七年级下期末模拟试卷(二)

合集下载

2022-2023学年人教版七年级下册期末达标测数学试卷(二)(含详细解析)

2022-2023学年人教版七年级下册期末达标测数学试卷(二)(含详细解析)

期末达标测试卷(二)时间:90分钟 分值:120分 得分:__________分一、选择题(本大题10小题,每小题3分,共30分)1.下列图形中,∠1与∠2互为对顶角的是( )2.下列各数中,是无理数的是( )A .-5B .12C .16D .3.143.若{x =1,y =2是关于x ,y 的方程x +ay =3的一个解,则a 的值为( )A .1B .-1C .3D .-34.下列计算正确的是( )A .9=±3B .3-27=-3C .(-4)2=-4D .32+22=55.如图,将三角形ABC 沿BC 所在的直线向右平移得到三角形DEF ,已知∠ABC =90°,则下列结论中,错误的是( )第5题图A .EC =CFB .∠A =∠DC .AC ∥DFD .∠DEF =90°6.某校图书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图所示的不完整的扇形统计图,已知甲类书籍有30本,则丙类书籍的数量是( )第6题图A .200本B .144本C .90本D .80本7.已知|x+y+1|+2x-y=0,则x-y的值为( )A.-13B.-1C.13D.18.在平面直角坐标系中,点P(2x-6,x-5)在第三象限,则x的取值范围是( )A.x<5B.x<3C.x>5D.3<x<59.如图,两面平面镜OA,OB形成∠AOB,从OB上一点E射出的一条光线经OA上一点D反射后的光线DC恰好与OB平行,已知∠AOB=35°,∠ODE=∠ADC,则∠DEB的度数是( )第9题图A.35°B.60°C.70°D.85°10.如图,在平面直角坐标系中,A,B,C,D四点的坐标分别是A(1,3),B(1,1),C(3,1),D(3,3),动点P从点A出发,在正方形边上按照A→B→C→D→A→…的方向不断移动,已知P的移动速度为每秒1个单位长度,则第2 023秒,点P的坐标是( )第10题图A.(1,2)B.(2,1)C.(3,2)D.(2,3)二、填空题(本大题5小题,每小题3分,共15分)11.若8点时室外温度为2 ℃,记作(8,2),则21点时室外温度为零下3 ℃,记作__________.1216-|-52|=__________.13.小刚在期中测试中,数学得了95分,语文得了83分,要使三科的平均分不低于90分,则英语至少得__________分.14.如图,直线AB与CD相交于点O,∠AOC-2∠AOE=20°,射线OF平分∠DOE,若∠BOD =60°,则∠AOF=__________.第14题图15.定义:对于实数a,[a]表示不大于a的最大整数,例如:[5.71]=5,[5]=5,[-π]=-4.如果[x+12]=-2,那么x可取的整数值之和为__________.三、解答题(一)(本大题3小题,每小题8分,共24分)16.解方程组:{3x+4y=9,x+y=1.17.当x取何值时,代数式x+43与3x-12的差的值大于1?18.已知2a+1的平方根是±3,3a+2b+4的立方根是-2,求4a-5b+5的算术平方根.四、解答题(二)(本大题3小题,每小题9分,共27分)19.如图,AC∥EF,∠1+∠3=180°.(1)求证:AF∥CD;(2)若AC⊥EB于点C,∠2=40°,求∠BCD的度数.第19题图20.某校组织七年级学生参加汉字听写大赛,并随机抽取部分学生的成绩作为样本进行分析,绘制成如下不完整的统计图表:七年级抽取部分学生成绩的频数分布表成绩x/分频数百分比(%)第1段50≤x<6024第2段60≤x<70612第3段70≤x<809b第4段80≤x<90a36第5段90≤x≤1001530第20题图请根据所给信息,解答下列问题:(1)a=__________,b=__________,并补全频数分布直方图.(2)已知该年级有500名学生参加这次比赛,若成绩在90分以上(含90分)的为优,估计该年级成绩为优的有多少人?(3)请你根据学生的成绩情况提一条合理的建议.21.一家玩具店购进二阶魔方和三阶魔方共100个,花去1 800元,这两种魔方的进价、售价如下表:二阶魔方三阶魔方进价(元/个)1520售价(元/个)2030(1)求购进二阶魔方和三阶魔方的数量;(2)如果将销售完这100个魔方所得的利润全部用于公益捐赠,那么这家玩具店捐赠了多少钱?五、解答题(三)(本大题2小题,每小题12分,共24分)22.如图,BA⊥x轴于点A,点B的坐标为(-1,2),将线段BA沿x轴方向向左平移3个单位长度,平移后的线段为CD.(1)点C的坐标为__________,线段BC与线段AD的位置关系是__________.(2)在四边形ABCD中,点P从点A出发,沿AB→BC→CD方向运动,到点D停止.若点P 的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:①直接写出点P在运动过程中的坐标(用含t的式子表示);②当5<t<7时,若在某一时刻四边形ABCP的面积为4,求此时点P的坐标.第22题图23.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射出的光线自AM顺时针旋转至AN便立即回转,灯B射出的光线自BP 顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足|a-3b|+(a+b-4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)a=__________,b=__________.(2)若灯B先转动20秒,灯A才开始转动,在灯B射出的光线到达BQ之前,灯A转动多长时间时,两灯射出的光线互相平行?第23题图期末达标测试卷(二)1.D2.A3.A4.B5.A6.D7.C8.B9.C 10.D 11.(21,-3) 12.-21 13.92 14.70° 15.-916.解:{3x +4y =9, ①x +y =1. ②②×3,得3x +3y =3.③①-③,得y =6.把y =6代入②,得x +6=1.解得x =-5.所以这个方程组的解为{x =-5,y =6.17.解:根据题意,得 x +43-3x -12>1.去分母,得2(x +4)-3(3x -1)>6.去括号,得2x +8-9x +3>6.移项,得2x -9x >6-8-3.合并同类项,得-7x >-5.系数化为1,得x <57.18.解:∵2a +1的平方根是±3,∴2a +1=9.解得a =4.∵3a +2b +4的立方根是-2,∴3a +2b +4=-8,即12+2b +4=-8.解得b =-12.当a =4,b =-12时,4a -5b +5=4×4-5×(-12)+5=81.∴4a -5b +5的算术平方根为9.19.(1)证明:∵AC ∥EF ,∴∠1+∠2=180°.又∠1+∠3=180°,∴∠2=∠3.∴AF ∥CD .(2)解:∵AC ⊥EB ,∴∠ACB =90°.又∠3=∠2=40°,∴∠BCD =∠ACB -∠3=90°-40°=50°.20.解:(1)18 18.补全频数分布直方图如答图所示.第20题答图(2)500×0.3=150(人).答:估计该年级成绩为优的有150人.(3)由统计图可知,有34%的学生的成绩低于80分,应鼓励学生多阅读书籍,增强学生识字能力.(答案不唯一,合理即可)21.解:(1)设购进二阶魔方x 个,三阶魔方y 个.依题意,得{x +y =100,15x +20y =1 800.解得{x =40,y =60.答:购进二阶魔方40个,三阶魔方60个.(2)(20-15)×40+(30-20)×60=800(元).答:这家玩具店捐赠了800元.22.解:(1)(-4,2) 平行.(2)①当0≤t <2时,P (-1,t );当2≤t ≤5时,P (-t +1,2);当5<t ≤7时,P (-4,7-t ).②由题意,得AB =2,AD =3,PD =7-t .∴S 四边形ABCP =S 四边形ABCD -S △ADP =AB ·AD -12AD ·PD =2×3-12×3(7-t )=4.解得t =173.∴7-t =7-173=43.∴此时点P 的坐标为(-4,43).23.解:(1)3 1.(2)设灯A 转动t 秒时,两灯射出的光线互相平行(记灯A 射出的光线为AM ′,灯B 射出的光线为BP ′).∵PQ ∥MN ,∠BAN =45°,∴∠MAB =∠ABP =135°.①当0<t ≤60时,此时BP ′在AB 右侧.若AM ′∥BP ′,则AM ′在AB 左侧,且∠M ′AB =∠P ′BA ,即135-3t=135-(20+t)×1.解得t=10.②当60<t<115时,此时BP′在AB右侧.若AM′∥BP′,则AM′在AB左侧,且∠M′AB=∠P′BA,即135-(3t-180)=135-(20+t)×1.解得t=100.③当115≤t≤120时,该情况不存在.④当120<t≤160时,BP′在AB左侧.若AM′∥BP′,则AM′在AB右侧,且∠M′AB=∠P′BA,即3t-360-135=(20+t)×1-135.解得t=190>160(不合题意,舍去).综上所述,当t=10秒或100秒时,两灯的光束互相平行.。

2023年度七年级历史下学期期末模拟试卷及答案(二)

2023年度七年级历史下学期期末模拟试卷及答案(二)

2023年七年级历史下学期期末模拟试卷及答案(二)注意:1.本试卷共6页,满分为100分,考试时间为60分钟。

2.答案须用蓝色、黑色钢笔或圆珠笔书写。

题号一二三四五总分得分1 2 3得分评卷人一、单选题,将正确选项的字母填入题后表格中。

(每小题2分,共40分)1.我国用考试方法选拔官员的科举制正式诞生于A. 隋朝B. 唐朝C. 宋朝D.元朝2. 依右图判断,隋唐时期一批粮食从涿郡沿运河运到洛阳的兴洛仓,需要经过的一段是A.江南河B. 邗沟C.通济渠D. 永济渠3. 贞观之治和开元盛世局面出现的共同原因有①都能招贤用能②都能虚心纳谏③都重视农业生产④都任用酷吏使政治稳定A. ①②③④B. ①③④C. ②③④D. ①②③4. 北方民族尊称唐太宗为“天可汗”,这表明A.唐朝实行的民族政策,得到了北方各民族的拥护B.唐朝非常强大,北方各族无法与唐抗衡C. 唐太宗用武力征服了北方民族D.北方各族均向唐朝称臣,双方没有摩擦和战争5.下列与《送子天王图》作者有关的叙述不正确的是A. 作者为唐代画圣吴道子B. 他还创作了《步辇图》C. 民间画工都尊他为祖师D. 他画人物衣裙犹如迎风飘曳,被誉为“吴带当风”6. 下列人物在书法方面取得极高成就的是①李白②颜真卿③柳公权④关汉卿A. ①②③④B. ②③④C. ②③D. ②④7.赵匡胤建立北宋政权是通过A.外戚掌权 B.发动兵变 C.皇位世袭D.组织农民起义8. 两宋时期专门管理海外贸易的机构是A.都护府 B.市舶司 C.巡检司D.广州十三行9.下列关于宋代社会风貌的表述,不正确的是A.官员和富商多穿及腰的短衫B.盛行喝茶,茶楼在城市里很普遍C.出行多使用牛车D.元旦、清明节和端午节为当时三大节日10. 瓦舍在宋代属于A. 手工作坊B. 集会场所C. 体育场馆D. 娱乐场所11. 为我国省级行政区划奠定基础的是A. 西周的分封制B. 秦朝的郡县制C. 元朝的行省制D. 明清的厂卫制12.中华民族大家庭中,在元朝时融合形成的新民族是A.汉族 B.回族 C.蒙古族D.满族13.某校历史兴趣小组的同学准备举办“宋朝科技成果展示会”。

七年级英语第二学期期末考试模拟试卷

七年级英语第二学期期末考试模拟试卷

2012-2013学年第二学期期末考试模拟试卷(二)七年级英语笔试部分一、单项选择。

从每题A、B、C、D四个选项中,选出一个最佳答案。

()1.They have rules in their class.A.too muchB.much tooC.too manyD.many too( )2.Please play volleyball here.A.noB.doC.don’tD.not( )3. can you see in picture?A.What otherB.What elseC.Other whatD.Where else( )4.My mother was ill,so I look after her at home.A.mustB.hadC.couldD.has to( )5.He often English with the classmates.A.practice speakB.practices speakC.practices speakingD.practice speaking( )6.Please help me English.A.Speaking B.tolearning C.with speaking D.learn( )7.-How was your holiday in Sydney?-Wonderful.I enjoyed in the sea.A.swimB.swimmingC.swamD.swims( )8.The hungry people the food and went on to the next house.A.eateC.ateed( )9.-Do you often play soccer with you friend?-No,I don’t like sports.I often play piano in my free time.A.a;the Bthe;/ C/;the D.the;a( )10.-Can I help you?-A.Yes,please.B.I like it.C.I’d like some noodles.D.Both A and C.( )11.- do you books?-I love them.A.How,think ofB.What,like ofC.What,think ofD.What,like( )12.The scarf is moms.A.of B.to C.for D.at( )13.Dose he agree her?A.inB.onC.to Dwith( )14.He sits between and .A.you,meB.you,myC.I,youD.me,your( )15.The boy enjoys the radio in the morning.A.listeningB.listening toC.listen toD.to listen ( )16.I want these books to the library.Can you help me?A.takeB.tookC.takingD.to take( )17.Look!Some of the children under the big tree.A.is singingB.sangC.singingD.are singing( )18.The bookstore is far from here.You can .A.by busB.on a busC.take a busD.in a bus( )19.My aunt has a boy.A.five-year oldB.five-years-oldC.five-year-oldD.five year old( )20.She her photos us yesterday.A.showed,forB.shows,toC.shoes,withD.showed,to二、改写句子。

湘教版七年级下数学期末复习试卷(二)整式的乘法

湘教版七年级下数学期末复习试卷(二)整式的乘法

期末复习(二) 整式的乘法考点一幂的运算【例1】若a m+n·a m+1=a6,且m+2n=4,求m,n的值.【分析】已知m+2n=4,只要再找到一个关于m,n的二元一次方程即可组成方程组求解.可根据同底数幂的乘法法则,由等式左右两边a的指数相等得到.【解答】由已知得a2m+n+1=a6,于是有2m+n+1=6,即2m+n=5,又因为m+2n=4,所以m=2,n=1. 【方法归纳】对于乘方结果相等的两个数,如果底数相等,那么指数也相等.变式练习:1.下列计算正确的是( )A.a+2a=3a2B.(a2b)3=a6b3C.(a m)2=a m+2D.a3·a2=a62.若2x=3,4y=2,则2x+2y的值为__________.考点二多项式的乘法【例2】化简:2(x-1)(x+2)-3(3x-2)(2x-3).【分析】先按多项式乘法法则展开,再合并同类项.【解答】原式=2(x2+2x-x-2)-3(6x2-9x-4x+6)=-16x2+41x-22.【方法归纳】在计算多项式乘法时,要注意不漏项,不重项.多项式与多项式相乘,结果仍是多项式,在合并同类项之前,积的项数等于两个多项式项数的积.3.如果(x+m)与(x+1)的积中不含x项,那么m是( )A.-2B.-1C.1D.24.若2x3-ax2-5x+5=(2x2+ax-1)(x-b)+3,其中a、b为整数,则a+b的值为( )A.-4B.-2C.0D.4考点三乘法公式适用的多项式特点【例3】二次三项式x2-kx+9是一个完全平方式,则k的值是__________.【分析】先把x2-kx+9变形为x2-kx+32或x2-kx+(-3)2,根据两平方项确定中间项为±6x,即可确定k的值.【解答】±6【方法归纳】两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,即“首平方,尾平方,积的2倍在中央”.5.下列各式:①(a+b)(b+a);②(a-b)(a+b);③(-a+b)(a+b);④(-a+b)(-a-b),其中能用乘法公式计算的有( )A.1个B.2个C.3个D.4个考点四利用乘法公式计算【例4】先化简,再求值:(2a-b)(b+2a)-(a-2b)2+5b2.其中a=-1,b=2.【分析】把式子的前两部分分别运用平方差公式和完全平方公式化简.【解答】原式=(4a2-b2)-(a2-4ab+4b2)+5b2=3a2+4ab.当a=-1,b=2时,原式=3×(-1)2+4×(-1)×2=-5.【方法归纳】运用平方差公式时,要看清两个因式中的相同项和相反数项,其结果是相同项的平方减去相反数项的平方.6.下列等式成立的是( )A.(-a-b)2+(a-b)2=-4abB.(-a-b)2+(a-b)2=a2+b2C.(-a-b)(a-b)=(a-b)2D.(-a-b)(a-b)=b2-a27.若(a2+b2+1)(a2+b2-1)=15,那么a2+b2的值是__________.8.计算:(1)(a+b)2-(a-b)2-4ab; (2)[(x+2)(x-2)]2; (3)(a+3)(a-3)(a2-9).考点五乘法公式的几何背景【例5】(1)如图,请用两种不同的方式表示图中的大正方形的面积;(2)你根据上述结果可以得到一个什么公式?(3)利用这个公式计算:1022.【分析】根据图形可以得到:两个图形的面积有两种计算方法,一种是根据正方形的面积等于边长的平方计算;另一种方法是图形中两个长方形面积与两个正方形的面积的和,即可得到公式;然后利用公式计算即可.【解答】(1)方法一:(a+b)2.方法二:a2+2ab+b2.(2)(a+b)2=a2+2ab+b2.(3)1022=(100+2)2=1002+2×100×2+22=10 404.【方法归纳】根据同一个图形的面积的两种表示,所得到的代数式的值相等,由此可得到对应的代数恒等式.9.图1是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图2那样拼成一个正方形,则中间空的部分的面积是( )A.2ab B.(a+b)2 C.(a-b)2D.a2-b2复习测试:一、选择题(每小题3分,共24分)1.计算(-a2)3的结果是( )A.a5B.-a5C.a6D.-a62.下列运算正确的是( )A.x2+x3=x5B.(x-2)2=x2-4C.2x2·x3=2x5D.(x3)4=x73.下列各式中,与(1-a)(-a-1)相等的是( )A.a2-1B.a2-2a+1C.a2-2a-1D.a2+14.如果(x-2)(x+3)=x2+px+q,那么p、q的值为( )A.p=5,q=6 B.p=-1,q=6 C.p=1,q=-6 D.p=5,q=-65.若m的值使得x2+12x+m=(x+6)2-32成立,则m的值为( )A.2B.3C.4D.56.下列计算:①(a3)3=a6;②a2·a3=a6;③2m·3n=6m+n;④-a2·(-a)3=a5;⑤(a-b)3·(b-a)2=(a-b)5.其中错误的个数有( )A.1个B.2个C.3个D.4个7.一个长方体的长、宽、高分别是3a-4、2a、a,它的体积等于( )A.3a3-4a2B.a2C.6a3-8aD.6a3-8a28.请你计算:(1-x)(1+x),(1-x)(1+x+x2),…猜想(1-x)(1+x+x2+…+x n)的结果是( )A.1-x n+1B.1+x n+1C.1-x nD.1+x n二、填空题(每小题4分,共16分)9.计算:2m2·m8=__________.10.已知有理数a,b满足:a+b=2,a-b=5,则(a+b)3·(a-b)3的值是__________.11.卫星绕地球运动的速度是7.9×103米/秒,那么卫星绕地球运行3×106秒走过的路程是__________米.12.多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,请写出所有可能的单项式为__________.三、解答题(共60分)13.(12分)计算:(1)(-2a2b)3+8(a2)2·(-a)2·(-b)3;(2)a(a+4b)-(a+2b)(a-2b)-4ab;(3)(2x-3y+1)(2x+3y-1).14.(10分)先化简,再求值:(1)(2019·河池)(x+2)2-(x+1)(x-1),其中x=1;(2)(2a+b)(3a-2b)-(a-2b)2,其中a=-2,b=1.15.(8分)已知a+b=1,ab=-6,求下列各式的值.(1)a2+b2; (2)a2-ab+b2.16.(10分)四个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad-bc,这个记号就叫做2阶行列式. 例如:=1×4-2×3=-2 . 若=10,求x的值.17.(10分)如图,某校有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划将阴影部分进行绿化,中间将修建一座雕像.(1)用含a、b的代数式表示绿化面积并化简;(2)求出当a=5米,b=2米时的绿化面积.18.(10分)如图a是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图b的形状,拼成一个正方形.(1)图b中的阴影部分面积为__________;(2)观察图b,请你写出三个代数式(m+n)2,(m-n)2,mn之间的等量关系是__________; (3)若x+y=-6,xy=2.75,利用(2)提供的等量关系计算x-y的值.参考答案变式练习1.B2.63.B4.D5.D6.D7.48.(1)原式=a2+2ab+b2-a2+2ab-b2-4ab=0.(2)原式=(x2-4)2=x4-8x2+16.(3)原式=(a2-9)(a2-9)=a4-18a2+81.9.C复习测试1.D2.C3.A4.C5.C6.C7.D8.A9.2m10 10.1 000 11.2.37×101012.±4x或4x413.(1)原式=-8a6b3-8a6b3=-16a6b3.(2)原式=a2+4ab-(a2-4b2)-4ab=a2+4ab-a2+4b2-4ab=4b2.(3)原式=[2x-(3y-1)][2x+(3y-1)]=4x2-(3y-1)2=4x2-(9y2-6y+1)=4x2-9y2+6y-1.14.(1)原式=x2+4x+4-(x2-1)=x2+4x+4-x2+1=4x+5.当x=1时,原式=4×1+5=9.(2)原式=6a2-ab-2b2-a2+4ab-4b2=5a2+3ab-6b2.当a=-2,b=1时,原式=5×(-2)2+3×(-2)×1-6×12=8.15.(1)a2+b2=(a+b)2-2ab=1+12=13.(2)a2-ab+b2=(a+b)2-3ab=12-3×(-6)=1+18=19.16.(x+1)2-(x-2)(x+2)=10,解得x=2.5.17.(1)S=(3a+b)(2a+b)-(a+b)2=6a2+3ab+2ab+b2-a2-2ab-b2=5a2+3ab(平方米).阴影(2)当a=5,b=2时,5a2+3ab=5×25+3×5×2=125+30=155(平方米).18.(1)m2-2mn+n2或(m-n)2.(2)(m+n)2=(m-n)2+4mn.(3)(x-y)2=(x+y)2-4xy=36-11=25,所以x-y的值是±5.。

福建省莆田市2023-2024学年七年级下学期人教版数学期末模拟试卷(含答案)

福建省莆田市2023-2024学年七年级下学期人教版数学期末模拟试卷(含答案)

福建省莆田市2023-2024学年七年级下学期人教版数学期末模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列四个图形中,不能通过基本图形平移得到的是( )A.B.C.D.2.(4分)下列数中,3.14159,,0.121121112…,﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个3.(4分)为了完成下列任务,最适合采用全面调查的是( )A.了解问天实验舱各零部件的情况B.了解中央电视台春节联欢晚会的收视率C.了解全国中学生的节水意识D.了解一批电视机的使用寿命4.(4分)在平面直角坐标系中,点P(﹣2,3)在( )A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)已知a<b,下列式子不一定成立的是( )A.a﹣1<b﹣1B.﹣2a>﹣2b C.2a+1<2b+1D.m2a>m2b6.(4分)在中国传统数学著作《九章算术》中有这样一个问题:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价,问牛、马价各几何?”译文:“今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于头牛的价格.问每头牛、每匹马的价格各是多少?”设每匹马的价格为x钱,每头牛的价格为y钱,则依据条件可列方程组为( )A.B.C.D.7.(4分)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为( )A.100°B.105°C.110°D.115°8.(4分)在平面直角坐标系xOy中,点A的坐标为(2,3),AB∥x轴,且AB=4,则点B的坐标为( )A.(2,﹣1)B.(﹣2,3)C.(2,﹣1)或(2,7)D.(﹣2,3)或(6,3)9.(4分)如果不等式组无解,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤110.(4分)将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为( )A.16B.24C.30D.40二.填空题(共6小题,满分24分,每小题4分)11.(4分)由3x﹣y=1,可以得到用x表示y的式子是 .12.(4分)在平面直角坐标系中,将点A(﹣2,3)先向右平移1个单位长度,再向下平移4个单位长度得到点B ,则点B的坐标是 .13.(4分)如图,AC⊥BC,垂足为C,若BC=3cm,AC=4cm,AB=5cm,则点A到BC的距离为 cm.14.(4分)不等式x﹣2≤2的最大整数解是 .15.(4分)某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是 .16.(4分)如图.已知点C为两条相互平行的直线AB,ED之间一动点,∠ABC和∠CDE的角平分线相交于F,若,则∠BCD的度数为 .三.解答题(共9小题,满分86分)17.(6分)计算:||﹣||+||.18.(6分)解方程组:,19.(8分)解不等式组,并在数轴上表示此不等式组的解集.20.(8分)如图,三角形ABC上一点A(﹣3,2)经平移后对应点为D(﹣4,4),将三角形ABC作同样的平移得到三角形.(1)画出三角形DEF;(2)点P在三角形ABC内部,请写出点P(m,n)随三角形平移后的对应点P′的坐标 (用含有m,n的式子表示).21.(10分)如图,点E,F分别在AB和CD上,AF⊥CE于点G,∠AFC=∠D.求证:∠BED+∠AEC=90°.22.(10分)“学习金字塔”用数字的形式显示了采用不同的学习方式,学习者在两周以后还能记住的内容的多少.它告诉我们,把学会的知识讲给别人听是学习效果最好的一种方式.为此,某学校举办了一次主题为“我是小讲师”的讲题活动,组织全校学生参加.活动结束后,学校抽取部分学生的讲题成绩进行统计,将成绩x分为A ,B,C,D四个等级(A等级:90⩽x⩽100;B等级:80⩽x<90;C等级:60⩽x<80;D等级:0⩽x<60),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息,解答下列问题.(1)这次抽样调查共抽取 人;条形统计图中的a= .(2)将条形统计图补充完整;在扇形统计图中,求C等级所在扇形的圆心角的度数.(3)若80分及以上成绩为“优秀”,现该校共有3600名学生,估计该校学生讲题成绩为“优秀”的共有多少人.23.(12分)我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口说出答案,众人十分惊奇,忙问计算的奥妙,你知道他是怎样迅速准确地计算出结果的吗下面是小龙的探究过程,请补充完整:(1)口算并填空:753个位数字为 ;(2)求.①由103=1000,1003=1000000,可以确定是 位数;②由54872的个位上的数是2,可以确定的个位上的数是 ;③如果划去54872后面的三位872得到数54,而33=27,43=64,可以确定的十位上的数是 ,由此求得 .(3)已知:205379也是一个整数的立方,请用类似的方法求出和.24.(12分)请同学们根据以下表格中的素材一和素材二,自主探索完成任务一、任务二、任务三.如何合理搭配消费券?素材一为促进消费,某市人民政府决定,发放“双促双旺•你消费我助力”消费券,一人可领取的消费券有:A型消费券(满35减15元)2张,B型消费券(满68减25元)2张,c型消费券(满158减60元)1张.素材二在此次活动中,小明一家5人每人都领到了所有的消费券.某日小明一家在超市使用消费券,消费金额减了390元,请完成以下任务.任务一若小明一家用了5张A型消费券,3张B型的消费券,则用了 张C型的消费券,此时的实际消费最少为 元.任务二若小明一家用13张A、B、C型的消费券消费,已知A型比C型的消费券多1张,求A、B、C型的消费券各多少张?任务三若小明一家仅用两种不同类型的消费券消费,请问如何搭配使用消费券,使得使用付款最少,并求出此时消费券的搭配方案.25.(14分)如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足+|b﹣a+16|=0,将B向左平移18个单位得到点C.(1)求点A、B、C的坐标;(2)点M、N分别为线段BC、OA上的两个动点,点M从点B以1个单位/秒的速度向左运动,同时点N从点A 以2个单位/秒的速度向右运动,设运动时间为t秒(0≤t≤12).①当BM=ON时,求t的值;②是否存在一段时间,使得S四边形NACM<S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.福建省莆田市2023-2024学年七年级下学期人教版数学期末模拟试卷(答案)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列四个图形中,不能通过基本图形平移得到的是( )A.B.C.D.【答案】C2.(4分)下列数中,3.14159,,0.121121112…,﹣π,,,无理数的个数有( )A.1个B.2个C.3个D.4个【答案】B3.(4分)为了完成下列任务,最适合采用全面调查的是( )A.了解问天实验舱各零部件的情况B.了解中央电视台春节联欢晚会的收视率C.了解全国中学生的节水意识D.了解一批电视机的使用寿命【答案】A4.(4分)在平面直角坐标系中,点P(﹣2,3)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B5.(4分)已知a<b,下列式子不一定成立的是( )A.a﹣1<b﹣1B.﹣2a>﹣2b C.2a+1<2b+1D.m2a>m2b【答案】D6.(4分)在中国传统数学著作《九章算术》中有这样一个问题:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价,问牛、马价各几何?”译文:“今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于头牛的价格.问每头牛、每匹马的价格各是多少?”设每匹马的价格为x钱,每头牛的价格为y钱,则依据条件可列方程组为( )A.B.C.D.【答案】B7.(4分)将一副直角三角板如图放置,已知∠E=60°,∠C=45°,EF∥BC,则∠BND的大小为( )A.100°B.105°C.110°D.115°【答案】B8.(4分)在平面直角坐标系xOy中,点A的坐标为(2,3),AB∥x轴,且AB=4,则点B的坐标为( )A.(2,﹣1)B.(﹣2,3)C.(2,﹣1)或(2,7)D.(﹣2,3)或(6,3)【答案】D9.(4分)如果不等式组无解,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【答案】C10.(4分)将图1中周长为32的长方形纸片剪成1号、2号、3号、4号正方形和5号长方形,并将它们按图2的方式放入周长为48的长方形中,则没有覆盖的阴影部分的周长为( )A.16B.24C.30D.40【答案】见试题解答内容二.填空题(共6小题,满分24分,每小题4分)11.(4分)由3x﹣y=1,可以得到用x表示y的式子是 y=3x﹣1 .【答案】y=3x﹣1.12.(4分)在平面直角坐标系中,将点A(﹣2,3)先向右平移1个单位长度,再向下平移4个单位长度得到点B ,则点B的坐标是 (﹣1,﹣1) .【答案】(﹣1,﹣1).13.(4分)如图,AC⊥BC,垂足为C,若BC=3cm,AC=4cm,AB=5cm,则点A到BC的距离为 4 cm.【答案】4.14.(4分)不等式x﹣2≤2的最大整数解是 4 .【答案】4.15.(4分)某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是 ②③① .【答案】②③①.16.(4分)如图.已知点C为两条相互平行的直线AB,ED之间一动点,∠ABC和∠CDE的角平分线相交于F,若,则∠BCD的度数为 120° .【答案】120°.三.解答题(共9小题,满分86分)17.(6分)计算:||﹣||+||.【答案】2﹣3.18.(6分)解方程组:,【答案】.19.(8分)解不等式组,并在数轴上表示此不等式组的解集.【答案】2<x≤3,数轴表示见解答.20.(8分)如图,三角形ABC上一点A(﹣3,2)经平移后对应点为D(﹣4,4),将三角形ABC作同样的平移得到三角形.(1)画出三角形DEF;(2)点P在三角形ABC内部,请写出点P(m,n)随三角形平移后的对应点P′的坐标 (m﹣1,n+2) (用含有m,n的式子表示).【答案】(1)见解答.(2)(m﹣1,n+2).21.(10分)如图,点E,F分别在AB和CD上,AF⊥CE于点G,∠AFC=∠D.求证:∠BED+∠AEC=90°.【答案】见解析.22.(10分)“学习金字塔”用数字的形式显示了采用不同的学习方式,学习者在两周以后还能记住的内容的多少.它告诉我们,把学会的知识讲给别人听是学习效果最好的一种方式.为此,某学校举办了一次主题为“我是小讲师”的讲题活动,组织全校学生参加.活动结束后,学校抽取部分学生的讲题成绩进行统计,将成绩x分为A ,B,C,D四个等级(A等级:90⩽x⩽100;B等级:80⩽x<90;C等级:60⩽x<80;D等级:0⩽x<60),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息,解答下列问题.(1)这次抽样调查共抽取 200 人;条形统计图中的a= 40 .(2)将条形统计图补充完整;在扇形统计图中,求C等级所在扇形的圆心角的度数.(3)若80分及以上成绩为“优秀”,现该校共有3600名学生,估计该校学生讲题成绩为“优秀”的共有多少人.【答案】(1)200,40;(2)补全条形统计图详见解答,C等级所在扇形的圆心角的度数为72°;(3)2340人.23.(12分)我国数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求54872的立方根.华罗庚脱口说出答案,众人十分惊奇,忙问计算的奥妙,你知道他是怎样迅速准确地计算出结果的吗下面是小龙的探究过程,请补充完整:(1)口算并填空:753个位数字为 5 ;(2)求.①由103=1000,1003=1000000,可以确定是 两 位数;②由54872的个位上的数是2,可以确定的个位上的数是 8 ;③如果划去54872后面的三位872得到数54,而33=27,43=64,可以确定的十位上的数是 3 ,由此求得 38 .(3)已知:205379也是一个整数的立方,请用类似的方法求出和.【答案】(1)5;(2)①两,②8;③3,38;(3)=59,=26.24.(12分)请同学们根据以下表格中的素材一和素材二,自主探索完成任务一、任务二、任务三.如何合理搭配消费券?素材一为促进消费,某市人民政府决定,发放“双促双旺•你消费我助力”消费券,一人可领取的消费券有:A型消费券(满35减15元)2张,B型消费券(满68减25元)2张,c型消费券(满158减60元)1张.素材二在此次活动中,小明一家5人每人都领到了所有的消费券.某日小明一家在超市使用消费券,消费金额减了390元,请完成以下任务.任务一若小明一家用了5张A型消费券,3张B型的消费券,则用了 4 张C型的消费券,此时的实际消费最少为 621 元.任务二若小明一家用13张A、B、C型的消费券消费,已知A型比C型的消费券多1张,求A、B、C型的消费券各多少张?任务三若小明一家仅用两种不同类型的消费券消费,请问如何搭配使用消费券,使得使用付款最少,并求出此时消费券的搭配方案.【答案】任务一:4,621;任务二:A型的消费券4张,B型的消费券6张,则C型的消费券3张;任务三:使用10张A型券,4张C型券.25.(14分)如图,在平面直角坐标系中,点A、B分别是x轴、y轴上的点,且OA=a,OB=b,其中a、b满足+|b﹣a+16|=0,将B向左平移18个单位得到点C.(1)求点A、B、C的坐标;(2)点M、N分别为线段BC、OA上的两个动点,点M从点B以1个单位/秒的速度向左运动,同时点N从点A 以2个单位/秒的速度向右运动,设运动时间为t秒(0≤t≤12).①当BM=ON时,求t的值;②是否存在一段时间,使得S四边形NACM<S四边形BOAC?若存在,求出t的取值范围;若不存在,说明理由.【答案】(1)C(-18,8);(2)t=8秒,0<t<3.。

部编版七年级下册语文期末模拟测试卷2(含答案)

部编版七年级下册语文期末模拟测试卷2(含答案)

部编版七年级下册语文期末模拟测试卷2满分:120分时间:120分钟一、积累与运用(29分)1.下列加点字的注音有误的一项是( )(2分)A.哉.(zāi) 俯瞰.(kàn) 震悚.(sǒng) 炽.热(chì)B.碾.(niǎn) 屏.障(píng) 毡.鞋(zhān) 告罄.(qìng)C.涕.(tì) 嗥.鸣(háo) 褪.色(tuì) 淤.泥(wū)D.啮.(niè) 门槛.(kǎn) 服侍.(shì) 譬.如(pì)2.下列各组词语中有错別字的一项是( )(2分)A.遨游稠密杂乱无章千钧重负B.烧灼渺小锋芒必露亦复如是C.斑斓厄运略胜一筹耀武扬威D.循环妥帖语无伦次天涯海角3.下列加点词语使用有误的一项是( )(2分)A.下午,今年的第一场秋雨不期而遇....,虽然没有电视台预报的降水量大,但还是让郑州一直干燥的空气湿润了一些。

B.环卫工人的劳动也许是微不足道....的,但又是不可缺少的,因为我们的城市需要“美容师”,他们应受到尊重。

C.漫天大雪封住了他们的眼晴,使他们每走一步都忧心忡忡....,因为一旦偏离方向,错过了贮藏点,无异于直接走向死亡。

D.离开了忙碌的工作岗位,妈妈这回不但没显露出失落,反而表现出如释重负....的感觉。

4.下列句子没有语病的一项是( )(2分)A.一个好的比喻,或为形似,或为神似,或为形神兼似,总是离不开相似这一根本特点。

B.大爷种植的荔枝刚采摘完毕,就基本上全部被抢购一空。

C.山谷里回荡着我们欢乐的笑容和歌声。

D.要把我们的学生培养成为既有丰富的知识又有高尚的品质。

5.下列说法有误的一项是( )(2分)A.“管理”“推测”“増加”“喜欢”这几个词都是动词。

B.“改革开放”是偏正短语,“美丽风景”是并列短语,“安排任务”是动宾短语,“泡得出汗了”是动补短语。

C.“我抚摸了一下那小小的紫色的花舱”这句话中“抚摸”是动词,“了”是动态助词,“小小”是形容词。

2023年江苏省七年级下学期数学期末试题卷(附答案) (2)

2023年江苏省七年级下学期数学期末试题卷(附答案) (2)

江苏省七年级下学期数学期末试题卷本试卷由填空题、选择题和解答题三大题组成,共29小题,满分130分.考试时间120分钟.注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0.5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案写在相应的位置上.1.下列运算正确的是A.a·a2=a2 B.(ab)3=ab3C.(a2)3=a6D.a10÷a2=a52.某红外线遥控器发出的红外线波长为0.00 000 094m,用科学记数法表示这个数是A.9.4×10-7m B.9.4×107m C.9.4×10-8m D.9.4×108m3.一个正多边形的每个外角都等于36°,那么它是A.正六边形 B.正八边形 C.正十边形 D.正十二边形4.不等式组221xx≤⎧⎨+>⎩的最小整数解为A.-1 B.0 C.1 D.25.如图,直线l、n分别截∠A的两边,且l∥n.根据图中标示的角,判断下列各角的度数关系,正确的是A.∠2+∠5 >180°B.∠2+∠3< 180°C.∠1+∠6> 180°D.∠3+∠4<180°6.数a、b、c在数轴上对应的点如图所示,则下列式子中正确的是A.a-c>b-c B.a+c<b+cC.ac>bc D.a cb b <7.下列命题中是真命题的是A.质数都是奇数B.如果a=b,那么a=bC.如果a>b,那么(a+b)(a-b)>0 D.若x<y,则x-202X<y-202X8.关于x,y的方程组225y x mx m+=⎧⎨+=⎩的解满足x+y=6,则m的值为A.-1 B.2 C.1 D.49.(3x+2)(-x4+3x5)+(3x+2)(-2x4+x5)+(x+1)(3x4-4x5)与下列哪一个式子相同A.(3x4-4x5) (2x+1) B.-(3x4-4x5)(2x+3)C.(3x4-4x5) (2x+3) D.-(3x4-4x5)(2x+1)10.小新原有50元,表格中记录了他今天所支出各项费用,其中饼干支出的金额被涂黑,若每包饼干的售价为3元,则小明可能剩下的金额数是A.7元B.8元C.9元D.10元二、填空题本大题共8小题.每小题3分,共24分把答案直接填在答题卡相对应的位置上.11.命题“内错角相等”是▲命题(填“真”、“假”).12.(▲)(2a-3b)=12a2b-18ab2.13.已知2x=3y+7,则32x y-=▲.14.如果(x+3)(x+a)=x2-2x-15,则a=▲.15.如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是▲.16.已知关于x的方程x-(2x-a)=2的解是负数,则a的取值范围是▲.17.计算:498×502-5002=▲.18.已知不等式组1xx n<⎧⎨>⎩有解,则n的取值范围是▲.三、解答题本大题共11小题,共76分.把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.(本题满分9分,每小题3分)将下列各式分解因式:(1)4m2-36mn+81n2;(2)x2-3x-10;(3)18a2-50.20.(本题满分8分,每小题4分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]·x2y;(2)先化简,再求值:(x+2)2+(2x+1)(2x-1)-4x(x+1),其中x=12.21.(本题满分8分,每小题4分)解下列方程组:(1)524235x yx y-=⎧⎨-=-⎩(2)42325560a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩22.(本题满分8分,每小题4分)解不等式(组)(1)334642x x--<-,并把解在数轴上表示出来; (2)()32412123x xxx⎧-->-⎪⎨+>-⎪⎩.23.(本题满分5分)如图,EF//AD,∠1=∠2,∠BAC=70°.填空:解:∵EF//AD(已知),∴∠2=▲(▲),∵∠1=∠2( ▲),∴∠1=∠3( ▲),∴AB∥▲( ▲).∴∠BAC+▲=180°( ▲).∵∠BAC=70°( ▲),∴∠AGD=▲°.24.(本题满分5分)某厂家为支援灾区人民,捐赠帐篷16800顶,该厂家备有2辆大货车、8辆小货车运送,每次每辆大货车所运帐篷数比小货车所运帐篷数的2倍少30顶,已知大、小货车每天均运送一次,2天恰好运完,求大、小货车每辆每次各运送帐篷多少顶?25.(本题满分5分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕.(1)试判断B'E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.26.(本题满分6分)已知关于x、y的方程组316215x aybx y-=⎧⎨+=⎩的解是76xy=⎧⎨=⎩(1)求(a+10b)2-(a-10b)2的值;(2)若△ABC中,∠A、∠B的对边长即为6a、7b的值,且这个三角形的周长大于12且小于18,求∠C对边AB的长度范围.27.(本题满分7分)如图,在△ABC中,点E在AC上,∠AEB=∠ABC.(1)图1中,作∠BAC的角平分线AD,分别交CB、BE于D、F两点,求证:∠EFD =∠ADC;(2)图2中,作△ABC的外角∠BAG的角平分线AD,分别交CB、BE的延长线于D、F两点,试探究(1)中结论是否仍成立?为什么?28.(本题满分7分)甲、乙两商场以同样价格出售同样的商品,并且又推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.(1)若小明妈妈准备用120元去商场购物,你建议小明妈妈去▲商场花费少(直接写“甲”或“乙”);(2)根据两家商场的优惠活动方案,问顾客到哪家商场购物花费少?请说明理由.29.(本题满分8分)如图,在△ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以2cm/s的速度运动,当点E先出发1s后,点F也从点B出发沿射线BC以72cm/s的速度运动,分别连结AF,CE.设点F运动时间为t(s),其中t>0.(1)当t为何值时,∠BAF<∠BAC;(2)当t为何值时,AE=CF;(3)当t为何值时,S△ABF+S△ACE<S△ABC.教师的职务是‘千教万教,教人求真’;学生的职务是‘千学万学,学做真人’。

2022-2023学年北京市北大附中实验学校七年级(下)期末数学模拟练习试卷

2022-2023学年北京市北大附中实验学校七年级(下)期末数学模拟练习试卷

2022-2023学年北京市北大附中实验学校七年级(下)期末数学模拟练习试卷(2)一、选择题(每题3分,共30分)1.(3分)的平方根是()A.B.C.±2D.22.(3分)下列判断正确的是()A.a>B.a2>a C.a>﹣a D.a2≥03.(3分)为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是()A.3500B.20C.30D.6004.(3分)将长度为5cm的线段向上平移10cm后,所得线段的长度是()A.10cm B.5cm C.0cm D.无法确定5.(3分)已知n是正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n 的值有()A.4个B.5个C.6个D.7个6.(3分)已知点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)7.(3分)已知关于x的方程2x﹣a=x﹣1的解是非负数,则a的取值范围为()A.a≥1B.a>1C.a≤1D.a<18.(3分)小靖想买一双好的运动鞋,于是她上网查找有关资料,得到下表:颜色价格(元/双)备注甲品牌红、白、蓝、灰450不宜在雨天穿乙品牌淡黄、浅绿、白、黑700防水性很好丙品牌浅绿、淡黄、白黄相间500防水性很好丁品牌灰、白、蓝相间350防水性一般她想买一双价格在300~600元之间,颜色为红白相间或浅绿色或淡黄色,并且防水性能很好的鞋,那么她应选()A.甲品牌B.乙品牌C.丙品牌D.丁品牌9.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13B.13C.2D.﹣210.(3分)若关于x、y的二元一次方程组的解与方程x+y=6的解相同,则k 的值是()A.5B.6C.7D.8二、填空题(每题3分,共18分)11.(3分)某地发生自然灾害后七年级一班的50名同学进行了爱心捐款活动,又捐5元、10元、20元的,还有捐50元和100元的,如图反映了不同捐款额的人数比例,那么该班同学共捐款元.12.(3分)铁路部门规定旅客免费携行李箱的长宽高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为20cm,长与宽之比为3:2,则该行李箱宽度的最大值是.13.(3分)已知关于x、y的方程组与有相同的解,则a+b=.14.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0),第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P的坐标是.15.(3分)如图是中国在奥运会中获奖牌扇形统计图,由图可知,金牌数占奖牌总数的百分率是,图中表示金牌百分率的扇形的圆心角度数约是.(精确到1°)16.(3分)“输入一个实数x,然后经过如图的运算,到判断是否大于190为止”叫做一次操作,那么恰好经过三次操作停止,则x的取值范围是.三、解答题(共52分)17.(6分)解不等式组,并在数轴上表示它的解集.18.(8分)解不等式组,并在数轴上画出解集19.(10分)某小区居民利用“健步行APP“开展健步走活动,为了解居民的健步走情况,小文调查了部分居民某天行走的步数(单位:千步),并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.根据图表提供的信息,回答下列问题:(1)小文此次调查的样本容量是;(2)行走步数为4~8千步的人数为人;(3)行走步数为12~16千步的扇形圆心角为°.(4)如该小区有3000名居民,请估算一下该小区行走步数为0~4千步的人数.20.(8分)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C (3,1),把△A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到△ABC,试写出△A1B1C1三个顶点.21.(10分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知),∴∠2=(),又∵∠1=∠2(已知),∴∠1=∠3(),∴AB∥(),∴∠BAC+=180°(),∵∠BAC=70°(已知),∴∠AGD=.22.(10分)某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元.(1)求甲、乙两种机器每台各多少万元?(2)如果工厂购买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?2022-2023学年北京市北大附中实验学校七年级(下)期末数学模拟练习试卷(2)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)的平方根是()A.B.C.±2D.2【分析】先化简,然后再根据平方根的定义求解即可.【解答】解:∵=2,∴的平方根是±.故选:B.【点评】本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.2.(3分)下列判断正确的是()A.a>B.a2>a C.a>﹣a D.a2≥0【分析】根据平方数非负数举例对各选项分析判断即可得解.【解答】解:A、a=﹣3时,=﹣1,a<,故本选项错误;B、a=0时,a2=a,故本选项错误;C、a=﹣1时,﹣a=1,a<﹣a,故本选项错误;D、a2≥0正确,故本选项正确.故选:D.【点评】本题考查了平方数非负数的性质,举特例判断更简便.3.(3分)为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是()A.3500B.20C.30D.600【分析】根据样本容量则是指样本中个体的数目,可得答案.【解答】解:为了考察某市初中3500名毕业生的数学成绩,从中抽取20本试卷,每本30份,在这个问题中,样本容量是30×20=600,故选:D.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.(3分)将长度为5cm的线段向上平移10cm后,所得线段的长度是()A.10cm B.5cm C.0cm D.无法确定【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【解答】解:线段长度不变,还是5cm.故选:B.【点评】此题主要考查平移的基本性质,题目比较基础,把握平移的性质即可.5.(3分)已知n是正整数,若一个三角形的三边长分别是n+2、n+8、3n,则满足条件的n 的值有()A.4个B.5个C.6个D.7个【分析】三角形三边关系定理:三角形两边之和大于第三边.依据三角形三边关系列不等式组,进行求解即可.【解答】解:由三角形三边关系可得,,解得2<n<10,∴正整数n有7个:3,4,5,6,7,8,9.故选:D.【点评】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度,即可判定这三条线段能构成一个三角形.6.(3分)已知点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)【分析】根据第四象限内点的纵坐标是负数,点到x轴的距离等于纵坐标的绝对值列方程求出a的值,然后求解即可.【解答】解:∵点P(a+5,a﹣1)在第四象限,且到x轴的距离为2,∴a﹣1=﹣2,解得a=﹣1,所以,a+5=﹣1+5=4,所以,点P的坐标为(4,﹣2).故选:A.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.7.(3分)已知关于x的方程2x﹣a=x﹣1的解是非负数,则a的取值范围为()A.a≥1B.a>1C.a≤1D.a<1【分析】本题首先要解这个关于x的方程,然后根据解是非负数,就可以得到一个关于a 的不等式,最后求出a的取值范围.【解答】解:原方程可整理为:(2﹣1)x=a﹣1,解得:x=a﹣1,∵关于x的方程2x﹣a=x﹣1的解是非负数,∴a﹣1≥0,解得:a≥1.故选:A.【点评】本题综合考查了一元一次方程的解与解一元一次不等式.解关于x的不等式是本题的一个难点.8.(3分)小靖想买一双好的运动鞋,于是她上网查找有关资料,得到下表:颜色价格(元/双)备注甲品牌红、白、蓝、灰450不宜在雨天穿乙品牌淡黄、浅绿、白、黑700防水性很好丙品牌浅绿、淡黄、白黄相间500防水性很好丁品牌灰、白、蓝相间350防水性一般她想买一双价格在300~600元之间,颜色为红白相间或浅绿色或淡黄色,并且防水性能很好的鞋,那么她应选()A.甲品牌B.乙品牌C.丙品牌D.丁品牌【分析】根据要求,利用表格中的信息一一判断即可.【解答】解:价格在300~600元之间,不能选乙,又要面子颜色为红白相间或浅绿色或淡黄色,并且防水性能很好,故选:C.【点评】本题考查统计表,解题的关键是理解题意,利用表格信息解决问题.9.(3分)对于非零的两个实数a,b,规定a⊕b=am﹣bn,若3⊕(﹣5)=15,4⊕(﹣7)=28,则(﹣1)⊕2的值为()A.﹣13B.13C.2D.﹣2【分析】根据已知规定及两式,确定出m、n的值,再利用新规定化简原式即可得到结果.【解答】解:根据题意得:3⊕(﹣5)=3m+5n=15,4⊕(﹣7)=4m+7n=28∴,解得:∴(﹣1)⊕2=﹣m﹣2n=35﹣48=﹣13故选:A.【点评】本题考查了新定义运算,需理解规定的意义和运算顺利.解决本题根据新定义的意义,求出m、n是关键.10.(3分)若关于x、y的二元一次方程组的解与方程x+y=6的解相同,则k 的值是()A.5B.6C.7D.8【分析】先解方程组,用含k的代数式表示x、y,再把x、y的值代入二元一次方程中,求出k.【解答】解:,①+②,得4(x+y)=3k+3,把x+y=6代入,得24=3k+3,解得k=7.故选:C.【点评】本题考查了解二元一次方程组和解一元一次方程,理清方程组中未知数的系数特点是解决本题的关键.二、填空题(每题3分,共18分)11.(3分)某地发生自然灾害后七年级一班的50名同学进行了爱心捐款活动,又捐5元、10元、20元的,还有捐50元和100元的,如图反映了不同捐款额的人数比例,那么该班同学共捐款1560元.【分析】根据扇形统计图的定义,求出各部分同学捐款的总数,再相加即可得出结论.【解答】解:由图可知,50×(12%×100+8%×5+44%×20+20%×10+16%×50)=50×31.2=1560(元).故答案为:1560.【点评】此题考查的是扇形统计图,熟练从统计图中得到必要的信息是解决问题的关键.12.(3分)铁路部门规定旅客免费携行李箱的长宽高之和不超过160cm,某厂家生产符合该规定的行李箱,已知行李箱的高为20cm,长与宽之比为3:2,则该行李箱宽度的最大值是56cm.【分析】设行李箱长3xcm,则宽为2xcm,根据长宽高之和不超过160cm,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,进而可得出2x的最大值,此题得解.【解答】解:设行李箱长3xcm,则宽为2xcm,依题意,得:3x+2x+20≤160,解得:x≤28,∴2x≤56.故答案为:56cm.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.(3分)已知关于x、y的方程组与有相同的解,则a+b=1.【分析】联立方程组中两个不含a与b的方程组成方程组,求出方程组的解得到x与y 的值,代入剩下方程求出a与b的值,即可求出a+b的值.【解答】解:联立得:,①+②×2得:5x=20,解得:x=4,把x=4代入①得:y=3,把x=4,y=3代入得:,两方程相加得:7(a+b)=7,解得:a+b=1,故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.(3分)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点运动到点(2,2),第2次运动到点(4,0),第3次接着运动到点(6,1)按这样的运动规律,经过第2021次运动后动点P的坐标是(4042,2).【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数的2倍,纵坐标为2,0,1,0,每4次一轮这一规律,进而求出即可.【解答】解:根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(2,2),第2次接着运动到点(4,0),第3次接着运动到点(6,1),∴第4次运动到点(8,0),第5次接着运动到点(10,2),…,∴横坐标为运动次数的2倍,经过第2021次运动后,动点P的横坐标为4042,纵坐标为2,0,1,0,每4次一轮,∴经过第2021次运动后,2021÷4=505•1,故动点P的纵坐标为2,∴经过第2021次运动后,动点P的坐标是(4042,2).故答案为:(4042,2).【点评】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.15.(3分)如图是中国在奥运会中获奖牌扇形统计图,由图可知,金牌数占奖牌总数的百分率是51%,图中表示金牌百分率的扇形的圆心角度数约是184°.(精确到1°)【分析】根据各组所占百分比的和等于1可得金牌数占奖牌总数的百分率;用360°乘以金牌数占奖牌总数的百分率即可求出图中表示金牌百分率的扇形的圆心角度数.【解答】解:由题意可得,金牌数占奖牌总数的百分率是1﹣21%﹣28%=51%;图中表示金牌百分率的扇形的圆心角度数是360°×51%=183.6°≈184°.故答案为:51%,184°.【点评】本题考查了扇形统计图.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.16.(3分)“输入一个实数x,然后经过如图的运算,到判断是否大于190为止”叫做一次操作,那么恰好经过三次操作停止,则x的取值范围是8<x≤22.【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【解答】解:第一次的结果为:3x﹣2,没有输出,则3x﹣2≤190,解得:x≤64;第二次的结果为:3(3x﹣2)﹣2=9x﹣8,没有输出,则9x﹣8≤190,解得:x≤22;第三次的结果为:3(9x﹣8)﹣2=27x﹣26,输出,则27x﹣26>190,解得:x>8;综上可得:8<x≤22.故答案为:8<x≤22.【点评】本题考查了一元一次不等式和方程的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.三、解答题(共52分)17.(6分)解不等式组,并在数轴上表示它的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:,解不等式①得:x>﹣2,解不等式②得:x≤3,则不等式组的解集为﹣2<x≤3,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(8分)解不等式组,并在数轴上画出解集【分析】先分别解两个不等式得到x>﹣1和x<2,然后根据大小小大中间找确定不等式组的解集.【解答】解:,解①得x>﹣1,解②得x<2,所以不等式组的解集为﹣1<x<2.用数轴表示为:【点评】本题考查了一元一次不等式组:几个一元一次不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.19.(10分)某小区居民利用“健步行APP“开展健步走活动,为了解居民的健步走情况,小文调查了部分居民某天行走的步数(单位:千步),并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.根据图表提供的信息,回答下列问题:(1)小文此次调查的样本容量是200;(2)行走步数为4~8千步的人数为50人;(3)行走步数为12~16千步的扇形圆心角为72°.(4)如该小区有3000名居民,请估算一下该小区行走步数为0~4千步的人数.【分析】(1)由8﹣12千步的人数及其所占百分比可得答案;(2)总人数乘以对应的百分比可得;(3)用360°乘以12~16千步对应的百分比可得答案;(4)总人数乘以样本中0~4千步的人数所占比例.【解答】解:(1)小文此次调查的样本容量为70÷35%=200,故答案为:200;(2)行走步数为4~8千步的人数为200×25%=50(人)故答案为:50;(3)行走步数为12~16千步的扇形圆心角为360×20%=72°,故答案为:72;(4)估算一下该小区行走步数为0~4千步的人数为3000×=420(人).【点评】本题考查了频数(率)直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)如图所示,△ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C (3,1),把△A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到△ABC,试写出△A1B1C1三个顶点.【分析】将△ABC的三个顶点逆向平移写出即可.【解答】解:∵△A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到△ABC,∴△ABC向左平移4个单位,再向上平移3个单位,恰好得到△A1B1C1,∵A(1,2),B(4,3),C(3,1),∴A1(﹣3,5),B1(0,6),C1(﹣1,4).【点评】本题考查了坐标与图形变化﹣平移,逆向思维考虑求解是解题的关键.21.(10分)如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度数.请将解题过程填写完整.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°.【分析】由EF与AD平行,利用两直线平行,同位角相等得到一对角相等,再由已知角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行得到AB与DG平行,利用两直线平行同旁内角互补得到两个角互补,即可求出所求角的度数.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=70°(已知),∴∠AGD=110°.故答案为:∠3;两直线平行,同位角相等;等量代换;DG,内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(10分)某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调查,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元.(1)求甲、乙两种机器每台各多少万元?(2)如果工厂购买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?【分析】(1)设甲型机器每台x万元,乙型机器每台y万元,根据“购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元”,即可得出关于x,y的二元一次方程组,解之即可求出甲、乙两种机器的单价;(2)设该工厂购买甲型机器m台,则购买乙型机器(6﹣m)台,利用总价=单价×数量,结合总价不超过34万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再结合m为非负整数,即可得出各购买方案.【解答】解:(1)设甲型机器每台x万元,乙型机器每台y万元,依题意得:,解得:.答:甲型机器每台7万元,乙型机器每台5万元.(2)设该工厂购买甲型机器m台,则购买乙型机器(6﹣m)台,依题意得:7m+5(6﹣m)≤34,解得:m≤2.又∵m为非负整数,∴m可以为0,1,2,∴该工厂共有3种购买方案,方案1:购买乙型机器6台;方案2:购买甲型机器1台,乙型机器5台;方案3:购买甲型机器2台,乙型机器4台.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.。

七年级下册语文期末模拟试卷(二)

七年级下册语文期末模拟试卷(二)

七年级下册期末语文模拟试卷(二)考试时间:120分钟满分:120分一、积累运用(33分)。

1.名句默写。

(10分)(1)无丝竹之乱耳,。

(刘禹锡《陋室铭》)(2)念天地之悠悠,。

(《登幽州台歌》)(3)可怜夜半虚前席,。

(李商隐《贾生》)(4) ,阴阳割昏晓。

(杜甫《》)(5)落红不是无情物,。

(龚自珍《己亥杂诗(其五)》)(6)政入万山围子里,。

(杨万里《过松源晨炊漆公店》)(7) ,隔江犹唱后庭花。

(杜牧《泊秦淮》)(8) ,何人不起故园情?(李白《春夜洛城闻笛》)2.阅读下面文字,按要求答题。

(6分)他从唐诗下手,目不窥.园,足不下楼,兀.兀穷年,历尽心血。

杜甫晚年,疏懒得“一月不梳头”。

闻先生也总是头发零乱,他是无xiá及此。

饭,几乎忘记了吃,他贪的是精神食粮;夜间睡得很少,为了研究,他惜寸阴、分阴。

深xiāo灯火是他的伴侣,因它大开光明之路,“漂白了四璧”。

(1)给短文中加点词语注音或根据拼音写出汉字。

(4分)目不窥.园()兀兀..穷年()深xiāo灯火()无xiá及此()(2)句子中有两个错别字,请找出来并订正。

(2分)改为改为3.下列句子中加点词语使用不正确...的一项是()(2分)A.榜样的力量是无穷的,一年一度的“感动中国人物”评选活动对社会的引导作用是不言而喻....的。

B.习近平总书记多次引经据典....谈反腐,向古人借智慧,对今人敲警钟。

C.一拿到语文试卷,小明忍不住笑了,拿起笔开始答题,信心满满,手不释卷....。

D.邓稼先是中华民族核武器事业的奠基人和开拓者。

张爱萍将军称他为“两弹元勋”,他是当之无愧....的。

4.下列句子没有..语病的一项是()(2分)A.广受好评的电视节目《经典咏流传》不但提高了大众对经典诗词的鉴赏水平,而且唤起了人们对经典诗词的记忆。

B.我们不能否认做一个真正幸福的人应该关注自身的精神生活,培养高雅的兴趣爱好。

C.我省要全面加强海洋生态文明建设,提高海洋资源开发利用的效率和范围。

人教版七年级(下)期末数学试卷二

人教版七年级(下)期末数学试卷二

七年级(下)期末数学试卷6.14作业一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中只有一项符合题目要求)1.(3分)4的算术平方根是()A.2B.4C.﹣2D.﹣42.(3分)点P(x,y)在第二象限,且点P到x轴、y轴的距离分别为6,7,则点P的坐标为()A.(﹣6,7)B.(6,﹣7)C.(7,﹣6)D.(﹣7,6)3.(3分)若a>b,则下列式子正确的是()A.1﹣4a>1﹣4b B.a<b C.﹣a>﹣b D.2a﹣4>2b﹣44.(3分)下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量5.(3分)有加减法解方程时,最简捷的方法是()A.①×4﹣②×3,消去x B.①×4+②×3,消去xC.②×2+①,消去y D.②×2﹣①,消去y6.(3分)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上7.(3分)如图,下列条件中,能判断AB∥CD的是()A.∠3=∠4B.∠1=∠2C.∠BAC=∠ACD D.∠BAD=∠BCD8.(3分)某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()A.得分在70~80分之间的人数最多B.该班的总人数为40C.得分在90~100分之间的人数最少D.及格(≥60分)人数是269.(3分)2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5h 共收割小麦8hm2,1台大收割机和1台小收割机每小时各收割小麦多少hm2?若设1台大收割机和1台小收割机每小时各收割小麦xhm2和yhm2.根据题意,可得方程组()A.B.C.D.10.(3分)若关于x的不等式组的解集中至少有6个整数解,则正数a的最小值是()A.1B.C.2D.3二、填空题(本大题共8个小题,每小题3分,共24分)11.(3分)为了了解某校七年级1500名学生的数学期中考试成绩,从中抽取了200名学生的成绩进行统计,在这个问题中,样本容量是.12.(3分)“a的2倍与b的一半的差不大于0”用不等式表示为.13.(3分)点P(x﹣2,x+3)在第一象限,则x的取值范围是.14.(3分)若实数a与b满足(4a﹣b)2+|3a﹣b+2|=0,则ab的平方根为.15.(3分)若关于x的不等式x﹣m≥﹣1的解集如图所示,则m等于.16.(3分)已知是二元一次方程组的解,则的值为.17.(3分)过平面上一点O作三条射线OA、OB和OC,已知OA⊥OB,∠AOC:∠AOB=1:2,则∠BOC =°.18.(3分)在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,若点A的坐标为(a,b),则点A2021的坐标为.三、解答题(本大题共6个小题,共46分)19.(6分)如图,三角形ABC三个顶点的坐标分别为A(﹣4,﹣1),B(﹣5,﹣4),C(﹣1,﹣3),将三角形ABC进行平移得到三角形A1B1C1,三角形ABC中任意一点P(x1,y1)平移后的对应点P1的坐标为(x1+6,y1+4).(1)请问:三角形ABC是如何平移得到三角形A1B1C1的?画出三角形A1B1C1;(2)写出点A1,B1,C1的坐标.20.(6分)解不等式组,并在数轴上表示出不等式组的解集.21.(6分)请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式性质).即∠BAF=.∴∠4=∠BAF.(等量代换).∴AB∥CD().22.(8分)某校七年级数学兴趣小组成员小华对本班上学期期末考试数学成绩作了统计分析,绘制成如下频数分布表和频数分布直方图.分组50≤x <60 60≤x <70 70≤x <80 80≤x <90 90≤x ≤100 频数2 a 20 16 4 占调查总人数的百分比 4% 16% m 32% n请你根据图表提供的信息,解答下列问题:(1)分布表中a = ,m = ,n = ;(2)补全频数分布直方图;(3)如果80分以上为优秀,已知该年级共有学生600人,请你估计七年级学生这次考试优秀的人数是多少?23.(10分)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A 、B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A 、B 两种型号家用净水器各购进了多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)24.(10分)先阅读,再完成练习一般地,数轴上表示数x 的点与原点的距离,叫做数x 的绝对值,记作|x |,|x |<3.x 表示到原点距离小于3的数,从如图1所示的数轴上看:大于﹣3而小于3的数,它们到原点距离小于3,所以|x |<3的解集是﹣3<x <3;|x |>3x 表示到原点距离大于3的数,从如图2所示的数轴上看:小于﹣3的数或大于3的数,它们到原点距离大于3,所以x>3的解集是x<﹣3或x>3解答下面的问题:(1)不等式|x|<5的解集为,不等式|x|>5的解集为.(2)不等式|x|<m(m>0)的解集为.不等式|x|>m(m>0)的解集为.(3)解不等式|x﹣3|<5.(4)解不等式|x﹣5|>3.。

期末达标检测试卷(二)-七年级地理下册同步精品课堂(人教版)

期末达标检测试卷(二)-七年级地理下册同步精品课堂(人教版)

七年级(下)期末达标检测试卷(二)(时间:90分钟满分:100分)一、选择题(本大题共25小题,每小题2分,共50分。

每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)一、选择题亚洲是我们共同的家园,根据下图,完成下面小题。

1.以下关于亚洲地理位置说法正确的是()A.亚洲主要位于西半球和北半球B.亚洲西邻北美洲C.亚洲跨寒、温、热三带D.亚洲是世界上跨经度最广的大洲2.图中甲地位于()A.东亚B.中亚C.西亚D.东南亚3.大洋乙是()A.大西洋B.北冰洋C.太平洋D.印度洋4.下列地点不属于亚洲与其他大洲分界线的是()A.乌拉尔山脉、乌拉尔河B.大高加索山脉、土耳其海峡C.苏伊士运河、白令海峡D.巴拿马运河、直布罗陀海峡【答案】1.C 2.C 3.D 4.D【解析】1.亚洲跨了东、南、西、北四个半球,主要位于东半球和北半球,故A错误。

亚洲西邻欧洲,东隔白令海峡与北美洲相望,故B错误。

亚洲跨了寒、温、热三个温度带,故C正确。

亚洲是世界上跨纬度最广的大洲,跨经度最广的是南极洲,故D错误。

故选C。

2.亚洲地域辽阔,是世界上面积最大的大洲,根据各地区差异的不同,将亚洲划分为六个分区,图中甲是西亚地区。

故选C。

3.由图可知,图中乙是位于亚洲南部的印度洋,是四大洋中全部位于东半球的大洋。

故选D。

4.亚洲是世界上面积最大的大洲,地处亚欧大陆东部,与欧洲的分界线是乌拉尔山、乌拉尔河、大高加索山脉和土耳其海峡;东北与北美洲的分界线是白令海峡,西南与非洲的分界线是苏伊士运河;巴拿马运河是南北美洲分界线,直布罗陀海峡是欧洲与非洲的分界线。

故选D。

欧大陆局部轮廓图,完成下面小题。

5.图中四地,位于“古丝绸之路”的枢纽位置,属于常年干旱少雨的是()A.①B.①C.①D.①6.图中,代表①地气候类型的是()A.B.C.D.7.①处传统民居的特点可能是()A.墙薄、窗大,通风散热B.双层竹楼,通风防潮C.开挖窑洞,就地取材D.墙厚、窗小,隔热防寒8.①①两地降水差异的主要影响因素是()A.纬度位置B.海陆位置C.地形D.人类活动【答案】5.C 6.B 7.D 8.B【解析】5.①位于欧洲西部,属于温带海洋性气候,全年温和多雨,故A错。

2023-2024学年七年级下学期英语期末测试模拟试卷二(天津专用)(原卷版)

2023-2024学年七年级下学期英语期末测试模拟试卷二(天津专用)(原卷版)

2023-2024学年七年级下学期英语期末测试模拟试卷二(天津专用)满分120分。

考试时间100分钟第I卷一、听力理解(本大题共20小题,每小题1分,共20分)1.听力理解(共20小题,每小题1分,共20分)A)在下列每小题内,你将听到一个或两个句子,并看到供选择的A、B、C三幅图画,找出与你所听句子内容相匹配的图画。

1.A. B. C.2.A. B. C.3.A. B. C.4.A. B. C.B)下面你将听到十组对话,每组对话都有一个问题,根据对话内容从每组所给的A、B、C 三个选项中,找出能回答所提问题的最佳选项。

5. Which language can Bob speak well?A. French.B. English.C. Chinese.6. How much beef did the woman buy at the market?A. Half a kilo.B. One kilo.C. Two kilos.7. What will they give their teachers on Teachers’ Day?A. Some nice presents.B. Some flowers.C. Some books.8. What does the man want to buy for his daughter?A. A skirt.B. Some nice food.C. A storybook.9. What did the girl do last weekend?A. Had a picnic.B. Watched a play.C. Listened to music.10. What colour are the boy’s gloves?A. Black.B. Yellow.C. Purple.11. What does Jane have to do now?A. Do her homework.B. Clean the house.C. See a film.12. What will people use to take photos in twenty years?A. Cameras.B. Mobile phones.C. Computers.13. What will the girl do on Saturday afternoon?A. Have a piano lesson.B. Wash her clothes.C. Watch TV.14. What building is over there?A. A police station.B. A school.C. A post office.C)听下面长对话或独白,每段长对话或独白后都有几个问题,从题中所给的A、B、C三个选项中选出最佳选项。

江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)

江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)

江苏省2019-2020学年七年级数学下学期期末模拟试卷及答案(二)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.2.计算x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy23.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣54.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.55.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.26.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y (x+2)28.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠39.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=______.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=______.13.已知:x a=4,x b=2,则x a+b=______.14.一个n边形的内角和是1260°,那么n=______.15.若正有理数m使得是一个完全平方式,则m=______.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为______.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=______°.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 中点,且S△ABC=4平方厘米,则S△BEF的值为______.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.21.解不等式组,并把它的解集在数轴上表示出来.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为______;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC 的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千b瓦时的部分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.用分数表示4﹣2的结果是()A.B.C.D.【考点】负整数指数幂.【分析】根据负整数指数幂的运算方法:a﹣p=,求出用分数表示4﹣2的结果是多少即可.【解答】解:∵4﹣2==,∴用分数表示4﹣2的结果是.故选:D.【点评】此题主要考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.2.计算x2y3÷(xy)2的结果是()A.xy B.x C.y D.xy2【考点】整式的除法.【分析】单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.根据法则即可求出结果.【解答】解:x2y3÷(xy)2,=x2y3÷x2y2,=x2﹣2y3﹣2,=y.故选C.【点评】本题考查单项式除以单项式运算.(1)单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式;(2)单项式除法的实质是有理数除法和同底数幂除法的组合.3.肥皂泡的泡壁厚度大约是0.0007mm,0.0007用科学记数法表示为()A.0.7×10﹣3 B.7×10﹣3C.7×10﹣4D.7×10﹣5【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4,故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.已知是二元一次方程2x+my=1的一个解,则m的值为()A.3 B.﹣5 C.﹣3 D.5【考点】二元一次方程的解.【分析】将代入2x+my=1,即可转化为关于m的一元一次方程,解答即可.【解答】解:将代入2x+my=1,得4﹣m=1,解得m=3.故选:A.【点评】此题考查了二元一次方程的解,对方程解的理解,直接代入方程求值即可.5.不等式2x﹣1≤4的最大整数解是()A.0 B.1 C.D.2【考点】一元一次不等式的整数解.【分析】解不等式求得x的范围,再该范围内可得其最大整数解.【解答】解:移项、合并,得:2x≤5,系数化为1,得:x≤2.5,∴不等式的最大整数解为2,故选:D.【点评】本题主要考查解不等式的能力,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.可以借助数轴进行数形结合,得到需要的值,进而非常容易的解决问题.6.下列命题是假命题的是()A.同旁内角互补B.垂直于同一条直线的两条直线平行C.对顶角相等D.同角的余角相等【考点】命题与定理.【分析】利用平行线的性质、对顶角的性质及余角的定义分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,错误,是假命题,符合题意;B、垂直于同一直线的两条直线平行,正确,是真命题,不符合题意;C、对顶角相等,正确,是真命题,不符合题意;D、同角的余角相等,正确,是真命题,不符合题意;故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及余角的定义等知识,难度不大.7.把2x2y﹣8xy+8y分解因式,正确的是()A.2(x2y﹣4xy+4y)B.2y(x2﹣4x+4)C.2y(x﹣2)2D.2y (x+2)2【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式2Y,进而利用完全平方公式分解因式即可.【解答】解:2x2y﹣8xy+8y=2y(x2﹣4x+4)=2y(x﹣2)2.故选:C.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式是解题关键.8.如图,不能判断l1∥l2的条件是()A.∠1=∠3 B.∠2+∠4=180°C.∠4=∠5 D.∠2=∠3【考点】平行线的判定.【分析】根据题意,结合图形对选项一一分析,排除错误答案.【解答】解:A、∠1=∠3正确,内错角相等两直线平行;B、∠2+∠4=180°正确,同旁内角互补两直线平行;C、∠4=∠5正确,同位角相等两直线平行;D、∠2=∠3错误,它们不是同位角、内错角、同旁内角,故不能推断两直线平行.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.如图,AB∥CD,∠CED=90°,EF⊥CD,F为垂足,则图中与∠EDF互余的角有()A.4个B.3个C.2个D.1个【考点】平行线的性质;余角和补角.【分析】先根据∠CED=90°,EF⊥CD可得出∠EDF+∠DEF=90°,∠EDF+∠DCE=90°,再由平行线的性质可知∠DCE=∠AEC,故∠AEC+∠EDF=90°,由此可得出结论.【解答】解:∵∠CED=90°,EF⊥CD,∴∠EDF+∠DEF=90°,∠EDF+∠DCE=90°.∵AB∥CD,∴∠DCE=∠AEC,∴∠AEC+∠EDF=90°.故选B.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.10.如图,两个正方形边长分别为a、b,如果a+b=ab=6,则阴影部分的面积为()A.6 B.9 C.12 D.18【考点】整式的混合运算.【分析】阴影部分面积等于两个正方形面积之和减去两个直角三角形面积,求出即可.【解答】解:∵a+b=ab=6,∴S=a2+b2﹣a2﹣b(a+b)=(a2+b2﹣ab)= [(a+b)2﹣3ab]=×(36﹣18)=9,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11.计算:(3x﹣1)(x﹣2)=3x2﹣7x+2.【考点】多项式乘多项式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=3x2﹣6x﹣x+2=3x2﹣7x+2,故答案为:3x2﹣7x+2【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.12.若a+b=﹣2,a﹣b=4,则a2﹣b2=﹣8.【考点】因式分解-运用公式法.【分析】原式利用平方差公式分解后,将各自的值代入计算即可求出值.【解答】解:∵a+b=﹣2,a﹣b=4,∴a2﹣b2=(a+b)(a﹣b)=﹣8.故答案为:﹣8.【点评】此题考查了因式分解﹣运用公式法,熟练掌握公式是解本题的关键.13.已知:x a=4,x b=2,则x a+b=8.【考点】同底数幂的乘法.【分析】原式逆用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵x a=4,x b=2,∴x a+b=x a•x b=8.故答案为:8.【点评】此题考查了同底数幂的乘法,熟练掌握运算法则是解本题的关键.14.一个n边形的内角和是1260°,那么n=9.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2).180 (n≥3)且n为整数)可得方程:(n﹣2)×180=1260,再解方程即可.【解答】解:由题意得:(n﹣2)×180=1260,解得:n=9,故答案为:9.【点评】此题主要考查了多边形的内角和公式,关键是掌握内角和公式.15.若正有理数m使得是一个完全平方式,则m=.【考点】完全平方式.【分析】根据完全平方式的结构解答即可【解答】解:∵是一个完全平方式,且m为正数,∴m=2×=.故答案为:.【点评】本题是完全平方公式的应用,掌握完全平方式的结构是解题的关键.16.如图,直线a∥b,把三角板的直角顶点放在直线b上,若∠1=60°,则∠2的度数为30°.【考点】平行线的性质.【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【解答】解:已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°﹣60°﹣90°=30°.故答案为:30°.【点评】此题考查了学生对平行线性质的应用,关键是由平行线性质得出同位角相等求出∠3.17.如图,把△ABC沿线段DE折叠,使点A落在点F处,BC∥DE,若∠A+∠B=105°,则∠FEC=30°.【考点】平行线的性质.【分析】根据三角形的内角和得到∠C=75°,根据平行线的性质得到∠AED=∠C=75°,由折叠的想知道的∠DEF=∠AED=75°,于是得到结论.【解答】解:∵∠A+∠B=105°,∴∠C=75°,∵BC∥DE,∴∠AED=∠C=75°,∵把△ABC沿线段DE折叠,使点A落在点F处,∴∠DEF=∠AED=75°,∴∠FEC=180°﹣∠AED﹣∠DEF=30°,故答案为:30.【点评】此题考查了折叠的性质以及平行线的性质.此题比较简单,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.如图所示,在△ABC中,已知点D,E,F分别是BC,AD,CE 中点,且S△ABC=4平方厘米,则S△BEF的值为1cm2.【考点】三角形的面积.【分析】根据等底等高的三角形的面积相等可知,三角形的中线把三角形分成面积相等的两个三角形,然后求解即可.【解答】解:∵D是BC的中点,∴S△ABD=S△ACD=S△ABC=×4=2cm2,∵E是AD的中点,∴S△BDE=S△CDE=×2=1cm2,∴S△BEF=(S△BDE+S△CDE)=×(1+1)=1cm2.故答案为:1cm2.【点评】本题考查了三角形的面积,熟记三角形的中线把三角形分成面积相等的两个三角形是解题的关键.三、解答题(本大题共10小题,共76分.解答时应写出必要的计算或说明过程)19.解方程组.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②×3得:7x=56,即x=8,把x=8代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(x+3)2+(x+2)(x﹣2)﹣2x2,其中x=﹣1.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,平方差公式化简,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2+6x+9+x2﹣4﹣2x2=6x+5,当x=﹣1时,原式=﹣6+5=﹣1.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先解不等式组中的每一个不等式,得到不等式组的解集,再把不等式的解集表示在数轴上即可【解答】解:,解不等式①得x≥﹣2,解不等式②得x<4,故不等式组的解为:﹣2≤x<4,把解集在数轴上表示出来为:【点评】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.【考点】完全平方公式.【分析】(1)先去括号,再整体代入即可求出答案;(2)先变形,再整体代入,即可求出答案.【解答】解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.【点评】本题考查了整式的混合运算和完全平方公式的应用,题目是一道比较典型的题目,难度适中.23.如图,在△ABC中,点E在BC上,CD⊥AB,EF⊥AB,垂足分别为D、F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【考点】平行线的判定与性质.【分析】(1)根据垂直定义求出∠CDF=∠EFB=90°,根据平行线的判定推出即可;(2)根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定得出BC∥DG,根据平行线的性质得出∠3=∠ACB即可.【解答】解:(1)CD平行于EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠DCB,∵∠1=∠2,∴∠1=∠DCB,∴BC∥DG,∴∠3=∠ACB,∵∠3=115°,∴∠ACB=115°.【点评】本题考查了平行线的性质和判定的应用,能正确运用性质和判定进行推理是解此题的关键,难度适中.24.如图,△ABC的顶点都在每个边长为1个单位长度的方格纸的格点上,将△ABC向右平移3格,再向上平移2格.(1)请在图中画出平移后的′B′C′;(2)△ABC的面积为3;(3)若AB的长约为5.4,求出AB边上的高(结果保留整数)【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)根据三角形的面积公式即可得出结论;(3)设AB边上的高为h,根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示;(2)S△ABC=×3×2=3.故答案为:3;(3)设AB边上的高为h,则AB•h=3,即×5.4h=3,解得h≈1.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.25.已知3x﹣2y=6.(1)把方程写成用含x的代数式表示y的形式;(2)若﹣1<y≤3,求x的取值范围.(3)若﹣1<x≤3,求y的最大值.【考点】解二元一次方程.【分析】(1)把x看做已知数求出y即可;(2)把表示出的y代入已知不等式求出x的范围即可;(3)把表示出的x代入已知不等式求出y的范围即可.【解答】解:(1)方程3x﹣2y=6,解得:y=;(2)由题意得:﹣1<≤3,解得:<x≤4;(3)由题意得:x=,代入不等式得:﹣1<≤3,解得:﹣<y≤,则y的最大值为.【点评】此题考查了解二元一次方程,把一个未知数看做已知数表示出另一个未知数是解本题的关键.26.(10分)(2016春•张家港市期末)如图,在△ABC中,∠BAC 的平分线交BC于点D.(1)如图1,若∠B=62°,∠C=38°,AE⊥BC于点E,求∠EAD的度数;(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,∠B=x°,∠C=y°(x>y),求∠G的度数.【考点】三角形内角和定理.【分析】(1)先根据三角形内角和定理求出∠BAC的度数,再由角平分线的性质求出∠BAD的度数,由直角三角形的性质求出∠BAE 的度数,根据∠EAD=∠BAD﹣∠BAE即可得出结论;(2)首先利用三角形内角和定理可求出∠BAC的度数,进而可求出∠BAD的度数,由题意可知∠BAG=∠BAC,再利用已知条件和三角形外角和定理即可求出∠G的度数.【解答】解:(1)∵在△ABC中,∠B=62°,∠C=38°,∴∠BAC=180°﹣62°﹣38°=80°.∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=40°.∵AE⊥BC于点E,∴∠AEB=90°,∴∠BAE=90°﹣62°=28°,∴∠EAD=∠BAD﹣∠BAE=40°﹣28°=12°;(2)∵∠B=x°,∠C=y°,∴∠BAC=180°﹣x°﹣y°,∵∠BAC的平分线交BC于点D,∴∠BAD=∠BAC=(180°﹣x°﹣y°),AG平分∠BAD,∴∠BAG=∠BAD=(180°﹣x°﹣y°),∵∠BDF=∠BAD+∠B,∴∠G=∠BDF﹣∠GAD=x°,【点评】本题考查角平分线的定义、三角形外角的性质及三角形的内角和定理.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件;三角形的外角通常情况下是转化为内角来解决.27.(10分)(2016春•张家港市期末)若关于x、y的二元一次方程组的解都为正数.(1)求a的取值范围;(2)化简|a+1|﹣|a﹣1|;(3)若上述二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,且这个等腰三角形的周长为9,求a的值.【考点】等腰三角形的性质;二元一次方程组的解;三角形三边关系.【分析】(1)先解方程组用含a的代数式表示x,y的值,再代入有关x,y的不等关系得到关于a的不等式求解即可;(2)根据绝对值的定义即可得到结论;(3)首先用含m的式子表示x和y,由于x、y的值是一个等腰三角形两边的长,所以x、y可能是腰也可能是底,依次分析即可解决,注意应根据三角形三边关系验证是否能组成三角形.【解答】解:(1)解得∴,∵若关于x、y的二元一次方程组的解都为正数,∴a>1;(2)∵a>1,∴|a+1|﹣|a﹣1|=a+1﹣a+1=2;(3)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为9,∴2(a﹣1)+a+2=9,解得:a=3,∴x=2,y=5,不能组成三角形,∴2(a+2)+a﹣1=9,解得:a=2,∴x=1,y=5,能组成等腰三角形,∴a的值是2.【点评】主要考查了方程组的解的定义和不等式的解法.理解方程组解的意义用含m的代数式表示出x,y,找到关于x,y的不等式并用a表示出来是解题的关键.28.(10分)(2016春•张家港市期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分 a超过150千瓦时,但不超过300千b瓦时的部分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)利用居民甲用电200千瓦时,交电费170元;居民乙用电400千瓦时,交电费400元,列出方程组并解答;(2)根据当居民月用电量0≤x≤150时,0.8x≤0.85x,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,分别得出即可.【解答】解:(1)依题意得出:,解得:.故:a=0.8;b=1.(2)设试行“阶梯电价”收费以后,该市一户居民月用电x千瓦时,其当月的平均电价每千瓦时不超过0.85元.当居民月用电量0<x≤150时,0.8x≤0.85x,故x≥0,当居民月用电量x满足150<x≤300时,150×0.8+x﹣150≤0.85x,解得:150≤x≤200,当居民月用电量x满足x>300时,150×0.8+300×1+(x﹣300)×1.3≤0.85x,解得:x≤,不符合题意.综上所述,试行“阶梯电价”后,该市一户居民月用电量不超过200千瓦时时,其月平均电价每千瓦时不超过0.85元.【点评】此题主要考查了一次函数的应用以及分段函数的应用,根据自变量取值范围不同得出x的取值是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下期末模拟试卷(二)
一.选择题(每小题3分,共36分)
01.下列命题中,是真命题的有( )
①同位角相等②对顶角相等③过一点有且只有一条直线与已知直线平行④过一点有且只有一条直线与已知直线垂直
A .1个
B .2个
C .3个
D .4个
02.邻补角是指( )
A .相邻的两个角
B .和为180°的两个角
C .有一条边公共的两个角
D .相邻且互补的两个角
03.如图,AB ∥CD ,∠B =120°,∠C =25°,则∠E 的大小为( )
A .145°
B .95°
C .85°
D .75°
04.如图,DH ∥EG ∥BC ,且DC ∥EF ,则图中与∠1相等的角(不含∠1)的个数是( )
A .2个
B .4个
C .5个
D .6个
05.有一条直的等宽纸带,按如图折叠,纸带重叠部分中的∠α的度数( )
A .30°
B .60°
C .75°
D .80°
06.点P (-m ,n )到x 轴,y 轴的距离之和是( )
A .-m +n
B .m +n
C .|-m +n|
D .|-m|+|n|
07.点P(a ,b)且a*b >0,a +b <0,则点P 在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
08.在同一坐标系中,直线AB ∥CD ,且直线AB 与x 轴的交点为(3,0)直线CD 与x 轴的交点为(-2,0),则直线CD 是有直线AB ( )得来的.
A .向右平移5个单位长度
B . 向右平移1个单位长度
C . 向左平移1个单位长度
D . 向左平移5个单位长度
09.如右图,图中共有( )个三角形
A .5
B .6
C .7
D .8 10.一个三角形中,至少有一个内角度数不会大于( ) A .15° B .30° C .45° D .60°
11.若一个多边形的每一个内角都是135°,则它的边数是( )
A .7
B .8
C .9
D .10
12.如右图,BO .CO 分别平分∠ABC 和∠ACB ,连结AO 并延长交BC
于点D ,BM .CM 分别平分∠ABC 和∠ACB 的外角,直线MC 和直线
BO 交于点N ,OH ⊥BC 于点H ,有下列结论︰
①∠BOC +∠BMC =180° ②∠N =∠DOH
③∠BOD =∠COH ④若∠CBA =∠CAB ,则MN ∥AB .
其中正确的个数有( )
A .1个
B .2个
C .3个
D .4个
二.填空(每小题4分,共16分)
A
D 第3题
B
C
第4题
A 第9题图
(第12题图)
13.写出一个位于第四象限的点,且它到x 轴距离小于到y 轴的距离___________________.
14.两个角α和β,它们的两边分别平行,且α=2β-30°.则α=_____________.
15.如图∠ABC 中,AD 是高,BE 是∠ABC 的角平分线,若∠BAD =36°,那么∠BFD =_________.
16.黑色等边三角形与白色正六边形的边长相等,用它们镶嵌图案,方法如下︰白色正六边形分上下两行,上面的一行的正六边形个数比下面一行
少一个,正六边形之间的空隙用黑色的正三角形嵌满,按1,2,3个图案
所示规律依次下去则第n 个图案中,黑色正三角形和白色正六边形的个数
分别是(
)
A .n 2+n +2,2n +1
B .2n +2,2n +1
C .4n ,n 2-n +3
D .4n ,2n +1
三.解答题(共68分) 17.(本题7分)如图,已知∠1=∠D =78°,∠2=62°,AE ∥BC .求∠DCB
的度数.
18.(本题8分)如图,A .B .C 在同一直线上,∠1=∠2,∠E =∠3,试说明︰AD ∥BE .
19.(本题8分)如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.
20.(本题8分)如图,三角形ABC 三个顶点的坐标分别为A (2,3),B (-2,0)C (5,0),将三角形ABC 沿x 轴负方向平移2个单位,再沿y 轴负方向平移
1个单位,得到三角形A 1B 1C 1. (1)画出三角形A 1B 1C 1,并分别写出三个顶点的坐标; (2)求三角形A 1B 1C 1的面积.
B
C
D C
A
B
21.(本题8分)点P (2m +1,3m -2).
(1)若点P 到x 轴的距离为7,求m 的值;
(2)若点P 到x 轴的距离是它到y 轴距离的2倍,求m 的值.
22.(本题9分)如图,△ABC 纸片中,将纸片的一角折叠,使点C 落在△ABC 内部.
(1)若∠A =65°,∠B =75°,∠1=20°,则∠C =__________.
(2)试探究求∠1.∠2与∠C 之间的数量关系,并简要说明理由.
23.(本题9分)如图,△ABC 中,AD 是∠BAC 的平分线,线段BE ⊥AC 于E ,交直线AD 于点F .
(1)若△ABC 为锐角三角形,试判断∠ABC 与∠C ,∠BFD 之间存在何种等量关系,请证明;
(2)若∠BAC 是钝角,其他条件不变,(1)中的结论是否成立?如不成立,又有怎样的结论?请画图证明.
24.(本题11分)在平面直角坐标系中∠DEQ 的顶点E 阻碍x 轴负半轴上,DQ 交x 轴于C ,EC 平分∠
DEQ ,过D 的直线交坐标轴于A .B 且∠ADE =∠BDC .
(1)若∠ABE =20°,求∠Q 的度数.
(2)若DH ⊥AB 交x 轴于G ,交y 轴于H ,试探究求∠Q 与∠OHD
之间的数量关系,并加以证明.
A B D
A
附加题(本题10分,不计入总分)
25.如图,凸四边形ABCD中,S△ABD>S△BCD,在AD上找一点E,使BE平分四边形ABCD的面积,那么点E的画法是怎样的?
B
D A。

相关文档
最新文档