《高职高等数学》课程教学大纲
高职高等数学教案
高职高等数学教案一、教学目标1. 知识与技能:使学生掌握高职高等数学的基本概念、原理和方法,培养学生运用数学知识解决实际问题的能力。
2. 过程与方法:通过教师的引导和学生的自主学习,培养学生分析问题、解决问题的能力,提高学生的数学思维水平。
3. 情感态度与价值观:激发学生学习高等数学的兴趣,培养学生的耐心和毅力,使学生认识到高等数学在实际生活中的重要性。
二、教学内容1. 第一章:函数与极限教学重点:函数的概念、性质,极限的定义及性质,无穷小比较,函数的极限,无穷小求极限。
教学难点:极限的运算,无穷小比较,函数的极限。
2. 第二章:导数与微分教学重点:导数的定义,基本导数公式,导数的应用,微分的概念及计算。
教学难点:导数的运算,高阶导数,隐函数求导,参数方程求导。
3. 第三章:微分中值定理与导数的应用教学重点:微分中值定理,洛必达法则,导数在函数性质分析中的应用。
教学难点:微分中值定理的证明,洛必达法则的运用,函数的单调性、凹凸性及拐点。
4. 第四章:不定积分教学重点:不定积分的概念,基本积分公式,换元积分,分部积分。
教学难点:换元积分的计算,分部积分的运用,有理函数的积分。
5. 第五章:定积分教学重点:定积分的定义,基本定积分公式,定积分的计算,定积分在实际问题中的应用。
教学难点:定积分的运算,反常积分的计算,定积分在实际问题中的应用。
三、教学方法与手段1. 教学方法:采用启发式教学,引导学生主动思考、积极参与,通过实例分析、讨论、练习等方式,巩固所学知识。
2. 教学手段:利用多媒体课件、黑板、教材等教学资源,辅助教学,提高教学效果。
四、教学评价1. 过程评价:关注学生在学习过程中的表现,如参与度、思考能力、合作精神等。
2. 结果评价:通过课后作业、课堂练习、单元测试等方式,检验学生对知识的掌握程度。
五、教学课时安排1. 第一章:10课时2. 第二章:12课时3. 第三章:10课时4. 第四章:12课时5. 第五章:10课时六、第六章:向量代数与空间解析几何教学重点:向量的概念、运算,空间直角坐标系,向量投影,空间向量的运算,线性方程组,空间解析几何的基本概念及应用。
《高等数学》课程教学大纲
《高等数学》课程教学大纲适用专业:会计电算化、营销管理(高职单招,两年制)(学分:4,学时数:68)课程的性质和任务《高等数学》是经济管理系会计电算化、营销管理专业的一门基础课。
其主要任务是为后续课程以及进一步学习数学知识奠定必要的高等数学基础。
在学习有关知识和技能的同时,培养学生具有较熟练的运算能力、一定的概括能力和逻辑思维能力以及应用所学知识分析、解决问题的能力。
课程内容第一章函数的极限与连续性本章的教学目的与要求:1、理解函数的概念和函数的四个特性;2、掌握基本初等函数、复合函数的概念,了解几个常用的经济函数;3、了解数列极限与函数极限的概念;4、掌握极限的四则运算法则,熟练运用这些法则进行极限的运算;5、掌握两个重要极限,熟练利用两个重要极限进行极限的运算;6、理解无穷小量与无穷大量的概念及其相互关系,会进行无穷小量的比较;7、理解函数在一点连续的概念,会求函数的间断点。
了解连续函数的运算法则与闭区间上连续函数的性质。
第一节函数一、函数及其特性二、基本初等函数三、复合函数四、初等函数五、非初等函数举例第二节极限的有关概念一、数列的极限二、函数的极限三、无穷小量与无穷大量第三节极限的运算一、极限存在准则二、两个重要极限三、无穷小的比较第四节函数的连续性一、函数的增量二、连续函数的概念三、间断点四、初等函数的连续性五、闭区间上连续函数的性质重点与难点:重点:基本初等函数(特别是指数函数、对数函数和三角函数)、复合函数,极限的运算、两个重要极限,函数在一点连续的概念。
难点:反三角函数、极限的概念,间断点的判别。
第二章 导数与微分本章的教学目的与要求:1、理解导数和微分的概念及其相互关系,掌握导数和微分的几何意义,会利用导数求曲线的切线方程与法线方程,了解可导与连续的关系;2、熟练掌握导数四则运算法则和导数基本公式,熟练地进行导数(微分)的运算; 3、熟练掌握复合函数的求导法则,熟练地求复合函数的导数; 4、掌握隐函数的求导方法和对数求导法;5、了解反函数的求导法则及高阶导数的概念,会求函数的二阶导数。
高职高等数学教案
高职高等数学教案一、教学目标1. 知识与技能:使学生掌握高职阶段必要的高等数学基础知识,包括函数、极限、导数、积分等概念和方法,提高学生解决实际问题的能力。
2. 过程与方法:通过实例分析、问题解决、小组讨论等方式,培养学生运用高等数学知识分析和解决问题的能力。
3. 情感态度与价值观:激发学生学习高等数学的兴趣,培养学生的创新意识和团队合作精神,提高学生综合素质。
二、教学内容1. 第四章:导数导数的定义基本导数公式导数的应用单调性极值曲线的凹凸性和拐点2. 第六章:积分不定积分基本积分公式换元积分法分部积分法定积分定积分的定义定积分的性质牛顿-莱布尼茨公式积分的应用面积计算体积计算质心、质矩计算三、教学方法1. 实例分析法:通过实际问题引入数学概念,引导学生运用数学知识解决问题。
2. 问题解决法:设计具有挑战性的问题,激发学生思考,培养学生的解决问题的能力。
3. 小组讨论法:组织学生进行小组讨论,培养学生的团队合作精神和沟通能力。
4. 现代化教学手段:利用多媒体课件、网络资源等,提高教学效果。
四、教学评价1. 平时成绩:考察学生的出勤、作业、小测验等情况,占总评的40%。
2. 期中考试:考察学生对高职高等数学基础知识的理解和运用能力,占总评的30%。
3. 期末考试:全面测试学生的学习成绩,占总评的30%。
五、教学资源1. 教材:选用适合高职学生的权威高等数学教材。
2. 多媒体课件:制作精美、清晰的多媒体课件,便于学生理解和记忆。
3. 网络资源:提供相关的高等数学学习网站、在线课程等,方便学生自主学习。
4. 习题集:提供丰富的习题,帮助学生巩固所学知识。
六、教学资源1. 辅导资料:提供详细的辅导资料,包括学习指南、解题技巧等,帮助学生提高学习效果。
2. 视频讲座:录制高水平教师的高等数学讲座,供学生在线学习和参考。
3. 数学软件:介绍和使用数学软件,如MATLAB、Mathematica等,使学生能够将理论应用于实际问题的解决。
《高等数学》专科教学大纲
专科《高等数学》课程教学大纲一、适用对象适用于网络教育、成人教育学生二、课程性质高等数学是大学各专业的公共基础课,在培养高素质人才中具有独特的、不可替代的重要作用。
通过本门课程的学习,要使学生获得高等数学的基本理论、基本方法和基本运算技能,为学习后续课程和进一步获得数学知识奠定基础。
前序课程:初等数学三、教学目的通过各个教学环节逐步培养学生具有抽象概括问题的能力、逻辑推理能力、空间想象能力、创造性思维能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学数学知识分析问题和解决问题的能力。
四、教材及学时安排教材:《高等数学》电子科技大学出版社,2014年学时安排:五、教学要求第一章函数、极限、连续教学要求:1、理解函数的概念;2、了解函数奇偶性、单调性、周期性和有界性;3、了解复合函数和反函数的概念;4、掌握基本初等函数的性质及其图形;5、理解极限的概念;6、灵活运用极限四则运算法则;7、灵活运用两个重要极限;8、理解无穷小、无穷大、以及无穷小的比较的概念,灵活运用等价无穷小替换求极限;9、理解函数在一点连续的概念;10、理解间断点的概念,并会判断间断点的类型;11、了解初等函数的连续性,知道闭区间上连续函数的性质。
内容要点:1.1:函数1.2:数列的极限1.3:函数的极限1.4:无穷小量及其性质1.5:极限的性质及运算法则1.6:两个重要极限1.7:无穷小量的比较1.8:函数的连续性与间断点1.9:初等函数的连续性第二章导数与微分教学要求:1、理解导数和微分的概念,了解导数的几何意义以及函数的可导性与连续性之间的关系;2、灵活运用求导法则和基本求导公式求导,了解微分的四则运算法则,知道一阶微分形式的不变性;3、理解高阶导数的概念及求法;内容要点:2.1:导数的概念2.2:导数的运算2.3:高阶导数2.4:微分第三章导数的应用教学要求:1、灵活运用洛必达(L’Hospital)法则求未定式的极限。
《高等数学》(工科类专业适用)课程教学大纲
《高等数学》(工科类专业适用)课程教学大纲一、课程基本信息1.学分:42.学时:72课时3.课程类别:公共基础课4.考试/考查:考试5.适用专业:工科类各专业二、课程性质和教学任务、目标1.课程性质高等数学(工科类专业适用)课程是我院三年制高职工科学生必修的一门基础课。
2.教学任务通过该门课程的学习,使得学生理解函数、极限与连续及导数微分的基本概念,特别对极限的思想和方法有初步认识,能感受到实际生活中的数学现象。
掌握积分、常微分方程的基本理论和基本运算能力。
3.教学目标通过本课程的学习,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。
三、本课程的专业地位及与相关课程的联系本课程一门重要的基础课,针对工科类学生的内容比较简单,让学生体会常见数学现象的同时重点培养学生的思维与计算能力,为专业知识的学习提供必不可少的数学基础知识和常用的数学方法。
专业课经常会涉及一些计算,都需要相应的数学知识准备。
四、教学方法和教学形式的建议牢记以以培养学生能力为中心,理解数学思维来进行教学。
经常通过多媒体方式展现数学图像的动态变化,呈现生活中的数学应用和现象。
在教学中,以课堂教学为主,适当穿插课堂练习或实际例子的讨论。
五、教学过程建议1.学时分配:总课时:72。
2.教材:《高等数学》,李广全、胡桂荣主编,高等教育出版社,第一版,2014年,“十二五”职业教育国家规划教材。
建议参考教材:《高等数学(修订版)》,滕桂兰、杨万禄主编,天津大学出版社,第一版,1996年。
《高等数学》,江旭光主编,现代教育出版社,第一版,2013年,高等职业教育课改教材。
3.考核形式:本课程为考试课,采用闭卷考试形式,考试时间为90分钟。
最终课程成绩采用百分制,主要分为平时分(40%)、期末考试成绩(60%)。
六、教学课时分配七、教学内容与要求第一章函数、极限与连续教学内容:反函数、初等函数、极限的运算、无穷小量、连续性的概念、初等函数的连续性。
高职《高等数学》教学大纲
《高等数学》课程教学大纲一、课程基本信息二、课程内容与基本要求1.理解函数的定义;了解分段函数、基本初等函数、反函数、复合函数的概念;会建立简单实际问题的函数模型。
2.了解极限的描述性定义,了解无穷小、无穷大的概念及其相互关系和性质;会用两个重要极限公式求极限,掌握极限的四则运算法则。
理解函数在一点连续的概念,知道间断点的分类;会用函数的连续性求极限。
3.理解导数和微分的概念及其几何意义,会用导数描述一些简单的问题;熟练掌握导数和微分的四则运算法则和基本初等函数的求导公式;熟练掌握复合函数、隐函数以及由参数方程所确定的函数一阶导数的求法;了解高阶导数的概念;了解可导、可微、连续之间的关系。
4.了解罗尔中值定理、拉格朗日中值定理与柯西中值定理;会用洛必达法则求极限;掌握利用一阶导数判断函数的单调性、极值和最值的方法;会用二阶导数判断函数图形的凹向及拐点,能描绘简单的函数图形。
5.了解原函数、不定积分的概念及性质;掌握不定积分的基本公式;会用换元法和分部积分法求不定积分。
6.理解定积分的概念及其性质,了解定积分的几何意义,了解变上限的定积分的性质;熟练掌握牛顿—莱布尼茨公式;掌握定积分的换元法和分部积分法。
三、学时分配表四、对学生能力培养的要求高等数学是各专业必修的一门重要基础课程,它对培养、提高学生的思维素质,创新能力,科学精神,治学态度以及用数学解决实际问题的能力都有着非常重要的作用。
在授课中应紧密结合实际问题,分析一些代表性的专业相关问题,并建立数学模型。
本大纲所列内容为基本内容,它们是根据课程的基本要求和实用够用的原则规定的,是学生必须掌握的最低限度的基本知识,学生在规定教学时数内能够掌握和了解。
对理论教学内容的深浅程度,采用两个层次,即:对原理性和概念性内容采用“理解”和“了解”两个层次,对于运算性和应用性的内容采用“掌握”和“了解”两个层次。
教师要求学生按不同层次理解教学内容的深度和广度。
2024年高等数学(高职)教案
空间直角坐标系和向量概念
01
介绍右手坐标系和左手坐标系的区别和应用
02
向量的概念和性质
定义向量及其表示方法
03
空间直角坐标系和向量概念
阐述向量的模、方向和单位向量的概 念
介绍向量的相等、共线和垂直等性质
向量运算和向量场初步
向量的线性运算
1
向量的加法运算及其性质
2
向量的数乘运算及其性质
3
向量运算和向量场初步
平面和直线方程及其性质
01
平面的方程和性质
02
平面的点法式方程和一般式方程
03
平面与坐标轴的交点和截距
平面和直线方程及其性质
01
两平面的夹角和点到平面的距离公式
02
直线的方程和性质
03 直线的点向式方程、参数式方程和一般式方程
平面和直线方程及其性质
直线与坐标轴的交点和截距
两直线的夹角、直线到直线的距离公式以及点到直线的距离公式
04
积分学
不定积分概念及计算方法
不定积分的定义与性质
通过实例引入不定积分的概念,阐述 其性质,如线性性、可加性等。
基本积分公式与法则
介绍基本的不定积分公式和法则,包 括幂函数、三角函数、指数函数等的 积分方法。
换元积分法
通过变量代换简化被积函数,从而求 出原函数的方法。
分部积分法
将复杂函数拆分为简单函数进行积分 的方法。
高等数学(高职)教案
目
CONTENCT
录
• 课程介绍与教学目标 • 函数、极限与连续 • 导数与微分 • 积分学 • 微分方程初步 • 无穷级数初步 • 空间解析几何与向量代数 • 多元函数微积分学初步
01
高职高专高等数学教学大纲
《高等数学》课程教学大纲一、课程性质和目的高等数学是高职高专院校工程类、经济类以及理工类各专业必修的一门重要的基础课。
它已做为应用的工具渗透到各个领域,是培养、提高学生的思维素质、创新能力、科学精神、治学态度、完成教育应用性人才培养目标的重要的基础理论课程。
通过本课程的学习使学生在高中文化的基础上,进一步掌握为学习现代科学技术和管理所必备的数学基础知识和基本技能,培养学生的空间想象力和抽象的逻辑思维能力,训练他们用数学思想、概念、方法并结合自己的专业把所学理论和方法运用于实践,目的是培养学生运用数学来分析、解决实际问题的能力,为后续各课程的学习奠定较好的数学基础,形成一定的数学思想。
二、课程的基本内容和教学要求三、课程教学的基本要求:通过本课程的教学,应使学生理解基本概念,以及它们之间的联系;正确理解并掌握基本定理的条件、结论和证明方法;熟练掌握各种基本计算方法;能够对简单的实际问题建立数学模型,并会求解。
该课程为学生学习物理、电工、电子等理工科专业课程奠定必要的数学基础。
在课堂讲授的同时,辅以课堂练习与讨论,引导学生认真阅读教材,独立完成作业,逐步培养学生的抽象思维、逻辑推理、空间想象、分析解决实际问题的能力,掌握学习方法,培养自学能力。
四、实践性教学环节要求1、始终注重引导学生对问题的思考、归纳、总结,探求规律性的东西;2、教师要深入到学生中去了解学生的学习基础,应特别帮助、指导、鼓励基础较弱的同学的学习方法、过程、信心;要目的地备课;3、备课内容上,尽量贴近生活、贴近专业、贴近应用,使学生学有兴趣、学以致用;4、教学方法上,坚持启发、指导式教学,尽可能增加双边活动,多给学生动脑、动手锻炼的机会,以进一步培养他们的自学能力、分析和解决问题的能力,传授学习方法及技巧.5、课堂讲解时,既深入浅出、通俗易懂,又生动、富有感染力,还应适时增加、增大信息量;6、板书设计上,力争醒目、条例、认真、美观;7、通过数学建模竞赛,进一步培养同学们的实践能力.五、教学建议1、用辩证唯物主义观点进行教学,例如对函数概念要进行事物间相互依赖、制约、变化及发展等观点来讲解。
《高职高等数学》课程教学大纲
《高职高等数学》课程教学大纲一、课程性质、任务《高职高等数学》是高职院校相关专业的一门重要的基础课。
通过教学,使学生掌握一元及多元微积分、常微分方程、级数等基础知识,学会用运动和变化的观点思考问题,拓展学生分析问题和处理问题的能力;初步学会应用数学思想和方法去分析、处理某些实际问题。
二、课程在专业中的地位和作用《高职高等数学》是研究自然科学和工程技术的重要工具之一,是提高学生文化素质和学习有关专业知识的重要基础。
本课程要使学生在学习初等数学的基础上进一步学习和掌握高等数学的基础知识和思维方式,为学生学习专业基础课和相关专业课程提供必需的数学基础知识和数学工具。
三、课程教学目标和基本教学要求教学目标:重视与高中(职高)知识的衔接及各专业知识的必需,以掌握概念,强化应用为重点,贯彻拓宽基础、强化能力、立足应用的原则。
教学内容应由浅入深、由易到难,循序渐进,既兼顾数学本身的系统性,又要贯彻理论联系实际的原则,强调应用性和实用性。
逐步培养学生具有初步抽象概括问题的能力、一定的逻辑推理能力、比较熟练的运算能力以及自学能力。
教学要求:1、在重点讲清基本概念和基本方法的基础上,适度淡化基础理论的严密论证和推导,加强与实际联系较多的基础知识和基本方法教学。
注重基本运算的训练,简化过分复杂的计算和变换;2、结合数学建模突出“以应用为目的,以必需够用为度”的教学原则,加强对学生应用意识、兴趣、能力的培养;让学生学会利用常用的数学软件,完成必要的计算、分析或判断;教学过程中,逐步使用现代教学手段,尽量结合使用电子教案进行日常教学;3、教学中以极限、导数、积分、微分方程及应用等知识为主线,着力培养学生利用数学原理和方法消化吸收工程概念和工程原理的能力。
四教学内容(单元、课题或章节)、教学目标与学时分配总体模块学时分配:微积分模块 56学时;应用模块 52学时。
模块(1)线性代数基础模块(2)微积分四、考核方案《高职高等数学》课程的教学分两期完成, 期末考试成绩占总成绩的70%, 平时成绩占30%。
《高等数学》课程教学大纲.doc
《高等数学》课程教学大纲课程编码:0605006学分:3总学时:60说明【课程性质】高等教学课程是高职高专院校计划中的一门重要的基础理论课,它是专业技术类课程的基础课,同时担负着培养学生严谨的思维、求实的作风、创新的意识等任务,即高等数学课程既要传授学生数学知识,更要培养学生数学素养。
【教学目的】要通过各个教学环节逐步培养学生具有比较熟练的运算能力、抽象思维能力、逻辑推理能力、空间想象能力和自学能力。
还要培养学生具有抽象概括问题的能力和综合运用知识来分析解决实际问题的能力。
【教学任务】本门课程的具体任务是:通过本门课程的学习,使学生获得函数的极限与连续、一元函数微积分等方面的基础知识、基本理论和基本运算技能,为学习后继课程以及进一步获得数学知识奠定必要的数学基础。
【教学内容】(-)函数、极限、连续教学内容:1.理解函数概念;2.理解函数的单调性、周期性、奇偶性;3.了解反函数、复合函数的概念;4.熟练掌握基本初等函数图象;5.能将简单实际问题中的函数关系表达出来;6.能正确应用极限四则运算法则;7.理解两个重要极限,会用两个重要极限求极限;8.理解无穷小、无穷大的概念,掌握无穷小的比较;9.了解函数在一点的连续和间断的概念;10.知道初等函数的连续性;11.知道闭区间连续函数的性质。
(二)一元函数微分学教学内容:1.理解导数和微分的概念,能用导数描述一些物理量,了解函数可导与连续的关系;2.熟悉导数和微分的运算法则,导数的基本公式,能熟练计算初等函数的一、二阶导数; 3.会求隐函数的导数,会求参数方程的导数和二阶导数;4.理解罗尔、拉格朗日定理,会应用拉格朗日定理证明一些简单问题;5.理解函数极值的概念;6.能用导数求函数的极值,判断函数的增减性、凹凸性,会求曲线的拐点;会解决应用问题中的最大、最小值问题。
7.能用罗必塔法则求极限。
(三)一元函数积分学教学内容:1.理解不定积分与定积分的概念及性质;2.熟悉不定积分基本公式,熟练掌握不定积分、定积分的换元法,分部积分法;掌握简单的有理函数积分;3.理解变上限定积分作为上限的函数及其求导方法,熟悉牛顿—莱布尼兹公式;4.了解广义积分概念;5.熟练掌握用定积分表达一些物理量(如面积、体积、弧长、压力、功、引力等)的方法。
高等数学课件教学大纲
《高等数学》高职本教学大纲学分:4-8学分 总学时:72-144学时讲授学时:70-140学时适用专业:高职各专业实验或讨论学时:2-4学时大纲执笔人:谢厚桂大纲审定人:张勤英一、说明部分1.课程教学目的、性质、地位和任务高等数学是高职本各专业及计算机等理工各专业必修的理论基础课,在培养高级专业技术和熟练操作技能的实用型、开拓型复合型人才的过程中起着奠基作用。
其教学目的是使学生掌握微积分的基本知识和技能,为专业服务,培养学生的科学思维能力、创新能力和可持续发展的能力。
修完这门课程,学生将获得后续课程及工作实践所必须的数学思想、计算方法、基础知识、基本技能。
2.教学基本要求①由于本课程内容多、教学时数少,因此,课堂教学只能讲基本内容,要求学生必须加强课前预习和课后复习,认真独立完成作业。
②要求课堂教学要根据教学大纲,突出重点、难点;讲清基本概念、基本方法及基本思想的背景及相互之间的内在联系,正确理解基本性质和基本定理,牢记基本运算公式和法则,掌握基本的数学方法,基本运算,培养分析问题和应用数学知识解决实际问题的能力,加强学生应用数学知识的意识。
3.与其他课程的关系开课前必须先修完高中课程。
修完本门课程将为后续的课程《线性代数》、《概率统计》、《生物统计》等打下基础。
4.本大纲对农林、经管、园艺、园林、林学、生科、动科等生物技术专业讲授72学时,内容为第一~六章;计算机、建筑装饰等理工类各专业讲授144学时,内容为第一~十一章二、教学内容和要求第一章函数讲授学时:4要点:函数的概念及性质,基本初等函数的定义、图像和性质,复合函数、初等函数的概念。
要求:正确理解函数,基本初等函数,初等函数的概念、图形及性质,能够熟练地求函数的定义域,正确理解对应法则的意义,能熟练地指出复合函数的复合过程。
第二章极限与连续讲授学时:10要点:数列的极限、函数的极限概念,极限的四则运算,极限存在准则,两个重要极限,无穷小量,无穷大量,两者的关系及其性质,函数的连续性。
《高等数学(专)》教学大纲
《高等数学(专)》教学大纲课程名称:高等数学 专科适用专业:专科2017级各专业参考教材:《高等数学》 王德印主编 中国传媒 出版社一、本课程的地位、任务和作用高等数学是人们在从事高新技术及知识创新中必不可少的工具,它的内容、思想、方法和语言已广泛渗入自然科学和社会科学,成为现代文化的重要组成部分。
21世纪是信息时代,它不仅给人类生活带来日新月异的变化,也给“高等数学”课程的教学增添了新的内涵。
“高等数学”是高等院校的一门重要的基础课,通过学习使学生受到必要的高等数学教育,使其具有一定的数学素养,为后续课程学习及今后的应用打下良好的数学基础。
二、本课程的相关课程本课程的先修课程是《初等数学》三、本课程的基本内容及要求第一章 函数,极限与连续(一)基本内容函数的概念及表示法,函数的有界性、单调性、周期性、奇偶性,复合函数,反函数,隐函数,基本初等函数的性质及其图形,初等函数,应用问题的函数关系的建立,数列极限与函数极限的定义及性质,函数的左、右极限,无穷小与无穷大的概念,无穷小的性质及其比较,极限的四则运算,极限存在的两个准则,两个重要极限0x sin 1 1 (1)lim lim x x x e x x→→∞=+= 函数连续的概念,间断点的类型,初等函数的连续性,闭区间上连续函数的性质。
(二)基本要求1.理解函数的概念,掌握表示法。
2.了解函数的有界性,单调性,周期性,奇偶性。
3.掌握简单初等函数的性质及其图形。
4.会建立简单应用问题的函数关系式。
5.理解数列极限与函数极限的概念。
理解函数的左、右极限概念及极限存在与左、右极限存在的关系。
7.掌握极限的性质、极限的四则运算法则。
第二章一元函数微分学(一)基本内容导数和微分的概念,导数的几何意义和物理意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线,基本初等函数的导数,导数和微分的四则运算,复合函数、反函数、隐函数以及参数方程所确定的函数的微分法,高阶导数的概念,某些简单函数n阶导数,一阶微分形式的不变性,微分在近似计算中的应用。
(完整word版)高职高专高等数学教学大纲及几点教学意见
《高等数学》课程教学大纲一、课程性质和目的高等数学是高职高专院校工程类、经济类以及理工类各专业必修的一门重要的基础课。
它已做为应用的工具渗透到各个领域,是培养、提高学生的思维素质、创新能力、科学精神、治学态度、完成教育应用性人才培养目标的重要的基础理论课程。
通过本课程的学习使学生在高中文化的基础上,进一步掌握为学习现代科学技术和管理所必备的数学基础知识和基本技能,培养学生的空间想象力和抽象的逻辑思维能力,训练他们用数学思想、概念、方法并结合自己的专业把所学理论和方法运用于实践,目的是培养学生运用数学来分析、解决实际问题的能力,为后续各课程的学习奠定较好的数学基础,形成一定的数学思想。
二、课程的基本内容和教学要求三、课程教学的基本要求:通过本课程的教学,应使学生理解基本概念,以及它们之间的联系;正确理解并掌握基本定理的条件、结论和证明方法;熟练掌握各种基本计算方法;能够对简单的实际问题建立数学模型,并会求解。
该课程为学生学习物理、电工、电子等理工科专业课程奠定必要的数学基础。
在课堂讲授的同时,辅以课堂练习与讨论,引导学生认真阅读教材,独立完成作业,逐步培养学生的抽象思维、逻辑推理、空间想象、分析解决实际问题的能力,掌握学习方法,培养自学能力。
四、实践性教学环节要求1、始终注重引导学生对问题的思考、归纳、总结,探求规律性的东西;2、教师要深入到学生中去了解学生的学习基础,应特别帮助、指导、鼓励基础较弱的同学的学习方法、过程、信心;要目的地备课;3、备课内容上,尽量贴近生活、贴近专业、贴近应用,使学生学有兴趣、学以致用;4、教学方法上,坚持启发、指导式教学,尽可能增加双边活动,多给学生动脑、动手锻炼的机会,以进一步培养他们的自学能力、分析和解决问题的能力,传授学习方法及技巧.5、课堂讲解时,既深入浅出、通俗易懂,又生动、富有感染力,还应适时增加、增大信息量;6、板书设计上,力争醒目、条例、认真、美观;7、通过数学建模竞赛,进一步培养同学们的实践能力.五、教学建议1、用辩证唯物主义观点进行教学,例如对函数概念要进行事物间相互依赖、制约、变化及发展等观点来讲解。
《高等数学》课程教学大纲
《高等数学》教学大纲一、课程的性质和任务课程的性质:高等数学是高职高专各专业必修的一门重要基础课。
高等数学的思想、内容、方法和语言已成为现代文化的重要组成部分,是提高学生文化素质,进一步学习有关专业知识,专业技术必不可少的工具。
主要任务:本着"服务专业,兼顾数学体系的原则",重视数学的思想本质,倡导和发展数学的应用性,全面提高学生的数学素质;以必需、够用为度的原则。
使学生在高中文化的基础上,进一步学习和掌握一元微积分学、多元微积分学、微分方程、级数等内容。
三、课程教学内容第一章绪论了解本课程发展过程及思想方法。
第二章函数熟悉掌握函数的概念、基本初等函数、复合函数、初等函数;掌握函数的性质,反函数;了解分段函数。
重点:函数的定义和定义域。
难点:复合函数的概念。
第三章极限与连续熟悉掌握极限的概念,无穷小和无穷大概念,函数连续的概念;掌握无穷小和函数极限的关系、极限四则运算、两个重要极限,间断点分类和初等函数的连续性;了解无穷小的比较、等价无穷小、连续函数和、差、积、商的连续性及反函数与复合函数连续性。
重点:函数极限的概念、无穷小、极限四则运算、函数在某一点连续的概念。
难点:函数极限的概念、求应用问题中的最值判定函数在某点连续性。
第四章导数与微分熟悉掌握导数的概念、几何意义、求导公式和导数的四则运算,复合函数求导法则;掌握变化率问题、反函数求导法、隐函数求导法,求函数的微分;能理解微分的定义及几何意义,会求参数方程导数、高阶导数和使用对数求导法;运用微分公式和运算法则,了解可导与连续的关系。
重点:导数的定义、导数的四则运算、复合函数求导法则、基本初等函数的导数公式。
难点:导数的定义、复合函数求导法则。
第五章一元函数微分学的应用熟练掌握拉格朗日定理和罗必塔法则;能判定函数的单调性并求其极值,讨论曲线的凹凸,求其拐点,求渐近线和作函数的图象,应用最值解决一些实际问题;了解柯西定理。
重点:拉格朗日定理、判定函数的单调性并求其极值、求应用问题中的最值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高职高等数学》课程教学大纲一、课程性质、任务《高职高等数学》是高职院校相关专业的一门重要的基础课。
通过教学,使学生掌握一元及多元微积分、常微分方程、级数等基础知识,学会用运动和变化的观点思考问题,拓展学生分析问题和处理问题的能力;初步学会应用数学思想和方法去分析、处理某些实际问题。
二、课程在专业中的地位和作用《高职高等数学》是研究自然科学和工程技术的重要工具之一,是提高学生文化素质和学习有关专业知识的重要基础。
本课程要使学生在学习初等数学的基础上进一步学习和掌握高等数学的基础知识和思维方式,为学生学习专业基础课和相关专业课程提供必需的数学基础知识和数学工具。
三、课程教学目标和基本教学要求教学目标:重视与高中(职高)知识的衔接及各专业知识的必需,以掌握概念,强化应用为重点,贯彻拓宽基础、强化能力、立足应用的原则。
教学内容应由浅入深、由易到难,循序渐进,既兼顾数学本身的系统性,又要贯彻理论联系实际的原则,强调应用性和实用性。
逐步培养学生具有初步抽象概括问题的能力、一定的逻辑推理能力、比较熟练的运算能力以及自学能力。
教学要求:1、在重点讲清基本概念和基本方法的基础上,适度淡化基础理论的严密论证和推导,加强与实际联系较多的基础知识和基本方法教学。
注重基本运算的训练,简化过分复杂的计算和变换;2、结合数学建模突出“以应用为目的,以必需够用为度”的教学原则,加强对学生应用意识、兴趣、能力的培养;让学生学会利用常用的数学软件,完成必要的计算、分析或判断;教学过程中,逐步使用现代教学手段,尽量结合使用电子教案进行日常教学;3、教学中以极限、导数、积分、微分方程及应用等知识为主线,着力培养学生利用数学原理和方法消化吸收工程概念和工程原理的能力。
四教学内容(单元、课题或章节)、教学目标与学时分配总体模块学时分配:微积分模块 56学时;应用模块 52学时。
模块(1)线性代数基础序号(模块)教学内容教学目标、要求学时分配合计课堂讲授课内实践专项实践11、行列式的概念;2、行列式的性质;3、行列式的应用;理解行列式的概念,掌握行列式的重要性质,了解行列式的简单应用。
会计算低阶行列式的值,能利用克拉默法则解简单的线性方程组。
4421、矩阵的概念;2、矩阵的运算;3、矩阵初等变换;4、逆矩阵;5、矩阵的秩;*6、特征值;理解矩阵的相关概念,掌握矩阵的运算,掌握矩阵的初等变换,理解逆矩阵和矩阵的秩的概念;会进行简单的矩阵运算,会求低阶矩阵的逆矩阵和秩;441、线性方程组的理解线性方程组的概念,熟悉其分类,3概念;2、高斯消元法;3、线性方程组解的讨论;掌握高斯消元法的基本思想,了解线性方程组解的结构;会应用高斯消元法求解简单的线性方程组。
44总 计16124模块(2)微积分序号(模块)教学内容教学目标、要求学时分配合计课堂讲授课内实践专项实践1*1、初等函数;2、正、余弦函数的性质(图像、振幅、周期、相位);3、复合函数;理解函数的定义,了解函数的基本性态——周期性、有界性,特别是正、余弦曲线在机电、电子专业方面的应用。
理解函数的复合关系,了解初等函数的定义,熟悉分段函数的概念。
会用正弦曲线的相关知识对正弦交流电路进行简单分析。
了解正、余弦曲线在机电专业方面的应用。
441. 数列极限;2. 函数极限;3. 无穷小量与无穷大量;领会函数极限的描述性定义,熟悉无穷小与无穷大的定义及性质,掌握极限的四则运算法则及计算24. 极限的四则运算法则;5. 两个重要极限;6. 函数的连续性;极限的常用方法。
了解函数连续与间断的定义,知道初等函数的连续性。
会用极限的四则运算法则求函数的极限,会求连续函数和分段函数的极限,会用两个重要极限求函数的极限。
6634、导数的概念;5、导数的几何意义;6、导数的四则运算法则;7、函数的基本求导公式;8、复合函数的导数;9、隐函数的导数;10、微分及其应用;理解导数的概念,了解导数的几何意义及函数变化率的物理意义。
知道函数的可导性与连续性的关系,熟练掌握导数的运算法则及导数的基本公式,了解微分的概念,会利用微分进行简单应用。
能用导数解释电流、电功率的定义,能用导数解释速度,加速度的定义,会用导数描述力学中的简单问题;能会用导数描述电子元件的特性;会求初等函数的导数及微分。
108241、L’ Hospital法则;2、函数的单调性判定;3、函数的极值;4、函数的最值;5、 [数学实验]用Mathematic软件绘制函数图像;掌握L’Hospital法则,会计算与的极限。
了解极值与最值概念,掌握函数单调性判别方法。
会求函数的单调区间;会用导数解决一些优化问题;会用导数解决电阻匹配问题。
86251、原函数与不定积分;2、不定积分基本公式及运算法则;3、换元积分法;4、分部积分法;理解原函数与不定积分的概念,掌握不定积分的性质,熟悉基本积分公式,熟练掌握不定积分的积分法。
会用基本积分公式求不定积分;能用“凑微分法”和“分部积分法”求函数的不定积分。
8861、定积分的概念及性质;2、微积分基本定理Newton-Leibniz公式;3、定积分的积分法;4、定积分的应用;5、 [数学实验]用Mathematic软件求积分;了解定积分的概念,熟悉定积分的性质,掌握Newton-Leibniz公式,掌握定积分的换元积分法和分部积分法,了解定积分的元素法。
会用元素法计算平面图形的面积、旋转体体积。
10827*1、 多元函数的概念;2、 偏导数的概念;3、 多元函数的求导法则;了解:多元函数的概念;理解:偏导数的概念及相关专业背景;掌握:偏导数的求导法;会求二元函数的偏导数。
22 1、 多元函数极值了解:多元函数极值的概念;熟悉:最小二乘法的8*的概念;2、 多元函数极值存在的条件;3、 条件极值;基本思想;掌握:Lagrange乘数法;会用最小二乘法求多元函数的极值。
229*1、二重积分的概念;2、二重积分的性质;了解二重积分的概念,熟悉其性质;2210*1、直角坐标系中二重积分的计算;2、极坐标系中二重积分的计算;了解极坐标系中二重积分的计算;会进行直角坐标系中的简单的二重积分的计算22总 计56488模块(3)微分方程序号(模块)教学内容教学目标、要求学时分配合计课堂讲授课内实践专项实践了解:微分方程及其11、 微分方程的概念;2、 微分方程的阶和初始条件;3、 微分方程的解和通解;解、通解的概念;初始条件的概念;熟悉:微分方程的分类;理解:微分方程在动态电路中时域分析中的应用;会观察微分方程的阶2221、 可分离变量的微分方程的概念;2、 可分离变量的微分方程的解法;3、 介绍一阶齐次微分方程;了解:求解齐次微分方程的基本思路;熟悉:可分离变量的微分方程的特征;掌握:分离变量法;会解可分离变量的微分方程会解一阶齐次微分方程;2231、 一阶线性微分方程的特征;2、 常数变易法;3、 求解一阶线性微分方程的公式法;4、 建立微分方程数学模型;了解:常数变易法的思想方法;熟练掌握:用公式法求解一阶线性微分方程;会建立一阶线性电路的微分方程模型;22 1、 三种可降阶的4*二阶微分方程;2、 二阶常系数微分方程的特征方程及特征根;3、 二阶常系数齐次微分方程的解法;了解:二阶常系数齐次微分方程解的结构;熟悉:可降阶的二阶微分方程的解法;掌握:二阶常系数齐次微分方程的解法;能用二阶微分方程解决一些简单的二阶电路问题;22合计12102模块(4)级数序号(模块)教学内容教学目标、要求学时分配合计课堂讲授课内实践专项实践11、级数的概念;2、级数收敛的定义;3、级数的性质;4、几何级数;理解级数的有关概念熟悉级数收敛的条件掌握级数的基本性质22熟悉正项级数的21、正项级数的定义;2、比较判别法;3、比值审敛法;4、Leibniz定理;审敛法掌握交错级数的审敛法了解绝对收敛和条件收敛会判定常见正项级数的敛散性2231、幂级数及其收敛域的概念;2、收敛半径的求法;3、幂级数的运算性质;了解幂级数的概念熟悉幂级数的运算会求幂级数的收敛半径、收敛区间2241、麦克劳林级数的基本概念;2、函数展开为幂级数的间接方法;了解麦克劳林级数的基本概念会用幂级数常见公式将简单的函数展开为幂级数2251、三角级数的概念及展开式;2、三角级数系的正交性;3、周期为2∏的函数的傅立叶级数;知道三角级数的基本概念了解三角函数系的正交性熟悉以2∏为周期的函数的傅立叶级数2261、周期为2L的傅立叶级数的展开式;2、Euler-Fourier公式;熟悉周期为2L的傅立叶级数的展开式会将定义在某有限区间的简单函数展开成傅立叶级数22合计12102四、考核方案《高职高等数学》课程的教学分两期完成, 期末考试成绩占总成绩的70%, 平时成绩占30%。
五、其它(需要)说明(的事项)1、教学内容中加“*”号的部分根据不同专业需要进行选讲;结合专业计划及特点,模块(4)可分散在其他模块中的相关章节中进行教学;2、教材:《高等数学》高等教育出版社主编 .兰华龙何国著3、参考书:(1)《高等数学》高等教育出版社同济大学等校编(2)《高等数学教程》高等教育出版社主编候凤波。