用待定系数法求二次函数解析式教学设计及反思
求二次函数的解析式优秀教案
§26.2.3求二次函数解析式(一)一、教学目标知识与技能目标:1.通过对用待定系数法求二次函数表达式的探究,理解二次函数的三种表达式.2. 能根据不同的条件正确选择表达式,利用待定系数法求二次函数的表达式.方法与过程目标:让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法.情感、态度与价值观:通过学习,让学生养成既能自主探索,又能合作探究的良好学习习惯。
从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣.二、教学重难点重点:求二次函数的函数关系式.难点:根据不同的条件正确选择表达式三、教学过程(一)问题引入1.问题:如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?2.揭示课题(二)温故而知新1.二次函数常见的几种表达方式①一般式②顶点式转化顶点坐标③交点式2.求函数表达式的常见方法是什么?用待定系数法求函数表达式的基本步骤有哪些?(三)探究新知例1.已知二次函数的图象过A(0,1),B(2,4),C(3,10)三点,求这个二次函数解析式.变式练习:已知某抛物线是由抛物线y=x2-x-2平移得到的,且该抛物线经过点A(1,1), B(2,4),求其函数关系式.例2.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的表达式.变式练习:已知某抛物线经过点(2, -1)和( - 1,5)两点,且关于直线x= 1对称,求此二次函数的表达式.例 3.已知二次函数的图象与x轴交于(2,0) 、(-1,0)两点,且过点(0,-2),求此二次函数的表达式.(四)能力提升抛物线的图像经过(0,0)与(12,0)两点,且顶点的纵坐标是3,求它的函数表达式.(五)课堂小结在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.(1)特殊的一般式:y=ax2,已知顶点经过原点.(2)一般式: y=ax2+bx+c ,已知三点坐标或三组值.(3)顶点式: y=a(x-h)2+k ,已知顶点坐标或对称轴或最值.(4)交点式:y=a(x-x1)(x-x2),已知抛物线与x轴的两个交点坐标,并经过另外一个点.(六)解决问题如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?(七)巩固练习1.根据下列条件,分别求出对应的二次函数的表达式.①已知抛物线的顶点在原点,且过点(2,8);②已知抛物线的顶点是(-1, -2),且过点(1,10);③已知抛物线过三点:(0, -2), (1,0),(2,3).2.已知抛物线y=ax2+bx+c过三点:(-1,-1)、(0,-2)、(1,1).①求这条抛物线所对应的二次函数表达式;②写出它的开口方向、对称轴和顶点坐标;这个函数有最大值还是最小值?这个值是多少?3.将抛物线向下平移1个单位,再向右平移4个单位,求所得抛物线开口方向、对称轴和顶点坐标.4.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高3米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?(八)布置作业1. 巩固练习2.书第16页4.5题(九)教学反思3212+--=xxy。
【教学设计】 用待定系数法求二次函数解析式
用待定系数法求二次函数解析式一、内容和内容解析内容人教版义务教育教材九年级上册“二次函数的y=a x2+bx+c图象与性质”.内容解析二次函数是初中数学重要内容之一,而用待定系数法求函数解析式在前面的一次函数,反比例函数中已经多次得以运用,确定一次函数有两个独立系数,要两个独立条件,这些知识方法学生已熟悉,本节把这些所学推向初中学段的最高点—二次函数解析式的确定.由于前几节已经对二次函数的两种表达式进行了多方面的认识,是学习本节最直接的认知基础,通过本节的学习,进一步深化对二次函数的认识,同时为后面的实际问题做好铺垫.二、目标和目标解析目标1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法.2、在经历探索用待定系数法求二次函数解析式及条件的制约性的过程中,让学生感悟到“类比思想”和“数形结合思想”.3、从学习中体会数学知识的价值,从而提高学习数学知识的兴趣.目标解析1、通过类比求一次函数解析式的方法,找到求二次函数解析式的方法.此法,虽然学生已经学过用待定系数法求一次函数的解析式,也了解运用待定系数法的具体方法与步骤,但是由于中间间隔了一段时间,以及求二次函数解析式对条件的制约,所以让学生经历用待定系数法求二次函数的解析式是学习的目标之一.2、数学思想的教学一般要经过渗透、领悟、应用、巩固四个阶段.在探究用待定系数法求二次函数解析式时,让学生领悟到类比思想、数形结合思想,并运用这些数学思想去猜想、验证、归纳、概括求二次函数解析式的方法及条件的制约性.3、通过实际的问题让学生体会到学习用待定系数法求二次函数解析式的价值,从而提高学生学习数学知识的兴趣.三、教学问题诊断分析学生已经学习了用待定系数法求一次函数与反比例函数解析式的方法,基本熟练掌握了待定系数法求函数解析式的方法,但中间间隔了一段时间,加上求二次函数解析式自身特殊性及学生学习求前两类函数解析式所产生的“惯性”,会导至学生在求解析式时必须要三个点的坐标,坐标可以是任意三个点等方面的认识.基于以上可能出现的问题,教学时将采用类比探究(与求一次函数解析式的方法进行类比),反面剖析(引导学生从一个点的坐标开始探究到三个点时给出同一直线上三个点的坐标,以及一个特殊点及顶点坐标和一个一般的点的坐标形成冲突)两个步骤加以解决.四、教学重点会根据不同的条件,利用待定系数法求二次函数的函数关系式.五、教学难点在实际应用中体会求二次函数解析式作为一种数学模型的作用,会利用待定系数法求二次函数的解析式.六、教学支持条件分析根据本节内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,了解求二次函数解析式的方法及条件的制约性,以《几何画板》为平台,通过动态的演示,观察图象的变化,研究条件的个数及制约性,进而进一步加深学生对用待定系数法求二次函数解析式的认知.七、教学流程安排八、教学过程设计。
用待定系数法求二次函数解析式 教学设计及反思
用待定系数法求二次函数解析式教学设计及反思用待定系数法求二次函数解析式教学设计及反思江西省抚州市临川区湖南乡初级中学刘建平[教学目标]:1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。
2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
3、从自学过程中体会自学数学思想,累积解决问题的数学经验。
[教学重点和难点]:重点:灵活的掌握确定二次函数表达式的过程,得到准确的答案.难点:在分析问题的过程中总结数学方法,体会数学思想.[教学方法]:师友合作式自学,鼓励学生独立自主思索、师徒交流探讨、师生概括总结。
[教学准备工作]:多媒体课件[教学活动设计]一、课前热身1、未知一个一次函数的图象经过点(2,5)和点(1,3),谋这个一次函数的解析式.2、这种求函数关系式的方法是什么?有哪些步骤?设计意图:使学生总结如何“用未定系数法谋一次函数解析式”,并掌控未定系数法谋解析式的通常步骤,为自学“用未定系数法谋二次函数解析式”做好铺垫。
二、科学知识剖析求二次函数y=ax2+bx+c的解析式(1)关键就是算出未定系数____________的值.(2)设立二次函数解析式的三种形式:①通常式:y=ax2+bx+c(a≠0)②顶点式:y=a(x-h)2+k(a≠0)③交点式:y=a(x-x1)(x-x2)(a≠0),其中x1、x2是抛物线与x轴交点的横坐标。
三、典例探究1.未知三点座标,谋二次函数解析式【例1】已知一个二次函数的图象过点(0,-3)、(4,5)、(-1,0)三点,求这个函数的解析式。
小结:未知三点座标谋二次函数解析式,通常先设立二次函数的通常式y=ax2+bx+c,再将三点座标代入短果的二次函数解析式中,获得一个关于a,b,c的三元一次方程组,求解方程组谋出来未定系数,最后将未定系数还回去原解析式即可.【练习1】已知一个二次函数的图象过点(0,-3)、(3,0)、(-1,0)三点,求这个函数的解析式。
用待定系数法确定二次函数解析式教学反思
《用待定系数法求二次函数解析式》教学设计和反思
醴陵市白兔潭中学郭振兴
一、出示学习目标《用待定系数法求二次函数解析式》
二、以二次函数的图象为问题情境,让学生从图象中找到图象的信息。
我给的是一幅顶点式的图象,他们从图象中找到了图象的顶点,与X轴的交点,有的找到图象的三点。
三、让学生回忆用待定系数法求解一次函数和反比例函数解析式的方法。
四、引导学生挖掘图象的关键要素,设出适合的二次函数解析式。
(有的同学设的是顶点式,有的同学设的是一般式)
五、代坐标去算,求出相关的系数。
六、用相关系数的值去换相关系数,完成解答过程。
七、对解析式进行变形,引出两根式。
八、让学生在对比的基础上分析这三种解析式的特点和条件,找出规律,为以后的二次函数解析式的求解提供帮助。
教学反思:
一、这堂课我采用了情境教学法,对教材的内容进行改编,教材内容是以文字题为例,而我以图象来创设情境,让学生在数形结合的基础上进行本堂课的学习,相比之下,我的情境引入更直观,学生学习起来更有兴趣。
二、让学生在观察图象的基础上学习这堂课,对于二次函数的解析式的求解更直观。
三、在对图象的解析式方面加以拓展,对二次函数解析式的选择更加直接,为以后二次函数解析式的积累经验。
《用待定系数法求二次函数的解析式》教学反思
《用待定系数法求二次函数的解析式》的教学反思
《用待定系数法求二次函数的解析式》是九年制义务教育新课程标准九年级第二十二章的内容。
首先复习二次函数的一般式、顶点式、两根式,然后我提问如何确定一次函数的解析式,具体需要几个点就能确定,进而提问如何确定二次函数的解析式呢。
学生大胆猜测用两三个点就能确定,而且根据形式不同需要的点可能也不同,从而引出待定系数法,紧接着复习设解析式、代入条件、求待定系数、还原解析式这四个待定系数法的基本步骤。
我用多媒体出示例一,题中给出三个普通的点作为条件,学生面临第一次选择,在一般式、顶点式、两点式中选择一种形式代入。
教师引导学生自主探究,先选择一种方法而后小组讨论选择最省时最适合自己的方法。
学生对比三种形式在计算中的难度,自然而然得出该题设一般式最为合适。
紧接着我出事例题二,给出顶点坐标和一个与坐标轴的交点坐标,引导学生选择一种方式进行计算。
此时的学生已经有了警惕性,他们没有急于求成,而是通过判断未知数的个数与点的个数排除一般式。
在第三个例题中,题目已知两个与x轴的交点和一个与y轴的交点,我引导学生按照前两个例题的方法进行判断,最终确定使用两根式。
最后,出示坐标的另一种表达形式,拓宽学生的知识面。
通过师生共同探究三道例题,学生对三种形式的使用基本掌握,另外在各种题目中能够快速的找到问题特点,为进一步学习二次函数奠定基础。
遗憾的是,有几个未知数就需要几个方程进行组合,这句话还有很多学生不太明白,但是也能够使用做题了。
初中数学_求二次函数解析式教学设计学情分析教材分析课后反思
《用待定系数法求二次函数解析式》教学设计一、知识目标1.会用一般式求二次函数的解析式。
2.会用顶点式求二次函数的解析式。
3.通过运用进一步熟悉二次函数的两种形式,体会待定系数法思想的精髓.二、能力目标能灵活的根据条件恰当地选择解析式的模式,体会二次函数解析式之间的转化。
三、情感价值观从学习过程中体会学习函数知识的价值,从而提高学习函数知识的兴趣。
四、教学重点会根据不同的条件,利用待定系数法求二次函数的函数关系式五、教学难点在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质解决生活中的实际问题六、教学过程(一)创设问题情境,引入新课:1.复习回顾:用待定系数法求一次函数的解析式已知一次函数经过点(1,3)和(-2,-12),求这个一次函数的解析式。
2、情境导入我们前面几节课学习了二次函数(抛物线)图形及性质,主要有那两种形式:一般式:_______________ (a≠0)顶点式:_______________ (a≠0)在函数关系式中有几个独立的系数,需要有相同个数的独立条件才能求出函数关系式.下面我们来探讨,要确定二次函数的解析式,需要几个条件?(二)知识应用:2、新知探索例1.根据下列条件,分别求出对应的二次函数的关系式(1)图象经过点A(0,3),B(1,3),C(-1,1);(设为三点式可解)小结:因为过任意三点,可以用“一般式”,求解列出三元一次方程组,注意消元,求出a、b、c值,即可写出函数解析式。
(2)已知二次函数的顶点为A(1,-4)且过B(3,0)(设为顶点式可解)方法1:因为二次函数的顶点为A(1,-4)设二次函数解析式y=a(x-1)2-4 则:把点B(3,0)代入可得,0=a(3-1)2-4解得,a= 1所以二次函数解析式为y=(x-1)2-4方法2:设二次函数解析式为y=ax 2+bx+c ,则:2b 12a 4ac b 44a 9a 3b c故二次函数解析式为y=x 2-2x+3两种解法比较,进一步说明选择解析式形式的重要性。
求函数解析式教学反思
《用待定系数法求二次函数的解析式》教学反思求函数解析式是初中数学主要内容之一,求二次函数的解析式也是联系高中数学的重要纽带。
求函数的解析式,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐。
在新课标里求函数解析式也是中考的必考内容,而在初中阶段主要学习了正比例函数、一次函数、反比例函数、二次函数。
本人在初三数学教学工作中发现,要使每位学生都能掌握求函数解析数,这不是一件容易解决的问题。
曾听过这样的一个比喻,说“教师就象用以识别地图的图例”。
教师必须解释教学过程中不同阶段出现的标志,使学生不断地追求、探索和获得。
细究起来,它包涵着深层的含义:教师必须不断丰富自己的内涵、增强自己的业务技能,才能适应教学中时刻变化的新情况,才能照亮学生成长之路中的每一个标志。
教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题条件下,让学生自己去寻找答案,自己去发现规律。
最后,教师清楚地向学生总结每一种函数解析式的适用范围及一般应已知的条件。
在信息社会飞速发展的今天,我们教师要从以前的教师教、学生学的观念中解放出来。
《数学课程标准》提出:教师不仅是学生的引导者,也是学生的合作者。
教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,真正做到教学相长。
我认为本节课比较成功之处有几点:1、教学模式采用了有效课堂教学,让学生当课堂的主人,以学生为主体,老师只是点评,不是填鸭式教学。
2、由复习用待定系数法求正比例函数解析式和一次函数解析式引入怎样求二次函数解析式,新课引入自然、恰当,使学生学会了用类比法求二次函数的解析式。
3、课堂练习题由浅入深并且以多种形式呈现给学生,解决了一系列问题有利于学生思维能力的发展,起到触类旁通的作用;4、上课使用导学案,让学生在课前预习新课,完成导学案,大大提高了学生的课堂学习效率;5、教学过程中渗透有数形结合数学思想方法。
《用待定系数法求二次函数的解析式》教学设计
《用待定系数法求二次函数的解析式》教学设计一、教材分析1、教材的地位和作用《用待定系数法求二次函数的解析式》是学习二次函数的图像与性质后,检验学生应用所学知识解决实际问题能力的一个重要工具,它是本章的重点。
新的课程标准要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能解决简单的实际问题。
利用二次函数的解析式解决最常见、最有实际应用价值的问题,它生活背景丰富,学生比较感兴趣。
2、学情分析在初中阶段学生学习了正比例函数、反比例函数、一次函数时已经初步学会了用待定系数法求函数解析式;在高一阶段学生进一步学习用待定系数法求函数的解析式,在高二和高三阶段待定系数法还会在数列求和、复数和解析几何中求圆锥曲线方程等内容中进一步涉及.因此这节课的学习既是初中知识的延续和深化,又为后面的学习奠定基础,起着承前启后的作用.另外,待定系数法作为解决数学实际问题的基本方法和重要手段,在其他学科中也有着广泛的应用.3、教学目标1)知识与技能:通过对用待定系数法求二次函数解析式的探究,掌握解析式的方法。
2)过程与方法:能灵活地根据条件恰当地选取解析式,体会二次函数解析式之间的转化。
3)情感态度与价值观:在学习过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功感。
4、教学重点、难点重点:用待定系数法求二次函数的解析式。
难点:灵活地根据条件恰当地选取解析式。
二、教法分析教学方法:本节课是二次函数的解析式如何确定的问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
三、教学过程:教学活动2∵抛物线经过点M(0,1)∴)3)(10(31-+=a1-=a此抛物线的解析式为:)3)(1(-+-=xxy小结:此题利用交点式求解较易,用一般式也可以求出,请大家试一试,比较它们的优劣。
初中数学_确定二次函数的表达式教学设计学情分析教材分析课后反思
2.3(1)确定二次函数的表达式教学设计一、教学目标经历用待定系数法求二次函数关系式的过程,加深对二次函数的理解,二、教学重点和难点重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.三、教学过程(一)复习回顾:1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.若二次函数y=ax ²+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式?4.我们在用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y =(k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(二)初步探索1、已知二次函数2ax y =的图象经过点A (2,-3)、B (3,m )(1)求a 与m 的值;(2)写出该图象上点B 的对称点的坐标:_________(3)当x_________时,y 随x 的增大而减小(4)当x_________时,y 有最_________值,是_________。
2.已知二次函数c ax y +=2的图象经过点(2,3)和(-1,-3),求二次函数的表达式3.已知二次函数bx ax y +=2的图象经过点(1,2)、(2,3),求二次函数的表达式.4.已知二次函数c bx x y ++=2图象经过点M (1,—2)、N(—1,6),求二次函数的表达式.探索1:在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c 中三个都是未知的,这个我们将在下节课中进行研究.(三)深入探索5.如图是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其 表达式吗?6.已知二次函数的图象与y 轴的交点的横纵坐标是为1,且经过点M(2,5)、N(-2,13),(1)求这个二次函数的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.(3)求这个二次函数的最大值或最小值。
用待定系数法求二次函数的解析式导学案
《用待定系数法求二次函数的解析式》导学案(总3页)-本页仅作为预览文档封面,使用时请删除本页-《用待定系数法求二次函数的解析式》导学案学习目标1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。
2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
3、在学习过程中体会学习数学知识的价值,提高学习数学知识的兴趣。
学习重点、难点重点:用待定系数法求二次函数的解析式;难点:灵活的根据条件恰当地选取选择解析式。
学习方法:通过具体题目的求解过程让学生感知用待定系数法求二次函数解析式的一般过程,并在解题实践中感受方法与效果的关系。
学习过程:一、自主学习 夯实基础1、用待定系数法求一次函数的解析式的一般步骤?2、你会解三元一次方程组吗解三元一次方程组的的基本思想例如:解方程组⎪⎩⎪⎨⎧=++=+-=++10356243c b a c b a c b a 可先消去c 得到关于a 、b 的二元一次方程组⎩⎨⎧=+=-451b a b a 解这个二元一次方程组得a 、b 的值,再将所求出的a 、b 的值带入最简单的方程中求出c 的值。
3、一般地,形如y =ax 2+bx +c (a,b,c 是常数,a ≠0)的函数,叫做二次函数,所以,我们把_____________________叫做二次函数的一般式。
4、二次函数y =ax 2+bx +c 用配方法可化成:y =a(x-h)2+k ,顶点是(h ,k)。
配方: y =ax 2+bx +c =______________ =_______________ =________________ =a(x +b 2a )2+4ac -b 24a 。
对称轴是x =-b 2a ,顶点坐标是 (-b 2a ,4ac -b 24a ), h =-b 2a ,k=4ac -b 24a , 所以,我们把_____________叫做二次函数的顶点式。
5.2.5待定系数法求二次函数的解析式教学案
§6.2.5 待定系数法求二次函数的解析式主备:王灿龙 审核:蒋凤一、学习目标:1、通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法。
2、能灵活的根据条件恰当地选取选择解析式,体会二次函数解析式之间的转化。
二、知识导学:1.(复习)二次函数的关系式有如下三种形式: (1)一般式:)0(2≠++=a c bx ax y(2)顶点式:)0()(2≠+-=a k h x a y(3)两根式:)0)()((21≠--=a x x x x a y2.说明:用待定系数法求二次函数的函数关系式,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.三、合作交流 例题精析1、一般地,形如y =ax 2+bx +c (a,b,c 是常数,a ≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式。
例1(1)抛物线c bx x y ++=2过点A (1,3),B(2,2),求此抛物线的解析式.(2)已知二次函数的图象过(1,0),(-1,-4)和(0,-3)三点,求这个二次函数解析式。
2、二次函数y =ax 2+bx +c 用配方法可化成:y =a(x -h)2+k ,顶点是(h ,k)。
配方: y =ax 2+bx +c =__________________=___________________=__________________ =a(x +b 2a )2+4ac -b 24a 。
对称轴是x =-b 2a ,顶点坐标是(-b 2a ,4ac -b24a ), h =-b2a ,k=4ac -b 24a , 所以,我们把_______________________叫做二次函数的顶点式。
例2 (1)已知抛物线的顶点为(1,-3),且与y 轴交于点(0,1);(2)已知二次函数的图象经过原点,且当x =1时,y 有最小值-1, 求这个二次函数的解析式。
九年级数学上册《用待定系数法求二次函数的解析式》教案、教学设计
九年级的学生已经在之前的学习中掌握了二次函数的基本概念、图像及其性质,具备了一定的数学基础。在此基础上,学生对于用待定系数法求二次函数解析式这一内容,虽然在理论上有一定的认知,但在实际操作中,可能仍存在以下问题:对于待定系数法的理解不够深入,难以灵活运用;在求解过程中,对于参数的选择和方程组的建立可能存在困难。此外,学生对于将实际问题抽象为二次函数模型的能力有待提高。因此,在教学过程中,应注重引导学生理解待定系数法的原理,通过实例分析,培养学生的建模能力和解决问题的策略。同时,关注学生的个体差异,给予不同层次的学生有针对性的指导,激发学生的学习兴趣,提高学生的数学素养。
4.分层教学,关注个体差异
针对不同层次的学生,设置不同难度的练习题,使每个学生都能在原有基础上得到提高。同时,加强对学困生的辅导,帮助他们克服困难,提高自信心。
5.及时反馈,巩固提高
在教学过程中,及时了解学生的学习情况,对学生的疑问进行解答,巩固所学知识。通过课堂练习、课后作业等形式,检验学生的学习效果,促使学生主动复习,提高知识掌握程度。
(二)讲授新知,500字
1.教师讲解待定系数法的原理,通过具体实例解释如何将实际问题抽象为二次函数模型,并引导学生理解待定系数法的基本步骤。
2.分步骤讲解待定系数法的求解过程,强调参数的选择和方程组的建立,让学生掌握求解二次函数解析式的方法。
3.结合课本例题,教师示范解题过程,强调注意事项,提醒学生关注细节。
6.拓展延伸,激发创新
在学生掌握基础知识的基础上,适当拓展延伸,引导学生探索二次函数在其他领域的应用,如物理、几何等,培养学生的创新意识和综合运用能力。
7.总结反思,提升素养
在教学结束时,组织学生进行总结反思,回顾学习过程,总结用待定系数法求二次函数解析式的关键步骤,提升学生的数学素养。
人教版数学九年级上册26.1.5《用待定系数法求二次函数的解析式》说课稿
人教版数学九年级上册26.1.5《用待定系数法求二次函数的解析式》说课稿一. 教材分析《人教版数学九年级上册》第26.1.5节《用待定系数法求二次函数的解析式》是本册教材的重要内容之一。
这部分内容是在学生已经掌握了二次函数的一般形式和图象的基础上进行讲解的,旨在让学生通过待定系数法求解二次函数的解析式,从而更好地理解和掌握二次函数的知识。
本节教材主要分为两个部分,第一部分是待定系数法的引入和解释,第二部分是待定系数法在求解二次函数解析式中的应用。
在第一部分中,教材通过例题和练习题让学生理解待定系数法的概念和原理;在第二部分中,教材通过例题和练习题让学生掌握待定系数法在求解二次函数解析式中的应用。
二. 学情分析在九年级的学生中,大部分学生已经掌握了二次函数的一般形式和图象,但是对于待定系数法的理解和应用还有待提高。
因此,在教学过程中,我需要注重引导学生理解和掌握待定系数法的概念和原理,并通过例题和练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。
三. 说教学目标本节课的教学目标是让学生理解和掌握待定系数法的概念和原理,能够运用待定系数法求解二次函数的解析式,并能够通过练习题进行巩固和提高。
四. 说教学重难点本节课的教学重难点是待定系数法的理解和应用。
在教学过程中,我需要注重引导学生理解和掌握待定系数法的概念和原理,并通过例题和练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。
五. 说教学方法与手段在教学过程中,我将采用讲授法和练习法相结合的教学方法。
首先,我会通过讲解和示例让学生理解和掌握待定系数法的概念和原理;然后,我会通过布置练习题让学生熟悉和掌握待定系数法在求解二次函数解析式中的应用。
此外,我还会利用多媒体教学手段,如PPT和动画等,来帮助学生更好地理解和掌握知识。
六. 说教学过程1.引入:通过复习二次函数的一般形式和图象,引导学生思考如何求解二次函数的解析式。
2.讲解:讲解待定系数法的概念和原理,并通过示例让学生理解待定系数法在求解二次函数解析式中的应用。
初中数学_用待定系数法求二次函数解析式教学设计学情分析教材分析课后反思
学情分析对于九年级学生,数学基础比较薄弱,抽象思维能力和演绎推理能力依然比较缺乏,所以我在授课时注重引导、启发、激励和探讨,从而促进知识的掌握和思维能力的进一步发展。
针对我班学生的特点,本节课我采用创设问题情境,由学生观察,发现,老师启发引导,探索相结合以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下共同探索用待定系数法求二次函数解析式。
在引导分析时,留出学生的思考空间,让学生去探索,同时鼓励学生大胆质疑,把思路方法和需要解决的问题弄清。
效果较好。
二次函数是初中数学重要内容之一,而用待定系数法求函数解析式在前面的正比例函数、一次函数中已经多次得以运用,确定一次函数有两个独立系数,要两个独立条件,这些知识方法同学们已熟悉,本节把这些所学推向初中学段的最高点—二次函数解析式的确定。
由于前几节已经对二次函数的两种表达式进行了多方面的认识,是学习本节最直接的认知基础,通过本节的学习,进一步深化对二次函数的认识。
按下列条件求二次函数解析式:1.抛物线过点(-1,9),(0,5),(1,7);2.当x=4时函数有最小值-3,且抛物线过点(1,1.5);3.抛物线的对称轴是x=4,与x轴的一个交点是(69,0),且函数的最小值是-8,;4.抛物线过点(-1,1),(2,1),且函数的最大值为2;5.抛物线与x轴的两个交点间的距离是8个单位,且顶点是M(1,5);6.抛物线与x轴的交点是(-1,0),(1,0),与y轴交点是(0,-5);7.抛物线与x轴只有一个交点(2,0),且与y轴交于点(0,2);点拨:根据问题特点恰当的设函数解析式,其中1题,6题设一般式,6题也可以设成交点式;2,3,4,5题解析式设成顶点式,或者使用抛物线顶点坐标公式;7题中的(2,0)其实就是抛物线的顶点,所以也设成顶点式.本节课的设计,我以学生活动为主线,通过“观察、分析、探索、交流”等过程,让学生在复习中温故而知新,在应用中获得发展,从而使知识转化为能力。
人教版数学九年级上册22.1.4用待定系数法求二次函数解析式(教案)
3.增强学生的数学建模素养:通过建立二次函数模型并求解,让学生体会数学建模的过程,提高学生运用数学知识解决实际问题的能力。
这些核心素养目标将有助于学生更好地理解和掌握二次函数相关知识,为今后的学习和生活打下坚实基础。
此外,我觉得在课堂总结环节,可以更加注重引导学生对所学知识进行梳理和内化。在今后的教学中,我将尝试用提问的方式,让学生们自己总结待定系数法的步骤和应用,以加深他们对知识点的理解和记忆。
最后,我发现学生们在课后提出的问题具有一定的代表性,这说明他们在课堂上可能并未完全听懂。为了解决这个问题,我计划在课后增加辅导环节,及时解答学生们的疑问,帮助他们巩固所学知识。
人教版数学九年级上册22.1.4用待定系数法求二次函数解析式(教案)
一、教学内容
本节课我们将学习人教版数学九年级上册第22章第1节第4部分:“用待定系数法求二次函数解析式”。教学内容主要包括以下两个方面:
1.掌握待定系数法的基本原理,能够运用该方法求解二次函数的解析式;
2.根据实际问题,建立二次函数模型,并利用待定系数法求解。
(2)重点强调二次函数一般形式中,a、b、c三个系数的实际意义,例如a代表开口方向和大小,b代表对称轴位置,c代表y轴截距等;
(3)通过具体实例,让学生学会将实际问题转化为二次函数模型,并运用待定系数法求解。
2.教学难点
(1)理解并运用待定系数法求解二次函数解析式的过程中,如何正确设定未知数;
(2)在列方程过程中,如何处理和解决含有多个未知数的方程组;
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
北师版数学九年级下册3 确定二次函数的表达式教案与反思
3确定二次函数的表达式满招损,谦受益。
《尚书》原创不容易,【关注】,不迷路!第1课时确定含有两个未知数的二次函数的表达式教学目标一、基本目标1.会用待定系数法求二次函数的表达式.2.掌握用“顶点式”求二次函数表达式.二、重难点目标【教学重点】用待定系数法求二次函数的表达式.【教学难点】根据已知条件选取适当的方法求二次函数的表达式.教学过程环节1自学提纲,生成问题【5min阅读】阅读教材P42~P43的内容,完成下面练习.【3min反馈】1.由两点(两点的连线不与坐标轴平行)的坐标可以确定一次函数,即可以求出这个一次函数的表达式.2.二次函数的一般式:y=ax2+bx+c,顶点式:y=a(x--2)x2+(m+3)x +m+2的图象过点(0,5),求m的值,并写出二次函数的表达式.解:把(0,5)代入y=(m-2)x2+(m+3)x+m+2,得m+2=5,解得m=3.∴二次函数的表达式为y=x2+6x+5.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】已知二次函数y=ax2+c的图象经过点(2,3)和(-1,-3),求这个二次函数的表达式.【互动探索】(引发学生思考)用待定系数法求解.【解答】将点(2,3)和(-1,-3)的坐标分别代入表达式y =ax 2+c , 得⎩⎨⎧ 3=4a +c ,-3=a +c ,解得⎩⎨⎧ a =2,c =-5.即所求二次函数表达式y =2x 2-5.【互动总结】(学生总结,老师点评)已知函数表达式和该函数图象上两个点的坐标,一般用待定系数法求函数表达式.活动2 巩固练习(学生独学)1.写出经过点(0,0),(-2,0)的一个二次函数的表达式y =x 2+2x (答案不唯一).(写一个即可)2.若抛物线的顶点为(-2,3),且经过点(-1,5),则其表达式为y =2x 2+8x +11.3.二次函数图象的顶点坐标是(3,5),且抛物线经过点A (1,3),求此抛物线的表达式.解:设抛物线的表达式为y =a (x -3)2+5.将A (1,3)代入上式,得3=a (1-3)2+5,解得a =-2. ∴抛物线的表达式为y =-12(x -3)2+5. 活动3 拓展延伸(学生对学)【例2】二次函数的部分图象如图所示,对称轴是直线x =-1,则这个二次函数的表达式为( )A .y =-x 2+2x +3B .y =x 2+2x +3C .y =-x 2+2x -3D .y =-x 2-2x +3【互动探索】根据对称轴设顶点式→将两个点的坐标代入即可求解.【分析】由图象知抛物线的对称轴为直线x =-1,且过点(-3,0),(0,3,设抛物线的表达式为y =a (x +1)2+k .将(-3,0),(0,3)代入,得⎩⎨⎧ 4a +k =0,a +k =3,解得⎩⎨⎧ a =-1,k =4.故抛物线的表达式为y =-(x +1)2+4=-x 2-2x +3.【答案】D【互动总结】(学生总结,老师点评)本题主要考查定系数法求函数表达式,解题的关键是根据题意设出合适的二次函数表达式,已知对称轴一般设顶点式.环节3 课堂小结,当达标(学生总结,老师点评)已知二次函数y =ax 2+bx +c 中一项的系数,再知道图象上两个点的坐标,就可以确定这个二次函数的表达式.练习设计请完成本课时对应练习!第2课时 确定二次函数y =ax2+bx +c 的表达式教学目标一、基本目标1.掌握用“三点”列方程组求二次函数达式.2.能根据已知点的特点,用“交点式”求二次函数的解析式.3.通过探索和总结,让学生体会到学习数学的乐趣,从而提高学生学习数学的兴趣,并获得成功感.二、重难点目标【教学重点】用待定系数法求二次函数的表达式.【教学难点】根据已知条件选取适当的方法求二次函数的表达式.教学过程环节1 自学提纲,生成问题【5min 阅读】阅读教材P44~45的内容,完成下面练习.【3min 反馈】1.用待定系数法求二次函数的表达式y =ax 2+bx +c (a ≠0),需要求出a 、b 、c 的值,由已知条件(如二次函数图象上三个点的坐标)列出关于a 、b 、c 的方程组,求出a 、b 、c 的值,就可以写出二次函数的表达式.2.若已知抛物线的顶点或对称轴,则一般设抛物线的表达式为顶点式y =a (x -(1,-2),且经过点N (2,3),求此二次函数的表达式.解:∵抛物线的顶点坐标为M (1,-2),∴可设此二次函数的表达式为y =a (x -1)2-2.把点N (2,3)代入表达式,得a -2=3,即a =5.∴此二次函数的表达式为y =5(x -1)2-2.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】已知二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标.【互动探索】(引发学生思考)已知二次函数的图象经过任意三点的坐标,考虑设二次函数的一般式解决问题.【解答】设所求二次函数的表达式为y =ax 2+bx +c (a ≠0). 将三点(-1,10),(1,4),(2,7)的坐标分别代入表达式,得⎩⎨⎧ 10=a -b +c ,4=a +b +c ,7=4a +2b +c ,解得⎩⎨⎧ a =2,b =-3,c =5.即所求二次函数的表达式为y =2x 2-3x +5.∵y =2x 2-3x +5=2x -342+318, ∴二次函数图象的对称轴为直线x =34,顶点坐标为34,318.【互动总结】(学生总结,老师点评)用待定系数法求二次函数解析式时,当已知抛物线过任意三点时,通常设二次函数的一般式,即设y=ax2+bx+c(a≠0),从而列三元一次方程组来求解.【例2】已知抛物线经过点(-1,0),(5,0)和(3,-4),求该抛物线的解析式.【互动探索】(引发学生思考)已知抛物线与x轴的两个交点坐标及另一点的坐标,应该怎样设函数解析式较为简便?【解答】设抛物线的解析式为y=a(x+1)(x-5).将(3,-4)代入,得-4=-8a,解得a=1 2 .则该抛物线的解析式为y=12(x+1)(x-5),即y=12x2-2x-52.【互动总结】(学生总结,老师点评)用待定系数法求二次函数解析式时,若已知抛物线与x轴的两个交点分别为(x1,0),(x2,0),可选择设其解析式为交点式,即y=a(x-x1)(x-x2).活动2巩固练习(学生独学)1.已知一个二次函数的图象经过A(0,-3)、B(1,0)、C(m,2m+3)、D(-1,-2)四点,求这个函数解析式以及点C的坐标.解:抛物线的解析式为y=2x2+x-3,点C坐标为-32,0或(2,7).2.已知二次函数的图象经过点(0,3),(-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?解:(1)此二次函数的解析式是y=-x2-2x+3.(2)点P(-2,3)在此二次函数的图象上.活动3拓展延伸(学生对学)【例3】已知二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是点C,求△ABC的面积.【互动探索】(1)设顶点式y=a(x-3)2+5,然后把点A坐标代入求出a,即可得到抛物线的解析式;(2)利用抛物线的对称性得到B(5,3),再确定出点C坐标,然后根据三角形面积公式求解.【解答】(1)设抛物线的解析式为y=a(x-3)2+5.将A(1,3)代入上式,得3=a(1-3)2+5,解得a=-1 2 .即抛物线的解析式为y=-12(x-3)2+5.(2)∵A(1,3),且抛物线对称轴为直线x=3,∴B(5,3).令x=0,则y=-12(x-3)2+5=12,∴C0,1 2,∴S△ABC=12×(5-1)×3-12=5.【互动总结】(学生总结,老师点评)已知抛物线的顶点或对称轴时,常设其表达式为顶点式来求解.环节3课堂小结,当堂达标(学生总结,老师点评)用待定系数法求二次函数解析式的三种常见设法(其中,a≠0,x1、x2分别是抛物线与x轴的交点的横坐标):(1)一般式:y=ax2+bx+c;(2)顶点式:y=a(x-h)2+k;(3)交点式:y=a(x-x1)(x-x2).练习设计请完成本课时对应练习!【素材积累】海明威和他的“硬汉形象” 美国作家海明威是一个极具进取精神的硬汉子。
最新人教版九年级数学上册《用待定系数法求二次函数的解析式》优质教案
第二十二章二次函数22.1.4 二次函数y=ax2+bx+c的图象和性质第2课时用待定系数法求二次函数的解析式学习目标:1.会用待定系数法求二次函数的表达式.2.会根据待定系数法解决关于二次函数的相关问题.重点:会根据待定系数法解决关于二次函数的相关问题.难点:会用待定系数法求二次函数的表达式.一、知识链接1.一次函数y=kx+b(k≠0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?2.求一次函数表达式的方法是什么?它的一般步骤是什么?二、要点探究探究点1:用一般式法求二次函数的表达式问题1 (1)由几个点的坐标可以确定二次函数?这几个点应满足什么条件?(2)如果一个二次函数的图象经过(-1,10 ),(1,4),(2,7)三点,能求出这个二次函数的解析式吗?如果能,求出这个二次函数的解析式.例1 一个二次函数的图象经过 (0,1)、(2,4)、(3,10)三点,求这个二次函数的表达式. 要点归纳:用一般式法求二次函数表达式的方法已知三点求二次函数表达式的方法叫做一般式法.其步骤是:①设函数表达式为y=ax2+bx+c;②代入后得到一个三元一次方程组;③解方程组得到a,b,c的值;④把待定系数用数字换掉,写出函数表达式.练一练下面是我们用描点法画二次函数的图象所列表格的一部分,试求出这个二次函数的表达式.试一试已知二次函数y=a(x-1)2+4的图象经过点(-1,0).求这个二次函数的解析式;例2 一个二次函数的图象经点(0,1),它的顶点坐标为(8,9),求这个二次函数的表达式. 要点归纳:用顶点法求二次函数的方法已知抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤是:①设函数表达式是y=a(x-h)2+k;②先代入顶点坐标,得到关于a的一元一次方程;③将另一点的坐标代入原方程求出a值;④a用数值换掉,写出函数表达式.练一练已知一个二次函数有最大值4.且x>5时,y随x的增大而减小,当x<5时,y随x的增大而增大,且该函数图象经过点(2,1),求该函数的解析式.探究点3:用交点法求二次函数的表达式问题选取(-3,0),(-1,0),(0,-3),试出这个二次函数的表达式.要点归纳:用交点法求二次函数表达式的方法已知抛物线与x轴的交点,求表达式的方法叫做交点法.其步骤是:①设函数表达式是y=a(x-x1)(x-x2);②先把两交点的横坐标x1,x2代入到表达式中,得到关于a的一元一次方程;③将方程的解代入原方程求出a值;④a用数值换掉,写出函数表达式.例3 分别求出满足下列条件的二次函数的解析式.(1)图象经过点A(1,0),B(0,-3),对称轴是直线x=2;(2)图象顶点坐标是(-2,3),且过点(1,-3);(3)如图,图象经过A,B,C三点.三、课堂小结.2.过点(2,4),且当x=1时,y 有最值为6,则其表达式是 .3.已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的表达式.4.已知抛物线与x 轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的表达式.5.如图,抛物线y =x 2+bx +c 过点A(-4,-3),与y 轴交于点B ,对称轴是x =-3,请解答下列问题:(1)求抛物线的表达式;(2)若和x 轴平行的直线与抛物线交于C ,D 两点,点C 在对称轴左侧,且CD =8,求△BCD 的面积. 参考答案 自主学习 知识链接 1.2个 2个2.(1)设:(表达式) (2)代:(坐标代入) (3)解:方程(组)(4)还原:(写表达式) 课堂探究 二、要点探究探究点1:用一般式法求二次函数的表达式问题 (1)3个 由两点(两点的连线不与坐标轴平行)的坐标,可以确定一次函数的解析式,类似地,由不共线(三点不在同一直线上)的坐标,可以确定二次函数的解析式. (2)解:设所求二次函数的解析式为y=ax 2+bx+c.由已知,图象经过(-1,10 ),(1,4),(2,7)三点,得关于a ,b ,c 的三元一次方程组10,4,427,a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩解得2,3,5.a b c =⎧⎪=-⎨⎪=⎩所求二次函数解析式为y=2x 2-3x+5. 例1 解: 设这个二次函数的表达式是y=ax 2+bx+c ,由于这个函数经过点(0,1),可得c=1.又由于其图象经过(2,4)、(3,10)两点,可得4214,93110,a b a b ++=⎧⎨++=⎩解得3,23.2a b ⎧=⎪⎪⎨⎪=-⎪⎩∴所求的二次函数的表达式是2331.22y x x =-+ 练一练 解: 设这个二次函数的表达式是y=ax 2+bx+c ,把(-3,0),(-1,0),(0,-3)代入y=ax 2+bx+c 得930,0,3,a b c a b c c -+=⎧⎪-+=⎨⎪=-⎩解得1,4,3.a b c =-⎧⎪=-⎨⎪=-⎩∴所求的二次函数的表达式是y=-x 2-4x-3.探究点2:用顶点法求二次函数的表达式试一试 解:把(-1,0)代入二次函数解析式得4a+4=0,即a=-1,则函数解析式为y=-(x-1)2+4. 例2 解: 因为这个二次函数的图象的顶点坐标为(8,9),因此,可以设函数表达式为y=a(x-8)2+9.又由于它的图象经过点(0,1),可得1=a(0-8)2+9.解得a=1.8-∴所求的二次函数的解析式是y=()28189.x --+ 练一练 解:由题意得,二次函数的顶点坐标为(5,4),设关系式为y=a(x-5)2+4,把(2,1)代入得,1=9a+4,解得a=1.3-∴二次函数的关系式为y=()25134.x --+探究点3:用交点法求二次函数的表达式问题:解:∵(-3,0)、(-1,0)是抛物线y=ax 2+bx+c 与x 轴的交点.所以可设这个二次函数的表达式是y=a(x-x 1)(x-x 2).其中x 1、x 2为交点的横坐标.因此得y=a(x+3)(x+1).再把点(0,-3)代入上式得a(0+3)(0+1)=-3,解得a=-1,∴所求的二次函数的表达式是y=-(x+3)(x+1),即y=-x 2-4x-3.例3 解:(1)∵图象经过点A(1,0),对称轴是直线x=2,∴图象经过另一点(3,0).∴设该二次函数的解析式为y=a(x-1)(x-3).将点(0,-3)代入,得-3=a ·(-1)(-3).解得a=-1.∴该二次函数的解析式为y=-(x-1)(x-3)=-x 2+4x-3.(2)解:∵图象的顶点为(-2,3),且经过点(1,-3),设抛物线的解析式为y=a(x+2)2+3,把(1,-3)代入,得a(1+2)2+3=-3,解得a=2.3-∴抛物线的解析式为y=()2223 3.x +-+(3)根据图象可知抛物线y=ax 2+bx+c 经过A (-1,0),B (0,-3),C (4,5)三点,代入可得0,3,1645,a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得1,2,3.a b c =⎧⎪=-⎨⎪=-⎩∴所求的二次函数的表达式是y=x 2-2x-3.当堂检测 1.234y x =2.y=-2(x-1)2+6 3.解:设这个二次函数的表达式为y =ax 2+bx +c .依题意得5,4,1,a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩解得2,3,4.a b c =⎧⎪=⎨⎪=-⎩∴这个二次函数的表达式为y =2x 2+3x -4.4.解:因为点A(-1,0),B(1,0)是图象与x 轴的交点,所以设二次函数的表达式为y =a(x +1)(x -1).又因为抛物线过点M(0,1),所以1=a(0+1)(0-1),解得a =-1,所以所求抛物线的表达式为y =-(x +1)(x -1),即y =-x 2+1.5.解:(1)把点A(-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,c -4b =-19.∵对称轴是x =-3,∴ 2b- =-3,∴b =6,∴c =5,∴抛物线的表达式是y =x 2+6x +5.(2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.∵点C 在对称轴左侧,且CD =8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12.∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,∴S △BCD =12×8×7=28.教师寄语同学们,生活让人快乐,学习让人更快乐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用待定系数法求二次函数解析式教学设计及反思
胡可
一、知识目标
通过用待定系数法求二次函数解析式的探究,让学生掌握求二次函数解析式的方法。
二、能力目标
能灵活的根据条件恰当地选择解析式的模式,体会二次函数解析式之间的转化。
三、情感价值观
从学习过程中体会学习函数知识的价值,从而提高学习函数知识的兴趣。
四、教学重点
会根据不同的条件,利用待定系数法求二次函数的函数关系式
五、教学难点
在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质解决生活中的实际问题
六、教学过程
1、情境导入
我们前面几节课学习了二次函数(抛物线)图形及性质,主要有那两种形式:一般式:_______________ (a≠0)顶点式:_______________ (a≠0) 在函数关系式中有几个独立的系数,需要有相同个数的独立条件才能求出函数关系式.例如:我们在确定一次函数的关系式时,通常需要两个独立的条件,在确立正比例函数的解析式时,也只要一个条件就行了,下面我们来探讨,要确定二次函数的解析式,需要几个条件?
2、新知探索
例1.根据下列条件,分别求出对应的二次函数的关系式
(1)已知二次函数的图象经过点A(-1,10),B(1,4),C(2,7)。
(设为三点式可解)
(2)已知抛物线的顶点为(2,-4),且与y轴交于点(0,3);
(设为顶点式可解)
3、练一练
根据下列条件求二次函数解析式
(1)已知二次函数的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x =2;
(2)已知二次函数的图象经过点(2,-1),并且当x=5时有最大值4;
(3)已知抛物线顶点(2,8),且抛物线经过点(1,–2)
4、归纳总结
二次函数解析式常用的形式:
(1)、一般式:_______________ (a≠0)
(2)顶点式:_______________ (a≠0)
2、用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式,
(1)当已知抛物线上任意三点时,通常设为一般式的形式。
(2)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式的形式。
七、布置作业。
八、课后学生探讨:
1、如果已知抛物线的顶点是原点,该怎么设解析式?
2、如果已知抛物线的对称轴是y轴,又该怎么设?
3、如果已知抛物线与x轴和y轴的两个交点坐标,以及另外一个点的坐标,
又该怎么设呢?
(此问题有两种设法。
)
【课后反思】
求函数解析式是初中数学主要内容之一,求二次函数的解析式更是联系高中数学的重要纽带。
在求函数的解析式时,应恰当地选用函数解析式的形式,选择得当,解题简捷,若选择不当,解题繁琐,甚至解不出题来。
在新课标里,求函数解析式与老教材一样,也是中考与升高中的必考内容,在初中阶段,主要学习了正比例函数、一次函数、反比例函数、二次函数的相关知识。
其中,学生在学习二次函数的解析式时感到比较困难。
教学中,我深深地体会到:要想让学生真正掌握求函数解析式的方法,教师应在给出相应的典型例题的条件下,让学生自己去寻找答案,自己去发现规律。
最后,教师清楚地向学生总结每一种函数解析式的适用范围,以及一般应告知的条件。
在信息社会飞速发展的今天,教师要从以前的教师教、学生学的观念中解放出来,教会学生如何学,让学生自己去探究,自己去学习,去获取知识。
在《中学数学课程标准》中明确规定:教师不仅是学生的引导者,也是学生的合作者。
教学中,要让学生通过自主讨论、交流,来探究学习中碰到的问题、难题,教师从中点拨、引导,并和学生一起学习,探讨,才能真正做到教学相长,也才能真正让每一个学生都学有所获。