立体几何专题突破之《探究性问题》
空间距离及立体几何中的探索性问题
§7.8 空间距离及立体几何中的探索性问题学习目标1.会求空间中点到直线以及点到平面的距离.2.以空间向量为工具,探究空间几何体中线、面的位置关系或空间角存在的条件.知识梳理1.点到直线的距离如图,已知直线l 的单位方向向量为u ,A 是直线l 上的定点,P 是直线l 外一点,设AP →=a ,则向量AP →在直线l 上的投影向量AQ →=(a·u )u ,在Rt △APQ 中,由勾股定理,得PQ =|AP →|2-|AQ →|2=a 2-(a·u )2.2.点到平面的距离如图,已知平面α的法向量为n ,A 是平面α内的定点,P 是平面α外一点.过点P 作平面α的垂线l ,交平面α于点Q ,则n 是直线l 的方向向量,且点P 到平面α的距离就是AP →在直线l 上的投影向量QP →的长度,因此PQ =⎪⎪⎪⎪AP →·n |n |=⎪⎪⎪⎪⎪⎪AP →·n |n |=|AP →·n ||n |.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( × ) (2)点到直线的距离也就是该点与直线上任一点连线的长度.( × ) (3)直线l 平行于平面α,则直线l 上各点到平面α的距离相等.( √ ) (4)直线l 上两点到平面α的距离相等,则l 平行于平面α.( × ) 教材改编题1.已知平面α的一个法向量n =(-2,-2,1),点A (-1,3,0)在α内,则P (-2,1,4)到α的距离为( )A .10B .3 C.83 D.103答案 D解析 由条件可得P (-2,1,4)到α的距离为 |AP →·n ||n |=|(-1,-2,4)·(-2,-2,1)|3=103. 2.正方体ABCD -A 1B 1C 1D 1的棱长为2,则A 1A 到平面B 1D 1DB 的距离为( ) A. 2 B .2 C.22 D.322答案 A解析 由正方体性质可知,A 1A ∥平面B 1D 1DB ,A 1A 到平面B 1D 1DB 的距离就是点A 1到平面B 1D 1DB 的距离,连接A 1C 1,交B 1D 1于O 1(图略),A 1O 1的长即为所求,由题意可得A 1O 1= 12A 1C 1= 2. 3.已知直线l 经过点A (2,3,1)且向量n =⎝⎛⎭⎫22,0,22为l 的一个单位方向向量,则点P (4,3,2)到l 的距离为________. 答案22解析 ∵P A →=(-2,0,-1),n =⎝⎛⎭⎫22,0,22为l 的一个单位方向向量,∴点P 到l 的距离d =|P A →|2-(P A →·n )2=5-⎝⎛⎭⎫-2-222=22.题型一 空间距离例1 如图,在正三棱柱ABC -A 1B 1C 1中,各棱长均为4,N 是CC 1的中点.(1)求点N 到直线AB 的距离; (2)求点C 1到平面ABN 的距离. 解 建立如图所示的空间直角坐标系,则A (0,0,0),B (23,2,0),C (0,4,0),C 1(0,4,4), ∵N 是CC 1的中点,∴N (0,4,2). (1)AN →=(0,4,2),AB →=(23,2,0), 则|AN →|=25,|AB →|=4.设点N 到直线AB 的距离为d 1,则d 1=|AN →|2-⎝⎛⎭⎪⎪⎫ AN →·AB →||AB→2=20-4=4.(2)设平面ABN 的一个法向量为n =(x ,y ,z ), 则由n ⊥AB →,n ⊥AN →, 得⎩⎪⎨⎪⎧n ·AB →=23x +2y =0,n ·AN →=4y +2z =0,令z =2,则y =-1,x =33,即n =⎝⎛⎭⎫33,-1,2. 易知C 1N —→=(0,0,-2),设点C 1到平面ABN 的距离为d 2, 则d 2=|C 1N —→·n ||n |=|-4|433= 3.教师备选1.如图,P 为矩形ABCD 所在平面外一点,P A ⊥平面ABCD .若已知AB =3,AD =4,P A =1,则点P 到直线BD 的距离为________.答案135解析 如图,分别以AB ,AD ,AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则P (0,0,1),B (3,0,0), D (0,4,0),则BP →=(-3,0,1),BD →=(-3,4,0), 故点P 到直线BD 的距离 d =|BP →|2-⎝ ⎛⎭⎪⎫BP →·BD →|BD →|2=10-⎝⎛⎭⎫952=135,所以点P 到直线BD 的距离为135.2.如图,已知△ABC 为等边三角形,D ,E 分别为AC ,AB 边的中点,把△ADE 沿DE 折起,使点A 到达点P ,平面PDE ⊥平面BCDE ,若BC =4.求直线DE 到平面PBC 的距离.解 如图,设DE 的中点为O ,BC 的中点为F ,连接OP ,OF ,OB , 因为平面PDE ⊥平面BCDE , 平面PDE ∩平面BCDE =DE , 所以OP ⊥平面BCDE .因为在△ABC 中,点D ,E 分别为AC ,AB 边的中点, 所以DE ∥BC .因为DE ⊄平面PBC ,BC ⊂平面PBC , 所以DE ∥平面PBC . 又OF ⊥DE ,所以以点O 为坐标原点,OE ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则O ()0,0,0,P ()0,0,3,B ()2,3,0, C ()-2,3,0,F ()0,3,0,所以PB →=()2,3,-3,CB →=()4,0,0. 设平面PBC 的一个法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·PB →=2x +3y -3z =0,n ·CB →=4x =0,得⎩⎪⎨⎪⎧x =0,y =z ,令y =z =1, 所以n =(0,1,1). 因为OF →=(0,3,0),设点O 到平面PBC 的距离为d , 则d =||OF →·n|n |=32=62. 因为点O 在直线DE 上,所以直线DE 到平面PBC 的距离等于62. 思维升华 点到直线的距离(1)设过点P 的直线l 的单位方向向量为n ,A 为直线l 外一点,点A 到直线l 的距离d = |P A →|2-(P A →·n )2.(2)若能求出点在直线上的射影坐标,可以直接利用两点间距离公式求距离.跟踪训练1 (1)(多选)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点E ,O 分别是A 1B 1,A 1C 1的中点,P 在正方体内部且满足AP →=34AB →+12AD →+23AA 1—→,则下列说法正确的是( )A .点A 到直线BE 的距离是55B .点O 到平面ABC 1D 1的距离为24C .平面A 1BD 与平面B 1CD 1间的距离为33D .点P 到直线AB 的距离为2536答案 BC解析 如图,建立空间直角坐标系,则A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),C 1(1,1,1),D 1(0,1,1),E ⎝⎛⎭⎫12,0,1,所以BA →=(-1,0,0),BE →=⎝⎛⎭⎫-12,0,1. 设∠ABE =θ,则cos θ=BA →·BE →|BA →||BE →|=55,sin θ=1-cos 2θ=255. 故点A 到直线BE 的距离d 1=|BA →|sin θ=1×255=255,故A 错误;易知C 1O —→=12C 1A 1—→=⎝⎛⎭⎫-12,-12,0, 平面ABC 1D 1的一个法向量DA 1—→=(0,-1,1), 则点O 到平面ABC 1D 1的距离 d 2=|DA 1—→·C 1O —→||DA 1—→|=122=24,故B 正确;A 1B —→=(1,0,-1),A 1D —→=(0,1,-1), A 1D 1—→=(0,1,0).设平面A 1BD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·A 1B —→=0,n ·A 1D —→=0,所以⎩⎪⎨⎪⎧x -z =0,y -z =0,令z =1,得y =1,x =1,所以n =(1,1,1).所以点D 1到平面A 1BD 的距离 d 3=|A 1D 1—→·n ||n |=13=33.因为平面A 1BD ∥平面B 1CD 1,所以平面A 1BD 与平面B 1CD 1间的距离等于点D 1到平面A 1BD 的距离,所以平面A 1BD 与平面B 1CD 1间的距离为33,故C 正确; 因为AP →=34AB →+12AD →+23AA 1—→,所以AP →=⎝⎛⎭⎫34,12,23, 又AB →=(1,0,0),则AP →·AB →|AB →|=34,所以点P 到直线AB 的距离d 4=|AP →|2-⎝ ⎛⎭⎪⎫AP →·AB →|AB →|2=181144-916=56,故D 错误. (2)(2022·枣庄检测)在长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点F ,G 分别是AB ,CC 1的中点,则△D 1GF 的面积为________. 答案142解析 以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,DD 1所在直线为z 轴,建立空间直角坐标系(图略), 则D 1(0,0,2),G (0,2,1),F (1,1,0), FD 1—→=(-1,-1,2),FG →=(-1,1,1), ∴点D 1到直线GF 的距离 d =|FD 1—→|2-⎝⎛⎭⎪⎪⎫FD 1—→·FG → |FG →|2 =6-⎝⎛⎭⎫232=423.∴点D 1到直线GF 的距离为423, 又|FG →|=3,∴1D GF S △=12×3×423=142.题型二 立体几何中的探索性问题例2 (2021·北京)已知正方体ABCD -A 1B 1C 1D 1,点E 为A 1D 1中点,直线B 1C 1交平面CDE 于点F .(1)求证:点F 为B 1C 1的中点;(2)若点M 为棱A 1B 1上一点,且二面角M -CF -E 的余弦值为53,求A 1MA 1B 1的值. (1)证明 如图所示,取B 1C 1的中点F ′,连接DE ,EF ′,F ′C ,由于ABCD -A 1B 1C 1D 1为正方体,E ,F ′为中点,故EF ′∥CD , 从而E ,F ′,C ,D 四点共面, 平面CDE 即平面CDEF ′,据此可得,直线B 1C 1交平面CDE 于点F ′,当直线与平面相交时只有唯一的交点,故点F 与点F ′重合, 即点F 为B 1C 1的中点.(2)解 以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,不妨设正方体的棱长为2, 设A 1MA 1B 1=λ(0≤λ≤1), 则M (2,2λ,2),C (0,2,0),F (1,2,2),E (1,0,2), 从而MC →=(-2,2-2λ,-2),CF →=(1,0,2), FE →=(0,-2,0),设平面MCF 的法向量为m =(x 1,y 1,z 1),则 ⎩⎪⎨⎪⎧m ·MC →=-2x 1+(2-2λ)y 1-2z 1=0,m ·CF →=x 1+2z 1=0,令z 1=-1可得m =⎝⎛⎭⎫2,11-λ,-1(λ≠1),设平面CFE 的法向量为n =(x 2,y 2,z 2),则 ⎩⎪⎨⎪⎧n ·FE →=-2y 2=0,n ·CF →=x 2+2z 2=0,令z 2=-1可得n =(2,0,-1), 从而m ·n =5,|m |=5+⎝⎛⎭⎫11-λ2,|n |=5,则cos 〈m ,n 〉=m ·n|m ||n |=55+⎝⎛⎭⎫11-λ2×5=53. 整理可得(λ-1)2=14,故λ=12⎝⎛⎭⎫λ=32舍去. 所以A 1M A 1B 1=12.教师备选(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由;若存在,求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D .因为三棱柱ABC -A 1B 1C 1的所有棱长都为2,所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt △B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6, 所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设在棱BB 1上存在点P 满足条件.以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3),因此BB 1—→=(0,1,3),AC →=(3,-1,0),AA 1—→=BB 1—→=(0,1,3),CB →=(-3,-1,0). 因为点P 在棱BB 1上,设BP →=λBB 1—→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1—→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1—→=0,得⎩⎨⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1).因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=|-23|5×3+(λ-1)2+3λ2=45,化简得16λ2-8λ+1=0, 解得λ=14,所以|BP →|=14|BB 1—→|=12,故BP 的长为12.思维升华 (1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.(2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数. 跟踪训练2 如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面P AC ,求平面P AC 与平面DAC 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面P AC .若存在,求SE ∶EC 的值;若不存在,试说明理由.(1)证明 如图,连接BD ,设AC 交BD 于点O ,连接SO .由题意知,SO ⊥平面ABCD ,以O 为坐标原点,以OB ,OC ,OS 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系.设底面边长为a ,则高SO =62a ,于是S ⎝⎛⎭⎫0,0,62a ,D ⎝⎛⎭⎫-22a ,0,0,C ⎝⎛⎭⎫0,22a ,0. 于是OC →=⎝⎛⎭⎫0,22a ,0,SD →=⎝⎛⎭⎫-22a ,0,-62a .则OC →·SD →=0,故OC ⊥SD ,从而AC ⊥SD .(2)解 由题设知,平面P AC 的一个法向量DS →=⎝⎛⎭⎫22a ,0,62a ,平面DAC 的一个法向量OS→=⎝⎛⎭⎫0,0,62a . 设平面P AC 与平面DAC 的夹角为θ, 则cos θ=|cos 〈OS →,DS →〉|=|OS →·DS →||OS →||DS →|=32,所以平面P AC 与平面DAC 夹角的大小为30°. (3)解 假设在棱SC 上存在一点E 使BE ∥平面P AC . 根据第(2)问知DS →是平面P AC 的一个法向量, 且DS →=⎝⎛⎭⎫22a ,0,62a ,CS →=⎝⎛⎭⎫0,-22a ,62a .设CE →=tCS →(0≤t ≤1), 因为B ⎝⎛⎭⎫22a ,0,0,C ⎝⎛⎭⎫0,22a ,0,所以BC →=⎝⎛⎭⎫-22a ,22a ,0,则BE →=BC →+CE →=BC →+tCS →=⎝⎛⎭⎫-22a ,22a (1-t ),62at . 又BE →·DS →=0, 得-a 22+0+64a 2t =0,则t =13,当SE ∶EC =2∶1时,BE →⊥DS →. 由于BE ⊄平面P AC ,故BE ∥平面P AC .因此在棱SC 上存在点E ,使BE ∥平面P AC ,此时SE ∶EC =2∶1.课时精练1.如图,在梯形ABCD 中,AD ∥BC ,∠ABC =π2,AB =BC =13AD =a ,P A ⊥平面ABCD ,且P A =a ,点F 在AD 上,且CF ⊥PC .(1)求点A 到平面PCF 的距离; (2)求AD 到平面PBC 的距离.解 (1)由题意知AP ,AB ,AD 两两垂直,建立空间直角坐标系,如图,则A (0,0,0),B (a,0,0),C (a ,a,0),D (0,3a ,0), P (0,0,a ).设F (0,m ,0),0≤m ≤3a ,则CF →=(-a ,m -a ,0),CP →=(-a ,-a ,a ). ∵PC ⊥CF ,∴C F →⊥CP →,∴CF →·CP →=(-a )·(-a )+(m -a )·(-a )+0·a =a 2-a (m -a )=0, ∴m =2a ,即F (0,2a ,0).设平面PCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CF →=-ax +ay =0,n ·CP →=-ax -ay +az =0,解得⎩⎪⎨⎪⎧x =y ,z =2x .取x =1,得n =(1,1,2).设点A 到平面PCF 的距离为d ,由AC →=(a ,a ,0), 得d =|AC →·n ||n |=a ×1+a ×1+0×26=63a .(2)由于BP →=(-a ,0,a ),BC →=(0,a ,0), AP →=(0,0,a ).设平面PBC 的法向量为n 1=(x 0,y 0,z 0), 由⎩⎪⎨⎪⎧n 1·BP →=-ax 0+az 0=0,n 1·BC →=ay 0=0,得⎩⎪⎨⎪⎧x 0=z 0,y 0=0. 取x 0=1,得n 1=(1,0,1). 设点A 到平面PBC 的距离为h ,∵AD ∥BC ,AD ⊄平面PBC ,BC ⊂平面PBC , ∴AD ∥平面PBC ,∴h 为AD 到平面PBC 的距离, ∴h =|AP →·n 1||n 1|=a 2=22a .2.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为2的正方形,PB ⊥BC ,PD ⊥CD ,且P A =2,E 为PD 的中点.(1)求证:P A ⊥平面ABCD ;(2)求直线PC 与平面ACE 所成角的正弦值;(3)在线段BC 上是否存在点F ,使得点E 到平面P AF 的距离为255若存在,确定点的位置;若不存在,请说明理由.(1)证明 因为四边形ABCD 为正方形,则BC ⊥AB ,CD ⊥AD , 因为PB ⊥BC ,BC ⊥AB ,PB ∩AB =B ,PB ,AB ⊂平面P AB , 所以BC ⊥平面P AB ,因为P A ⊂平面P AB ,所以P A ⊥BC ,因为PD ⊥CD ,CD ⊥AD ,PD ∩AD =D ,PD ,AD ⊂平面P AD , 所以CD ⊥平面P AD ,因为P A ⊂平面P AD ,所以P A ⊥CD , 因为BC ∩CD =C ,BC ,CD ⊂平面ABCD ,所以P A ⊥平面ABCD .(2)解 因为P A ⊥平面ABCD ,AB ⊥AD ,不妨以点A 为坐标原点,AB ,AD ,AP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),C (2,2,0),P (0,0,2),E (0,1,1), 设平面ACE 的法向量为m =(x ,y ,z ), 则AC →=(2,2,0),AE →=(0,1,1),PC →=(2,2,-2), 由⎩⎪⎨⎪⎧m ·AC →=2x +2y =0,m ·AE →=y +z =0,取y =1,可得m =(-1,1,-1), cos 〈m ,PC →〉=m ·PC →|m ||PC →|=23×23=13,所以直线PC 与平面ACE 所成角的正弦值为13.(3)解 设点F (2,t ,0)(0≤t ≤2),设平面P AF 的法向量为n =(a ,b ,c ), AF →=(2,t ,0),AP →=(0,0,2), 由⎩⎪⎨⎪⎧n ·AF →=2a +tb =0,n ·AP →=2c =0,取a =t ,则n =(t ,-2,0),所以点E 到平面P AF 的距离为d =|AE →·n ||n |=2t 2+4=255,因为t >0,所以t =1.因此,当点F为线段BC 的中点时,点E 到平面P AF 的距离为255.3.(2022·湖南雅礼中学月考)如图,在四棱台ABCD -A 1B 1C 1D 1中,底面四边形ABCD 为菱形,AA 1=A 1B 1=12AB =1,∠ABC =60°,AA 1⊥平面ABCD .(1)若点M 是AD 的中点,求证:C 1M ⊥A 1C ;(2)棱BC 上是否存在一点E ,使得平面EAD 1与平面DAD 1夹角的余弦值为13若存在,求线段CE 的长;若不存在,请说明理由.(1)证明 如图,取BC 的中点Q ,连接AQ ,AC , ∵四边形ABCD 为菱形,则AB =BC , ∵∠ABC =60°,∴△ABC 为等边三角形, ∵Q 为BC 的中点,则AQ ⊥BC , ∵AD ∥BC ,∴AQ ⊥AD ,由于AA 1⊥平面ABCD ,以点A 为坐标原点,以AQ ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则A (0,0,0),A 1(0,0,1),D 1(0,1,1),Q (3,0,0), C (3,1,0),C 1⎝⎛⎭⎫32,12,1,M (0,1,0),C 1M —→=⎝⎛⎭⎫-32,12,-1,A 1C —→=(3,1,-1),∴C 1M —→·A 1C —→=-32+12+(-1)2=0,∴C 1M ⊥A 1C .(2)解 如图,假设点E 存在,设点E 的坐标为(3,λ,0),其中-1≤λ≤1, AE →=(3,λ,0),AD 1—→=(0,1,1), 设平面AD 1E 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AE →=0,n ·AD 1—→=0,即⎩⎨⎧3x +λy =0,y +z =0,取y =-3,则x =λ,z =3, ∴n =(λ,-3,3),平面ADD 1的一个法向量为m =(1,0,0), ∴|cos 〈m ,n 〉|=|m ·n ||m ||n |=|λ|λ2+6=13, 解得λ=±32,即CE =1-32或CE =1+32.因此,棱BC 上存在一点E ,使得平面EAD 1与平面DAD 1夹角的余弦值为13,此时CE =1-32或CE =1+32.4.(2022·潍坊模拟)如图,在四棱锥P -ABCD 中,底面ABCD 是边长为4的正方形,△P AD 是正三角形,CD ⊥平面P AD ,E ,F ,G ,O 分别是PC ,PD ,BC ,AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求平面EFG 与平面ABCD 夹角的大小;(3)在线段P A 上是否存在点M ,使得直线GM 与平面EFG 所成的角为π6,若存在,求线段PM的长度;若不存在,请说明理由.(1)证明 因为△P AD 是正三角形,O 是AD 的中点, 所以PO ⊥AD .又因为CD ⊥平面P AD ,PO ⊂平面P AD , 所以PO ⊥CD .又AD ∩CD =D ,AD ,CD ⊂平面ABCD , 所以PO ⊥平面ABCD .(2)解 如图,连接OG ,以O 点为坐标原点,分别以OA ,OG ,OP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则O (0,0,0),A (2,0,0),B (2,4,0), C (-2,4,0),D (-2,0,0),G (0,4,0),P (0,0,23),E (-1,2,3),F (-1,0,3), EF →=(0,-2,0),EG →=(1,2,-3), 设平面EFG 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧EF →·m =0,EG →·m =0,即⎩⎨⎧-2y =0,x +2y -3z =0,令z =1,则m =(3,0,1), 又平面ABCD 的法向量n =(0,0,1), 设平面EFG 与平面ABCD 的夹角为θ, 所以cos θ=|m ·n ||m ||n |=1(3)2+12×1=12,所以θ=π3,所以平面EFG 与平面ABCD 的夹角为π3.(3)解 不存在,理由如下: 假设在线段P A 上存在点M ,使得直线GM 与平面EFG 所成的角为π6,即直线GM 的方向向量与平面EFG 法向量m 所成的锐角为π3,设PM →=λP A →,λ∈[0,1], GM →=GP →+PM →=GP →+λP A →, 所以GM →=(2λ,-4,23-23λ),所以cos π3=|cos 〈GM →,m 〉|=324λ2-6λ+7,整理得2λ2-3λ+2=0, Δ<0,方程无解, 所以不存在这样的点M .。
高考数学立体几何空间几何中的探索性问题
立体几何空间几何中的探索性问题大题拆解技巧【母题】(2021年全国甲卷)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE.(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?【拆解1】已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC 和CC1的中点,D为棱A1B1上的点,BF⊥A1B1,证明:BA⊥BC.【解析】连接AF,∵E,F分别为直三棱柱ABC-A1B1C1的棱AC和CC1的中点,且AB=BC=2,∴CF=1,BF=√BC2+CF2=√22+12=√5,∵BF⊥A1B1,AB∥A1B1,∴BF⊥AB,∴AF=√AB2+BF2=√22+(√5)2=3,AC=√AF2-CF2=√32-12=2√2,∴AC2=AB2+BC2,即BA⊥BC.【拆解2】本例条件不变,证明:BF⊥DE.【解析】由拆解1可知BA⊥BC,故以B为原点,BA,BC,BB1所在的直线分别为x,y,z轴建立如图所示的空间直角坐标系,则A(2,0,0),B(0,0,0),C(0,2,0),E(1,1,0),F(0,2,1),设B 1D=m(0≤m≤2),则D(m,0,2), ∴BF ⃗⃗⃗⃗ =(0,2,1),DE ⃗⃗⃗⃗⃗ =(1-m,1,-2), ∴BF ⃗⃗⃗⃗ ·DE⃗⃗⃗⃗⃗ =0,即BF ⊥DE. 【拆解3】本例条件不变,问当B 1D 为何值时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小?【解析】∵AB ⊥平面BB 1C 1C,∴平面BB 1C 1C 的一个法向量为m=(1,0,0), 由(1)知,DE ⃗⃗⃗⃗⃗ =(1-m,1,-2),EF ⃗⃗⃗⃗ =(-1,1,1), 设平面DFE 的法向量为n=(x,y,z),则{n ·DE⃗⃗⃗⃗⃗ =0,n ·EF ⃗⃗⃗⃗ =0,即{(1-m )x +y -2z =0,-x +y +z =0, 令x=3,则y=m+1,z=2-m,∴n=(3,m+1,2-m), ∴cos m,n =m ·n |m |·|n |=1×√9+(m+1)+(2-m )=√2m 2-2m+14=√2(m -12) 2+272,∴当m=12时,平面BB 1C 1C 与平面DFE 所成的二面角的余弦值最大,为√63,此时正弦值最小,为√33. 小做 变式训练《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.(1)若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C.(2)是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【拆解1】《九章算术》是我国古代的数学著作,是“算经十书”中最重要的一部,它对几何学的研究比西方要早1000多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵.如图,在堑堵ABC -A 1B 1C 1中,AB ⊥AC,AA 1=AB=AC=1,M,N 分别是CC 1,BC 的中点,点P 在线段A 1B 1上.若P 为A 1B 1的中点,求证:PN ∥平面AA 1C 1C. 【解析】取A 1C 1的中点H,连接PH,HC,如图所示.在堑堵ABC -A 1B 1C 1中,四边形BCC 1B 1为平行四边形, 所以B 1C 1∥BC 且B 1C 1=BC.在△A 1B 1C 1中,P,H 分别为A 1B 1,A 1C 1的中点, 所以PH ∥B 1C 1且PH=12B 1C 1. 因为N 为BC 的中点,所以NC=12BC,从而NC=PH 且NC ∥PH,所以四边形PHCN 为平行四边形,于是PN ∥CH.因为CH ⊂平面A 1C 1CA,PN ⊄平面A 1C 1CA,所以PN ∥平面AA 1C 1C. 【拆解2】本例条件不变,求平面PMN 的法向量.【解析】以A 为原点,AB,AC,AA 1所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),N(12,12,0),M(0,1,12).假设满足条件的点P 存在,令P(λ,0,1)(0≤λ≤1),则NM ⃗⃗⃗⃗⃗⃗ =(-12,12,12),PN⃗⃗⃗⃗⃗ =(12-λ,12,-1,). 设平面PMN 的法向量为n=(x,y,z), 则{n ·NM⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗ =0,即{-12x +12y +12z =0,(12-λ)x +12y -z =0.令x=3,得y=1+2λ,z=2-2λ, 所以n=(3,1+2λ,2-2λ).【拆解3】本例条件不变,问是否存在点P,使得平面PMN 与平面ABC 所成的二面角为45°?若存在,试确定点P 的位置;若不存在,请说明理由.【解析】由拆解2知,平面PMN 的一个法向量为n=(3,1+2λ,2-2λ), 且易知平面ABC 的一个法向量为m=(0,0,1). 由题意得|cos <m,n>|=√9+(1+2λ)+(2-2λ)=√8λ2-4λ+14=√22,解得λ=-12,故点P 不在线段A 1B 1上.所以不存在.通法 技巧归纳解决立体几何中探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x,y,z);②坐标平面内的点其中一个坐标为0,如平面xOy 上的点为(x,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z);④直线(线段)AB 上的点P,可设为AP⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ ,表示出点P 的坐标,或直接利用向量运算. 突破 实战训练 <基础过关>1.如图,在三棱锥P -ABC 中,△ABC 为直角三角形,∠ACB=90°,△PAC 是边长为4的等边三角形,BC=2√3,二面角P -AC -B 的大小为60°,点M 为PA 的中点.(1)请你判断平面PAB 垂直于平面ABC 吗?若垂直,请证明;若不垂直,请说明理由. (2)求CM 与平面PBC 所成的角的正弦值.【解析】(1)平面PAB ⊥平面ABC,理由如下:如图,分别取AC,AB 的中点D,E,连接PD,DE,PE, 则DE ∥BC.因为∠ACB=90°,BC=2√3. 所以DE ⊥AC,DE=√3.因为△PAC 是边长为4的等边三角形,所以PD ⊥AC,PD=2√3.所以∠PDE 为二面角P -AC -B 的平面角,则∠PDE=60°, 在△PDE 中,由余弦定理,得PE=√PD 2+DE 2-2PD ·DEcos 60°=3, 所以PD 2=PE 2+ED 2, 所以PE ⊥ED.因为ED ⊥AC,PD ⊥AC,ED∩PD=D,ED,PD ⊂平面PDE, 所以AC ⊥平面PED, 所以AC ⊥PE.又AC∩ED=D,DE,AC ⊂平面ABC,所以PE ⊥平面ABC, 因为PE ⊂平面ABC, 所以平面PAB ⊥平面ABC.(2)以点C 为原点,CA,CB 所在的直线分别为x,y 轴,过点C 且与PE 平行的直线为z 轴,建立空间直角坐标系,如图所示,则B(0,2√3,0),A(4,0,0),E(2,√3,0),P(2,√3,3),M(3,√32,32),CM ⃗⃗⃗⃗⃗⃗ =(3,√32,32),CB⃗⃗⃗⃗⃗ =(0,2√3,0),CP ⃗⃗⃗⃗ =(2,√3,3). 设平面PBC 的法向量为n=(x 1,y 1,z 1), 则{n ·CB⃗⃗⃗⃗⃗ =0,n ·CP ⃗⃗⃗⃗ =0,即{2√3y 1=0,2x 1+√3y 1+3z 1=0,取x 1=3,则n=(3,0,-2).所以CM 与平面PBC 所成的角的正弦值为sin θ=|cos<CM⃗⃗⃗⃗⃗⃗ ,n>|=2√3×√13=√3913.2.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E,F 分别是B 1B,BC 的中点. (1)求证:A 1E,AB,DF 三线共点.(2)线段CD 上是否存在一点G,使得直线FG 与平面A 1EC 1所成的角的正弦值为√33?若存在,请指出点G 的位置,并求二面角E -A 1C 1-G 的平面角的余弦值大小;若不存在,请说明理由.【解析】(1)连接EF,AD,∵EF ∥A 1D 且EF≠A 1D,∴A 1E,DF 共面,设A 1E∩DF=P,则点P ∈A 1E,而A 1E ⊂平面AA 1B 1B, ∴点P ∈平面AA 1B 1B. 同理可得点P ∈平面ABCD,∴点P 在平面ABCD 与平面AA 1B 1B 的公共直线AB 上, 即A 1E,AB,DF 三线共点.(2)根据题意可知,AA 1,AB,AD 两两垂直,以A 为原点,AB,AD,AA 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系,由图可得A 1(0,0,2),E(2,0,1),C 1(2,2,2),F(2,1,0), 故A 1E ⃗⃗⃗⃗⃗⃗⃗ =(2,0,-1),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(2,2,0), 假设满足条件的点G 存在, 设G(a,2,0),a ∈[0,2],则FG ⃗⃗⃗⃗ =(a -2,1,0), 设平面A 1EC 1的法向量为m=(x,y,z), 则由{m ·A 1E ⃗⃗⃗⃗⃗⃗⃗ =0m ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{2x -z =0,2x +2y =0,不妨取z=2,则x=1,y=-1,所以平面A 1EC 1的一个法向量为m=(1,-1,2), 设直线FG 与平面A 1EC 1的平面角为θ,则sin θ=|cos<m,FG ⃗⃗⃗⃗ >|=|m ·FG⃗⃗⃗⃗⃗|m ||FG ⃗⃗⃗⃗⃗ ||=|√(a -2)+12+02×√12+(-1)+22|=√33,解得a=1,故G 为CD 的中点. 则GC 1⃗⃗⃗⃗⃗⃗⃗ =(1,0,2),设平面A 1GC 1的法向量为n=(x,y,z),由{n ·GC 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得{x +2z =0,2x +2y =0,取x=-2,则z=1,y=2,则平面A 1GC 1的一个法向量为n=(-2,2,1), |cos<m,n>|=|m ·n|m ||n ||=|√6×3|=√69, 所以二面角E -A 1C 1-G 的平面角的余弦值为√69.3.如图,C 是以AB 为直径的圆O 上异于A,B 的点,平面PAC ⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB 的中点,记平面AEF 与平面ABC 的交线为直线l.(1)求证:直线l ⊥平面PAC.(2)直线l 上是否存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余?若存在,求出|AQ|的长;若不存在,请说明理由.【解析】(1)∵E,F 分别是PC,PB 的中点,∴BC ∥EF,又EF ⊂平面EFA,BC ⊄平面EFA,∴BC ∥平面EFA,又BC ⊂平面ABC,平面EFA∩平面ABC=l,∴BC ∥l,又BC ⊥AC,平面PAC∩平面ABC=AC,平面PAC ⊥平面ABC,∴BC ⊥平面PAC,∴l ⊥平面PAC.(2)以C 为坐标原点,CA,CB 所在的直线分别为x,y 轴,过点C 垂直于平面ABC 的直线为z 轴,建立空间直角坐标系,可得A(2,0,0),B(0,4,0),P(1,0,√3),E(12,0,√32),F(12,2,√32),AE ⃗⃗⃗⃗⃗ =(-32,0,√32),EF ⃗⃗⃗⃗ =(0,2,0), 设Q(2,y,0),平面AEF 的法向量为m=(x,y,z),则{AE⃗⃗⃗⃗⃗ ·m =-32x +√32z =0,EF⃗⃗⃗⃗ ·m =2y =0,取z=√3,得m=(1,0,√3),PQ ⃗⃗⃗⃗⃗ =(1,y,-√3), |cos<PQ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ >|=|2√4+y 2|=√4+y 2,|cos PQ⃗⃗⃗⃗⃗ ,m |=|2√4+y 2|=√4+y 2,依题意得|cos PQ ⃗⃗⃗⃗⃗ ,EF ⃗⃗⃗⃗ |=|cos PQ ⃗⃗⃗⃗⃗ ,m |, ∴y=±1,∴直线l 上存在点Q,使直线PQ 分别与平面AEF 、直线EF 所成的角互余,此时|AQ|=1. 4.在图1所示的平面图形ABCD 中,△ABD 是边长为4的等边三角形,BD 是∠ADC 的平分线,且BD ⊥BC,M 为AD 的中点,以BM 为折痕将△ABM 折起得到四棱锥A -BCDM(如图②所示).(1)设平面ABC 和平面ADM 的交线为l,在四棱锥A -BCDM 的棱AC 上求一点N,使直线BN ∥l;(2)若二面角A -BM -D 的大小为60°,求平面ABD 和平面ACD 所成的锐二面角的余弦值. 【解析】(1)延长CB,DM,设其交点为E,如图所示,因为点A,E 既在平面ABC 内,又在平面AMD 内, 所以直线AE 为平面ABC 与平面AMD 的交线l,因为BD 为∠MDC 的平分线,且BD ⊥BC,所以B 为EC 的中点, 取AC 的中点N,连接BN,则BN 为△AEC 的中位线, 所以直线BN ∥AE,即BN ∥l, 故N 为棱AC 的中点.(2)因为BM ⊥AM,BM ⊥MD,所以∠AMD=60°, 又因为AM=MD,所以△AMD 为等边三角形,取MD 的中点O 为坐标原点,以OM 所在的直线为x 轴,在平面BCDM 内过点O 且和MD 垂直的直线为y 轴,以OA 所在的直线为z 轴,建立如图所示的空间直角坐标系,所以D(-1,0,0),A(0,0,√3),C(-5,4√3,0),B(1,2√3,0), 所以DA ⃗⃗⃗⃗⃗ =(1,0,√3),DC ⃗⃗⃗⃗⃗ =(-4,4√3,0),DB ⃗⃗⃗⃗⃗ =(2,2√3,0), 设平面ACD 的法向量为m=(x,y,z),则{m ·DA ⃗⃗⃗⃗⃗ =0,m ·DC ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,-4x +4√3y =0,令z=-√3,则x=3,y=√3, 所以m=(3,√3,-√3),设平面ABD 的法向量为n=(a,b,c),则{n ·DA⃗⃗⃗⃗⃗ =0,n ·DB ⃗⃗⃗⃗⃗ =0,即{a +√3c =0,2a +2√3b =0,令c=-√3,则a=3,b=-√3, 所以n=(3,-√3,-√3),设平面ABD 和平面ACD 所成的锐二面角的大小为θ, 所以cos θ=|m ·n ||m ||n |=√3×√3)√3)√3)|√32+(√3)+(-√3)·√32+(-√3)+(-√3)=35,所以平面ABD 和平面ACD 所成的锐二面角的余弦值为35.<能力拔高>5.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的菱形,且BC=BD,DD 1⊥平面ABCD,AA 1=1,BE ⊥CD 于点E.(1)试问在线段A 1B 1上是否存在一点F,使得AF ∥平面BEC 1?若存在,求出点F 的位置;若不存在,请说明理由.(2)在(1)的条件下,求平面ADF 和平面BEC 1所成的锐二面角的余弦值.【解析】(1)当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. 下面给出证明:取AB 的中点G,连接EG,B 1G,则FB 1∥AG,且FB 1=AG, 所以四边形AGB 1F 为平行四边形,所以AF ∥B 1G.因为BC=BD,BE ⊥CD,所以E 为CD 的中点,又G 为AB 的中点,AB ∥CD,AB=CD,所以BG ∥CE,且BG=CE,所以四边形BCEG 为平行四边形,所以EG ∥BC,且EG=BC,又BC ∥B 1C 1,BC=B 1C 1, 所以EG ∥B 1C 1,且EG=B 1C 1,所以四边形EGB 1C 1为平行四边形, 所以B 1G ∥C 1E,所以AF ∥C 1E,又AF ⊄平面BEC 1,C 1E ⊂平面BEC 1,所以当F 为线段A 1B 1的中点时,AF ∥平面BEC 1. (2)连接DG,因为BD=BC=AD,G 为AB 的中点,所以DG ⊥AB,又AB ∥CD,所以DG ⊥CD, 因为DD 1⊥平面ABCD,DC,DG ⊂平面ABCD,所以DD 1⊥DC,DD 1⊥DG,所以DG,DC,DD 1两两垂直,以D 为原点,DG,DC,DD 1所在的直线分别为x,y,z 轴建立如图所示的空间直角坐标系D -xyz,由题意知BD=BC=CD=AB=AD=2,所以∠DAB=∠BDC=60°,又AA 1=1,所以D(0,0,0),A(√3,-1,0),D 1(0,0,1),E(0,1,0),C 1(0,2,1),B(√3,1,0),F(√3,0,1), 所以EB ⃗⃗⃗⃗⃗ =(√3,0,0),EC 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),DA ⃗⃗⃗⃗⃗ =(√3,-1,0),DF ⃗⃗⃗⃗⃗ =(√3,0,1).设平面BEC 1的法向量为n=(x,y,z),则{EB ⃗⃗⃗⃗⃗ ·n =0,EC 1⃗⃗⃗⃗⃗⃗⃗ ·n =0,即{√3x =0,y +z =0,令z=1,得平面BEC 1的一个法向量为n=(0,-1,1).设平面ADF 的法向量为m=(a,b,c),则{DA ⃗⃗⃗⃗⃗ ·m =0,DF ⃗⃗⃗⃗⃗ ·m =0,即{√3a -b =0,√3a +c =0,令a=1,得b=√3,c=-√3,平面ADF 的一个法向量m=(1,√3,-√3).设平面ADF 和平面BEC 1所成的锐二面角的大小为θ, 则cos θ=|m ·n ||m |·|n |=√3√7×√2=√427.所以平面ADF 和平面BEC 1所成的锐二面角的余弦值为√427. 6.在正三棱柱ABC -A 1B 1C 1中,已知AB=2,AA 1=3,M,N 分别为AB,BC 的中点,P 为线段CC 1上一点.平面ABC 1与平面ANP 的交线为l.(1)是否存在点P 使得C 1M ∥平面ANP?若存在,请指出点P 的位置并证明;若不存在,请说明理由.(2)若CP=1,求二面角B -l -N 的余弦值.【解析】(1)当CP=2时,C 1M ∥平面ANP. 证明如下:连接CM 交AN 于点G,连接GP,因为CG GM =CPPC 1=2,所以C 1M ∥GP,又GP ⊂平面ANP,C 1M ⊄平面ANP, 所以C 1M ∥平面ANP.(2)取AC 的中点O,连接BO,易证OB ⊥平面ACC 1A 1,如图,分别以OB,OC 所在的直线为x,y 轴,以过点O且平行于AA 1的直线为z轴建立空间直角坐标系,A(0,-1,0),B(√3,0,0),C 1(0,1,3),N (√32,12,0),P(0,1,1),则AB ⃗⃗⃗⃗⃗ =(√3,1,0),AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,3),AN ⃗⃗⃗⃗⃗ =(√32,32,0),AP ⃗⃗⃗⃗⃗ =(0,2,1). 设平面ABC 1的法向量为n 1=(x 1,y 1,z 1),平面APN 的法向量为n 2=(x 2,y 2,z 2), 由{n 1·AB ⃗⃗⃗⃗⃗ =0,n 1·AC 1⃗⃗⃗⃗⃗⃗⃗ =0得{√3x 1+y 1=0,2y 1+3z 1=0,令x 1=√3得n 1=(√3,-3,2),由{n 2·AP ⃗⃗⃗⃗⃗ =0,n 2·AN ⃗⃗⃗⃗⃗ =0得{2y 2+z 2=0,√32x 2+32y 2=0,令x 2=√3得n 2=(√3,-1,2), 设二面角B -l -N 的平面角为θ,则cos θ=|n 1·n 2|n 1||n 2||=4×√8=5√28. <拓展延伸>7.如图,在△ABC 中,AB=BC=2,∠ABC=90°,E,F 分别为AB,AC 边的中点,以EF 为折痕把△AEF 折起,使点A 到达点P 的位置,且PB=BE.(1)证明:EF ⊥平面PBE.(2)设N 为线段PF 上的动点,求直线BN 与平面PCF 所成角的正弦值的最大值.【解析】(1)因为E,F 分别为AB,AC 边的中点,所以EF ∥BC. 又因为∠ABC=90°,所以EF ⊥BE,EF ⊥PE. 又因为BE∩PE=E,所以EF ⊥平面PBE. (2)取BE 的中点O,连接PO,由(1)知EF ⊥平面PBE,EF ⊂平面BCFE, 所以平面PBE ⊥平面BCFE. 因为PB=BE=PE,所以PO ⊥BE.又因为PO ⊂平面PBE,平面PBE∩平面BCFE=BE, 所以PO ⊥平面BCFE .过点O 作OM ∥BC 交CF 于点M,分别以OB,OM,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则P (0,0,√32),C (12,2,0),F (-12,1,0),B(12,0,0),PC ⃗⃗⃗⃗ =(12,2,-√32),PF ⃗⃗⃗⃗ =(-12,1,-√32),N 为线段PF 上一动点,设PN ⃗⃗⃗⃗⃗ =λPF ⃗⃗⃗⃗ (0≤λ≤1), 则N (-λ2,λ,√32(1-λ)),BN⃗⃗⃗⃗⃗ =(-λ+12,λ,√32(1-λ)), 设平面PCF 的法向量为m=(x,y,z),则{PC ⃗⃗⃗⃗ ·m =0,PF ⃗⃗⃗⃗ ·m =0,即{12x +2y -√32z =0,-12x +y -√32z =0,取m=(-1,1,√3).设直线BN 与平面PCF 所成的角为θ, 则sin θ=|cos<BN ⃗⃗⃗⃗⃗ ,m>|=|BN ⃗⃗⃗⃗⃗⃗·m ||BN ⃗⃗⃗⃗⃗⃗||m |=√5×√2λ2-λ+1=√5×√2(λ-14)2+78≤√5×√78=4√7035,当且仅当λ=14时取等号.故直线BN 与平面PCF 所成角的正弦值的最大值为4√7035.8.如图,矩形ABCD中,AB=3,BC=1,E、F是边DC的三等分点.现将△DAE,△CBF分别沿AE,BF 折起,使得平面DAE、平面CBF均与平面ABFE垂直.(1)若G为线段AB上一点,且AG=1,求证:DG∥平面CBF.(2)求二面角A-CF-B的正弦值.【解析】(1)(法一)如图,分别取AE,BF的中点M,N,连接DM,CN,MG,MN..因为AD=DE=1,所以DM⊥AE,且DM=√22.因为BC=CF=1,所以CN⊥BF,且CN=√22因为平面DAE⊥平面ABFE,平面DAE∩平面ABFE=AE,DM⊥AE,DM⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN⊥平面ABFE,所以DM∥CN,且CN=DM.又DM⊄平面CBF,CN⊂平面CBF,所以DM∥平面CBF,在矩形ABCD中,∠DAE=45°,故∠EAB=45°,同理可得∠FBA=45°,,所以MG2+AM2=AG2,所以在几何体ABFEDC中,因为MG=√AM2+AG2-2AM·AGcos45°=√22∠AMG=90°,所以△AMG是以AG为斜边的等腰直角三角形,故∠MGA=45°.而∠FBA=45°,且MG与FB共面于平面EFBA,故MG∥FB.又MG⊄平面CBF,FB⊂平面CBF,所以MG∥平面CBF.又MG∩DM=M,MG,DM⊂平面DMG,所以平面DMG∥平面CBF.因为DG⊂平面DMG,所以DG∥平面CBF.(法二)如图,分别取AE,BF 的中点M,N,连接DM,CN,MG,MN. 因为AD=DE=1,∠ADE=90°,所以DM ⊥AE,且DM=√22. 因为BC=CF=1,∠BCF=90°,所以CN ⊥BF,且CN=√22.因为平面DAE ⊥平面ABFE,平面DAE∩平面ABFE=AE,DM ⊥AE,DM ⊂平面DAE,所以DM ⊥平面ABFE.同理可得CN ⊥平面ABFE,所以DM ∥CN,且CN=DM, 所以四边形CDMN 是矩形,所以CD MN. 又MN 是等腰梯形ABFE 的中位线,所以CD=MN=1+32=2.又GB=2,所以CD ∥GB,CD=GB,所以四边形CDGB 是平行四边形,所以CB ∥DG. 又CB ⊂平面CBF,DG ⊄平面CBF,所以DG ∥平面CBF.(2)如图,以G 为坐标原点,分别以AB,GE 所在直线为x 轴,y 轴,以过点G 并垂直于平面ABFE 的直线为z 轴建立空间直角坐标系, 则A(-1,0,0),B(2,0,0),E(0,1,0),F(1,1,0),C (32,12,√22), 则AF ⃗⃗⃗⃗⃗ =(2,1,0),FC ⃗⃗⃗⃗ =(12,-12,√22),BF ⃗⃗⃗⃗ =(-1,1,0),GF ⃗⃗⃗⃗ =(1,1,0), 所以GF ⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,1,0)·(-1,1,0)=0,所以GF ⊥BF. 由(1)得CN ⊥平面ABFE,所以GF ⊥CN.而BF,CN ⊂平面CBF,BF∩CN=N,故GF ⊥平面CBF, 从而GF ⃗⃗⃗⃗ =(1,1,0)是平面CBF 的一个法向量. 设n=(x,y,z)为平面AFC 的法向量, 则{n ·AF⃗⃗⃗⃗⃗ =0,n ·FC⃗⃗⃗⃗ =0,即{2x +y =0,x -y +√2z =0,解得{y =-2x ,z =-3√22x , 取x=-2,则y=4,z=3√2,即n=(-2,4,3√2),所以cos<GF ⃗⃗⃗⃗ ,n>=√2)√2×√38=√1919,故所求二面角的正弦值为√1-119=3√3819。
专题12 立体几何中探索性问题(解析版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1A C ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d .以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC AC C =,1AC ∴⊥平面1ABC , 又1A C ⊂平面11A ACC ,∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EFDF F =,1ABAC A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB ,11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2), 1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2),设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB ==,1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1A O ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1A OAC O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A AC O =,得1A O ⊥底面ABCD ,所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0), (0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-,由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>==⨯, 解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1A C ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC ,∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1ABAC A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2,n t=,平面CBF的一个法向量21(0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=,解得0x=,2y t=,∴1(0,2,n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(,0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD 时,平面与DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC =12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴, OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(2)BA =-,12(A D =0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D y ⎧=-+=⎪⎨=+=⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =02a 3a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BD =AD BD ∴⊥,1AA ⊥平面ABC ,1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点, BD CD =,1//AC DE ∴, 又1A C ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=.故三棱锥11A A B D -. 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC == 所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-, (3,0)AE λ=,1(0,1,1)AD =⋯(7分)设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ,即1CE =-(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M , G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF-,此时DE的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD-中,90ABC BAD∠=∠=︒,112AD AB BC===,PD⊥平面ABCD,PD,M为PC上的动点.(Ⅰ)当M为PC的中点时,在棱PB上是否存在点N,使得//MN平面PDA?说明理由;(Ⅰ)BDM∆的面积最小时,求三棱锥M BCD-的体积.【分析】(Ⅰ)当N为PB中点时,//MN平面PDA.取PB的中点N,连接MN,由M,N分别为PC,PB中点,可得//MN BC,又//BC AD,得//MN AD,再由直线与平面平行的判定对立即可证明//MN平面PDA;(Ⅰ)由PD⊥平面ABCD,DB⊂平面ABCD,知PD BD⊥,又BD CD⊥,CD PD D=,得BD⊥平面PCD,又MD⊂平面PDC,可得BD MD⊥,进一步得到DBM∆为直角三角形,当MD PC⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD-的体积.【解答】解:(Ⅰ)当N为PB中点时,//MN平面PDA.证明如下:取PB的中点N,连接MN,M,N分别为PC,PB中点,//MN BC∴,又//BC AD,//MN AD∴,又DA⊂平面PDA,MN⊂/平面PDA,//MN∴平面PDA;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又MD ⊂平面PDC ,BD MD ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴==在Rt PDC ∆中,由PD =CD =可得PC =MD .则CM =122MCD S ∆∴=⨯=.∴1133M BCD B MCD MCD V V S BD --∆===⨯8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a .【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1AC AA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCA C C =,1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4), 1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4),设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221||332216n a ==++.解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.【分析】(1)通过证明CD AD ⊥,CD DM ⊥,证明CM ⊥平面AMD ,然后证明平面AMD ⊥平面BMC ; (2)存在P 是AM 的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD 所在平面垂直,所以AD ⊥半圆弦CD 所在平面,CM ⊂半圆弦CD 所在平面, CM AD ∴⊥,M 是CD 上异于C ,D 的点.CM DM ∴⊥,DMAD D =,CM ∴⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ;(2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得//MC OP ,MC ⊂/平面BDP ,OP ⊂平面BDP , 所以//MC 平面PBD .。
热点难点突破-不拉分系列之(十四)解答立体几何中探索性问题
立体几何中的探索性问题主要是对平行、垂直关系的探究,对条件和结论不完备的开放性问题的探究,解决这类问题一般根据探索性问题的设问,假设其存在并探索出结论,然后在这个假设下进行推理论证,若得到合乎情理的结论就肯定假设,若得到矛盾就否定假设.[典例](理)(2012·福建高考改编)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.[解]如图,在四面体P ABC中,PC⊥AB,P A⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP;(2)求证:四边形DEFG为矩形;(3)是否存在点Q,到四面体P ABC六条棱的中点的距离相等?说明理由.[解](1)证明:因为D,E分别为AP,AC的中点,所以DE∥PC.又因为DE⊄平面BCP,所以DE∥平面BCP.(2)证明:因为D,E,F,G分别为AP,AC,BC,PB的中点,所以DE∥PC∥FG,DG∥AB∥EF.所以四边形DEFG为平行四边形.又因为PC ⊥AB ,所以DE ⊥DG .所以四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下:连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG . 分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN . 与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG的中点Q ,且QM =QN =12EG , 所以Q 为满足条件的点.[题后悟道] 此类问题一般是先探求点的位置,多为线段的中点或某个三等分点,一般点的情形很少,然后给出符合要求的证明,注意书写格式要规范,一般有两种格式:第一种书写格式:探求出点的位置→证明→符合要求→写出明确答案;第二种书写格式:从结论出发“要使什么成立”,“只需使什么成立”,寻求使结论成立的充分条件,类似于分析法.针对训练(2012·黄山模拟)如图,在底面是菱形的四棱锥P -ABCD 中,∠ABC =60°,P A =AC =a ,PB =PD =2a ,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?证明你的结论.证明:存在.证明如下:取棱PC 的中点F ,线段PE 的中点M ,连接BD .设BD ∩AC =O .连接BF ,MF ,BM ,OE .∵PE ∶ED =2∶1,F 为PC 的中点,M 是PE 的中点,E 是MD 的中点,∴MF ∥EC ,BM ∥OE .∵MF ⊄平面AEC ,CE ⊂平面AEC ,BM ⊄平面AEC ,OE ⊂平面AEC ,∴MF ∥平面AEC ,BM ∥平面AEC .∵MF ∩BM =M ,∴平面BMF∥平面AEC. 又BF⊂平面BMF,∴BF∥平面AEC.。
35 立体几何中的探索问题-备战2018高考技巧大全之高中数学黄金解题模板含解析
【高考地位】探究性问题常常是条件不完备的情况下探讨某些结论能否成立,立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.近几年高考中立体几何试题不断出现了一些具有探索性、开放性的试题.内容涉及异面直线所成的角,直线与平面所成的角,二面角,平行与垂直等方面,对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.【方法点评】方法一直接法使用情景:立体几何中的探索问题解题模板:第一步首先假设求解的结果存在,寻找使这个结论成立的充分条件;第二步然后运用方程的思想或向量的方法转化为代数的问题解决;第三步得出结论,如果找到了符合题目结果要求的条件,则存在;如果找不到符合题目结果要求的条件,或出现了矛盾,则不存在..例1.【2018河南漯河市高级中学第三次模拟】如图,AB为圆AB EF,矩形ABCD所在的平面和O的直径,点,E F在圆O上,且//圆O所在的平面垂直,且1,2====.AD EF AF AB(1)求证:平面AFC⊥平面CBF;(2)在线段CF上是否存在了点M,使得//OM平面ADF?并说明理由.【变式演练1】如图,三棱柱111ABC A B C -中,底面ABC 为正三角形, 1AA ⊥底面ABC ,且13AA AB ==, D 是BC 的中点.(1)求证: 1//A B 平面1ADC ;(2)求证:平面1ADC ⊥平面1DCC ;(3)在侧棱1CC 上是否存在一点E ,使得三棱锥C ADE -的体积是98?若存在,求出CE 的长;若不存在,说明理由.(2)∵底面为正三角形,是的中点,∴AD CD ⊥, ∵ 平面,平面, ∴。
∵, ∴ 平面,∵ 平面,∴平面平面.(3)假设在侧棱上存在一点,使三棱锥的体积是。
立体几何探究性问题透析
ʏ王 飞 刘大鸣(特级教师)立体几何中的探究性问题立意新颖,形式多样㊂这类问题,既能够考查同学们的空间想象力,又可以考查同学们的意志力和创新意识,逐步成为近几年高考命题的热点和今后命题的趋势之一㊂立体几何探究性问题主要有两类:一是推理型,即探究空间中的平行与垂直关系,可以利用空间线面关系的判定与性质定理进行推理论证;二是计算型,即对几何体中的空间角与距离㊁几何体的体积等计算型问题的有关探究,此类问题通过求角㊁求距离㊁求体积等的基本方法把这些探究性问题转化为关于某个参数的方程,根据方程解的存在性来解决㊂题型1: 几何法 探究以 平行 为背景的探究性问题例1 如图1,在四棱锥E -A B C D 中,A E ʅD E ,C D ʅ平面A D E ,AB ʅ平面A D E ,CD =3A B ㊂图1(1)求证:平面A C E ʅ平面C D E ㊂(2)在线段D E 上是否存在一点F ,使A F ʊ平面B C E 若存在,求出E FE D 的值;若不存在,请说明理由㊂(1)面面垂直的证明,可寻求一个平面内的直线A E 和另一个平面C D E 垂直㊂因为C D ʅ平面A D E ,A E ⊂平面A D E ,所以C D ʅA E ㊂因为A E ʅD E ,所以A E ʅ平面C D E ㊂又因为A E ⊂平面A C E ,所以平面A C E ʅ平面C D E ㊂(2)由C D =3A B ,C D ʅ平面A D E ,A B ʅ平面A D E ,取E D 上的一个三分之一点F ,构造特殊的平行四边形,利用平行关系,得到A F ʊ平面B C E ㊂在线段D E 上存在一点F ,且E F D E =13,使A F ʊ平面B C E ㊂过点F 作F M ʊC D 交C E 于M (作法略),则F M =13C D ㊂因为C D ʅ平面A D E ,A B ʅ平面A D E ,所以C D ʊA B ㊂因为F M ʊC D ,所以F M ʊA B ㊂因为C D =3A B ,所以F M =A B ,所以四边形A B M F 为平行四边形,所以A F ʊB M ㊂又因为A F ⊄平面B C E ,B M ⊂平面BC E ,所以A F ʊ平面B C E ㊂透析:直线和平面平行的探究性问题,在利用传统的几何方法证明时,一定要灵活运用空间几何体的结构特征,要注意寻找平行㊁垂直与长度之间的关系,其中依据性质定理作辅助线和辅助面是求解的关键㊂本题取E D 上的三分之一点F ,构造平行四边形,凸显空间问题平面化的特点㊂题型2: 几何法 探究以 垂直 为背景的探究性问题例2 在长方体A B C D -A 1B 1C 1D 1中,E ,F 分别是A D ,D D 1的中点,A B =B C =2,过A 1,C 1,B 三点的平面截去长方体的一个角后,得到如图2所示的几何体A B C D -A 1C 1D 1,且这个几何体的体积为403㊂图273创新题追根溯源高一数学 2023年6月Copyright ©博看网. All Rights Reserved.(1)求证:E Fʊ平面A1B C1㊂(2)求A1A的长㊂(3)在线段B C1上是否存在点P,使直线A1P与C1D垂直如果存在,求线段A1P的长;如果不存在,请说明理由㊂(1)利用几何特征和平行线的传递性证明E Fʊ平面A1B C1㊂在长方体A B C D-A1B1C1D1中,可知A BʊD1C1,A B=D1C1,所以四边形A B C1D1是平行四边形,所以A D1 B C1㊂因为E,F分别是A D,D D1的中点,所以A D1ʊE F,所以E FʊB C1㊂又E F⊄平面A1B C1,B C1⊂平面A1B C1,所以E Fʊ平面A1B C1㊂(2)利用等积法求A1A的长㊂由题意可得V A B C D-A1C1D1=V A B C D-A1B1C1D1 -V B-A1B1C1=2ˑ2ˑA A1-13ˑ12ˑ2ˑ2ˑA A1=103A A1=403,所以A A1=4㊂(3)线线垂直合理转化为线面垂直,构造与C1D垂直的辅助面为直角梯形A1P Q D1即可㊂在平面C C1D1D中,作D1QʅC1D交C C1于Q,过Q作Q PʊC B交B C1于点P,可得A1PʅC1D,即存在点P满足题意㊂因为A1D1ʅ平面C C1D1D,C1D⊂平面C C1D1D,所以C1DʅA1D1㊂又因为C1DʅD1Q,且A1D1ɘD1Q=D1,所以C1Dʅ平面A1P Q D1㊂又A1P⊂平面A1P Q D1,所以A1PʅC1D㊂下面求线段A1P的长㊂因为R tәD1C1QʐR tәC1C D,所以C1QC D= D1C1C1C,所以C1Q=1㊂因为P QʊB C,所以P Q=14B C=12㊂又四边形A1P Q D1为直角梯形,且高D1Q=5,所以A1P= 2-122+5=292㊂透析:以特殊几何体为背景的垂直关系的探究性问题,依据几何体的特殊性质,合理构造线线垂直关系是解题的关键㊂本题选择C1D和经过点A1且与B C1相交于点P的平面A1P Q D1,通过作D1QʅC1D交C C1于点Q,过点Q作Q PʊC B交B C1于点P,构造直角梯形得到满足条件的A1P的长㊂1.如图3,已知四棱锥S-A B C D中,底面A B C D是菱形,点E是棱A D的中点,点F 在棱S C上,且S FS C=λ,S Aʊ平面B E F㊂图3求实数λ的值㊂提示:利用相似三角形,建立等式求解㊂设A CɘB E=G,则平面S A Cɘ平面E F B= F G㊂因为S Aʊ平面E F B,所以S AʊF G㊂因为әG E AʐәG B C,所以A G G C=A E B C=12,所以S FF C=A GG C=12,所以S F=13S C,所以λ=13㊂2.已知直线m,n,l和平面α,β,下列四个命题中正确的是()㊂A.若mʊα,nʊα,则mʊnB.若lʊα,mʊβ,αʊβ,则lʊmC.若αʅβ,m⊂α,则mʅβD.若αʅβ,mʅβ,m⊄α,则mʊα提示:对于A,若mʊα,nʊα,则m与n 相交㊁平行或异面,A错误㊂对于B,若lʊα, mʊβ,αʊβ,l与m不一定平行,也可能相交, B错误㊂对于C,若αʅβ,m⊂α,则mʅβ或mʊβ或m与β相交,C错误㊂对于D,若αʅβ,mʅβ,m⊄α,则由线面垂直的性质与判定定理得mʊα,D正确㊂应选D㊂作者单位:陕西省洋县中学(责任编辑郭正华)8 3创新题追根溯源高一数学2023年6月Copyright©博看网. All Rights Reserved.。
2021年高考数学难点突破(新课标版) 专题12 立体几何中探索性问题(解析版)
专题12 立体几何中探索性问题专题概述立体几何中的探索性问题立意新颖,形式多样,近年来在高考中频频出现,而空间向量在解决立体几何的探索性问题中扮演着举足轻重的角色,它是研究立体几何中的探索性问题的一个有力工具,应用空间向量这一工具,为分析和解决立体几何中的探索性问题提供了新的视角、新的方法.典型例题【例1】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥. (1)求证:平面1ABC ⊥平面11A ACC ;(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使得//DE 平面1ABC .若存在,求二面角1E AC B --的余弦值.【分析】(1)推导出1AA AB ⊥,1A A AC ⊥,从而1A C ⊥平面1ABC ,由此能证明平面1ABC ⊥平面11A ACC . (2)当E 为1B B 的中点时,连接AE ,1EC ,DE ,取1A A 的中点F ,连接EF ,FD ,设点E 到平面1ABC的距离为d ,由11E ABC C ABE V V --=,求出d =A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角1E AC B --的余弦值.【解答】证明:(1)在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,1AA AB ∴⊥, 又1AA BC ⊥,ABBC B =,1AA ∴⊥平面ABC ,1A A AC ∴⊥.又1A A AC =,11AC AC ∴⊥.又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC .解:(2)当E 为1B B 的中点时,连接AE ,1EC ,DE , 如图,取1A A 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EFDF F =,1ABAC A =,∴平面//EFD 平面1ABC ,则有//DE 平面1ABC .设点E 到平面1ABC 的距离为d ,AB AC ⊥,且1AA AB ⊥,AB ∴⊥平面11A ACC ,1AB AC ∴⊥,∴1122BAC S=⨯= 1A A AC ⊥,AB AC ⊥,AC ∴⊥平面11A ABB , 11//AC AC ,11AC ∴⊥平面11ABB ,∴11111182243323C ABE ABE V S AC -∆=⨯⨯=⨯⨯⨯⨯=, 由1183E ABC C ABE V V --==,解得188333ABC d S=⨯==以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系, (0A ,0,0),(2B ,0,0),1(0C ,4,4),(2E ,0,2), 1(0AC =,4,4),(2AB =,0,0),(2AE =,0,2),设平面1AC E 的法向量(n x =,y ,)z ,则1440220n AC y z n AE x z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,1,1)-, 设平面1AC B 的法向量(m x =,y ,)z ,则144020m AC y z m AB x ⎧=+=⎪⎨==⎪⎩,取1y =,得(0m =,1,1)-, 设二面角的平面角为θ, 则6cos ||||32m n m n θ===.∴二面角1E AC B --【例2】在四棱柱1111ABCD A B C D -中,底面ABCD 是正方形,且1BC BB ==,1160A AB A AD ∠=∠=︒. (1)求证:1BD CC ⊥;(2)若动点E 在棱11C D 上,试确定点E 的位置,使得直线DE 与平面1BDB .【分析】(1)连接1A B ,1A D ,AC ,则△1A AB 和△1A AD 均为正三角形,设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥,由四边形ABCD 是正方形,得AC BD ⊥,从而BD ⊥平面1A AC .进而1BD AA ⊥,由此能证明1BD CC ⊥.(2)推导出11A B A D ⊥,1AO AO ⊥,1AO BD ⊥,从而1A O ⊥底面ABCD ,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -,利用向量法能求出当E 为11D C 的中点时,直线DE 与平面1BDB . 【解答】解:(1)连接1A B ,1A D ,AC , 因为1AB AA AD ==,1160A AB A AD ∠=∠=︒, 所以△1A AB 和△1A AD 均为正三角形, 于是11A B A D =.设AC 与BD 的交点为O ,连接1A O ,则1AO BD ⊥, 又四边形ABCD 是正方形,所以AC BD ⊥, 而1A OAC O =,所以BD ⊥平面1A AC .又1AA ⊂平面1A AC ,所以1BD AA ⊥,又11//CC AA ,所以1BD CC ⊥.(2)由11A B A D ==2BD ==,知11A B A D ⊥,于是1112AO AO BD AA ===,从而1AO AO ⊥, 结合1AO BD ⊥,1A AC O =,得1A O ⊥底面ABCD ,所以OA 、OB 、1OA 两两垂直.如图,以点O 为坐标原点,OA 的方向为x 轴的正方向,建立空间直角坐标系O xyz -, 则(1A ,0,0),(0B ,1,0),(0D ,1-,0),1(0A ,0,1),(1C -,0,0), (0,2,0)DB =,11(1,0,1)BB AA ==-,11(1,1,0)D C DC ==-,由11(1,0,1)DD AA ==-,得1(1D -,1-,1).设111([0,1])D E D C λλ=∈,则(1E x +,1E y +,1)(1E z λ-=-,1,0),即(1E λ--,1λ-,1), 所以(1,,1)DE λλ=--.设平面1B BD 的一个法向量为(,,)n x y z =, 由100n DB n BB ⎧=⎪⎨=⎪⎩得00y x z =⎧⎨-+=⎩令1x =,得(1,0,1)n =,设直线DE 与平面1BDB 所成角为θ,则sin |cos ,|2DE n θ=<>==⨯解得12λ=或13λ=-(舍去), 所以当E 为11D C 的中点时,直线DE 与平面1BDB .【变式训练】(2018•全国三模)如图,在三棱柱111ABC A B C -中,侧面11ABB A 是矩形,90BAC ∠=︒,1AA BC ⊥,124AA AC AB ===,且11BC AC ⊥ (1)求证:平面1ABC ⊥平面11A ACC(2)设D 是11A C 的中点,判断并证明在线段1BB 上是否存在点E ,使//DE 平面1ABC ,若存在,求点E 到平面1ABC 的距离.【分析】(1)在三棱柱111ABC A B C -中,由侧面11ABB A 是矩形,可得1AA AB ⊥,又1AA BC ⊥,可得1AA ⊥平面ABC ,得到1AA AC ⊥,进一步有11AC AC ⊥,结合11BC AC ⊥,可得1A C ⊥平面1ABC ,由面面垂直的判定得平面1ABC ⊥平面11A ACC ;(2)当E 为1BB 的中点时,连接AE ,1EC ,DE ,取1AA 的中点F ,连接EF ,FD ,由面面平行的判定和性质可得//DE 平面1ABC ,咋爱优等体积法可求点E 到平面1ABC 的距离为. 【解答】(1)证明:在三棱柱111ABC A B C -中,侧面11ABB A 是矩形, 1AA AB ∴⊥,又1AA BC ⊥,AB BC B =,1AA ∴⊥平面ABC ,1AA AC ∴⊥,又1AA AC =,11AC AC ∴⊥, 又11BC AC ⊥,111BC AC C =,1A C ∴⊥平面1ABC ,又1A C ⊂平面11A ACC , ∴平面1ABC ⊥平面11A ACC ;(2)解:当E 为1BB 的中点时,连接AE ,1EC ,DE , 如图,取1AA 的中点F ,连接EF ,FD , //EF AB ,1//DF AC ,又EF DF F =,1ABAC A =,∴平面//EFD 平面1ABC ,又DE ⊂平面EFD ,//DE ∴平面1ABC ,又11E ABC C ABE V V --=,11C A ⊥平面ABE ,设点E 到平面1ABC 的距离为d ,∴111122243232d ⨯⨯⨯=⨯⨯⨯⨯,得d =∴点E 到平面1ABC .专题强化1.(2020•3月份模拟)如图.在正三棱柱111ABC A B C -(侧棱垂直于底面,且底面三角形ABC 是等边三角形)中,1BC CC =,M 、N 、P 分别是1CC ,AB ,1BB 的中点. (1)求证:平面//NPC 平面1AB M ;(2)在线段1BB 上是否存在一点Q 使1AB ⊥平面1A MQ ?若存在,确定点Q 的位置;若不存在,也请说明理由.【分析】(1)由M 、N 、P 分别是1CC ,AB ,1BB 的中点.利用平行四边形、三角形中位线定理即可得出1//NP AB ,1//CP MB ,再利用线面面面平行的判定定理即可得出结论.(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ .四边形11ABB A 是正方形,因此点Q 为B 点.不妨取2BC =.判断10AB MQ =是否成立即可得出结论.【解答】(1)证明:M 、N 、P 分别是1CC ,AB ,1BB 的中点. 1//NP AB ∴,四边形1MCPB 为平行四边形,可得1//CP MB ,NP ⊂/平面1AB M ;1AB ⊂平面1AB M ;//NP ∴平面1AB M ;同理可得//CP 平面1AB M ;又CP NP P =,∴平面//NPC 平面1AB M .(2)假设在线段1BB 上存在一点Q 使1AB ⊥平面1A MQ . 四边形11ABB A 是正方形,因此点Q 为线段1BB 的中点. 不妨取2BC =.(0M ,1-,1),(0Q ,1,0),A 0,0),1(0B ,1,2),1(AB =-1,2),(0MQ =,2,1)-, 10AB MQ =.∴在线段1BB 上存在一点Q ,使1AB ⊥平面1A MQ ,其中点Q 为线段1BB 的中点2.(2020•湖南模拟)如图,AB 为圆O 的直径,点E 、F 在圆O 上,//AB EF ,矩形ABCD 所在的平面与圆O 所在的平面互相垂直.已知2AB =,1EF =. (Ⅰ)求证:平面DAF ⊥平面CBF ; (Ⅰ)求直线AB 与平面CBF 所成角的大小;(Ⅰ)当AD 的长为何值时,平面DFC 与平面FCB 所成的锐二面角的大小为60︒?【分析】()I 利用面面垂直的性质,可得CB ⊥平面ABEF ,再利用线面垂直的判定,证明AF ⊥平面CBF ,从而利用面面垂直的判定可得平面DAF⊥平面CBF;()II确定ABF∠为直线AB与平面CBF所成的角,过点F作FH AB⊥,交AB于H,计算出AF,即可求得直线AB与平面CBF所成角的大小;(Ⅰ)建立空间直角坐标系,求出平面DCF的法向量1(0,2,n t=,平面CBF的一个法向量21(0)2n AF==-,利用向量的夹角公式,即可求得AD的长.【解答】()I证明:平面ABCD⊥平面ABEF,CB AB⊥,平面ABCD⋂平面ABEF AB=,CB∴⊥平面ABEF.AF ⊂平面ABEF,AF CB∴⊥,⋯(2分)又AB为圆O的直径,AF BF∴⊥,AF∴⊥平面CBF.⋯(3分)AF ⊂平面ADF,∴平面DAF⊥平面CBF.⋯(4分)()II解:根据(Ⅰ)的证明,有AF⊥平面CBF,FB∴为AB在平面CBF内的射影,因此,ABF∠为直线AB与平面CBF所成的角⋯(6分)//AB EF,∴四边形ABEF为等腰梯形,过点F作FH AB⊥,交AB于H.2AB=,1EF=,则122AB EFAH-==.在Rt AFB∆中,根据射影定理2AF AH AB=,得1AF=.⋯(8分)∴1sin2AFABFAB∠==,30ABF∴∠=︒.∴直线AB与平面CBF所成角的大小为30︒.⋯(9分)(Ⅰ)解:设EF中点为G,以O为坐标原点,OA、OG、AD方向分别为x轴、y轴、z轴方向建立空间直角坐标系(如图).设(0)AD t t=>,则点D的坐标为(1,0,)t,则(1C-,0,)t,1(1,0,0),(1,0,0),(2A B F-∴1(2,0,0),(,)2CD FD t==⋯(10分)设平面DCF的法向量为1(,,)n x y z=,则1n CD =,1n FD =,即200.xy tz=⎧⎪⎨+=⎪⎩令z=0x=,2y t=,∴1(0,2,n t=⋯(12分)由()I 可知AF ⊥平面CFB ,取平面CBF 的一个法向量为21(0)2n AF ==-,依题意1n 与2n 的夹角为60︒,∴1212cos60||||n n n n ︒=,即12=,解得t =因此,当AD DFC 平面FCB 所成的锐二面角的大小为60︒.⋯(14分)3.(2019•全国二模)如图,直三棱柱111ABC A B C -中,点D 是棱11B C 的中点. (Ⅰ)求证:1//AC 平面1A BD ;(Ⅰ)若AB AC ==12BC BB ==,在棱AC 上是否存在点M ,使二面角1B A D M --的大小为45︒,若存在,求出AMAC的值;若不存在,说明理由.【分析】(Ⅰ)先连接1AB ,交1A B 于点O ,再由线面平行的判定定理,即可证明1//AC 平面1A BD ; (Ⅰ)先由题意得AB ,AC ,1AA 两两垂直,以A 为原点,建立空间直角坐标系A xyz -,设(0M ,a ,0),(02)a,求出两平面的法向量,根据法向量夹角余弦值以及二面角的大小列出等式,即可求出a ,进而可得出结果.【解答】证明:(Ⅰ)连接1AB ,交1A B 于点O ,则O 为1AB 中点, 连接OD ,又D 是棱11B C 的中点,1//OD AC ∴, OD ⊂平面1A BD ,1AC ⊂/平面1A BD ,1//AC ∴平面1A BD .解:(Ⅰ)由已知AB AC ⊥,则AB ,AC ,1AA 两两垂直, 以A 为原点,如图建立空间直角坐标系A xyz -,则B ,1(0A ,0,2),D ,2),(0C0), 设(0M ,a ,0),(02)a,则1(BA =-,12(22A D =,0),1(0A M =,a ,2)-, 设平面1BA D 的法向量为(n x =,y ,)z ,则11220202n BA z n A D y ⎧=-+=⎪⎨=+=⎪⎩,取1z =,得(2,n =-1). 设平面1A DM 的法向量为(m x =,y ,)z ,则1120202m A M ay z m A D y ⎧=-=⎪⎨=+=⎪⎩,2x =-,得(2m =-,2,)a . 二面角1BA D M --的大小为45︒, 2|||2222cos 45|cos ,|||||58m na m n m n a --+∴︒=<>===+,23240a ∴+-=,解得a =-a =02a ,3a ∴=, ∴存在点M ,此时23AM AC =,使二面角1B A D M --的大小为45︒.4.(2019•3月份模拟)如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 为BC 边上一点,BD =122AA AB AD ===.(1)证明:平面1ADB ⊥平面11BB C C .(2)若BD CD =,试问:1A C 是否与平面1ADB 平行?若平行,求三棱锥11A A B D -的体积;若不平行,请说明理由.【分析】(1)先证AD 与BC ,1BB 垂直,进而得线面垂直,面面垂直;(2)连接1A B 得中点E ,利用中位线得线线平行,进而得线面平行,再利用等分三棱柱的方法求得三棱锥的体积.【解答】解:(1)证明:2AB =,1AD =,BDAD BD ∴⊥,1AA ⊥平面ABC , 1BB ∴⊥平面ABC , 1BB AD ∴⊥,AD ∴⊥平面11BB C C ,∴平面1ADB ⊥平面11BB C C ;(2)1A C 与平面1ADB 平行,证明如下:连接1A B 交1AB 于E ,连接DE ,则E 为1AB 中点, BD CD =,1//AC DE ∴, 又1A C ⊂/平面1ADB ,DE ⊂平面1ADB , 1//AC ∴平面1ADB , 利用三等分三棱柱的知识可知, 1111116A A B D A B C ABC V V --=116ABC S AA ∆=⨯ 11162BC AD AA =⨯⨯⨯ 111262=⨯⨯⨯=.故三棱锥11A A B D -. 5.(2018秋•全国期末)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是菱形,111112AA A B AB ===,60ABC ∠=︒,1AA ⊥平面ABCD .(1)若点M 是AD 的中点,求证:1//C M 平面11AA B B ;(2)棱BC 上是否存在一点E ,使得二面角1E AD D --的余弦值为13?若存在,求线段CE 的长;若不存在,请说明理由.【分析】(1)连接1B A ,推导出四边形11AB C M 是平行四边形,从而11//C M B A ,由此能证明1//C M 平面11AA B B .(2)取BC 中点Q ,连接AQ ,推导出AQ BC ⊥,AQ AD ⊥,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系,利用向量法能求出结果.【解答】证明:(1)连接1B A ,由已知得,11////B C BC AD ,且1112B C AM BC == 所以四边形11AB C M 是平行四边形,即11//C M B A ⋯(2分)又1C M ⊂/平面11AA B B ,1B A ⊂平面11AA B B , 所以1//C M 平面11AA B B ⋯(4分)解:(2)取BC 中点Q ,连接AQ ,因为ABCD 是菱形,且60ABC ∠=︒, 所以ABC ∆是正三角形,所以AQ BC ⊥,即AQ AD ⊥, 由于1AA ⊥平面ABCD ⋯(6分)所以,分别以AQ ,AD ,1AA 为x 轴,y 轴,z 轴,建立空间直角坐标系, 如图(0A ,0,0),1(0A ,0,1),1(0D ,1,1),Q 假设点E 存在,设点E的坐标为,0)λ,11λ-, (3,0)AE λ=,1(0,1,1)AD =⋯(7分)设平面1AD E 的法向量(,,)n x y z =则100n AE n AD ⎧=⎪⎨=⎪⎩,即00y y z λ+=+=⎪⎩,可取(,3,n λ=-⋯(9分)平面1ADD 的法向量为(3,0,0)AQ =⋯(10分) 所以,31|cos ,|33AQ n λ<>==,解得:λ=(11分) 又由于二面角1E AD D --大小为锐角,由图可知,点E 在线段QC 上, 所以λ=,即1CE =(12分)6.(2019•山东模拟)如图所示的矩形ABCD 中,122AB AD ==,点E 为AD 边上异于A ,D 两点的动点,且//EF AB ,G为线段ED 的中点,现沿EF 将四边形CDEF 折起,使得AE 与CF 的夹角为60︒,连接BD ,FD .(1)探究:在线段EF 上是否存在一点M ,使得//GM 平面BDF ,若存在,说明点M 的位置,若不存在,请说明理由;(2)求三棱锥G BDF -的体积的最大值,并计算此时DE 的长度.【分析】(1)取线段EF 的中点M ,由G 为线段ED 的中点,M 为线段EF 的中点,可得//GM DF ,再由线面平行的判定可得//GM 平面BDF ;(2)由//CF DE ,且AE 与CF 的夹角为60︒,可得AE 与DE 的夹角为60︒,过D 作DP 垂直于AE 交AE 于P ,由已知可得DP 为点D 到平面ABFE 的距离,设DE x =,则4AE BF x ==-,然后利用等积法写出三棱锥G BDF -的体积,再由基本不等式求最值,并求出DE 的长度. 【解答】(1)解:取线段EF 的中点M ,有//GM 平面BDF . 证明如下:如图所示,取线段EF 的中点M , G 为线段ED 的中点,M 为线段EF 的中点, GM ∴为EDF ∆的中位线,故//GM DF ,又GM ⊂/平面BDF ,DF ⊂平面BDF ,故//GM 平面BDF ; (2)解://CF DE ,且AE 与CF 的夹角为60︒, 故AE 与DE 的夹角为60︒, 过D 作DP 垂直于AE 交AE 于P ,由已知得DE EF ⊥,AE EF ⊥,EF ∴⊥平面AED , 则DP 为点D 到平面ABFE 的距离, 设DE x =,则4AE BF x ==-, 由(1)知//GM DF , 故111333[1(4)](4)332G BDF M BDF D MBF MBF V V V S DP x x x x ---∆====⨯⨯⨯-⨯=-, 当且仅当4x x -=时等号成立,此时2x DE ==.故三棱锥G BDF -,此时DE 的长度为2.7.(2018•全国模拟)如图,在四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,112AD AB BC ===,PD ⊥平面ABCD ,PD =M 为PC 上的动点.(Ⅰ)当M 为PC 的中点时,在棱PB 上是否存在点N ,使得//MN 平面PDA ?说明理由; (Ⅰ)BDM ∆的面积最小时,求三棱锥M BCD -的体积.【分析】(Ⅰ)当N 为PB 中点时,//MN 平面PDA .取PB 的中点N ,连接MN ,由M ,N 分别为PC ,PB 中点,可得//MN BC ,又//BC AD ,得//MN AD ,再由直线与平面平行的判定对立即可证明//MN 平面PDA ;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥,又BD CD ⊥,CDPD D =,得BD ⊥平面PCD ,又MD ⊂平面PDC ,可得BD MD ⊥,进一步得到DBM ∆为直角三角形,当MD PC ⊥时BDM∆的面积最小,然后利用等积法即可求出三棱锥M BCD -的体积. 【解答】解:(Ⅰ)当N 为PB 中点时,//MN 平面PDA . 证明如下:取PB 的中点N ,连接MN ,M ,N 分别为PC ,PB 中点,//MN BC ∴,又//BC AD , //MN AD ∴,又DA ⊂平面PDA ,MN ⊂/平面PDA , //MN ∴平面PDA ;(Ⅰ)由PD ⊥平面ABCD ,DB ⊂平面ABCD ,知PD BD ⊥, 又BD CD ⊥,CDPD D =,BD ∴⊥平面PCD ,又MD ⊂平面PDC ,BD MD ∴⊥,DBM ∴∆为直角三角形.当MD PC ⊥时BDM ∆的面积最小. 在底面直角梯形ABCD 中,由90ABC BAD ∠=∠=︒,112AD AB BC ===,得CD =BD ∴==在Rt PDC ∆中,由PD =CD =可得PC =MD =.则CM =122MCD S ∆∴=⨯=.∴1133M BCD B MCD MCD V V S BD --∆===⨯=8.(2018•全国二模)直三棱柱111ABC A B C -中,14AC AA ==,AC BC ⊥. (Ⅰ)证明:11AC A B ⊥;(Ⅰ)当BC 的长为多少时,直线1A B 与平面1ABC 所成角的正弦值为13.【分析】(Ⅰ)由BC AC ⊥,1BC AA ⊥,得BC ⊥平面11AA C C ,从而1AC BC ⊥,连结1A C ,四边形11AA C C 是正方形,则11AC AC ⊥,由此能证明1AC ⊥平面1A BC ,从而11AC A B ⊥. (Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -,利用向量法能求出a .【解答】证明:(Ⅰ)BC AC ⊥,1BC AA ⊥,1AC AA A =,BC ∴⊥平面11AA C C ,又1AC ⊂平面11AA C C ,1AC BC ∴⊥,连结1A C ,四边形11AA C C 是正方形,11AC AC ∴⊥, 且1BCA C C =,1AC ∴⊥平面1A BC ,又1A B ⊂平面1A BC ,11AC A B ∴⊥.解:(Ⅰ)以C 为原点,CA 、CB 、1CC 所在直线为x ,y ,z 轴,建立空间直角坐标系C xyz -, 设BC a =,则(0C ,0,0),(4A ,0,0),(0B ,a ,0),1(0C ,0,4),1(4A ,0,4), 1(4A B =-,a ,4)-,(4AB =-,a ,0),1(4AC =-,0,4),设平面1ABC 的法向量为(n x =,y ,)z ,则140440AB n x ay AC n x z ⎧=-+=⎪⎨=-+=⎪⎩,取x a =,得(n a =,4,)a ,直线1A B 与平面1ABC 所成角的正弦值为13.1|cos A B ∴<,221||332216n a ==++.解得4a =.9.(2018•新课标Ⅰ)如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得//MC 平面PBD ?说明理由.【分析】(1)通过证明CD AD ⊥,CD DM ⊥,证明CM ⊥平面AMD ,然后证明平面AMD ⊥平面BMC ; (2)存在P 是AM 的中点,利用直线与平面平行的判断定理说明即可.【解答】(1)证明:矩形ABCD 所在平面与半圆弦CD 所在平面垂直,所以AD ⊥半圆弦CD 所在平面,CM ⊂半圆弦CD 所在平面, CM AD ∴⊥,M 是CD 上异于C ,D 的点.CM DM ∴⊥,DMAD D =,CM ∴⊥平面AMD ,CM ⊂平面CMB ,∴平面AMD ⊥平面BMC ;(2)解:存在P 是AM 的中点, 理由:连接BD 交AC 于O ,取AM 的中点P ,连接OP ,可得//MC OP ,MC ⊂/平面BDP ,OP ⊂平面BDP , 所以//MC 平面PBD .。
立体几何中的探索型问题及应用
ʏ山东省阳谷县第一中学 宁广亮探索型问题是指那些题目条件不完备㊁结论不明确,或者答案不唯一,给考生留有较大探索余地的试题㊂而立体几何中的探索性问题,设置新颖,变化多端,不仅可以考查和区分考生的数学素质和创新能力,而且还可以有效地检测和区分考生的学习潜能,因而受到各方面的重视,近年来已成为高考试题的一个新亮点㊂一㊁条件探索型问题立体几何中的条件探索型问题,是针对结论确定而条件未知需探求,或条件增删需确定,或条件正误需判断㊂其解题思路是:先执果索因,再倒推分析,逆向思维探究结论成立的充分条件㊂解决立体几何此类问题时,通常利用空间向量来逆推,目标明确,要注意推理过程是否可逆,不要把必要条件当作充分条件㊂图1例1 如图1,A B 为圆O的直径,点E ,F 在圆O 上,且四边形A B E F 为等腰梯形,矩形A B C D 和圆O 所在的平面互相垂直,已知A B =2,E F =1㊂(1)求证:平面D A F ʅ平面C B F ;(2)求当A D 的长为何值时,二面角D -F C -B 的大小为120ʎ㊂解析:(1)因为平面A B C D ʅ平面A B E F ,且C B ʅA B ,平面A B C D ɘ平面A B E F =A B ,所以C B ʅ平面A B E F ㊂因为A F ⊂平面A B E F ,所以C B ʅA F ㊂又因为A B 为圆O 的直径,所以F B ʅA F ㊂而C B ɘ图2F B =B ,所以A F ʅ平面C F B ㊂又A F ⊂平面AD F ,所以平面A D F ʅ平面C F B ㊂(2)设E F ,C D 的中点分别为G ,H ,以O 为坐标原点,建立空间直角坐标系O -x yz ,如图2所示㊂设A D =t ,则D (1,0,t ),C (-1,0,t ),A (1,0,0),B (-1,0,0),F12,32,0 ,所以C D ң=(2,0,0),F D ң=12,-32,t㊂设平面D C F 的法向量为n 1=(x ,y ,z ),则n 1㊃C D ң=2x =0,n 1㊃F D ң=12x -32y +t z =0,取z =3,得x =0,y =2t ,则n 1=(0,2t ,3)㊂由(1)知A F ʅ平面C F B ,则平面C F B的一个法向量为n 2=A F ң=-12,32,0,故|c o s <n 1,n 2>|=|n 1㊃n 2||n 1||n 2|=|3t |4t 2+3㊂因为二面角D -F C -B 的大小为120ʎ,所以12=|3t |4t 2+3,解得t =64㊂所以当线段A D 的长为64时,二面角D -F C -B 的大小为120ʎ㊂点评:解决立体几何中的条件探索型问题,有三种比较常用的思维方式:(1)先猜后证,即先观察与尝试给出条件再证明㊂(2)先通过命题成立的必要条件探索出命题成立的条件,再证明其充分性㊂(3)把几何问题转化为代数问题,探索命题成立的条件㊂根据具体问题场景,合理选取适合的方法来应用㊂二㊁存在探索型问题立体几何中的存在探索型问题,是以结论不确定的存在性判断的形式来设置问题㊂这类问题常常出现 是否存在 是否有 等形式的疑问句,以示结论有待确定㊂解答此类问题的思路是:先肯定结论,再进行推理,若推出矛盾,则否定假设;若推出合理结果,则假设成立㊂解决此类问题的三个基本步骤是:假设推证 定论㊂11解题篇 创新题追根溯源 高考数学 2024年2月图3例2 如图3,在R t әA B C中,øC =90ʎ,B C =3,A C =6,D ,E 分别是线段A C ,A B 上的点,满足D E ʊB C 且A D =2C D ,如图4,将әA D E 沿D E 折起到әA 1D E的图4位置,使A 1C ʅC D ,M 是A 1D 的中点㊂(1)求C M 与平面A 1B E 所成角的大小㊂(2)在线段A 1B 上是否存在点N (N 不与端点A 1,B 重合),使平面C MN 与平面D E N 垂直若存在,求出A 1NB N的值;若不存在,请说明理由㊂解析:(1)在R t әA B C 中,øC =90ʎ,D E ʊB C ,所以D E ʅA D ,D E ʅC D ㊂因为折叠前后对应角相等,所以D E ʅA 1D ,D E ʅC D ㊂又A 1D ɘC D =D ,A 1D ,C D ⊂平面A 1C D ,所以D E ʅ平面A 1C D ,D E ʅA 1C ㊂又A 1C ʅC D ,C D ɘD E =D ,所以A 1C ʅ平面B C D E ㊂图5以C 为坐标原点,C D ,C B ,C A 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系C -x yz ,如图5所示㊂因为A D =2C D ,故D E =23B C =2,由几何关系知C D =2,A 1D =A D =4,A 1C =23,故C (0,0,0),D (2,0,0),E (2,2,0),B (0,3,0),A 1(0,0,23),M (1,0,3),所以C M ң=(1,0,3),A 1B ң=(0,3,-23),A 1E ң=(2,2,-23)㊂设平面A 1B E 的法向量为n 1=(x ,y ,z ),则n 1㊃A 1B ң=3y -23z =0,n 1㊃A 1E ң=x +y -3z =0,令y =2,得z =3,x =1,则n 1=(1,2,3)㊂设C M 与平面A 1B E 所成角的大小为θ,则s i n θ=|c o s <C M ң,n 1>|=|C M ң㊃n 1||C M ң||n 1|=|4|2ˑ22=22,故θ=π4,即C M 与平面A 1B E所成角的大小为π4㊂(2)假设存在点N ,符合题意㊂设N (x 1,y 1,z 1),B N ң=λB A 1ң(0<λ<1),即(x 1,y 1-3,z 1)=λ(0,-3,23),即x 1=0,y 1=3(1-λ),z 1=23λ,故N (0,3(1-λ),23λ),C M ң=(1,0,3),C N ң=(0,3(1-λ),23λ)㊂设平面C M N 的法向量为n 2=(x 2,y 2,z 2),则n 2㊃C M ң=x 2+3z 2=0,n 2㊃C N ң=3(1-λ)y 2+23z 2=0,令x 2=3,得z 2=-1,y 2=23λ3(1-λ),则n 2=3,23λ3(1-λ),-1㊂同理可求得平面D E N 的一个法向量为n 3=3,0,1λ㊂若平面C MN 与平面D E N 垂直,则满足n 2㊃n 3=0,即3-1λ=0,解得λ=13㊂故存在满足题意的点N ,由B Nң=13B A 1ң,可得A 1N B N =21=2㊂点评:解决立体几何中的存在探索型问题时,首先假设结论存在,然后在这个假设下进行合理的推理论证与数学运算㊂如果通过推理或运算得到了合乎情理或满足条件的结论,就可以肯定假设的存在性;如果得到了矛盾或不满足条件的结论,就否定假设的存在性㊂三、开放探索型问题立体几何中的开放探索型问题,是基于条件或结论结构不良的开放性问题,合理补充条件完整是解题的第一步,基于条件的补充,形成一个完整的题目,与正常试题的解答基本一致㊂图6例3 如图6,在底面A B C D 是菱形的直四棱柱A B C D -A 1B 1C 1D 1中,øD A B =π3,A B =2,A A 1=23,E ,F ,G ,H ,N 分别是棱C C 1,C 1D 1,D D 1,C D ,B C 的中点,点P 在四边形E F G H 内部(包含边界)运动㊂21 解题篇 创新题追根溯源 高考数学 2024年2月(1)现有如下三个条件:①G E ɘF H =P ;②P ɪF H ;③E P ң=P F ң㊂请从上述三个条件中选择一个条件,能使得P N ʊ平面B B 1D 1D 成立,并写出证明过程㊂(注:多次选择分别证明,只按第一次选择计分)(2)求平面F G N 与平面A D D 1A 1的夹角的余弦值㊂解析:(1)选①:G E ɘF H =P ㊂如图7图7所示,连接C D 1,B D 1,P N ,因为四边形C D D 1C 1为矩形,所以四边形E F -G H 为平行四边形,则P 分别是C D 1,G E 的中点,且N 是B C 中点,可得P N ʊB D 1㊂又因为P N ⊄平面B B 1D 1D ,B D 1⊂平面B B 1D 1D ,所以P N ʊ平面B B 1D 1D ㊂图8选②:P ɪF H ㊂如图8所示,连接HN ,P N ㊂由于F ,H ,N 分别是棱C 1D 1,C D ,B C 的中点,所以F H ʊD D 1㊂又F H ⊄平面B B 1D 1D ,D D 1⊂平面B B 1D 1D ,所以F H ʊ平面B B 1D 1D ㊂同理可证,HNʊ平面B B 1D 1D ㊂又F H ⊂平面F HN ,HN⊂平面F HN ,F H ɘHN =H ,所以平面F HN ʊ平面B B 1D 1D ㊂又因为P N ⊂平面F HN ,所以P N ʊ平面B B 1D 1D ㊂选③:E P ң=P F ң㊂由于E P ң=P F ң,所以P 图9是线段E F 的中点㊂如图9所示,设M ,Q 分别是G F ,B D 的中点,由于P ,N 分别是E F ,B C 的中点,则P M ʊG E ,P M =12G E ,Q N ʊC D ,Q N =12C D ㊂因为P M ʊG E ʊC D ,所以P M ʊQ N ,P M =Q N ,所以四边形P M Q N 是平行四边形,所以P N ʊM Q ㊂由于Q ɪ平面B B 1D 1D ,M ∉平面B B 1D 1D ,所以M Q ɘ平面B B 1D 1D=Q ,所以P N 与平面B B 1D 1D 不平行㊂图10(2)由于四边形A B C D 为菱形,且øD A B=π3,则知D N ʅB C ㊂以D 为坐标原点,D A ң,D N ң,D D 1ң分别为x 轴,y 轴,z 轴的正方向,建立如图10所示的空间直角坐标系D -x yz ,则D 1(0,0,23),C 1(-1,3,23),G (0,0,3),N (0,3,0),F -12,32,23,所以G N ң=(0,3,-3),G F ң=-12,32,3㊂设m =(x ,y ,z )为平面F G N 的一个法向量,则m ㊃G N ң=3y -3z =0,m ㊃G F ң=-12x +32y +3z =0,令y =1,得m =(33,1,1)㊂可取n =(0,1,0)为平面A D D 1A 1的一个法向量,则|c o s <m ,n >|=|m ㊃n ||m ||n |=127+1+1ˑ1=2929,所以平面F G N 与平面A D D 1A 1的夹角的余弦值为2929㊂点评:解决立体几何中的开放探索型问题时,结合立体几何应用场景,往往又分为选择条件型与探索条件型,基于不同的开放性条件加以合理选择,进而进行分析与求解,有效考查同学们分析问题与解决问题的能力,对理解能力㊁探究能力㊁创新能力与应用意识等的考查也是积极和深刻的㊂立体几何中的探索型问题,经常以条件探索型㊁存在探索型及开放探索型等不同形式来创新设置,方式新颖,变化多端,不仅能较好地考查考生的空间想象能力与逻辑推理能力,而且能考查考生的数学思维品质与水平,这对考生的综合素质与数学水平的提高起到了积极的作用㊂(责任编辑 王福华)31解题篇 创新题追根溯源 高考数学 2024年2月。
专题10立体几何中的开放性、探索性问题(解析版)-2021年高考数学(理)立体几何突破性讲练
2021年高考数学(理)立体几何突破性讲练10立体几何中的开放性、探索性问题一、考点传真:能用向量方法证明立体几何中有关线面位置关系的一些简单定理,并能用向量方法解决线线、线面、面面的夹角的计算问题.二、知识点梳理:解决立体几何中开放性、探索性问题的基本方法(1)通常假设题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理.(2)探索性问题的关键是设点:①空间中的点可设为(x ,y ,z );②坐标平面内的点其中一个坐标为0,如xOy 面上的点为(x ,y,0);③坐标轴上的点两个坐标为0,如z 轴上的点为(0,0,z );④直线(线段)AB 上的点P ,可设为AP →=λAB →,表示出点P 的坐标,或直接利用向量运算.三、例题:例1.(2020年全国新高考1卷,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬o 40,则晷针与点A 处的水平面所成角为( )A.o 20B.o 40C.o 50D.o 90【答案】B【解析】过球心O 、点A 以及晷针的轴截面如图所示,其中CD 为晷面,GF 为晷针所在直线,EF 为点A 处的水平面,GF CD ⊥,CD OB ,40AOB ∠=︒,90OAE OAF ∠=∠=︒,所以40GFA CAO AOB ∠=∠=∠=︒.故选B.例2.(2020年全国1卷理数,16)如图,在三棱锥–P ABC 的平面展开图中,1AC =,AB AD =AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠=______________.【答案】14-【解析】依题意得,AE AD =AEC 中,1AC =,30CAE ∠=︒,由余弦定理得2222cos 311EC AE AC AE AC EAC =+-⋅∠=-︒+=,所以1EC =,所以1CF EC ==.又2BC ,BF BD ===所以在BCF中,由余弦定理得2221cos 24BC CF BF FCB BC CF +-∠===-⨯.例3. (2019北京卷)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,AD CD ⊥,ADBC ,2PA AD CD BC ====,=(Ⅰ)求证:CD PAD ⊥平面; (Ⅱ)求二面角F AE P --的余弦值; (Ⅲ)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由. 【解析】(I )因为PA ⊥平面ABCD ,所以PA CD ⊥. 又因为AB CD ⊥,所以CD ⊥.平面PAD ,(II )过A 作AD 的垂线交BC 于点M ,因为PA ⊥平面ABCD ,所以,PA AM ⊥PA AD ⊥,如图建立空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2),因为E 为PD 的中点,所以E (0,1,1).所以()0,1,1AE =,()2,2,2PC =-, ()0,0,2AP =. 所以1222,,3333PF PC ⎛⎫==- ⎪⎝⎭,224,,333AF AP PF ⎛⎫=+= ⎪⎝⎭设平面AEF 的法向量为(),,x y z =n ,则00AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即02240333y z x y z +=⎧⎪⎨++=⎪⎩. 令z =1,则y =-1,x =-1.于是()1,1,1=--n .又因为平面PAD 的法向量为()1,0,0=p ,所以3cos ⋅==⋅n p <n,p >n p .因为二面角F-AE-P为锐角,所以其余弦值为3(III )直线AG 在平面AEF 内,因为点G 在PB 上,且2,3PG PB =()2,1,2,PB =-- 所以2424,,3333PG PB ⎛⎫==-- ⎪⎝⎭,422,,333AG AP PG ⎛⎫=+=- ⎪⎝⎭. 由(II )知,平面AEF 的法向量为()1,1,1=--n , 所以4220333AG ⋅++=n =-,所以直线AG 在平面AEF 内. 例4.(2016年北京) 如图,在四棱锥中,平面PAD ⊥平面,, ,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD , ∵PD ⊂面PAD , ∴AB ⊥PD ,yBP ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 四、巩固练习:1.如图所示,在四边形ABCD中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°.将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A BCD ,则在三棱锥A BCD 中,下列结论正确的是( )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC【答案】D【解析】∵在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,∴BD⊥CD.又平面ABD⊥平面BCD,且平面ABD∩平面BCD=BD,故CD⊥平面ABD,则CD⊥AB.又AD⊥AB,AD∩CD=D,AD⊂平面ADC,CD⊂平面ADC,故AB⊥平面ADC.又AB⊂平面ABC,∴平面ADC⊥平面ABC.2.如图甲所示,在正方形ABCD中,E,F分别是BC,CD的中点,G是EF的中点,现在沿AE,AF及EF把这个正方形折成一个四面体,使B,C,D三点重合,重合后的点记为H,如图乙所示,那么,在四面体AEFH中必有( )A.AH⊥平面EFH B.AG⊥平面EFHC.HF⊥平面AEF D.HG⊥平面AEF【答案】A【解析】∵AH⊥HE,AH⊥HF,且EH∩HF=H,∴AH⊥平面EFH,A正确;∵过A只有一条直线与平面EFH垂直,∴B不正确;∵AG⊥EF,EF⊥AH,AG∩AH=A,∴EF⊥平面HAG,∵EF⊂平面AEF,∴平面HAG⊥AEF,∴过H作平面AEF的垂线,一定在平面HAG内,∴C不正确;∵HG不垂直于AG,∴HG⊥平面AEF不正确,∴D不正确.故选A.3.如图,一张A4纸的长、宽分别为22a,2a,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体.下列关于该多面体的命题,正确的是________.(写出所有正确命题的序号)①该多面体是三棱锥;②平面BAD⊥平面BCD;③平面BAC⊥平面ACD;④该多面体外接球的表面积为5πa2.【答案】①②③④【解析】由题意得该多面体是一个三棱锥,故①正确;∵AP⊥BP,AP⊥CP,BP∩CP=P,∴AP ⊥平面BCD ,又∵AP ⊂平面ABD ,∴平面BAD ⊥平面BCD ,故②正确;同理可证平面BAC ⊥平面ACD ,故③正确;该多面体的外接球半径R =52a ,所以该多面体外接球的表面积为5πa 2,故④正确.综上,正确命题的序号为①②③④.4.如图所示,在四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将四边形ABCD 沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD ,则下列结论正确的是________. ①A ′C ⊥BD ;②∠BA ′C =90°;③四面体A ′BCD 的体积为16.【答案】②③【解析】∵BD ⊥CD ,平面A ′BD ⊥平面BCD ,平面A ′BD ∩平面BCD =BD ,CD ⊂平面BCD ,∴CD ⊥平面A ′BD ,∴CD ⊥A ′D .∵AB =AD =CD =1,BD =2,∴A ′C =2,BC =3,∴A ′B 2+A ′C 2=BC 2,∴A ′B ⊥A ′C ,即∠BA ′C =90°,四面体A ′BCD 的体积V =13×12×12×1=16.5.如图,矩形ABCD 中,E 为边AB 的中点,将△ADE 沿直线DE 翻转成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻转过程中,正确的命题是________. ①MB 是定值; ②点M 在圆上运动;③一定存在某个位置,使DE ⊥A 1C ; ④一定存在某个位置,使MB ∥平面A 1DE . 【答案】①②④【解析】取DC 的中点N ,连接MN ,NB ,则MN ∥A 1D ,NB ∥DE ,∴平面MNB ∥平面A 1DE ,∵MB ⊂平面MNB ,∴MB ∥平面A 1DE ,④正确;∠A 1DE=∠MNB ,MN =12A 1D =定值,NB =DE =定值,根据余弦定理得,MB 2=MN 2+NB 2-2MN ·NB ·cos∠MNB ,所以MB 是定值,①正确;B 是定点,所以M 是在以B 为圆心,MB 为半径的圆上,②正确;当矩形ABCD 满足AC ⊥DE 时存在,其他情况不存在,③不正确.所以①②④正确. 6.如图①,在矩形ABCD 中,AB =6,AD =23,点F 是AC 上的动点.现将矩形ABCD 沿着对角线AC 折成二面角D ′AC B ,如图②,使得D ′B =30.(1)求证:当AF =3时,D ′F ⊥BC ;(2)试求CF 的长,使得二面角A D ′F B 的大小为π4.【解析】(1)证明:在矩形ABCD 中,连接DF ,BF . ∵AD =23,CD =6,∴AC =43,∠CAB =30°,∠DAC =60°. 在△ADF 中,∵AF =3,∴DF 2=DA 2+AF 2-2DA ·AF ·cos∠DAC =9. ∵DF 2+AF 2=9+3=DA 2,∴DF ⊥AC ,即在三棱锥D ′ABC 中,D ′F ⊥AC .又在△ABF 中,BF 2=AB 2+AF 2-2AB ·AF ·cos∠CAB =21, ∴在△D ′FB 中,D ′F 2+FB 2=9+21=D ′B 2, ∴BF ⊥D ′F .又∵AC ∩FB =F ,∴D ′F ⊥平面ABC . 又BC ⊂平面ABC ,∴D ′F ⊥BC .(2)在矩形ABCD 中,过点D 作DO ⊥AC 于点O ,延长DO 交AB 于点E .易求DE =4,AO =3,D ′O =3,OE =1,沿着对角线AC 翻折后,由(1)可知,OE ,OC ,OD ′两两垂直, 以O 为原点,OE ―→,OC ―→,OD ′―→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O xyz , 则O (0,0,0),E (1,0,0),D ′(0,0,3),B (3,23,0).∵EO ⊥平面AD ′F ,∴OE ―→=(1,0,0)为平面AD ′F 的一个法向量. 设平面BD ′F 的一个法向量为n =(x ,y ,z ),F 点坐标为F (0,t,0), 则BD ′―→=(-3,-23,3),BF ―→=(-3,t -23,0).由⎩⎪⎨⎪⎧n ·BD ′―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -23y +3z =0,-3x +t -23y =0.取y =3,得x =t -23,z =t ,∴n =(t -23,3,t ).∴cos π4=|n ·OE ―→||n |·|OE ―→|,即|t -23|t -232+9+t2=22, ∴t =34.∴当CF =OC -OF =1134时,二面角A D ′F B 的大小是π4. 7.如图,在四棱锥P ABCD 中,底面ABCD 是平行四边形,AB =AC =2,AD =22,PB =32,PB ⊥AC .(1)求证:平面PAB ⊥平面PAC ;(2)若∠PBA =45°,试判断棱PA 上是否存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为33?若存在,求出AEAP的值;若不存在,请说明理由. 【解析】(1)证明:因为四边形ABCD 是平行四边形,AD =22,所以BC =AD =2 2.又因为AB =AC =2,所以AB 2+AC 2=BC 2,所以AC ⊥AB .又因为PB ⊥AC ,且AB ∩PB =B ,所以AC ⊥平面PAB .因为AC ⊂平面PAC ,所以平面PAB ⊥平面PAC . (2)由(1)知AC ⊥AB ,平面PAB ⊥平面ABC ,AC ⊥平面PAB .如图,分别以AB ,AC 所在直线为x 轴,y 轴,平面PAB 内过点A 且与直线AB 垂直的直线为z 轴,建立空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),所以AC ―→=(0,2,0),BC ―→=(-2,2,0).由∠PBA =45°,PB =32,可得P (-1,0,3), 所以AP ―→=(-1,0,3),BP ―→=(-3,0,3).假设棱PA 上存在点E ,使得直线CE 与平面PBC 所成角的正弦值为33,设AEAP=λ(0<λ<1),则AE ―→=λAP ―→=(-λ,0,3λ),CE ―→=AE ―→-AC ―→=(-λ,-2,3λ). 设平面PBC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BC ―→=0,n ·BP ―→=0,即⎩⎪⎨⎪⎧-2x +2y =0,-3x +3z =0.令z =1,可得x =y =1,所以平面PBC 的一个法向量为n =(1,1,1).设直线CE 与平面PBC 所成的角为θ,则sin θ=|cos 〈n ,CE ―→〉|=|-λ-2+3λ|3×-λ2+-22+3λ2=|2λ-2|3×10λ2+4=33,整理得3λ2+4λ=0, 因为0<λ<1,所以3λ2+4λ>0,故3λ2+4λ=0无解,所以棱PA 上不存在与点P ,A 不重合的点E ,使得直线CE 与平面PBC 所成角的正弦值为33. 8.如图①,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图②所示的几何体.(1)求证:AB ⊥平面ADC ;(2)若AD =1,二面角C AB D 的平面角的正切值为6,求二面角B AD E 的余弦值. 【解析】(1)证明:因为平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,BD ⊥DC , 所以DC ⊥平面ABD . 因为AB ⊂平面ABD , 所以DC ⊥AB .又因为折叠前后均有AD ⊥AB ,DC ∩AD =D , 所以AB ⊥平面ADC . (2)由(1)知AB ⊥平面ADC ,所以二面角C AB D 的平面角为∠CAD . 又DC ⊥平面ABD ,AD ⊂平面ABD , 所以DC ⊥AD .依题意tan ∠CAD =CD AD= 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意△ABD ∽△DCB ,所以AB AD =CD BD ,即x 1=6x 2+1.解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3. 法一:如图所示,建立空间直角坐标系D xyz , 则D (0,0,0),B (3,0,0),C (0,6,0),E ⎝ ⎛⎭⎪⎫32,62,0,A ⎝ ⎛⎭⎪⎫33,0,63. 所以DE ―→=⎝ ⎛⎭⎪⎫32,62,0,DA ―→=⎝ ⎛⎭⎪⎫33,0,63. 由(1)知平面BAD 的一个法向量n =(0,1,0).设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎪⎨⎪⎧ m ·DE ―→=0,m ·DA ―→=0,得⎩⎪⎨⎪⎧ 32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量.所以cos 〈n ,m 〉=n ·m |n |·|m|=-12. 由图可知二面角B AD E 的平面角为锐角,所以二面角B AD E 的余弦值为12. 法二:因为DC ⊥平面ABD ,所以过点E 作EF ∥DC 交BD 于点F ,则EF ⊥平面ABD .因为AD ⊂平面ABD ,所以EF ⊥AD .过点F 作FG ⊥AD 于点G ,连接GE ,所以AD ⊥平面EFG ,因此AD ⊥GE ,所以二面角B AD E 的平面角为∠EGF .由平面几何的知识求得EF =12CD =62,FG =12AB =22, 所以EG =EF 2+FG 2=2, 所以cos ∠EGF =FG EG =12. 所以二面角B AD E 的余弦值为12. 9.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ⊥CD ,BF⊥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE BCF ,如图2.(1)若AF ⊥BD ,证明:DE ⊥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由. 【解析】(1)证明:由已知得四边形ABFE 是正方形,且边长为2,∴AF ⊥BE .∵AF ⊥BD ,BE ∩BD =B ,∴AF ⊥平面BDE .又DE ⊂平面BDE ,∴AF ⊥DE .∵AE ⊥DE ,AE ∩AF =A ,∴DE ⊥平面ABFE .又BE ⊂平面ABFE ,∴DE ⊥BE .(2)当P 为AB 的中点时满足条件.理由如下:∵AE ⊥DE ,AE ⊥EF ,DE ∩EF =E ,∴AE ⊥平面DEFC .如图,过E 作EG ⊥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D ⎝⎛⎭⎪⎫0,-12,32,AC ―→=(-2,1,3),AD ―→=⎝⎛⎭⎪⎫-2,-12,32. 设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎪⎨⎪⎧ -2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P ⎝ ⎛⎭⎪⎫2,2λ1+λ,0,λ∈(0,+∞), 可得CP ―→=⎝ ⎛⎭⎪⎫2,λ-11+λ,-3. 设CP 与平面ACD 所成的角为θ,则sin θ=|cos CP ―→,n |=⎪⎪⎪⎪⎪⎪-1-λ-11+λ7+⎝ ⎛⎭⎪⎫λ-11+λ2×5=3535, 解得λ=1或λ=-25(舍去), ∴P 为A。
立体几何中探究性问题
立体几何中探究性问题作者:谢炳剑来源:《新课程·中学》2017年第12期立体几何的探究、存在性问题是一类很好的问题,通过解决这类问题,学生能很快地深入理解立体几何中平行垂直的判定定理和性质定理,对培养学生的空间想象能力、逻辑推理能力有很大的帮助.解决立体几何中的开放探索性问题,常常借助空间概念转化为平面几何问题的探究,或将运动观念化归为特殊位置确定解决,或将几何中的位置关系转化为函数与方程问题,其关键还是化归思想的渗透.一、利用平行的判定定理和性质定理进行转化例1 如图,在三棱柱ABC-A1B1C1中,M是A1C1的中点,在棱AC上找点N使平面AB1M∥平面BC1N.解:∵平面AB1M∥平面BC1N,平面ACC1A1∩平面AB1M=AM,平面BC1N∩平面ACC1A1=C1N,∴C1N∥AM,又AC∥A1C1,∴四边形ANC1M为平行四边形,∴AN=C1M= A1C1= AC,∴N为AC的中点.反思感悟:对于探索性问题,一是可直接运用题中的条件,结合所学过的知识探求;二是可先猜想,然后证明猜想的正确性.二、利用线面垂直的判定定理进行转化例2 如图所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC为直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中点,点F在线段AA1上,当AF= 时,CF⊥平面B1DF.解:由已知得B1D⊥平面AC1,又∵CF?奂平面AC1,∴B1D⊥CF,故若CF⊥平面B1DF,则必有CF⊥DF.设AF=x(0又∵CD2=a2+9a2=10a2,∴10a2=x2+4a2+a2+(3a-x)2,解得x=a或2a.故答案为a或2a.反思感悟:线面垂直化归为平面几何中的两直线垂直的探究,及从结论出发的逆向推理是关键.三、利用线面角的概念进行转化例3 如图,在△ABC中,O是BC的中点,AB=AC,AO=2OC=2.将△BAO沿AO折起,使B点与图中B′点重合.当三棱锥B′-AOC的体积取最大时,试问在线段B′A是否存在一点P,使CP与平面B′OA所成的角的正弦值为?证明你的结论,并求AP的长.解:在平面B′OC内,作B′D⊥OC于点D,因为B′D⊥OA,又∵OC∩OA=O,∴B′D⊥平面OAC,即B′D是三棱锥B′-AOC的高,又∵B′D≤B′O,∴当D与O重合时,三棱锥B′-AOC的体积最大,连接OP,在(1)的条件下,易证OC⊥平面B′OA,∴CP与平面B′OA所成的角为∠CPO,∴sin∠CPO= = ,∴CP= .又∵在△ACB′中,sin∠AB′C= = ,∴CP⊥AB′,∴B′P= = ,∴AP= .反思感悟:本题主要考查空间点、线、面位置关系,线面角等基础知识.四、利用二面角的平面角的概念进行转化例4 如图,在几何体SABCD中,AD⊥平面SCD,BC∥AD,AD=DC=2,BC=1,又∵SD=2,∠SDC=120°.试确定SC上是否存在一点E,使二面角S-AB-E的平面角的大小为30°?解:如图,过点D作DC的垂线交SC于F,以D为原点,分别以DC,DF,DA为x,y,z轴建立空间直角坐标系.∵∠SDC=120°,∴∠SDF=30°,又∵SD=2,则点S到y轴的距离为1,到x轴的距离为 .则有D(0,0,0),S(-1,,0),A(0,0,2),C(2,0,0),B(2,0,1).设=λ ,所以 - =λ( - ),∴ = ( -λ )E ,,0,∴ = ,,-2,∵ =(2,0,-1)设平面EAB的法向量为 =(x,y,1),则· =2x-1=0 · = x+ y-2=0?圯x= y=∴ = ,,1= (,5-2λ,2 ),取 =(,5-2λ,2 )因为平面SAB的法向量为 =(,5,2 )∴cos< , >= = = ,化简得λ2+10λ-20=0,解得λ=-5±3 ,经检验,当λ=-5-3反思感悟:本题主要考查空间点、线、面位置关系,线面角等基础知识.同时考查空间向量的应用,考查空间想象能力和运算求解能力.立体几何中的探索性问题有利于考查学生的归纳、推理、论证等各方面的能力,也有利于创新意识的培养。
SXB065高考数学必修_立体几何的探索性问题
立体几何中的探索性问题对探索性问题的考查需要考生对问题有深入的的理解,需要考生有观察、分析、归纳、概括等多方面的能力.解答立体几何中的探索性问题的策略是:根据条件所给的不同的约束条件和结论所要探讨的问题,抓住问题的本质,经过不断的转化,将问题转化为所熟悉的平面问题进行解答.下面举例说明.一、空间元素的存在性问题例2已知a、b是异面直线,问是否存在一直线,使该直线上任意一点到a、b的距离相等?若在在,说明直线的作法,若不存在,说明理由.解析:容易联想到模型:两相交直线的角平分线(两条)上任一点到这两条直线的距离相等.而对于异面直线来说,可过空间一点分别作其平行线,从而可转化为平面内的相交直线的问题进行解答.设AB是异面直线a、b公垂线段,O为AB的中点,过O分别作a、b的平行线a'、b'.再作a'、b'的平分线c,则这样的直线c(两条)即为所求.现证明如下:设P为c上任一点,作PQ1⊥a',PQ2⊥b',垂足分别为Q1、Q2,则PQ1=PQ2.再作Q1R1⊥b,Q2R2⊥b,垂足分别为R1、R2,则易证明PR1⊥a,PR2⊥b,又△PQ1R1≌△PQ2R2,故PR2=PR2.二、空间位置关系中的探索性问题例2如图,P、Q是两平行直线l、m外的两点,PA⊥l于A,PB⊥m于B,QC⊥l于C,QD⊥m于D,且点P不在平面QCD内.试判断AB、CD的关系,并说明理由.解析:根据题意,结合图形可判断AB∥CD.因为l∥m,所以l、m确定一平面,设为α.由PA、PB确定的平面,设为β,由QC、QD确定的平面设为γ,则α∩β=AB,α∩γ=CD.又PA⊥l,m∥l,故PA⊥m.又PB⊥m,故m⊥β.同理,m⊥γ,故β∥γ,从而有AB∥CD.三、空间角中的探索性问题例3已知PA⊥平面ABCD,ABCD为矩形,M、N分别是AB、PC的中点.(1)求证:MN⊥AB;(2)若平面PDC与平面ABCD所成二面角为θ,使直线MN是异面直线AB与PC的公垂线,若可以确定,试求θ的值,若不可以,请说明理由.证明:(1)连结AC,取AC中点E,连结EM、EN,因为M、N、E分别为AB、PC、AC的中点,所以ME∥BC,NE∥PA,NE⊥面ABCD,又ME⊥AB,由三垂线定理知MN⊥AB.(2)如果MN⊥PC,则MN⊥面PCD,延长ME交CD于F,则F为CD中点,连结NF,由三垂线逆定理知NF⊥CD,所以∠NFM为面PDC与面ABCD的二面角的平面角,∠NFM=θ,因为MN⊥AB,AB∥CD,∴MN⊥CD,如果MN⊥PC,则MN⊥面PCD,所以MN⊥NF,△MNF为直角三角形,且E为MF的中点,所以MN=NF,θ=45︒.四、空间距离中的探索性问题例4已知ABCD边长为4的正方形,E、F分别为边AB、AD中点,GC垂直于正方形ABCD所在平面,GC=2,能否求出点B到面EFG的距离.解析::连结AC,BD,设AC∩BD=O,EF∩AC=H,连结GH,过O作OS⊥GH于S,∵E 、F 为AB ,AD 中点,∴EF ∥BD ,∵EF ⊂面GEF ,BD ⊄面GEF ,∴BD ∥面GEF ,∴点B 到面EFG 距离等于点O 到面EFG 距离,∵GC ⊥面ABCD ,∴GC ⊥BD ,∵ABCD 是正方形,∴BD ⊥AC ,∴BD ⊥面GAC ,即BD ⊥面GHC ,∵OS ⊂面GHC ,∴BD ⊥OS ,∵EF ∥BD ,∴EF ⊥OS ,又OS ⊥GH ,GHA ∩EF=H,∴OS ⊥面EFG,在Rt △GHC 中,OS=OH ·sin ∠GHC=OH ·GC CH =2·222+(324×4)2=21111, ∴点O 到面EFG 距离为21111,即点B 到面EFG 距离为21111. 五、实际应用的探索性问题例5 某自来水要制作容积为500m 3的无盖长方体水箱,现有三种不同规格的长方形金属制箱材料(单位m):①19×19;②30×10;③25×12.请你选择其中的一种规格设计出相应的制作方案.(要求:1.用料最省;2.简便易行)解析:“用料最省”实际上等价于“无盖水箱的面积最小”.因此先确定该水箱的尺寸使其表面积最小. 设无盖水箱的长宽高分别为a 、b 、c ,则体积其体积V=abc=500m 3,表面积S=2bc+2ca+ab ,这样问题化为:已知a 、b 、c 为正数,abc=500,求2bc+2ca+ab 的最小值及相应a 、b 、c 的值.则均值不等式,得 2bc+2ca+ab ≥332bc ·2ca ·ab=334×5002=300.当且仅当2bc=2ca=ab ,即a=b=10,c=5时,2bc+2ca+ab=300为最小.这表明将无盖水箱的尺寸设计为10×10×5(即2:2:1)时,其用料最省.如何选择材料并设计制作方案?逆向思考:先将无盖长方体展开平面如图(1),进一步剪拼成图(2)的长30m ,宽10m(长︰宽=3:1)的长方形.因此应选择规格30×10的材料,制作方案如图(3),可以看出,图(3)这种“先割后补”的方案不但可使用料最省,而且简便易行.图(1)图(2) 图(3)A BC D E F G S O H。
立体几何专题突破之《探究性问题》
《探究性问题》考点动向立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.探究是一种科学的精神,因此,也是命题的热点.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.方法范例例1 如图8-1,在棱长为1的正方体1111ABCD A BC D -中,P 是侧棱1CC 上的一点,CP m =.(1)试确定m ,使直线AP 与平面11BDD B 所成角的正切值为(2)在线段11AC 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于AP ,并证明你的结论.解析 本题的两问都充满了探究性,问题的情景具有运动变化的特点,此时,只需要确定某一个位置进行推理,其它作类似推理即可.即所谓的化动为静.解法1 (1)连AC ,设AC BD O A P =,与面11BDD B 交于点G ,连OG .因为PC ∥面11BDD B ,面11BDD B 面APC OG =,故O G P C ∥.所以122m OG PC ==.又1A O D B A O BB ,⊥⊥,所以AO ⊥面11BDD B .故AGO ∠即为AP 与面11BDD B 所成A 1D 图8-1P1A D 1图8-2的角.在Rt AOG △中,2tan 2AGO m ∠==,即13m =.故当13m =时,直线AP 与平面11BDD B所成角的正切值为(2)依题意,要在11AC 上找一点Q ,使得1D Q AP ⊥.可推测11AC 的中点1O 即为所求的Q 点.因为1111111DO AC DO AA ,⊥⊥,所以11DO ⊥面11ACC A.又AP ⊂面11ACC A ,故11D O AP ⊥.从而11D O 在平面1AD P 上的射影与AP 垂直.解法2(1)建立如图8-3所示的空间直角坐标系,则(100)(110)(01)A B P m ,,,,,,,,,11(010)(000)(111)(001)C D B D ,,,,,,,,,,,.所以1(110)(001)(11)(110)BD BB AP m AC =--==-=-,,,,,,,,,,,. 又由100AC BD AC BB ==,知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为θ,则s i n c o s θθπ⎛⎫=- ⎪2⎝⎭222AP AC AP ACm ==+.222m =+,解得13m =.故当13m =时,直线AP 与平面11BDD B 所成角的正切值为(2)若在11AC 上存在这样的点Q ,设此点的横坐标为x ,则1(11)(10)Q x x D Q x x -=-,,,,,.依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于1110(1)02D Q AP AP D Q x x x ⇔=⇔-+-=⇔=⊥.即Q 为11AC 的中点时,满足题设要求.[规律小结]探究性问题一般具有一定的深度,需要深入分析题目的条件和所问,根据题目的特征,选用适当的解题方法.必要时,进行假设推理,或者反证推理,往往也是进行图形推理与代数推理的典型问题.考点误区分析解答探究性问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过备考阶段的联练习,加强解题信心的培养.确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.同步训练1.两相同的正四棱锥组成如图8-4所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD 与正方体的某一个平面平行,且各顶点...均在正方体的面上,则这样的几何体体积的可能值有( ).(A )1个 (B )2个 (C )3个 (D )无穷多个2.在正方体''''D C B A ABCD -中,过对角线'BD 的一个平面交'AA 于E ,交'CC 于F ,则( ).① 四边形E BFD '一定是平行四边形 ② 四边形E BFD '有可能是正方形③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '有可能垂直于平面D BB '以上结论正确的为 .(写出所有正确结论的编号)3.如图8-5,在三棱锥A BCD -中,侧面ABD ACD ,是全等的直角三角形,AD 是公共的斜边,且1AD BD CD ===,另一侧面ABC 是正三角形. (1)求证:AD BC ⊥;A BCD 图8-4A CD图8-5(2)求二面角B AC D--的大小;(3)在线段AC上是否存在一点E,使ED与面BCD成30角?若存在,确定点E的位置;若不存在,说明理由.[参考答案]1.[解析]本题相当于一个正方形可以有多少个内接正方形,显然有无穷多个;或者两个正四棱锥的高均为12,放入正方体后,面ABCD的面积是不固定的,其范围是1[,1)2.[答案]()D.2.[解析]借助图形及面面平行的性质定理,射影的定义,面面垂直的判定可得.[答案]①③④.3.[答案](2)arccos3;(3)线段AC上存在E点,且1CE=时符合条件.。
高中数学选择性必修一课件:立体几何中探索性问题的研究
例2 如图所示,四棱锥S-ABCD的底面是正方形,每条侧棱长都是底面边 长的 2倍,P为侧棱SD上的点.
(1)求证:AC⊥SD; (2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC?若 存在,求出SE∶EC;若不存在,请说明理由.
【解析】 (1)证明:如图,连接BD交AC于点O,连接SO. 根据题意可知该四棱锥为正四棱锥, ∴SO⊥平面ABCD,又AC⊂平面ABCD,∴SO⊥AC. 又四边形ABCD为正方形, ∴AC⊥BD. 又SO∩BD=O,SO,BD⊂平面SBD,∴AC⊥平面SBD, 又SD⊂平面SBD,∴AC⊥SD. (2)假设存在满足条件的点E.以O为坐标原点,分别以OD,OA,OS所在的直 线为x轴、y轴、z轴,建立如图所示的空间直角坐标系,令OC=1,则BC= 2, SC=2,SO= 3.
(2)假设存在点P满足题意,设n=(x,y,z)是平面PMN的法向量,
由nn··NP→→NM==00,,得- 12-12xλ+x12+y+12y12-z=z=0,0, 令x=3,得y=1+2λ,z=2-2λ,
∴n=(3,1+2λ,2-2λ)为平面PMN的一个法向量.
易知平面ABC的一个法向量为m=(0,0,1),
(1)取PC的中点N,求证:DN∥平面PAB; (2)求直线AC与PD所成角的余弦值; (3)在线段PD上,是否存在一点M,使得平面MAC与平面ACD 的夹角为45°?如果存在,求出BM与平面MAC所成角的大小;如果不存在,请 说明理由.
【解析】 (1)证明:取BC的中点E,连接DE,交AC于点O, 连接ON,建立如图所示的空间直角坐标系,
∴M-23,-13,23,m=23,0,23.∴B→M=-83,23,23, 设BM与平面MAC所成的角为φ,
立体几何中的探索性问题
立体几何中的探索性问题(总12页)-CAL-FENGHAI.-(YICAI)-Company One 1■CAL■本页仅作为文档封面.使用请直接删除立体几何中的探索性问题一、探索平行关系1.[2016 •枣强中学模拟]如图所示,在正四棱柱凡Q中,E, F, G,〃分别是棱CG, GD、D.D、兀的中点,川是虑的中点,点"任四边形叭¥及其内部运动,则M只需满足条件,就有〃平而Ba*(注:请填上一个你认为正确的条件,不必考虑全部可能的情况)答案:M位于线段FH上(答案不唯一)[解析]连接HX, FH, FM,则FH〃DD“ HN〃BD, FHnHN=H, DD2BD=D, 平而FHN〃平面B】BDD” 故只要MeFH,则MNu 平而FHN,且MN〃平而B;BDD:.2.如图所示,在正方体ABCD-A^aa中,E是棱勿:的中点.(1)求直线亦和平而ABBA所成的角的正弦值;(2)在棱GA上是否存在一点F,使氏尸〃平面凡庞证明你的结论.解:⑴如图所示,取的中点M连接册翩因为疋是皿的中点,四边形迦凡为正方形,所以EM//AD.(2分)又在正方体ABCD AxB.GD中,血?丄平而ABBA,所以則丄平而ABBA从而血为直线亦在平而磁儿上的射影,AEBM为庞用1平而邂凡所成的角.(4分)设正方体的棱长为2,则EM=AD=2.亦=费+2讦尸=3・EM 9于是,在Rt△宓#中,sinZ旳片亦=亍(5分)2即直线亦和平而磁也所成的角的正弦值为亍(6分)(2)在棱GA上存在点尸,使3尸〃平而4眩事实上,如图(b)所示,分别取和G?的中点尸,G、连接5只EG、BG. Cg FG.因AD"B3BC、且凡2=BC,所以四边形A..BCD、是平行四边形,因此RC//AiB.又E G分别为AQ,少的中点,所以EG” DC从而EG" Ab这说明凡,B, G,尸四点共面.所以瑟平而应宓(8分)因四边形GCDD、呂B..BCC:皆为正方形,F, G分别为GA和Q的中点,所以FG//GC//&.B.且FG=GC=RB.因此四边形3财是平行四边形,所以&FHBG、(10 分)而5丙平而入BE. BGci平而A,BE.故氏尸〃平而凡宓(12分)Ai D,3・如图,四棱锥P-ABCD中,刊丄平而ABCD.底而ABCD为矩形,PD=DC=\> AD= 2,疋为FC的中点.(1)求三棱锥A-PDE的体积:(2)£Q边上是否存在一点必使得用〃平而皿了若存在,求出的长;若不存在,请解析:(1):•刃丄平而救P, :.PDLAD.又•: ABCD是矩形,:.ADLCD.•: PDQCD=D.:.ADL平而PCD、:.出?是三棱锥ArPDE的高.•••£为PC的中点,且PD=DC=\.S:\ne= :\rx=E X X 1 X 4j = 4. 又AD=2.1 1 8⑵取M中点•也连接則,DM, YE为PC的中点,〃是M的中点…••曰〃用. 又V£Jit=平而EDM.Q1G平而ED如化用〃平而EDM.:.AM=^AC=^i.即在川Q边上存在一点%使得丹〃平而旦必川/的长为仗.4.如图所示,在三棱锥尸・磁中,点刀,E分别为丹,證的中点.在线段川6•上是否存在AF斤使得出?〃平而PEF,连接%交朋于G连接尬点尸,使得肋〃平而财若存在,求出丘的值;若不存在,请说明理由.9:AD//平而昭;平而ADCn平而PEF= FG,:.AD//FG.又•.•点Q, E分别为丹,BC的中点、:.G为△磁的重心,.:芬=券=*・故在线段上存月尸1在点斤使得初〃平面亦且丘 =了・5.[2016 •北京卷]如图,在四棱锥户・月万e中,FC丄平而ABCD, AB//DC. DCLAC.(1)求证:ZT丄平而用C(2)求证:平面用3丄平而QIC(3)设点£为初的中点,在棱丹上是否存在点尸,使得用〃平而狞说明理由.解:(D证明:因为尸Q丄平而馭D 所以PCLDC.又因为DCLAC.所以%丄平面用C(2)证明:炭为 AB〃 DC, DC LAC. 所以AB±AC.因为PQ丄平面所以PC丄肋.所以曲丄平而用G所以平而加丄平而QIC(3)棱丹上存在点尸,使得刊〃平而亦证明如下: 取丹的中点斤连接朋CE、CE因为疋为曲的中点,所以EF//PA.又因为加平面亦所以刃〃平而狞6.[2016 •四川卷]如图,在四棱锥P・丽CD中,PA丄CD, AD//BC. ZADC= ZPAB= 90°, BC=CD=^AD.(1)在平而验内找一点M,使得直线G/〃平而并说明理由;(2)证明:平面用万丄平而磁・解:⑴取棱肋的中点肌胆平而加?),点“即为所求的一个点.理由如卜•:因为肋〃处BC^-AD.所以BC//AM.且證=&肌所以四边形汽畑是平行四边形,从而CM//AB.又邂平而PAB.平而PAB.所以平而PAB.(说明:取棱刃的中点用则所找的点可以是直线JfV上任意一点)P(2)证明:由已知,用丄用丄m因为AD//BC,證=£肋,所以直线AB与切相交,所以丹丄平而ABCD,从而PAJLBD. 因为肋〃必BC=^AD.所以證〃J偽且BC=MD,所以四边形万GW是平行四边形,所以B.V=CD=^AD,所以助丄又ABOAP=A.所以加丄平而加又平面PBD.所以平而用5丄平而PBD.7.[2016 •阳泉模拟]如图7-41-10,在四棱锥P-ABCD中,BC//AD. 5(7=1,初=3, AC LCD.且平而加丄平而MGZ(1)求证:ACA-PD.PF(2)在线段用上是否存在点E使氐•〃平而加若存在,求出吕的值;若不存在,请PA说明理由.解:(1)证明:•••平面尸G?丄平而ABCD.平而pea平而ABCD= CD、AC LCD. Mt平而ABCD, :.ACL 平而•: Pg平而PCD、:.ACLPD.PE 1(2)在线段刃上存在点仅使亦〃平而加,且士=#下而给岀证明:^AD=Z, BC=1.•••在△用Z?中,分别取用,刃靠近点尸的三等分点伐尺连接丽BE. CF.•翌 =丄=匹•叼=空=看 :.HE//SA.又S 幻平而PE PF 11 ':盲苛勺:・EF 〃也且吩严1.又 9:BC//AD.:・BC 〃 EF 、RBC=EF\•••四边形心是平行四边形,:・BE 〃 CF 、又TS 皮平PCD. G 匕平而RD:.BE//平而尸GZ8. (10分)[2016 •河南中原名校联考]如图所示,在四棱锥S ■馭P 中,平而旳门丄平面 ABCD. AB//DC. △S3是等边三角形,且 SD=2、ED=2© AB=2CD=4.(1) 证明:平而如丄平而5>切・(2) 若疋是SC 上的一点,当厅点位于线段SC 上什么位置时,旳〃平面磁请证明你的 结论.(3)求四棱锥&ABCD 的体积.解:(1)证明HSAD 是等边三角形,:.AD=SD=2,又 BD=2品 J5=4,:.AD^BD=AB,:・BD 丄AD,又I 平而SADL 平面ABCD.平而SADC\平而ABCD=AD. :・BDL 平而SAD.又BX 平而SBD 、•••平而迦丄平面SAD.⑵当疋为SC 的三等分点,即厉=2炉时,结论成立. 证明如下:连接川Q 交助于点忆连接皿1V CD//AB. CD=:AB,•• SA// 平而 EBD.3)过S 作S0丄肋,交AD 于点0・••△SQ 为等边三角形,••0为出?的中点,:.SO=\(3•易证得SO 丄平而ABCD. _1 ―*. V I 'MKW s ASO )=^S ABCD • SO.•* -S'«fiu-^cx»=0 X (2+4) X 寸3 = 3寸2,:y PUWW $・如>=3.二.探索垂直关系1.如图所示,在三棱锥磁中,已知刃丄底而MG AB±BC. E>尸分别是线段丹, FQ上的动点,则下列说法错误的是()A.当肚丄丹时,HAEF—氾为直角三角形B・当处丄PQ时,HAEF—能为直角三角形C.当疔〃平而磁时,\AEFTE为直角三角形D.当尸C丄平而遁■时.HAEF—矩为直角三角形答案:B [解析]已知用丄底而则用丄反;又AB丄BC. PAC\AB=A. 则必7丄平而如,BCLAE.当AELPB时,又PBCBC=B,则肚丄平而丹G则血丄〃;A正确.当刃%平而月氏时,又决平而丹G平而PBCn平而月必=万G则疔〃万G故疗丄平而用万,则月尸丄也故C正确.当PC1平而月时,PCLAE.又BCLAE. PCC\BC=C.则血丄平面PBC.则AELEF. 故D正确.用排除法可知选B.2. ____________________________________________________________________ 如图所示,在三棱柱ABGA^G中,侧棱必丄底而馭;底而是以/遊为直角的等腰直角三角形,AC=2a,脛= 3a,。
立体几何中的探索性问题 (2)
由①、②知,平面BFM//平面AEC.
又 BF 平面BFM,所以BF//平面AEC.
证法二
因为
所以 、 、 共面.
又 BF 平面ABC,从而BF//平面AEC.
【方法归纳】点F是线PC上的点,一般可设 ,求出 值,P点是已知的,即可求出F点
高考复习课:立体几何中探索性问题的向量解法
本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。
一、存在判断型
1、已知空间三点A(-2,0,2),B(-2,1,2),C(-3,0,3).设a= ,b= ,是否存在存在实数k,使向量ka+b与ka-2b互相垂直,若存在,求k的值;若不存在,说明理由。
解∵ka+b=k(0,1,0)+(-1,0,1)=(-1,k,1),ka-2b=(2,k,-2),
本节课主要研究:立体几何中的存在判断型和位置探究型问题等探索性问题。
一、存在判断型
1.已知空间三点A(-2,0,2),B(-2,1,2),C(-3,0,3).设a= ,b= ,是否存在存在实数k,使向量ka+b与ka-2b互相垂直,若存在,求k的值;若不存在,说明理由。
2.如图,已知矩形ABCD,PA⊥平面ABCD,M、N分别是AB、PC的中点,∠PDA为 ,能否确定 ,使直线MN是直线AB与PC的公垂线?若能确定,求出 的值;若不能确定,说明理由.
解:以点A为原点建立空间直角坐标系A-xyz.设|AD|=2a,|AB|=2b,∠PDA= .则A(0,0,0)、B(0,2b,0)、C(2a,2b,0)、D(2a,0,0)、P(0,0,2atan )、M(0,b,0)、N(a,b,atan ).
∴ =(0,2b,0), =(2a,2b,-2atan ), =(a,0,atan ).
立体几何中探索性问题
立体几何中探索性问题B立体几何中探索性问题的向量解法高考中立体几何试题不断出现了一些具有探索性、开放性的试题。
对于这类问题一般可用综合推理的方法、分析法、特殊化法和向量法来解决。
立体几何引入空间向量后,可以借助向量工具,使几何问题代数化,降低思维的难度.尤其是在解决一些立体几何中的探索性问题时,更可以发挥这一优势.一.存在判断型例1.正△ABC 的边长为4,CD 是AB 边上的高,E,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A —DC —B .如图1.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E DF C --的余弦值;(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.例2.如图(2),已知矩形ABCD ,PA ⊥平面ABCD ,M 、N 分别是AB 、PC 的中点,∠PDA 为θ,能否确定θ,使直线MN 是直线AB 与PC 的公垂线?若能确定,求出θ的值;若不能确定,说明理由.解:以点A 为原点建立空间直角坐标系A -xyz.设|AD|=2a ,|AB|=2b ,∠PDA=θ.则A(0,0,0)、B(0,2b ,0)、C(2a ,2b ,0)、D(2a ,0,0)、P(0,0,2atan θ)、M(0,b ,0)、N(a ,b ,atan θ).∴AB =(0,2b ,0),PC =(2a ,2b ,-2atan θ),MN =(a ,0,atan θ). ∵AB ·MN =(0,2b ,0)·(a ,0,atan θ)=0,∴AB ⊥MN .即AB ⊥MN.若MN ⊥PC ,则·=(a ,0,atan θ)·(2a ,2b ,-2atan θ) =2a 2-2a 2tan 2θ=0.∴tan 2θ=1,而θ是锐角. ∴tan θ=1,θ=45°.即当θ=45°时,直线MN 是直线AB 与PC 的公垂线.【方法归纳】对于存在判断型问题,解题的策略一般为先假设存在,然后转化为“封闭型”问题求解判断,若不出现矛盾,则肯定存在;若出现矛盾,则否定存在。
立体几何中的翻折问题和探索性问题
(3)连接 AC,过 M 作 MP⊥AC 于 P.在正方体 ABCD- EFGH 中,AC∥EG,所以 MP⊥EG.过 P 作 PK⊥EG 于 K, 连接 KM,所以 EG⊥平面 PKM,从而 KM⊥EG.所以∠PKM 是二面角 A-EG-M 的平面角.设 AD=2,则 CM=1,PK =2,
在 Rt△CMP 中,PM=CMsin45°= 22.在 Rt△MPK 中,
解 (1)证明:按题意作出三棱锥,如图.
由题知 AD=AE,DG=GE,∴DE⊥AG,又 DF=EF, DG=GE,∴DE⊥FG.又 AG∩FG=G,∴DE⊥平面 AGF.
(2)由(1)得 DE⊥AG,DE⊥FG,所以∠AGF 为二面角 A
-DE-F 的平面角.
在△AGF 中,AF=3,AG=323,FG= 23, 所以 cos∠AGF=AG22+·AFGG·F2-GAF2
又 CE⊂平面 ABCD,以平面 PCE⊥平面 PAH.
过 A 作 AQ⊥PH 于 Q,则 AQ⊥平面 PCE.
所以∠APH 是 PA 与平面 PCE 所成的角.
在
Rt△AEH
中,∠AEH=45°,AE=1,所以
AH=
2 2.
在 Rt△PAH 中,PH= PA2+AH2=322,
【针对训练】 (2016·四川高考)如图,在四棱锥 P-ABCD 中,AD∥BC, ∠ADC=∠PAB=90°,BC=CD=12AD,E 为棱 AD 的中点, 异面直线 PA 与 CD 所成的角为 90°.
(1)在平面 PAB 内找一点 M,使得直线 CM∥平面 PBE, 并说明理由;
(2)若二面角 P-CD-A 的大小为 45°,求直线 PA 与平 面 PCE 所成角的正弦值.
立体几何中探索性问题(解析版)
专题4.5 立体几何中探索性问题一.方法综述立体几何在高考中突出对考生空间想象能力、逻辑推理论证能力及数学运算能力等核心素养的考查。
考查的热点是以几何体为载体的垂直、平行的证明、平面图形的折叠、探索开放性问题等;同时考查转化化归思想与数形结合的思想方法。
对于探索性问题(是否存在某点或某参数,使得某种线、面位置关系成立问题)是近几年高考命题的热点,问题一般有三种类型:(1)条件追溯型;(2)存在探索型;(3)方法类比探索型。
现进行归纳整理,以便对此类问题有一个明确的思考方向和解决办法。
二.解题策略类型一 空间平行关系的探索【例1】(2020·眉山外国语学校高三期中(理))在棱长为1的正方体1111ABCD A B C D -中,点M 是对角线1AC 上的动点(点M 与1A C 、不重合),则下列结论正确的是__________①存在点M ,使得平面1A DM ⊥平面1BC D ; ②存在点M ,使得平面DM 平面11B CD ; ③1A DM ∆的面积可能等于36;④若12,S S 分别是1A DM ∆在平面1111A B C D 与平面11BB C C 的正投影的面积,则存在点M ,使得12S S【答案】①②③④【解析】①如图所示,当M 是1AC 中点时,可知M 也是1A C 中点且11B C BC ⊥,111A B BC ⊥,1111A B B C B =,所以1BC ⊥平面11A B C ,所以11BC A M ⊥,同理可知1BD A M ⊥, 且1BC BD B =,所以1A M ⊥平面1BC D ,又1A M ⊂平面1A DM ,所以平面1A DM ⊥平面1BC D ,故正确;②如图所示,取1AC 靠近A 的一个三等分点记为M ,记1111AC B D O =,1OC AC N =,因为11AC AC ,所以1112OC C N AC AN ==,所以N 为1AC 靠近1C 的一个三等分点, 则N 为1MC 中点,又O 为11A C 中点,所以1A M NO ,且11A DB C ,111A MA D A =,1NOB C C =,所以平面1A DM平面11B CD ,且DM ⊂平面1A DM ,所以DM 平面11B CD ,故正确;③如图所示,作11A M AC ⊥,在11AA C 中根据等面积得:12633A M ==, 根据对称性可知:16A M DM ==,又2AD =1A DM 是等腰三角形, 则12216232232A DMS⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故正确;④如图所示,设1AM aAC =,1A DM ∆在平面1111D C B A 内的正投影为111A D M ∆,1A DM ∆在平面11BB C C 内的正投影为12B CM ∆,所以1111122222A D M aS S a ∆==⨯⨯=,122121222222B CM a S S a ∆-==⨯-⨯=,当12S S 时,解得:13a =,故正确.故答案为 ①②③④【点评】.探索开放性问题,采用了先猜后证,即先观察与尝试给出条件再加以证明,对于命题结论的探索,常从条件出发,探索出要求的结论是什么,对于探索结论是否存在,求解时常假设结论存在,再寻找与条件相容或者矛盾的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《探究性问题》
考点动向
立体几何中的探究性问题既能够考查学生的空间想象能力,又可以考查学生的意志力及探究的能力.探究是一种科学的精神,因此,也是命题的热点.一般此类立体几何问题描述的是动态的过程,结果具有不唯一性或者隐藏性,往往需要耐心尝试及等价转化,因此,对于常见的探究方法的总结和探究能力的锻炼是必不可少的.
方法范例
例1 如图8-1,在棱长为1的正方体1111ABCD A BC D -中,
P 是侧棱1CC 上的一点,CP m =.
(1)试确定m ,使直线AP 与平面11BDD B 所
成角的正切值为
(2)在线段11AC 上是否存在一个定点Q ,使得对任意的m ,1D Q 在平面1APD 上的射影垂直于
AP ,并证明你的结论.
解析 本题的两问都充满了探究性,问题的情景具有运动变化的特点,此时,只需要确定某一个位置进行推理,其它作类似推理即可.即所谓的化动为静.
解法1 (1)连AC ,设A
C B
D O A P =,与面11BDD B 交于点G ,连OG .因为PC ∥面
11BDD B ,面11
BDD B 面APC OG =,故
O G P C ∥.所以122
m OG PC ==.又
1A O D B A O B
B ,⊥
⊥,所以AO ⊥面11BDD B .故AGO ∠即为AP 与面11BDD B 所成
A 1
D 图8-1
P
1A D 1
图8-2
的角.在Rt AOG △
中,2tan 2
AGO m ∠==,即13m =.故当1
3m =时,直线AP 与
平面11BDD B
所成角的正切值为
(2)依题意,要在11AC 上找一点Q ,使得1D Q AP ⊥.可推测11AC 的中点1O 即为所
求的Q 点.因为1111111DO AC DO AA ,⊥⊥,所以11DO ⊥面11ACC A
.又AP ⊂面11ACC A ,故11D O AP ⊥.从而11D O 在平面1AD P 上的射影与AP 垂直.
解法2(1)建立如图8-3所示的空间直角坐标系,则(100)(110)(01)A B P m ,,,,,,,,,
11(010)(000)(111)(001)C D B D ,,,,,,,,,,,.
所以1(110)(001)(11)(110)BD BB AP m AC =--==-=-,,,,,,,,,,,. 又由100AC BD AC BB ==,知,AC 为平面11BB D D 的一个法向量.设AP 与平面11BB D D 所成的角为θ,则
s i n c o s θθπ⎛⎫
=
- ⎪2⎝⎭
2
22AP AC AP AC
m =
=
+.
2
2
2m =
+,解得
13m =
.故当1
3
m =时,直线AP 与平面11BDD B 所成角的正切值为
(2)若在11AC 上存在这样的点Q ,设此点的横坐标为
x ,则
1(11)(10)Q x x D Q x x -=
-,,,,,.依题意,对任意的m 要使1D Q 在平面1APD 上的射影垂直于AP ,等价于111
0(1)02
D Q AP AP D Q x x x ⇔=⇔-+-=⇔=⊥.即Q 为11AC 的中点时,满足题设要求.
[规律小结]
探究性问题一般具有一定的深度,需要深入分析题目的条件和所问,根据题目的特征,选用适当的解题方法.必要时,进行假设推理,或者反证推理,往往也是进行图形推理与代数推理的典型问题.
考点误区分析
解答探究性问题,需要主观的意志力,不要见到此类问题先发怵,进行消极的自我暗示,要通过备考阶段的联练习,加强解题信心的培养.确定解题的一般规律,积极的深入分析问题的特征,进而实现顺利解答.
同步训练
1.两相同的正四棱锥组成如图8-4所示的几何体,可放棱长为1的正方体内,使正四棱
锥的底面ABCD 与正方体的某一个平面平行,且各顶点...
均在正方体的面上,则这样的几何体体积的可能值有( ).
(A )1个 (B )2个 (C )3个 (D )无穷多个
2.在正方体''''D C B A ABCD -中,过对角线'BD 的一个平面交'
AA 于E ,交'
CC 于
F ,则( ).
① 四边形E BFD '
一定是平行四边形 ② 四边形E BFD '有可能是正方形
③ 四边形E BFD '在底面ABCD 内的投影一定是正方形 ④ 四边形E BFD '
有可能垂直于平面D BB '
以上结论正确的为 .(写出所有正确结论的编号)
3.如图8-5,在三棱锥A BCD -中,侧面ABD ACD ,是全等的直角三角形,AD 是
公共的斜边,且1AD BD CD ===,另一侧面ABC 是正三角形. (1)求证:AD BC ⊥;
A B
C
D 图8-4
A C
D
图8-5
(2)求二面角B AC D
--的大小;
(3)在线段AC上是否存在一点E,使ED与面BCD成30角?若存在,确定点E的位置;若不存在,说明理由.
[参考答案]
1.[解析]本题相当于一个正方形可以有多少个内接正方形,显然有无穷多个;或者
两个正四棱锥的高均为1
2
,放入正方体后,面ABCD的面积是不固定的,其范围是
1
[,1)
2
.
[答案]()
D.
2.[解析]借助图形及面面平行的性质定理,射影的定义,面面垂直的判定可得.[答案]①③④.
3.[答案](2)arccos
3;(3)线段AC上存在E点,且1
CE=时符合条件.。