数字图像处理课设
数字图像处理matlab课程设计
![数字图像处理matlab课程设计](https://img.taocdn.com/s3/m/72678b2cff4733687e21af45b307e87101f6f88d.png)
数字图像处理matlab课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的表示和存储方式;2. 学会使用MATLAB软件进行数字图像处理,掌握相关函数和工具箱的使用方法;3. 掌握图像增强、滤波、边缘检测等基本图像处理技术;4. 了解图像分割、特征提取等高级图像处理技术。
技能目标:1. 能够运用MATLAB进行图像读取、显示和保存操作;2. 能够独立完成图像的增强、滤波等基本处理操作;3. 能够运用边缘检测算法对图像进行处理,提取关键特征;4. 能够根据实际需求选择合适的图像处理技术,解决实际问题。
情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣,激发其学习热情;2. 培养学生的团队合作意识,使其学会在团队中分享和交流;3. 培养学生严谨的科学态度,使其注重实验数据的真实性;4. 培养学生的创新思维,鼓励其探索新方法,提高解决问题的能力。
本课程旨在通过数字图像处理MATLAB课程设计,使学生在掌握基本理论知识的基础上,运用MATLAB软件进行图像处理实践。
课程注重理论与实践相结合,培养学生具备实际操作能力,并能运用所学知识解决实际问题。
针对学生的年级特点,课程目标既注重知识技能的传授,又关注情感态度价值观的培养,为学生今后的学习和工作奠定基础。
二、教学内容1. 数字图像处理基础- 图像表示与存储(RGB、灰度、二值图像)- 图像类型转换- MATLAB图像处理工具箱介绍2. 图像增强- 直方图均衡化- 伽玛校正- 图像锐化3. 图像滤波- 均值滤波- 中值滤波- 高斯滤波- 双边滤波4. 边缘检测- 索贝尔算子- 拉普拉斯算子- Canny边缘检测5. 图像分割- 阈值分割- 区域生长- 分水岭算法6. 特征提取与描述- 霍夫变换- SIFT算法- ORB算法教学内容根据课程目标进行选择和组织,注重科学性和系统性。
教学大纲明确分为六个部分,分别对应数字图像处理的基础知识、图像增强、滤波、边缘检测、图像分割和特征提取与描述。
数字图像处理课设
![数字图像处理课设](https://img.taocdn.com/s3/m/42249d7202768e9951e7382e.png)
目录1、目的与要求 (2)2、图像二值化和马赛克应用背景 (3)3、设计内容以及原理 (4)4、各个功能模块的主要实现程序以及代码 (5)5、程序运行结果以及图像处理结果 (9)6、课程设计总结与心得体会 (11)7、参考文献 (12)一、目的与要求本课程着重研究数字图像处理的方法,训练学生运用所学基础知识解决实际问题的能力,同时要求拓宽专业知识面。
该课程是一门涉及多领域的专业选修课。
它是图像通信、模式识别、计算机视觉等学科的基础。
通过对本课程的学习,要求学生掌握数字图像处理的基本处理技术,较深入地理解数字图像处理的基本概念、基础理论以及解决问题的基本思想方法。
从而使学生具有初步综合利用所学知识深入研究有关信息领域问题的能力。
本课程数字图像处理是论述其基本理论、方法及其在计算机领域中应用的学科分支,是实现机器视觉的有效工具。
学习本门课程的主要目的是使学生掌握数字图像处理的基本概念、原理、和方法,并未以后在此方向上的深入研究奠定基础。
通过本课程设计,使学生理解和巩固所学的理论知识,树立解决实际问题的严谨科学态度。
实验前要求做好编程准备工作,提高实验效果,注重独立分析问题、解决问题的能力培养,训练实际操作,鼓励创新设想。
课程设计报告要求:1.目的与要求这部分主要说明本课程设计的目的、任务和要求。
提高分析问题、解决问题的能力,巩固数字图像处理系统中的基本原理与方法。
熟悉掌握一门计算机语言,可以进行数字图像的应用处理的开发设计。
2.设计的内容根据指导书的讲述,介绍系统中所设计的主要功能和原理方法;3.总体方案设计根据课程设计的具体情况,描述系统的具体构架,包括:功能模块的划分、系统运行的环境、选用的工具及主要实现功能的原理。
4.各个功能模块的主要实现程序主要的功能实现和函数要进行详细的说明,包括其用法,使用范围,及参数等。
5.测试和调试按课程设计要求,选用多幅图像对程序进行测试,并提供系统的主要功能实现的效果图。
数字图像处理的课程设计
![数字图像处理的课程设计](https://img.taocdn.com/s3/m/8e4e66c8d0f34693daef5ef7ba0d4a7303766c52.png)
数字图像处理的课程设计一、课程目标知识目标:1. 理解数字图像处理的基本概念,掌握图像的数字化表示方法;2. 掌握图像处理的基本操作,如图像变换、滤波、增强和复原;3. 了解常见的图像分割和特征提取方法,并应用于实际问题;4. 掌握图像压缩的基本原理及常用算法。
技能目标:1. 能够运用图像处理软件进行基本的图像编辑和操作;2. 能够编写简单的数字图像处理程序,实现对图像的基本处理功能;3. 能够运用所学的图像处理方法解决实际问题,如图像去噪、图像增强等;4. 能够对图像进行有效的压缩,以适应不同的应用场景。
情感态度价值观目标:1. 培养学生对数字图像处理技术的兴趣和热情,激发其探索精神;2. 培养学生的团队合作意识,学会与他人共同解决问题;3. 增强学生的实际操作能力,使其认识到理论与实践相结合的重要性;4. 引导学生关注图像处理技术在日常生活和各领域的应用,提高其科技素养。
课程性质:本课程为高年级选修课程,旨在使学生掌握数字图像处理的基本原理和方法,培养其实际应用能力。
学生特点:学生具备一定的数学基础和编程能力,对图像处理有一定了解,但尚未深入学习。
教学要求:结合学生特点和课程性质,注重理论与实践相结合,以实际应用为导向,提高学生的动手能力和创新能力。
通过本课程的学习,使学生能够达到上述课程目标,为未来进一步学习和研究打下坚实基础。
二、教学内容1. 数字图像基础:包括图像的数字化表示、图像质量评价、颜色模型等基本概念;- 教材章节:第1章 数字图像处理基础2. 图像增强:介绍直方图均衡化、图像平滑、锐化等增强方法;- 教材章节:第3章 图像增强3. 图像复原:涉及图像退化模型、逆滤波、维纳滤波等复原方法;- 教材章节:第4章 图像复原4. 图像分割与特征提取:包括阈值分割、边缘检测、区域生长等分割方法,以及特征点的提取和描述;- 教材章节:第5章 图像分割与特征提取5. 图像压缩:介绍图像压缩的基本原理,如JPEG、JPEG2000等压缩算法;- 教材章节:第6章 图像压缩6. 数字图像处理应用:分析图像处理在医学、遥感、计算机视觉等领域的应用案例;- 教材章节:第7章 数字图像处理应用教学进度安排:1. 数字图像基础(2学时)2. 图像增强(4学时)3. 图像复原(4学时)4. 图像分割与特征提取(6学时)5. 图像压缩(4学时)6. 数字图像处理应用(2学时)三、教学方法为提高教学效果,本课程将采用以下多样化的教学方法:1. 讲授法:教师通过系统的讲解,使学生掌握数字图像处理的基本概念、原理和方法。
数字图像处理matlab课程设计
![数字图像处理matlab课程设计](https://img.taocdn.com/s3/m/e3a14f4b15791711cc7931b765ce050877327540.png)
数字图像处理matlab课程设计一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论和方法,学会使用MATLAB软件进行图像处理和分析。
通过本课程的学习,学生应达到以下具体目标:1.理解数字图像处理的基本概念、原理和算法。
2.熟悉MATLAB图像处理工具箱的使用。
3.能够运用数字图像处理的基本算法解决实际问题。
4.能够使用MATLAB进行图像处理和分析,撰写相关的程序代码。
情感态度价值观目标:1.培养学生的创新意识和团队协作精神。
2.培养学生对数字图像处理技术的兴趣,提高其综合素质。
二、教学内容根据课程目标,本课程的教学内容主要包括以下几个部分:1.数字图像处理基本概念:图像处理的基本概念、图像数字化、图像表示和图像变换。
2.图像增强和复原:图像增强、图像去噪、图像复原。
3.图像分割和描述:图像分割、图像特征提取和描述。
4.图像形态学:形态学基本运算、形态学滤波、形态学重建。
5.MATLAB图像处理工具箱的使用:MATLAB图像处理工具箱的基本功能、常用图像处理函数。
6.图像处理实例分析:结合实际案例,分析数字图像处理技术的应用。
三、教学方法为了实现课程目标,本课程将采用以下教学方法:1.讲授法:通过讲解图像处理的基本概念、原理和算法,使学生掌握图像处理的基本知识。
2.案例分析法:通过分析实际案例,使学生了解数字图像处理技术在实际中的应用。
3.实验法:通过上机实验,使学生熟练掌握MATLAB图像处理工具箱的使用,提高学生的实际操作能力。
4.讨论法:学生进行课堂讨论,激发学生的思维,培养学生的创新意识和团队协作精神。
四、教学资源为了支持教学内容和教学方法的实施,本课程将采用以下教学资源:1.教材:《数字图像处理(MATLAB版)》。
2.参考书:相关领域的经典教材和论文。
3.多媒体资料:教学PPT、视频教程等。
4.实验设备:计算机、MATLAB软件、图像处理相关硬件设备。
五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。
数字图像处理课程设计.
![数字图像处理课程设计.](https://img.taocdn.com/s3/m/cdde628b185f312b3169a45177232f60dccce771.png)
数字图像处理课程设计.一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论、方法和应用,培养学生运用数字图像处理技术解决实际问题的能力。
具体目标如下:1.知识目标:(1)掌握数字图像处理的基本概念、原理和算法;(2)了解数字图像处理的发展历程和应用领域;(3)熟悉常见的数字图像处理技术,如图像滤波、边缘检测、图像压缩等。
2.技能目标:(1)能够运用数字图像处理技术对图像进行基本处理;(2)具备分析图像问题、选择合适算法解决问题的能力;(3)掌握编程实现数字图像处理算法的方法。
3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对数字图像处理技术的兴趣和好奇心;(3)培养学生运用科技手段解决实际问题的责任感。
二、教学内容本课程的教学内容主要包括以下几个部分:1.数字图像处理基本概念:数字图像的定义、特点、表示方法等;2.图像处理基本运算:图像滤波、边缘检测、图像增强等;3.图像压缩技术:JPEG、PNG等图像压缩算法;4.图像分割与描述:图像分割方法、图像特征提取等;5.图像处理应用案例:数字图像处理在实际领域的应用。
三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学:1.讲授法:教师讲解基本概念、原理和方法,引导学生理解数字图像处理的核心知识;2.案例分析法:通过分析实际案例,使学生掌握数字图像处理技术的应用;3.实验法:安排实验课程,让学生动手实践,培养实际操作能力;4.讨论法:学生进行小组讨论,激发学生的创新思维和团队合作精神。
四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《数字图像处理教程》等;2.参考书:相关领域的学术论文、技术报告等;3.多媒体资料:教学PPT、视频教程等;4.实验设备:计算机、图像处理软件、实验器材等。
通过以上教学资源的支持,为学生提供丰富的学习资料和实践平台,提高学生的学习效果。
五、教学评估本课程的教学评估将采用多元化、全过程的评价方式,以全面、客观地评价学生的学习成果。
数字图像处理课程设计opencv
![数字图像处理课程设计opencv](https://img.taocdn.com/s3/m/f9f41153f02d2af90242a8956bec0975f465a439.png)
数字图像处理课程设计opencv一、教学目标本课程的教学目标是使学生掌握数字图像处理的基本理论、方法和OpenCV编程技能。
通过本课程的学习,学生应能理解数字图像处理的基本概念,掌握常用的图像处理算法,并能够运用OpenCV库进行实际的图像处理操作。
具体来说,知识目标包括:1.理解数字图像处理的基本概念和原理。
2.掌握数字图像处理的基本算法和常用技术。
3.熟悉OpenCV库的基本结构和功能。
技能目标包括:1.能够运用OpenCV库进行数字图像处理的基本操作。
2.能够编写简单的数字图像处理程序。
3.能够分析和解决数字图像处理实际问题。
情感态度价值观目标包括:1.培养对数字图像处理的兴趣和热情。
2.培养学生的创新意识和实践能力。
3.培养学生的团队合作精神和沟通交流能力。
二、教学内容本课程的教学内容主要包括数字图像处理的基本理论、方法和OpenCV编程实践。
教学大纲如下:1.数字图像处理概述1.1 数字图像处理的基本概念1.2 数字图像处理的应用领域2.图像处理基本算法2.1 图像滤波2.2 图像增强2.3 图像边缘检测3.OpenCV库的使用3.1 OpenCV库的基本结构3.2 OpenCV库的基本功能4.图像处理实例分析4.1 图像去噪实例4.2 图像增强实例4.3 图像边缘检测实例三、教学方法本课程采用多种教学方法相结合的方式,包括讲授法、讨论法、案例分析法和实验法等。
1.讲授法:通过教师的讲解,使学生掌握数字图像处理的基本理论和方法。
2.讨论法:通过小组讨论,激发学生的思考,培养学生的创新意识和实践能力。
3.案例分析法:通过分析实际案例,使学生能够将理论知识应用于实际问题。
4.实验法:通过实验操作,使学生掌握OpenCV库的基本功能,并能够编写实际的图像处理程序。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料和实验设备等。
1.教材:选用《数字图像处理》(李航著)作为主要教材,辅助以相关参考书籍。
《数字图像处理》课程教学大纲
![《数字图像处理》课程教学大纲](https://img.taocdn.com/s3/m/162916835ebfc77da26925c52cc58bd63086935d.png)
数字图像处理课程教学大纲课程简介数字图像处理是计算机科学与技术领域的一门重要课程,它研究如何使用计算机和算法来处理和分析数字图像。
本课程旨在介绍数字图像处理的基本原理、方法和应用,并培养学生的图像处理能力和技巧。
课程目标本课程的主要目标是让学生掌握数字图像处理的基本理论和方法,具备图像处理算法设计、图像增强、图像分割、图像压缩等技术的基本能力。
同时,通过实践项目的实施,培养学生的问题解决能力和团队合作能力。
课程安排第一周:课程介绍与基本概念•课程介绍•数字图像的基本概念与特点•数字图像处理的基本步骤第二周:图像预处理•图像采集与获取•图像灰度变换•图像噪声模型与去噪方法第三周:图像增强•直方图均衡化•空域滤波与频域滤波•边缘增强与锐化第四周:图像压缩•图像压缩的基本概念与方法•离散余弦变换(DCT)与JPEG压缩算法•小波变换与JPEG2000压缩算法第五周:图像分割与边缘检测•阈值分割•基于边缘的图像分割•基于区域的图像分割第六周:实践项目1 - 图像识别•项目需求分析与设计•图像特征提取与选择•分类器的训练与测试第七周:实践项目2 - 图像恢复•项目需求分析与设计•图像模型与图像去模糊•图像去噪与图像修复第八周:实践项目3 - 图像处理工具开发•项目需求分析与设计•图像处理算法的实现•图形界面设计与用户交互评估方式•平时成绩:30%•作业与实验报告:30%•期末考试:40%参考教材•Rafael C. Gonzalez, Richard E. Woods. 数字图像处理(第三版). 清华大学出版社,2018.•Richard Szeliski. 计算机视觉:算法与应用. 电子工业出版社,2014.参考资源•MATLAB图像处理工具箱文档•OpenCV计算机视觉库官方文档以上是《数字图像处理》课程的教学大纲,希望通过本门课程的学习,能够让学生对数字图像处理有一个全面的了解,并具备实践应用的能力。
数字图像处理课设报告
![数字图像处理课设报告](https://img.taocdn.com/s3/m/8125226d580216fc700afdf9.png)
数字图像处理课程设计报告细胞识别目录第一部分页脚内容11、实验课题名称----------------------------------------------------------------------------------32、实验目的----------------------------------------------------------------------------------------33、实验内容概要----------------------------------------------------------------------------------3第二部分1、建立工程文件----------------------------------------------------------------------------------32、图像信息获取----------------------------------------------------------------------------------43、如何建立下拉菜单----------------------------------------------------------------------------64、标记Mark点------------------------------------------------------------------------------------65、二值化---------------------------------------------------------------------------------------------96、填洞------------------------------------------------------------------------------------------------97、收缩------------------------------------------------------------------------------------------------108、获取中心点--------------------------------------------------------------------------------------119、细胞计数-----------------------------------------------------------------------------------------1310、All-steps-----------------------------------------------------------------------------------------1311、扩展功能---------------------------------------------------------------------------------------14第三部分12、各步骤结果和错误举例--------------------------------------------------------------------16页脚内容2第四部分13、心得体会----------------------------------------------------------------------------------------22第一部分1、实验课题:细胞识别2、实验目的:对血液细胞切片图片进行各种处理,最终得出细胞的数目、面积等信息。
(完整word版)数字图像处理课设
![(完整word版)数字图像处理课设](https://img.taocdn.com/s3/m/64dd1e8848d7c1c709a145a2.png)
(完整word版)数字图像处理课设专业综合实验报告—-—-数字图像处理专业: 电子信息工程班级:学生姓名:学号:指导教师:年月日设计题目:图像去雾处理一、设计目的由于大气的散射作用,照相机接收到景物反射过来的光线经过了衰减.雾天的大气退化图像具有对比度低、景物不清晰的特点,给交通系统及户外视觉系统的应用带来严重的影响。
鉴于图像处理和计算机视觉中有关图像理解、目标识别、目标跟踪、智能导航等领域的很多算法都是假设输入的图像或视频是在理想天气条件下拍摄的,因此有雾图像清晰化就显得格外重要,是目前人们研究的热点问题之一,但由于成像系统聚焦模糊、拍摄场景存在相对运动以及雾天等不利环境,使得最终获取的图像往往无法使用。
有雾天气条件下获取的图像对比度低、图像内容模糊不清而且颜色整体偏向灰白色,图像去雾的目的就是恢复有雾图像的对比度和真实色彩,重现在理想天气条件下拍摄的清晰图像。
二、设计内容和要求1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图;2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像;三、设计思路由于图像中存在噪声等干扰,使得图像模糊不清。
可以采用图像增强的方法对原图像处理,使图像变得清晰.而直方图均衡化是一种常用的图像增强的方法。
图像模糊,其图像的像素分布不均匀,采用直方图均衡化的方法使其图像像素分布均匀,从而达到均衡像素分布增强图像的目的。
设计方案在晴朗的天气条件下,洁净的空气一般是由氦气、氧气等气体分子、水蒸汽、微量的固体悬浮颗粒物等成分构成。
在这种大气条件下,从物体表面反射的光线在到达成像设备的过程中,基本不会受大气中各种成分的影响发生散射、吸收、发射等现象,而是直接到达成像设备。
相对在有雾天气条件下获得的图像,在这种理想天气条件获得的图像,我们称之为清晰无雾图像。
而在有雾天气条件下获得的图像模糊不清,图像对比度下降,图像的颜色发生漂移,偏向灰白色。
数字图像处理课程设计
![数字图像处理课程设计](https://img.taocdn.com/s3/m/107a439ab9f3f90f76c61bcf.png)
1课程设计目的(1)对数字图像处理这门课程所学知识进行巩固和扩充。
(2)运用图像理论知识来完成图像的膨胀的设计。
(3)学习并且熟练使用MATLAB软件进行编程和仿真。
(4)增强学生对图像学科的学习兴趣,培养图像处理的仿真建模能力。
(5)培养学生分析问题、解决问题的能力及动手操作能力。
2 课程设计要求(1)掌握课程设计的相关知识、概念清晰;(2)程序设计合理、能够正确运行;(3)查阅资料,掌握图像腐蚀的基本方法,编程实现膨胀;(4)掌握运用Matlab软件对灰度与二值图像的腐蚀的处理方法;(5)使用imerode函数进行图像腐蚀,观察腐蚀后的图像变化情况。
3 理论知识叙述3.1 图像处理与数字图像处理概念图像处理并不仅限于对图像进行增强、复原和编码,还要对图像进行分析,图像分析旨在对图像进行描述,即用一组数或符号表征图像中目标区的特征、性质和相互间的关系,为模式识别提供基础。
描述一般针对图像或景物中的特定区域或目标。
闭运算通常用来填充目标内细小空洞,连接断开的邻近目标,平滑其边界的同时不明显改变其面积。
数字图像处理(digitalimageprocessing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。
利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。
3.2 MATLAB 及其图像处理工具箱MATLAB语言是由美国MathWorks公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,而且还具有可扩展性特征。
MATLAB中的数字图像是以矩阵形式表示的,矩阵运算的语法对MATLAB中的数字图像同样适用,这意味着MATLAB强大的矩阵运算能力对用于图像处理非常有利。
《数字图像处理》课程教学大纲
![《数字图像处理》课程教学大纲](https://img.taocdn.com/s3/m/ea12ebfcafaad1f34693daef5ef7ba0d4a736d82.png)
《数字图像处理》课程教学大纲一、课程基本信息课程编号:dq04091010课程名称:数字图像处理Digital Image Processing学时/学分:32/2实验学时:12课程类别:专业类课程课程性质:必修课适用专业:电子信息工程开设学期:第六学期先行课程:概率与数理统计、线性代数、信号与系统、数字信号处理责任单位:电气与信息工程学院电子信息工程系二、课程简介《数字图像处理》是面向电子信息工程专业开设的一门专业课程。
通过本课程的学习,学生将获得图像处理的系统设计、相关软件设计与开发知识,并理解图像处理的设计需求、设计原理、设计方法、具有相应实践能力。
能够运用深入的图像处理方法进行数学建模及仿真验证;掌握多层次的实验设计、实现及结果分析的方法,并能将其用于复杂工程实践中。
并为学习后续课程以及从事与本专业相关的工程技术等工作奠定必要的理论基础。
三、课程目标通过本课程的学习,应达到的目标及能力如下:目标1:能够利用数字图像处理所需的数学工具。
学会图像分析的基本方法,具备解决图像应用问题的初步能力;目标2:能够学会数字图像处理基本算法,分析数字图像处理领域复杂工程问题;目标3:能够自行编写MATLAB程序,仿真实现图像处理分析过程,准确筛选、处理、分析实验数据,得出合理有效的结论,规范撰写实验报告。
四、课程目标对毕业要求的支撑五、课程教学内容(一)数字图像处理概述1.主要教学内容:图像的基本概念;数字图像处理,计算机视觉,计算机图形学;数字图像处理系统结构;数字图像处理的主要研究内容;图像的数字化方法;数字图像的数值描述;数字图像的位图文件结构;数字图像的灰度直方图。
2.知识点与能力点要求:(1)知识点:要求学生了解什么是图像以及图像的分类,了解数字图像处理、计算机视觉、计算机图形学之间的区别,了解数字图像处理系统结构。
了解图像的采样和量化方法;掌握BMP位图文件的结构,掌握数字图像灰度直方图的定义、性质和用途。
数字图像技术课程设计
![数字图像技术课程设计](https://img.taocdn.com/s3/m/b6c445442379168884868762caaedd3383c4b52a.png)
数字图像技术课程设计一、教学目标本课程旨在通过数字图像技术的学习,让学生掌握基础的图像处理原理和常见的图像处理方法,能够熟练使用数字图像处理软件,具备基本的图像处理和分析能力。
在知识目标方面,要求学生了解数字图像的基本概念、图像处理的基本算法和图像处理软件的基本操作。
在技能目标方面,要求学生能够熟练使用图像处理软件进行图像编辑、色彩调整、滤镜应用等基本操作,并能对实际问题进行图像处理和分析。
在情感态度价值观目标方面,通过数字图像技术的学习,培养学生的创新意识和审美能力,提高学生对数字图像技术的兴趣和热情。
二、教学内容本课程的教学内容主要包括数字图像的基本概念、图像处理的基本算法和图像处理软件的基本操作。
具体包括:数字图像的定义、分类和基本属性;图像处理的基本算法,如图像滤波、图像增强、图像分割等;图像处理软件的基本操作,如Photoshop、Pnt等软件的使用。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法相结合的方式进行教学。
包括:讲授法,用于讲解数字图像的基本概念和图像处理的基本算法;讨论法,用于探讨图像处理软件的使用方法和实际应用;案例分析法,用于分析具体的图像处理案例;实验法,用于让学生亲手操作图像处理软件,提高学生的实践能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将选择和准备以下教学资源:教材,用于提供基本的学习内容和知识体系;参考书,用于提供更多的学习资料和案例分析;多媒体资料,如教学PPT、视频等,用于增强课堂教学的趣味性和生动性;实验设备,如计算机、投影仪等,用于进行实验教学和软件操作练习。
五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分。
平时表现主要评估学生在课堂上的参与程度和表现,包括提问、回答问题、讨论等,占总分的30%。
作业主要包括课堂练习和课后作业,占总分的40%。
考试包括期中考试和期末考试,占总分的30%。
数字图像处理教学大纲
![数字图像处理教学大纲](https://img.taocdn.com/s3/m/4658cf11777f5acfa1c7aa00b52acfc789eb9fff.png)
数字图像处理教学大纲一、课程基本信息课程名称:数字图像处理课程类别:专业必修课学分:X总学时:X授课对象:具体专业二、课程教学目标通过本课程的学习,使学生掌握数字图像处理的基本概念、原理和方法,具备运用相关知识和技术解决实际问题的能力。
具体包括:1、理解数字图像的获取、表示和存储方式。
2、掌握数字图像增强、复原、压缩、分割等基本处理技术。
3、能够运用编程工具实现简单的数字图像处理算法。
4、培养学生的创新思维和实践能力,为进一步学习和从事相关领域的工作打下坚实的基础。
三、课程教学内容(一)数字图像基础1、图像的感知和获取视觉系统的特性图像的形成与数字化图像的采样和量化2、数字图像的表示灰度图像彩色图像图像的矩阵表示3、数字图像的存储图像文件格式图像数据库(二)图像增强1、空域增强灰度变换直方图均衡化空域滤波2、频域增强傅里叶变换频域滤波(三)图像复原1、图像退化模型常见的退化原因退化函数的建立2、逆滤波原理与实现局限性3、维纳滤波基本原理算法实现(四)图像压缩1、图像压缩的基本原理信息论基础冗余度2、无损压缩霍夫曼编码算术编码3、有损压缩预测编码变换编码(五)图像分割1、阈值分割全局阈值局部阈值2、边缘检测梯度算子拉普拉斯算子Canny 算子3、区域分割区域生长区域分裂与合并(六)图像特征提取与描述1、颜色特征颜色直方图颜色矩2、纹理特征统计方法结构方法3、形状特征边界描述区域描述(七)图像识别1、模式识别基础分类器设计特征选择与提取2、图像分类与识别应用人脸识别车牌识别四、课程教学方法1、课堂讲授通过讲解理论知识,使学生掌握数字图像处理的基本概念、原理和方法。
2、实验教学安排一定数量的实验课程,让学生通过实践加深对理论知识的理解,提高编程和解决实际问题的能力。
3、案例分析结合实际应用案例,引导学生分析问题、解决问题,培养学生的创新思维和实践能力。
4、小组讨论组织学生进行小组讨论,促进学生之间的交流与合作,激发学生的学习兴趣和主动性。
数字图像处理大纲
![数字图像处理大纲](https://img.taocdn.com/s3/m/14e32eb4fd0a79563c1e7235.png)
一、理论课程主要内容及学时安排(32学时)第一章绪论(2学时)1、数字图像处理的发展2、数字图像处理的主要研究内容3、数字图像处理的基本步骤4、图像处理系统的组成第二章数字图像基础(4学时)1、视觉感知要素2、图像的取样和量化3、像素间的基本关系4、数字图像处理中的基本数学运算第三章灰度变换和空间滤波(8学时)1、基本灰度变换函数2、直方图处理3、空间滤波基础4、平滑空间滤波器5、锐化空间滤波器第四章频域滤波(8学时)1、二维傅立叶变换及其性质2、频域滤波基础3、频域平滑滤波器4、频域锐化滤波器5、选择性滤波器第五章图像复原与重建(4学时)1、图像退化复原模型2、噪声模型3、空间滤波去噪4、频域滤波消除周期噪声5、逆滤波第六章彩色图像处理(6学时)1、彩色基础和模型2、伪彩色处理3、彩色变换4、平滑和锐化二、实验课程主要内容及学时安排(16学时)1、图像信号的数字化(2学时)实验目的通过本实验了解图像的数字化参数取样频率(象素个数)、量化层数与图像质量的关系。
实验内容编写并调试图像数字化程序,要求参数k,n 可调。
其中k为亚抽样比例;n为量化比特数;选择任意图像进行处理,在显示器上观察各种数字化参数组合下的图像效果。
2、图像灰度级修正(2学时)实验目的掌握常用的图像灰度级修正方法,即图象的灰度变换法和直方图均衡化法,加深对灰度直方图的理解。
观察图象的增强效果,对灰度级修正前后的图像加以比较。
实验内容编程实现图像的灰度变换。
改变图像输入、输出映射的灰度参数范围(拉伸和反比),观看图像处理结果。
对图像直方图均衡化处理,显示均衡前后的直方图和图像。
3、图像的平滑滤波(2学时)实验目的学习如何对已被噪声污染的图像进行“净化”。
通过平滑处理,对结果图像加以比较,得出自己的实验结论。
实验内容编写并调试窗口尺寸为m×m的平滑滤波函数。
编写并调试窗口尺寸为m×m的中值滤波函数。
4、图像的锐化处理(2学时)实验目的学习如何用锐化处理技术来加强图像的目标边界和图像细节,对图像进行梯度算子、拉普拉斯算子、Sobel算子设计,使图像的某些特征(如边缘、轮廓等)得以进一步的增强及突出。
DSP数字图像处理实验课设
![DSP数字图像处理实验课设](https://img.taocdn.com/s3/m/9521325fad02de80d4d8407e.png)
华东交通大学理工学院课程设计报告书所属课程名称DSP原理及应用题目数字图像处理系统设计分院电信分院专业班级 12通信2班学生姓名余志强指导教师李杰目录第一章课程设计内容及要求第二章程序设计原理2.1数字图象处理基本原理2.2数字图像处理常用方法2.3图象灰度处理的基本原理2.4图象的反色原理和实现2.5灰度图象二值化原理及意义第三章程序设计步骤第四章总结第一章课程设计内容及要求一、设计内容1了解数字图象处理的基本原理2 学习灰度图象反色处理技术3 学习灰度图象二值化处理技术第二章程序设计原理2、1数字图像处理的基本原理数字图像处理是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。
图像处理最早出现于 20 世纪 50 年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于 20 世纪 60 年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
2、2 数字图像处理常用方法:1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准文案专业综合实验报告----数字图像处理专业: 电子信息工程班级:学生姓名:学号:指导教师:年月日设计题目:图像去雾处理一、设计目的由于大气的散射作用,照相机接收到景物反射过来的光线经过了衰减。
雾天的大气退化图像具有对比度低、景物不清晰的特点,给交通系统及户外视觉系统的应用带来严重的影响。
鉴于图像处理和计算机视觉中有关图像理解、目标识别、目标跟踪、智能导航等领域的很多算法都是假设输入的图像或视频是在理想天气条件下拍摄的,因此有雾图像清晰化就显得格外重要,是目前人们研究的热点问题之一,但由于成像系统聚焦模糊、拍摄场景存在相对运动以及雾天等不利环境,使得最终获取的图像往往无法使用。
有雾天气条件下获取的图像对比度低、图像内容模糊不清而且颜色整体偏向灰白色,图像去雾的目的就是恢复有雾图像的对比度和真实色彩,重现在理想天气条件下拍摄的清晰图像。
二、设计内容和要求1、采用直方图均衡化方法增强雾天模糊图像,并比较增强前后的图像和直方图;2、查阅文献,分析雾天图像退化因素,设计一种图像复原方法,对比该复原图像与原始图像以及直方图均衡化后的图像;三、设计思路由于图像中存在噪声等干扰,使得图像模糊不清。
可以采用图像增强的方法对原图像处理,使图像变得清晰。
而直方图均衡化是一种常用的图像增强的方法。
图像模糊,其图像的像素分布不均匀,采用直方图均衡化的方法使其图像像素分布均匀,从而达到均衡像素分布增强图像的目的。
设计方案在晴朗的天气条件下,洁净的空气一般是由氦气、氧气等气体分子、水蒸汽、微量的固体悬浮颗粒物等成分构成。
在这种大气条件下,从物体表面反射的光线在到达成像设备的过程中,基本不会受大气中各种成分的影响发生散射、吸收、发射等现象,而是直接到达成像设备。
相对在有雾天气条件下获得的图像,在这种理想天气条件获得的图像,我们称之为清晰无雾图像。
而在有雾天气条件下获得的图像模糊不清,图像对比度下降,图像的颜色发生漂移,偏向灰白色。
无雾图像和有雾图像相比对比度较高,因此可以考虑增强局部对比度方法进行去雾:1、对彩色图像RGB模型转换为HSI,对I分量分析图像直方图;2、设置适合尺寸模版,对I分量进行局部直方图均衡化增强,分析增强前后的图像和直方图。
3、查阅“基于暗原色先验的单一图像去雾方法”,设计图像无雾算法。
流程框图直方图均衡化对于连续图像,设r 和s 分别表示被增强图像和变换后图像的灰度。
为了简单,在下面的讨论中,假定所有像素的灰度已被归一化了,就是说,当 时,表示黑色;当 时,表示白色;变换函数 与原图像概率密度函数 之间的关系为:()()()rr s T r p r d r ==⎰01r ≤≤ (1)式中:r 为积分变量。
式(1)的右边可以看作是r 的累积分布函数(CDF ),因为CDF 是r 的函数,并单调地从0增加到1,所以这一变换函数满足了前面所述的关于 在 内单值单调增加,对于 ,有 的两个条件。
由于累积分布函数是r 的函数,并且单调的从0增加到1,所以这个变换函数满足对式(1)中的r 求导,则:()r ds P r dr= (2)再把结果带入式:111()()()()[()][()]()s r r r r T s dr d dr P s P r p r T s p r T s ds ds ds---==⋅=⋅=⋅=则得 11()()11()[()]()[][()]1/()s r r r r T s r T s r dr d p s p r p r p r ds ds ds dr p r --======(3) 由以上推到可见,变换后的变量s 的定义域内的概率密度是均匀分布的。
由此可见,用r 累积分布函数作为变换函数可产生一幅灰度级分布具有均匀概率密度的图像。
其结果扩展了像素取值的动态范围。
上面的修正方法是以连续随机变量为基础进行讨论的。
为了对图像进行数字处理,必须引入离散形式的公式。
当灰度级是离散值的时候,可用频数近似代替概率值,即:()k r k n p r N= (01k r ≤≤ 0,1,2,k =…,L-1)(4) 式中,L 是灰度级数; 是取第k 级灰度值的概率; 是在图像中出现第k 级灰度的次数;N 是图像中像素数。
通常把为得到均匀直方图的图像增强技术叫做直方图均衡化处理或直方图线性化处理。
式(1)的直方图均衡化累积分布函数的离散形式可由式(5)表示: 00()()k k j k k r j i i n s T r p r N =====∑∑ (01j r ≤≤,0,1,2,k =…,L-1)(5)其反变换为1()k k r T s -= (6)直方图均衡化效果:原图 直方均衡后原图 直方均衡后直方图均衡化是一种全局操作,而有雾图像的退化程度是不均匀的,场景深度大的物体比场景深度小的物体退化的更严重,在某种程度上局部直方图均衡化更能描述这种性质。
在图像一个窗口内使用直方图均衡化算法,然后通过窗口在图像上不同位置的移动就计算出来了整幅图像的局部化直方图。
这种算法的计算量比较大,使用一些优化技巧可以提高图像处理的速度。
显示了同一幅有雾图像在不同窗口大小下的局部直方图均衡化结果,从中可以大略看出小窗口处理结果的对比度较大,图像上的噪声也比较严重;大窗口处理结果的比较平滑,噪声比较小。
HIS彩色模型下的图像增强在图像处理及显示的过程中,为了能正确的使用颜色模型,需要建立颜色模型。
颜色模型是三维颜色空间中的一个可见光集,它包含某个颜色域的所有模型。
常见的颜色模型有RGB,HSV,NTSC,HISr等,各颜色模型之间可通过公式进行相互转换。
HSI〔Hue-Saturation-Intensity(Lightness),HSI或HSL〕颜色模型用H、S、I三参数描述颜色特性,其中H定义颜色的波长,称为色调;S表示颜色的深浅程度,称为饱和度;I表示强度或亮度当人观察一个彩色物体时,用色调、饱和度、亮度来描述物体的颜色。
色调是描述纯色的属性(纯黄色、橘黄或者红色);饱和度给出一种纯色被白光稀释的程度的度量;亮度是一个主观的描述,实际上,它是不可以测量的,体现了无色的强度概念,并且是描述彩色感觉的关键参数。
而强度(灰度)是单色图像最有用的描述子,这个量是可以测量且很容易解释。
则将提出的这个模型称作为HSI(色调、饱和度、强度)彩色模型,该模型可在彩色图像中从携带的彩色信息(色调和饱和度)里消去强度分量的影响,使得HSI模型成为开发基于彩色描述的图像处理方法的良好工具,而这种彩色描述对人来说是自然而直观的。
HSI模型基于两个重要的事实:其一,I分量与图象的彩色信息无关;其二,H和S分量与人感受颜色的方式是紧密相连的。
HSI模型中的各分量可定义在如图1(a)中所示的双棱锥中,其中每个横截面如图1(b)所示。
对其中的任1个色点P,其H的值对应指向该点的矢量与R轴的夹角。
这个点的S与指向该点的矢量长成正比,越长越饱和。
利用由RGB转换成HIS的公式进行模型转换:基于Matlab的RGB色彩模型和HSI色彩模型的互化变换公式:H= θ B≤G 360-θ B>G其中,θ= arccos 0.5∗[ R−G +(R−B)][ R−G +(R−B)(G−B)1/2]; S=1-3(R+G+B)[min(R,G,B)]I=1/3*(R+G+B);clear;clc;close; x=imread('1.jpg'); rgb=im2double(x); r=rgb(:,:,1); g=rgb(:,:,2);b=rgb(:,:,3);%提取彩色图像R、G、B三个色彩通道的分量。
%构建rgb到his模型的转换公式 num=0.5*((r-g)+(r-b));den=sqrt((r-g).^2+(r-b).*(g-b));theta=acos(num./(den+eps)); H=theta;H(b>g)=2*pi-H(b>g);H=H/(2*pi);num=min(min(r,g),b); den=r+g+b;den(den==0)=eps; S=1-3.*num./den; H(S==0)=0; I=(r+g+b)/3;hsi=cat(3,H,S,I);%将色调H(Hue)、饱和度S(Saturation)、强度I(Intensity)分量合并成hsi色彩空间矩阵subplot(121),imshow(hsi),title('rgb转hsi');%显示结果图像H=hsi(:,:,1)*2*pi; S=hsi(:,:,2); I=hsi(:,:,3);%得到R、G、B三个分量的初始矩阵,并赋为全0 R=zeros(size(hsi,1),size(hsi,2));G=zeros(size(hsi,1),size(hsi,2));B=zeros(size(hsi,1),size(hsi,2));%当H分量在0到2/3pi之间时 idx=find((0<=H)&(H<2*pi/3)); B(idx)=I(idx).*(1-S(idx));R(idx)=I(idx).*(1+S(idx).*cos(H(idx))./cos(pi/3-H(idx))); G(idx)=3*I(idx)-(R(idx)+B(idx));%当H分量在2/3pi到4/3pi之间时idx=find((2*pi/3<=H)&(H<4*pi/3)); R(idx)=I(idx).*(1-S(idx));G(idx)=I(idx).*(1+S(idx).*cos(H(idx)-2*pi/3)./cos(pi-H(idx))); B(idx)=3*I(idx)-(R(idx)+G(idx));%当H分量在4/3pi到2pi之间时idx=find((4*pi/3<=H)&(H<=2*pi)); G(idx)=I(idx).*(1-S(idx));B(idx)=I(idx).*(1+S(idx).*cos(H(idx)-4*pi/3)./cos(5*pi/3-H(idx))); R(idx)=3*I(idx)-(G(idx)+B(idx));rgb1=cat(3,R,G,B);%合并矩阵得到结果subplot(122),imshow(rgb1),title('hsi转rgb');四、源程序matlab源程序1、选择图像并观察其直方图[fname pname]=uigetfile({'*.png';'*.jpg'},'select a image');Im = imread(fname);axes(handles.axes1);imshow(Im);imwrite(Im,'image1.tif');axes(handles.axes2);Im_1=rgb2gray(Im);imhist(Im_1,64);2、在RGB模型中对其进行直方图均衡化RGB=imread('image1.tif');R=RGB(:,:,1);G=RGB(:,:,2);B=RGB(:,:,3);r=histeq(R);g=histeq(G);b=histeq(B);Im2=cat(3,r,g,b);axes(handles.axes3);imshow(Im2);axes(handles.axes4);Im_2=rgb2gray(Im2);imhist(Im_2,64);3、在HIS模型中对亮度进行均衡化F=imread('image1.tif');F=im2double(F);r=F(:,:,1);g=F(:,:,2);b=F(:,:,3);th=acos((0.5*((r-g)+(r-b)))./((sqrt((r-g).^2+(r-b).*(g-b)))+eps));H=th;H(b>g)=2*pi-H(b>g);H=H/(2*pi);S=1-3.*(min(min(r,g),b))./(r+g+b+eps);I=(r+g+b)/3;hsi=cat(3,H,S,I);IE=histeq(I);RV=cat(3,H,S,IE);HV=RV(:,:,1)*2*pi;SV=RV(:,:,2);IV=RV(:,:,3);R=zeros(size(HV));G=zeros(size(HV));B=zeros(size(HV));%RG Sector;判断H所在范围id=find((0<=HV)& (HV<2*pi/3));B(id)=IV(id).*(1-SV(id));R(id)=IV(id).*(1+SV(id).*cos(HV(id))./cos(pi/3-HV(id)));G(id)=3*IV(id)-(R(id)+B(id));%BG Sectorid=find((2*pi/3<=HV)& (HV<4*pi/3));R(id)=IV(id).*(1-SV(id));G(id)=IV(id).*(1+SV(id).*cos(HV(id)-2*pi/3)./cos(pi-HV(id)));B(id)=3*IV(id)-(R(id)+G(id));%BR Sectorid=find((4*pi/3<=HV)& (HV<2*pi));G(id)=IV(id).*(1-SV(id));B(id)=IV(id).*(1+SV(id).*cos(HV(id)-4*pi/3)./cos(5*pi/3-HV(id))); R(id)=3*IV(id)-(G(id)+B(id));Im3=cat(3,R,G,B);Im3=max(min(Im3,1),0);axes(handles.axes5);imshow(Im3);axes(handles.axes6);Im_3=rgb2gray(Im3);imhist(Im_3,64);五、运行结果及分析总结处理前后效果图:利用直方图均衡化的方法对图像进行增强,只是对像素分布进行的均衡处理。