LM324集成芯片内部电路分析与典型应用_模电研讨文
LM324及其常用应用电路,用法
LM324Im124、Im224和lm324引脚功能及内部电路完全一致。
324电压范系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,围是 3.0V-32V 或+16V.LM324 的特点:1. 短跑保护输出2. 真差动输入级3. 可单电源工作:3V-32V4•低偏置电流:最大100nA (LM324A )5. 每封装含四个运算放大器。
6. 具有内部补偿的功能。
7. 共模范围扩展到负电源8. 行业标准的引脚排列9. 输入端具有静电保护功能LM324 引脚图(管脚图)14 13 12 11 10 3 8—t <5—Fp丄U-LM324*[[4h1 2 3 4 5 G 7LM324 应用电路图:1.LM324 电压参考电路图K7.电瓯步考2.LM324 多路反馈带通滤波器电路图3.LM324 高阻抗差动放大器电路图益芯牯二屮心顾率A if°)=4M>IB 率堆益 选择怙2刑值Q R3对卡来口疋算岐大器的小干10%酣決墓=■ -<0JB\¥直中怙和EW 巾齿为Hz若源阳茫改变,滤波器的加电压舉随器缓2 民检宦谑汕黠耘的■廿危I=1R2=R\R34Q 2R1-Ri图9.高IB抗差动放大器e0 = C (l4a + b)4. LM324 函数发生器电路图图12価数发生器R1 + RQ 址“ R2R1TT R3 二—4CR(R1 R2 + R15. LM324 双四级滤波器3.LM324 高阻抗差动放大器电路图RR =160岳C=O.W1pFRl d.EMil6. LM324 维思电桥振荡器电路图图氐维思电桥振蕩器弭1(A/W5.0k 丄*|—因此他被非常广泛的应用在各种电路中。
《Im324引脚图》7. LM324 滞后比较器电路图图滞后比较器WnH = pn +R2(^0H _V TE I)+ ^refpiH= R1;R2 WOH-VOL)LM324引脚图资料与电路应用LM324引脚图资料与电路应用LM324资料:LM324为四运放集成电路,采用14脚双列直插塑料封装。
lm324n集成芯片的原理与应用
lm324n集成芯片的原理与应用1. 引言lm324n是一种常用的集成芯片,广泛用于模拟电路和功率放大应用中。
本文将介绍lm324n芯片的基本原理和常见应用。
2. lm324n芯片的基本原理lm324n芯片是德州仪器(TI)公司生产的一种四运算放大器。
它由四个独立运算放大器组成,每个运算放大器具有高增益、低输入偏置电流和宽输入电压范围的特点。
下面是lm324n芯片的主要特性:•低输入偏置电流:lm324n芯片的输入偏置电流非常低,可忽略不计。
这使得lm324n芯片非常适用于高精度应用。
•高增益:lm324n芯片具有高增益特性,能够放大输入信号,增强信号的幅度。
•宽输入电压范围:lm324n芯片的输入电压范围较宽,可以满足不同应用场景的需求。
•低功耗:lm324n芯片的功耗比较低,适合用于便携式电子设备等需要长时间使用的场合。
3. lm324n芯片的应用lm324n芯片由于其良好的特性,被广泛应用在许多电路中。
下面将介绍一些常见的应用场景。
3.1 模拟电路lm324n芯片可用于模拟电路中的运放放大电路、滤波电路等。
由于lm324n芯片具有高增益和宽输入电压范围的特点,可以实现对模拟信号的放大和处理。
在音频放大器中,lm324n芯片可以用于放大输入音频信号,增加音频的音量。
在滤波电路中,lm324n芯片可以实现对特定频率的信号进行滤波,滤除其他频率的干扰信号。
3.2 功率放大lm324n芯片还可以应用于功率放大电路中。
它可以将输入信号的功率放大到更高的水平,并驱动较大的负载。
在音频功放中,lm324n芯片可以将输入的音频信号放大到足够大的功率,以驱动音箱或扬声器。
在功率放大器中,lm324n芯片可以放大输入信号的功率,使其能够控制大功率负载。
3.3 比较器lm324n芯片还可用作比较器。
通过设置合适的阈值电压,lm324n可以对输入信号进行比较,判断输入信号是否满足特定的条件。
在温度控制系统中,lm324n芯片可用作温度传感器输出信号的比较器,当温度达到设定值时,比较器会触发相应的控制信号,从而实现温度控制。
LM324集成芯片内部电路分析与典型应用
LM324集成芯片内部电路分析与典型应用LM324是一款广泛应用于电子电路中的四运算放大器集成芯片。
它具有四个独立运算放大器,以及相应的补偿电路,用于提供放大器的稳定性和性能。
该芯片采用双电源供电,工作电压范围为+5V至+32V。
LM324还具有很高的共模抑制比和宽带,适用于各种电路应用。
LM324集成芯片的内部电路主要包括四个运算放大器、输入级、输出级和补偿电路。
四个运算放大器可以独立工作,每个放大器都具有一个反馈回路,通过控制输入电压和反馈元件,可以实现不同的功能和放大倍数。
输入级负责将输入信号进行放大和标幺化,以适应后续电路的工作要求。
输出级负责将放大器的输出信号进行电流放大和电压输出,以适应外部电路的连接。
1.信号传感器放大器:LM324可以作为传感器信号的放大器,用于放大和处理小信号。
例如,用于温度传感器、压力传感器、光电传感器等。
2.滤波器:通过适当选择反馈元件和频率调节元件,可以将LM324设计为不同类型的滤波器,如低通滤波器、高通滤波器、带通滤波器等。
3.比较器:LM324可以作为比较器使用,用于比较输入信号与参考信号的大小。
通过调整参考电压,可以实现不同的比较阈值和触发条件。
4.方波发生器:LM324结合一些外部元件,可以构成方波发生器电路。
方波发生器常用于时钟信号发生、脉冲计数器等应用。
5.电压跟随器:通过将运算放大器的非反相输入端与输出端连接,可以实现电压跟随器功能。
电压跟随器通常用于隔离电路和电源稳压器中。
6.麦克风前置放大器:LM324可以用于麦克风前置放大器电路,用于提供麦克风信号的放大和预处理。
除了上述应用,LM324还可以用于电池充电管理、计算器、功率放大器、电压比较等各种电子电路中。
在应用过程中,设计者可以根据具体的要求,选择适当的反馈元件、外部元件和电源电压,以实现所需的功能和性能。
总之,LM324集成芯片具有四个独立运算放大器和相应的补偿电路,广泛应用于各种电子电路中。
LM324电压比较器电路图和应用
电压比较器基本原理及设计应用本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。
电压比较器(以下简称比较器)是一种常用的集成电路。
它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。
什么是电压比较器简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。
图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。
另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入VB。
VA和VB的变化如图1(b)所示。
在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。
在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。
根据输出电平的高低便可知道哪个电压大。
如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。
与图1(c)比较,其输出电平倒了一下。
输出电平变化与VA、VB的输入端有关。
图2(a)是双电源(正负电源)供电的比较器。
如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。
VB>VA时,Vout输出饱和负电压。
如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。
此VB称为参考电压、基准电压或阈值电压。
如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。
比较器的工作原理比较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。
由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。
1lm324应用实例
R1
C1
VT1
R3
VT3
+VCC IC
C
B A
D
A +
VT2
R5
C2
VT4
O
(b)保护管工作特性
EE
UCE
R2
(a)电 路 图
R4 V
输出限流保护
正常工作时工作点在 A,工作电流过大,工 作点经B 移到C或D 点, 电流基本不变
1 滤波电路的基础知识
作用:选频。 一、滤波电路的种类: 低通滤波器LPF 带通滤波器BPF
GND
VCC
集成运放的主要技术指标
一、开环差模电压增益Aod 无外加反馈情况下的直流差模增益。一般在 105 107之间。理想运放的Aod为。
U O Aod 20 lg U U
二、共模抑制比KCMR 开环差模电压增益与开环共模电压增益之比。 多数集成运放共模抑制比达80dB以上。
100pF C R2 1 V+ R1
+
8
2 VCC_CIRCLE
C1 + C2
6
Vi
1
3
R3 V2
1
VCC_CIRCLE
-
1
2
2
V0
+ C4
C3
产生自激振荡 消振措施: 按规定部位和参数接入校正网络 防止反馈极性接错 避免负反馈过强
合理安排接线,防止杂散电容过大
保护电路
1、输入保护
利用二极管的限幅作用对输入信号幅度加以限制,以免 输入信号超过额定值损坏集成运放的内部结构。无论是输入 信号的正向电压或负向电压超过二极管导通电压,则V1或V2 中就会有一个导通,从而限制了输入信号的幅度,起到了保 护作用。
LM324集成芯片内部电路分析与典型应用_模电研讨文
LM324集成芯片内部电路分析与典型应用_模电研讨文首先,LM324的内部电路主要由四个运算放大器组成。
每个运算放大器都由一个差分输入级、一个电压增益级以及一个输出级组成。
差分输入级由两个PNP型晶体管和两个NPN型晶体管组成,分别起到差分输入和电流放大的作用。
电压增益级由一个P型晶体管和一个N型晶体管组成,用于控制电压增益。
输出级由一个NPN型晶体管和一个PNP型晶体管组成,负责输出信号。
对于LM324的典型应用之一是作为比较器使用。
比较器主要用于比较两个输入信号的大小,根据比较结果输出高电平或低电平。
在LM324中,将一个运算放大器配置为比较器,其中一个输入信号接到非反相输入端,另一个输入信号接到反相输入端。
当非反相输入信号的电压高于反相输入信号的电压时,输出电压为高电平。
反之,则输出电压为低电平。
比较器常用于电压参考、开关控制等场合。
另一个典型应用是作为电压跟随器(Voltage Follower)。
电压跟随器主要用于信号缓冲和阻抗匹配。
LM324的一个运算放大器可以配置为电压跟随器,将输入信号接到非反相输入端,将输出信号从运算放大器的输出端取出。
由于LM324的输入阻抗相对较高,输出阻抗相对较低,因此可以有效地实现信号放大和阻抗匹配,保持输入输出信号一致。
此外,LM324还可以用于多种滤波电路的设计。
例如,可以将它配置为无源RC低通滤波器,用于滤除高频噪声。
另外,还可以将多个LM324连接起来,构成滤波电路的多级级联结构,实现更高阶次的滤波功能。
总之,LM324是一款功能强大的集成芯片,它内部的四个运算放大器提供了丰富的功能和灵活的配置方式。
通过灵活的连接和组合,可以实现多种不同的模拟信号处理和放大应用。
在电子工程领域,LM324已经成为一款被广泛应用的集成芯片。
lm324
LM324介绍LM324是一款通用运算放大器(Op Amp),常用于模拟电路设计和信号处理应用。
由德州仪器(Texas Instruments)公司开发和生产。
LM324是一款低成本、低功耗、高增益、宽带宽的运算放大器。
它可以与多种被动和有源元件结合使用,以实现各种电路功能。
该文档将介绍LM324的主要特性、引脚功能、电气参数和应用案例。
特性低成本LM324是一款低成本的运算放大器,适合于大规模生产和成本敏感的应用。
由于其经济实惠,LM324在许多低功耗应用中得到广泛应用。
低功耗LM324具有低功耗特性,工作电压范围在3V到32V之间。
这使得它在需要长时间运行的低功率应用中非常有用,例如电池供电的设备和便携式仪器。
高增益LM324具有高增益,通常可达100dB以上。
这意味着它可以放大微弱信号,以便更好地进行信号处理和检测。
高增益特性使得LM324非常适合于精密测量和控制应用。
宽带宽LM324的带宽范围广泛,可满足许多应用的需求。
其带宽一般在1MHz到1.5MHz之间。
这使得LM324在多种信号处理应用中表现出色,包括音频放大器、通信系统、滤波器和控制环路等。
引脚功能LM324共有14个引脚,以下是其主要功能的解释:1.VCC+:正电源接入脚,供给运算放大器的正电压。
2.IN+:正输入端,接收待放大信号的正极。
3.IN-:负输入端,接收待放大信号的负极。
4.VCC-:负电源接入脚,供给运算放大器的负电压。
5.OUT1:输出1,会根据输入值进行放大并输出。
6.OUT2:输出2,会根据输入值进行放大并输出。
7.OUT3:输出3,会根据输入值进行放大并输出。
8.OUT4:输出4,会根据输入值进行放大并输出。
9.NC:无连接脚,不应连接到其他引脚或外部电路。
10.VEE:负电池供电引脚,用于提供负电源电压。
11.IN4-:第四个输入的负极。
12.IN4+:第四个输入的正极。
13.IN3-:第三个输入的负极。
lm324典型电路
LM324四运放的应用LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“V o”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端V o的信号与该输入端的相位相同。
LM324的引脚排列见图2。
图 1 图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
●反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
●同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
●交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
集成运放LM324芯片手册解读
集成运放介绍
手册解读
LM324典型应用电路
单电源3~32v 双电源±1.5V~±16v
LM324是四运算放大器 单电源or双电源
LM324集成运放介绍
2 手册解读
LM324典型应用电路
输入级:差分放大
中间级:放大级
输出级
1 集成运放介绍
2 手册解读
同相输入
u+ u-
测试条件 典型值:1.5V
集成运放介绍
手册解读
3 LM324典型应用电路
电压放大倍数=-Rf/Ri=-10
电压放大倍数=1+Rf/R4
耦合电容
偏置电阻
单电源供电 反相交流放大器
½ V+分压电路 同相交流放大器 R4的阻值范围为几千欧姆到几十千欧姆。
集成放运介绍手册解读 Nhomakorabea3 LM324典型应用电路
同相直流 放大形式
反相输入
正电源 +VCC
uo
–VEE 输 出
LM324典型应用电路
16
1
9
8
接地或者负电源
集成运放介绍
手册解读
LM324典型应用电路
电源电压
差模 输入 电压
输入电压
双电源:最大正电源16v,最小负电源-16V 单电源最大32v
集成运放介绍
输入失调电压
输入 失调 电流
输入偏置电流
手册解读
LM324典型应用电路
VO =2.5(1+R1/R2)
感温探头 测温电路
基准电压
电压参考电路
学习小结
1 LM324引脚手册
同相输入
u+ u-
四运放LM324的实用电路设计及电路原理
本文就高性能集成四运放LM324的参数,进行实用电路设计,论述电路原理。
LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器, 除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的 引脚排列见图2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
LM324作反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电, 由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值, Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
LM324作同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
R4的阻值范围为几千欧姆到几十千欧姆。
LM324作交流信号三分配放大器此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各 放大器电 压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
LM324典型应用详解
LM324典型应⽤详解四运放集成电路LM324典型应⽤LM324是⽆线电制作者和控制电路中最常⽤的四运放集成电路,由于它具有电源电压范围宽,静态功耗⼩,可单电源使⽤,价格低廉等优点,因此被⼴泛于家⽤电器、电⼦玩具、报警装置、⾃动控制等电路中。
本⽂来介绍运算放⼤器的⼏种典型应⽤。
LM324采⽤14脚双列直插塑料封装,管脚排列如图1所⽰。
它的内部包含四组形式完全相同的运算放⼤器,可使⽤单电源供电,四组运放除电源共⽤外,均相互独⽴。
每—组运算放⼤器可⽤图2所⽰符号来表⽰,它有五个引出端,其中“+”、“-”为两个信号输⼊端,“V+”、“V-”为正、负电源端,“V0”为输出端。
两个信号输⼊端中,Vi-(-)为反相输⼊端,表⽰运放输出端V0的信号与该输⼊端信号的相位相反;Vi+(⼗)为同相输⼊端,表⽰运放输出的信号与该输⼊端信号的相位相端V同。
1.反相交流放⼤器电路见图3。
此放⼤器可代替晶体管进⾏交流放⼤,可⽤于扩⾳机前置放⼤等,特点是电路⽆需调试。
放⼤器采⽤单电源供电,由R1、R2组成,1/2V+偏置,C1是消振电容。
放⼤器电压放⼤倍数Av由外接电阻Ri、Rf决定:A V=-Rf/Ri。
负号表⽰输出信号与输⼊信号相位相反。
按图中所给数值,A V=-10。
此电路输⼊电阻为Ri。
⼀般情况下先选取Ri与信号源内阻相等,然后根据要求的放⼤倍数再选定Rf,,C0和Ci为耦合电容。
2.同相交流放⼤器见图4。
同相交流放⼤器的特点是输⼊阻抗⾼。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进⾏偏置。
电路的电压放⼤倍数A V也由外接电阻决定:Av=1+Rf/R4,电路输⼊电阻为R3,R4的阻值范围为⼏千欧~⼏⼗千欧。
3.交流信号三分配放⼤器见图5。
此电路可将输⼊交流信号分成三路输出,三路可分别⽤作指⽰、控制、分析等⽤途,⽽对信号源影响极⼩。
因运放A1输⼊电阻较⾼。
运放A1~A4均把输出端直接接⾄负输⼊端,信号输⼊⾄正输⼊端,相当于同相放⼤状态时Rf=0的情况,故各放⼤器电压放⼤倍数均为1,与分⽴元件组成的射极跟随器作⽤相同。
LM324应用原理
LM324应用原理时间:2009-01-02 14:40:00 来源:资料室作者:电磁阀龙LM124/LM224/LM324四运算放大器芯片的中文应用资料LM124/LM224/LM324是四运放集成电路,它采用14管脚双列直插塑料(陶瓷)封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM124/LM224/LM324的引脚排列见图2。
图一图二 lm324功能引脚图图3 LM324/LM124/LM224集成电路内部电路图 1/4主要参数:极限参数:LM124为陶瓷封装由于LM124/LM224/LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
应用电路反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
Rf如改为可变电阻,可任意调整电压放大的倍数。
图4放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
图5电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
四运放LM324的实用电路设计及电路原理
四运放LM324的实用电路设计及电路原理
一、实用电路设计:
1.非反向比例放大电路:
其中R1和R2为反馈电阻,Vin为输入电压,Vout为输出电压。
根据电压分压原理和运放的虚短性质,可得到输出电压的表达式:Vout = Vin * (1 + R2/R1)
2.反向比例放大电路:
其中R1和R2为反馈电阻,Vin为输入电压,Vout为输出电压。
根据电压分压原理和运放的虚短性质,可得到输出电压的表达式:Vout = -Vin * (R2/R1)
3.非反向加法器:
其中R1、R2、R3为反馈电阻,Vin1、Vin2为输入电压,Vout为输出电压。
根据电压分压原理和运放的虚短性质,可得到输出电压的表达式:Vout = (Vin1 * R2/R1) + (Vin2 * R3/R1)
4.双电源比例放大电路:
其中R1和R2为反馈电阻,Vin为输入电压,Vcc+和Vcc-为正负电源电压,Vout为输出电压。
根据电压分压原理和运放的虚短性质,可得到输出电压的表达式:
Vout = Vin * (1 + R2/R1)
二、电路原理:
运放单元的差分输入级由三个差动对组成,其输入电流可忽略不计。
电流源提供各级的偏置电流。
电压放大级通过一个交流耦合电容耦合到输出级。
输出级由一个放大电路组成,它负责提供电压放大和驱动负载。
在实际应用中,四运放LM324的内部结构能够提供高增益、宽输入电压范围、低输入偏置电流等特性。
同时,它还具有低功耗、高压电源抗干扰能力等优点,使得其成为众多电子设备中常用的模拟电路元件。
通过合理的电路设计和参数选择,可以实现各种功能的电路设计,满足不同应用需求。
LM324电压比较器电路图和应用
电压比较器基本原理及设计应用本文主要介绍电压比较器基本概念、工作原理及典型工作电路,并介绍一些常用的电压比较器。
电压比较器(以下简称比较器)是一种常用的集成电路。
它可用于报警器电路、自动控制电路、测量技术,也可用于V/F变换电路、A/D变换电路、高速采样电路、电源电压监测电路、振荡器及压控振荡器电路、过零检测电路等。
什么是电压比较器简单地说,电压比较器是对两个模拟电压比较其大小(也有两个数字电压比较的,这里不介绍),并判断出其中哪一个电压高,如图1所示。
图1(a)是比较器,它有两个输入端:同相输入端(“+”端) 及反相输入端(“-”端),有一个输出端Vout(输出电平信号)。
另外有电源V+及地(这是个单电源比较器),同相端输入电压VA,反相端输入V B。
VA和VB的变化如图1(b)所示。
在时间0~t1时,VA>VB;在t1~t2时,VB>VA;在t2~t3时,VA>VB。
在这种情况下,Vout的输出如图1(c)所示:VA>VB时,Vout输出高电平(饱和输出);VB>VA时,Vout输出低电平。
根据输出电平的高低便可知道哪个电压大。
如果把VA输入到反相端,VB输入到同相端,VA及VB的电压变化仍然如图1(b)所示,则Vout输出如图1(d)所示。
与图1(c)比较,其输出电平倒了一下。
输出电平变化与VA、VB的输入端有关。
图2(a)是双电源(正负电源)供电的比较器。
如果它的VA、VB输入电压如图1(b)那样,它的输出特性如图2(b)所示。
VB>VA时,Vout输出饱和负电压。
如果输入电压VA与某一个固定不变的电压VB相比较,如图3(a)所示。
此VB称为参考电压、基准电压或阈值电压。
如果这参考电压是0V(地电平),如图3(b)所示,它一般用作过零检测。
LM324功能应用简介
LM324功能应用简介2007/09/01 14:57LM324功能应用简介您现在的位置是:主页>>>电子元器件资料>>>正文LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图所示。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。
每一组运算放大器可用图1所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324的引脚排列见图2。
图 1 图 2由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,因此被广泛应用在各种电路中。
下面介绍其应用实例。
反相交流放大器电路见附图。
此放大器可代替晶体管进行交流放大,可用于扩音机前置放大等。
电路无需调试。
放大器采用单电源供电,由R1、R2组成1/2V+偏置,C1是消振电容。
放大器电压放大倍数Av仅由外接电阻Ri、Rf决定:Av=-Rf/Ri。
负号表示输出信号与输入信号相位相反。
按图中所给数值,Av=-10。
此电路输入电阻为Ri。
一般情况下先取Ri与信号源内阻相等,然后根据要求的放大倍数在选定Rf。
Co和Ci为耦合电容。
同相交流放大器见附图。
同相交流放大器的特点是输入阻抗高。
其中的R1、R2组成1/2V+分压电路,通过R3对运放进行偏置。
此电路可将输入交流信号分成三路输出,三路信号可分别用作指示、控制、分析等用途。
而对信号源的影响极小。
因运放Ai输入电阻高,运放A1-A4均把输出端直接接到负输入端,信号输入至正输入端,相当于同相放大状态时Rf=0的情况,故各放大器电压放大倍数均为1,与分立元件组成的射极跟随器作用相同。
电路的电压放大倍数Av也仅由外接电阻决定:Av=1+Rf/R4,电路输入电阻为R3。
LM324集成芯片内部电路分析与典型应用
《模拟电子技术》专题研讨报告LM324集成芯片内部电路分析与典型应用目录1.摘要 (3)2.关键词 (3)3.LM324集成芯片的内部工作原理 (5)4.LM324集成芯片单元电路分析 (5)5.LM324集成芯片典型应用电路设计及设计要求5.1低通滤波器 (5)5.2高通滤波器 (5)5.3带通滤波器 (5)6.参数运算及设计电路图 (8)7.电路仿真验证 (9)8.心得体会以及收获 (10)1.摘要LM324集成芯片内部构造由四运放构成。
其优点相较于标准运算放大器而言,电源电压工作范围更宽,静态功耗更小,因此在生活中有着极为广泛的应用。
LM324的四组运算放大器完全相同,除了共用工作电源外四组器件完全独立。
以其中一组运算放大器为例分析,其内部电路共由两级电路构成,其耦合方式为电容耦合。
这使得两级电路的直流工作状态相互独立互不影响。
LM324的典型应用有滤波器的制作。
带通滤波器可由一高通滤波器与一低通滤波器级联而成。
为了使电压放大倍数达到设计要求,可以改变接入电路电阻阻值。
2.关键词LM324集成芯片,滤波器,集成负反馈电路3.LM324集成芯片的内部工作原理LM324系列集成芯片为四个完全相同的运算放大器封装在一起的集成电路。
该集成电路外部具有十四个管脚分别包含八个输入端口、四个输出端口以及两个电压端口。
如图1 所示LM324常用的封装方式有两种,双列直插所料封装DIP封装方式以及双列贴片式封装SOP封装方式。
图2为LM324的管脚连接图。
除电源共用外,四组运放相互独立。
由图可知,第1、7、8、14号管脚为输出管脚,分别对应四个运算放大器的输出端。
第2、6、9、13号管脚为负输入端。
第4、11两管脚连接工作电压。
使用时,在4、11号管脚处分别接入正负工作电源,一般为12V或15V。
将输入端高点平输入至正输入端,低电平输入至负输入端。
此时在输出端便可得到经过同相放大的电压。
若将正负端反接,则可在输出端得到经过反响放大的电压。
LM324及其常用应用电路,用法
LM324lm124、lm224和lm324引脚功能及内部电路完全一致。
324系列运算放大器是价格便宜的带差动输入功能的四运算放大器。
可工作在单电源下,电压范围是3.0V-32V或+16V.LM324的特点:1.短跑保护输出2.真差动输入级3.可单电源工作:3V-32V4.低偏置电流:最大100nA(LM324A)5.每封装含四个运算放大器。
6.具有内部补偿的功能。
7.共模范围扩展到负电源8.行业标准的引脚排列9.输入端具有静电保护功能LM324引脚图(管脚图)LM324应用电路图:1.LM324电压参考电路图2.LM324多路反馈带通滤波器电路图3.LM324高阻抗差动放大器电路图4.LM324函数发生器电路图5.LM324双四级滤波器6.LM324维思电桥振荡器电路图7.LM324滞后比较器电路图LM324引脚图资料与电路应用LM324引脚图资料与电路应用 LM324资料: LM324为四运放集成电路,采用14脚双列直插塑料封装。
,内部有四个运算放大器,有相位补偿电路。
电路功耗很小,lm324工作电压范围宽,可用正电源3~30V,或正负双电源±1.5V~±15V工作。
它的输入电压可低到地电位,而输出电压范围为O~Vcc。
它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互单独。
每一组运算放大器可用如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。
两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的相位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。
LM324引脚排列见图1。
2。
lm124、lm224和lm324引脚功能及内部电路完全一致。
lm124是军品;lm224为工业品;而lm324为民品。
由于LM324四运放电路具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等特点,因此他被非常广泛的应用在各种电路中。
LM324应用电路设计
LM324应用电路设计LM324是一种常见的集成运算放大器,广泛应用于各种电子产品中的信号处理电路。
它是一种低功耗、高增益、大电压范围的运放,具有良好的温度稳定性和频率响应特性。
下面我将介绍一些常见的LM324应用电路设计。
1.增益放大电路LM324可以被用作一个放大器,可以将输入信号的幅值放大到所需的增益。
在这种电路中,输入信号通过一个电阻接地,输出信号通过一个电容连接到负反馈端,以实现放大功能。
通过调节反馈电阻的大小,可以改变放大倍数。
2.滤波器电路3.正弦波发生器使用LM324可以设计正弦波发生器电路,生成不同频率的正弦波信号。
这种电路主要是通过调整输入电压的频率和相位差,利用负反馈原理产生稳定的正弦波信号。
可以通过改变电阻和电容的数值,来调节输出信号的频率范围和幅值。
4.比较器电路LM324还可以用作比较器电路,用于比较两个输入信号的大小。
比较器电路一般由两个输入端和一个输出端组成。
当其中一个输入信号大于另一个输入信号时,输出高电平;反之,输出低电平。
比较器电路可以用于电压检测、开关控制等应用。
5.双电源电压跟随器在一些需要双电源供电的电路中,为了保证电路的正常工作,需要一个双电源电压跟随器来跟踪并保持双电源电压的一致性。
LM324可以被用作双电源电压跟随器的关键部分,通过连接两个OP放大器来实现。
一个OP放大器用于跟随正电源电压,另一个用于跟随负电源电压,从而实现对双电源电压的跟踪。
总结:LM324是一种功能强大的集成运算放大器,可以广泛用于各种应用电路设计中。
上述只是介绍了一些常见的应用,实际上还可以用于许多其他电路设计,如振荡器、滑动平均滤波器、功率放大器等。
根据不同的应用需求,可以调整电路参数和连接方式,在设计过程中需要仔细考虑电路稳定性、带宽、抗干扰能力等因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Beijing Jiaotong University 模拟集成电路研讨
LM324集成芯片内部电路分析与典型应用
学院:电子信息工程学院
小组成员:
指导教师:
时间:
LM324集成芯片内部电路分析与典型应用
摘要
LM324集成芯片内部构造由四运放构成,其优点相较于标准运算放大器而言,电源电压工作范围更宽,静态功耗更小,因此在生活中有着极为广泛的应用。
LM324的四组运算放大器完全相同,除了共用工作电源外,四组器件完全独立。
以其中一组运算放大器为例分析,其内部电路共由两级电路构成,其耦合方式为电容耦合,这使得两级电路的直流工作状态相互独立,互不影响。
LM324的典型应用有滤波器的制作。
带通滤波器可由一高通滤波器与一低通滤波器级联而成,为了使电压放大倍数达到设计要求,可以改变接入电路电阻阻值来实现。
关键词:LM324集成芯片;工作原理;滤波器
目录
摘要 (2)
一、工作原理 (4)
二、典型应用电路设计——多波形信号发生器 (6)
设计方案 (6)
1.正弦波部分 (7)
2. 方波部分 (8)
3.三角波电路 (9)
三、总结 (11)
四、参考文献 (11)
一、工作原理
LM324系列集成芯片为四个完全相同的运算放大器封装在一起的集成电路,该集成电路外部具有十四个管脚,分别包含八个输入端口、四个输出端口以及两个电压端口。
如图1 所示,LM324常用的封装方式有两种:双列直插塑料封装(DIP 封装方式)以及双列贴片式封装(SOP封装方式)。
图2为LM324的管脚连接图。
除电源共用外,四组运放相互独立。
由图可知:第1、7、8、14号管脚为输出管脚,分别对应四个运算放大器的输出端。
第2、6、9、13号管脚为负输入端。
第4、11两管脚连接工作电压。
使用时,在4、11号管脚处分别接入正负工作电源(一般为±12V或±15V)
将输入端高点平输入至正输入端,低电平输入至负输入端,此时在输出端便可得到经过同相放大的电压。
若将正负端反接,则可在输出端得到经过反响放大的电压。
与标准运算放大器相比,LM324这种差动输入方式的器件具有显著的优点。
它的优点在于电源电压范围宽、静态功耗小、可采用单(双)电源方式使用,价格低廉。
因此,LM324的应用在各种电路中。
运算放大器内部的电路图如图:
图中,直流偏置电路有vt5.vt6.vt12.vt17等三极管组成,为各级放大电路的放大三极管三极管提供必要的静态电流;输入极
vt1.vt2.vt3.vt4.vt8.vt9组成改进型公集-共射差分放大电路,双端输入,单端输出。
其中vt8.vt9组成镜像电流源作为差分放大电路的有源负载,vt1.vt4和vt2.vt3分别构成两个对称的公集-共射差分放大电路。
差分放大电路单端输出送到中间放大极q10管的基极。
中间放大级是公集-共射多级级联放大电路,其中vt10.vt11三极管构成两级射极输出电路,是第二级输入电阻很大,从而提高了输入极的电压增益。
Vt15构成一共射电路,进一步提高了放大能力
输出级在单电源供电下,vt19.vt20.构成两级公集放大电路。
放大级vt15集电极端输出的信号送入vt19.vt20,同时送入vt21的发射极,vt17为vt19.vt20放大,输出经过电阻r2送入vt21的发射极,使vt21管截止。
此时为了获得尽可能大的不是真输出电压,应是静态输出电压为工作电源电压的一半,
一半通过在lm324的输入端加适量的偏执电压来实现。
二、典型应用电路设计——多波形信号发生器
设计方案
根据所学的知识,可以使用文氏桥的正反馈作用利用LM324自激震荡产生正弦波,再通过运算放大器可以构成滞回比较器、积分器,可以分别产生方波、三角波。
依靠这些电路的组合,就可以制作成简易波形发生器电路。
该电路具有效率高、体积小、重量轻,输出稳定等特点。
而且LM324集成运放芯片价格低廉,又很容易买到,可以降低电路的制作成本。
根据要实现的功能,设计的电路系统框图如下图所示:
系统采用±12V双电源供电,主体部分由LM324集成运放芯片构成的文氏桥振荡电路、滞回比较器、积分器电路组成。
它由文氏桥自激振荡产生正弦波,正弦波经滞回比较器产生方波信号,方波信号经过积分器后产生三角波信号。
1.正弦波部分
正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相
比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有
2131uo R Au up R ==+≥ R2≥2R1 2121
R R R R R =+ 且振荡产生正弦波频率
1
f 正弦波电路参数设计:由于RC 桥式振荡的振荡频率是由RC 网络决定的,因此选择RC 的值时,应把已知的振荡频率作为主要依据。
同时,为了使选频网络的特性不受集成放大器输入和输出电阻的影响,选择R 时还应考虑R 应该远远大于集成远放的输出电阻,并且要远远小于集成远放的输入电阻。
根据已知条件,由fo =1/(2πRC )可以计算电容的值,实际应用时要选择稳定性好的电阻和电容。
R1和Rf 的值可以由起振条件来确定,通常取Rf=2.1R1,这样可以保证起振又不会使输出波形严重失真。
仿真结果:
2. 方波部分
正弦波到方波的转换采用的是迟滞比较器(避免扰动),从集成运放输出端的限幅电路可以知道当Ui>0时,Uo=-12V,当Ui<0时,Uo=12V。
由幅值是两伏与及市产的情况,选所以选Uz=±9的稳压管,作为迟滞比较器,R13越大,迟滞的阈值电压越大,这里选择100欧姆。
仿真结果:
3.三角波电路
由积分器原理可知,
441(t)o i U U dy R C =-⎰,其中R4C4越小,积分的斜率越
大。
运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R6称为平衡电阻。
比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee 跳到高电平Vcc 。
仿真结果:
总电路
总体仿真结果:
由于LM324本身频率响应不好,所以方波的上升沿和下降沿时间都比较长。
三、总结
本系统LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。
该电路基本达到了竞赛题目中要求的各项任务和功能,并且具有一定的实用性。
通过本次设计,加强了自己的理论水平,提高了自己的动手能力。
在制作电路的过程中更是学到了许多实践经验,如电路板的布线、元器件的识别和整机的调试等各方面的经验。
学到了许多课本上没有的知识,得到了很大的锻炼。
四、参考文献
1.康华光.电子技术基础(模拟部分).高等教育出版社,2003.03.
2.胡宴如.模拟电子技术. 高等教育出版社,2000.08.。