的计算公式及其应用。

活性炭剩余浓度计算公式的基本原理是根据活性炭的吸附量和吸附速率来推导出的。

活性炭的吸附量取决于其孔隙结构和表面化学性质,而吸附速率则受到吸附物浓度、温度和其他环境因素的影响。

因此,活性炭剩余浓度的计算需要综合考虑这些因素。

活性炭剩余浓度计算公式通常以质量平衡方程为基础推导而来。

质量平衡方程是指在吸附过程中,吸附物在活性炭表面的质量与溶液中的质量之间达到平衡。

根据质量平衡方程,可以得到活性炭剩余浓度的计算公式如下:\[ C_r = \frac{C_0 C_e}{1 + k_d \cdot m} \]其中,\( C_r \)表示活性炭剩余浓度,单位为mg/L;\( C_0 \)表示初始溶液中的吸附物浓度,单位为mg/L;\( C_e \)表示平衡时溶液中的吸附物浓度,单位为mg/L;\( k_d \)表示活性炭的分配系数,单位为L/g;\( m \)表示活性炭的用量,单位为g。

通过这个公式,可以方便地计算出活性炭吸附后溶液中的剩余浓度。

在实际应用中,可以根据实验数据确定活性炭的分配系数和用量,然后利用上述公式进行计算。

这样可以帮助工程师和研究人员更好地设计和优化活性炭的使用方案,提高吸附效率和节约成本。

除了上述基本的计算公式外,活性炭剩余浓度的计算还可以考虑更复杂的因素。

例如,如果吸附过程中存在竞争吸附或多组分吸附的情况,就需要考虑多种吸附物的影响。

此时,可以采用多元吸附等温方程来推导活性炭剩余浓度的计算公式,以更准确地反映实际情况。

此外,活性炭剩余浓度的计算还可以结合实验数据进行模型拟合和参数优化。

通过实验测定活性炭的吸附性能,然后利用数学模型对活性炭剩余浓度进行拟合,可以得到更精确的计算结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档