高中数学函数的定义定义域值域解析式求法

合集下载

高中数学函数的定义定义域值域解析式求法

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一)一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。

表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A=∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。

显然,值域是集合B 的子集。

(1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R;(2)二次函数2y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a﹤0时,值域244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭。

(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。

(二)区间及写法:设a 、b 是两个实数,且a<b ,则:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[a,b];(2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(a,b );(3)满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做半开半闭区间,表示为[)(],,,a b a b ;这里的实数a 和b 都叫做相应区间的端点。

符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。

高中数学函数知识点(详细)

高中数学函数知识点(详细)

第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。

(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。

(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。

③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。

例2. 求函数()02112++-=x x y 的定义域。

④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。

(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结函数的定义域和值域是函数解析式中的两个重要概念。

定义域指的是函数的自变量可能取值的范围,值域则是函数的因变量可能取值的范围。

在解析式中,定义域和值域可以通过不同的方法进行求解。

下面是常见的函数解析式定义域和值域求解方法总结。

一、定义域的求法:1.开方函数的定义域:对于形如y = √(ax + b)的开方函数,考虑开方中的被除数,即ax + b的取值范围,对ax + b >= 0进行求解,得到定义域。

2.分式函数的定义域:对于形如y=f(x)/g(x)的分式函数,需要满足分母不等于0的条件,因此需要解g(x)≠0,将g(x)=0进行求解,得到定义域。

3.对数函数的定义域:对于形如y = logₐ(x)的对数函数,需要满足x > 0的条件,因此定义域为x > 0。

4.指数函数的定义域:对于形如y=aˣ的指数函数,没有特殊定义域的限制,因此定义域为全体实数。

5.三角函数的定义域:对于常见的正弦函数、余弦函数、正切函数等三角函数,它们的定义域为全体实数。

6.反三角函数的定义域:对于反正弦、反余弦、反正切等反三角函数,它们的定义域要满足对应的正弦、余弦、正切函数取值范围的要求。

7.复合函数的定义域:当函数为两个函数的复合函数时,需要满足两个函数的定义域的交集作为复合函数的定义域。

二、值域的求法:1.函数的图像法:通过绘制函数的图像,观察函数在定义域内的取值范围,得到值域的估计。

2.函数的导数法:对函数求导,并观察导数的符号及极限情况,来推断函数的值域。

例如,当导数恒大于0时,函数为增函数,值域为整个实数轴。

3.函数的区间法:对于已知闭区间上连续的函数,可以通过求出函数的最大值和最小值,及极限情况,来确定值域的范围。

4.反函数的值域:如果函数存在反函数,那么反函数的值域即为原函数的定义域。

5.一次函数的值域:对于一次函数y = kx + b,k为斜率,通过观察斜率的正负和直线与坐标轴的交点可以得到值域的范围。

2.1函数的解析式及定义域与值域

2.1函数的解析式及定义域与值域

科 目数学 年级 高三 备课人 高三数学组 第 课时 2.1函数的解析式及定义域与值域考纲定位 理解函数的概念;掌握简单函数的定义域的求法;掌握求解析式的常用方法.疑难提示 1、要注意区间的正确表示,特别是分清开区间与闭区间的区别;2、简单函数的定义域和值域的求法;3、对符号()y f x =的理解及解析式的求法.【考点整合】1、函数的概念设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的数()f x 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,其中x 的取值范围A 叫函数的 , 叫函数的值域,值域是 的子集.2、函数的三要素: 为函数的三要素.两函数相同,当且仅当3、函数的表示法有 , 和 .4、映射的概念设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 的元素y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个映射.5、函数定义域的求法:6、基本初等函数的值域:(一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数)【真题演练】1、(2011 浙江)设函数20()0x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =( )A.-4或-2B.-4或2C.-2或4D.-2或22、(2012 江西)下列函数中,与函数31y x=定义域相同的函数是( ) A.1sin y x = B.ln x y x = C.x y xe = D.sin x y x= 3、(2012 江西)设函数211()lg 1x x f x x x ⎧+≤=⎨>⎩若((10))f f =( ) A.lg101 B.2 C.1 D.04、(2012 安徽)下列函数中,不满足(2)2()f x f x =的是( )A.()||f x x =B.()||f x x x =-C.()1f x x =+D.()f x x =-5、(2012 江苏)函数6()12log f x x =-的定义域为6、(2010 江苏)已知函数210()10x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的取值范围是【经典例题】一、函数的定义域:例1、(1)函数(1)y x x x =-+的定义域为 ; (2)函数02lg(2)(1)12x y x x x -=+-+-的定义域为 ;(3)已知函数()y f x =的定义域是[0,4],则2(1)(3)y f x f x x =++-的定义域是变式训练:1、若函数(1)y f x =+的定义域是[-2,3),则(21)y f x =-的定义域是2、若函数1()x f x e x m=-+的定义域是R ,则实数m 的取值范围是 二、函数的值域例2、分别求下列函数的值域(1)1y x =+ (2)22y x x =-+ (3)22([0,3])y x x x =-+∈ (4)213x y x +=- (5) (6)21y x x =+-变式训练:求下列函数的值域(1)246([1,5))y x x x =-+∈ (2)(0)cx d y a ax b+=≠+其中 (3)21y x x =-- (4)22225(12)1x x y x x x ++=≤≤++三、函数的解析式例3、(1)已知二次函数()f x 的最小值为4,且(2)(0)6f f ==,求()f x 的解析式(2)已知2(1)f x x x +=+,求()f x 的解析式;(3)已知2()()32f x f x x +-=+,求()f x 的解析式(4)已知函数2y x x =+与函数()y g x =的图象关于点(-2,3)对称,求()g x 的解析式(5)设()f x 是R 上的函数,且满足(0)1f =,并且对任意实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式变式训练:(1)已知2211()f x x x x +=+,求()f x ;(2)已知12()()3f x f x x+=,求()f x ;【作业】《胜券在握》P4页第1、2题;【上本作业】《胜券在握》P4页第3、4、5题.。

必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)

必修一 数学  定义域,值域,解析式 求法,例题,习题(含答案)

函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。

(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。

例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。

高一数学函数解析式、定义域、值域解题方法

高一数学函数解析式、定义域、值域解题方法
2、配方法
例12. 求函数y=2x2+4x的值域。
解:y=2x2+4x=2(x2+2x+1)-2=2(x+1)2-2≥-2,故值域为{y|y≥-2}。
说明:这是一个二次函数,可通过配方的方法来求得函数的值域。类似的,对于可以化为二次函数的函数的值域也可采用此方法求解,如y=af2(x)+bf(x)+c。
解:Y=20-2X
Y>0,即20-2X>0,X<10,
两边之和大于第三边,
2X>Y,
即2X>20-2X
4X>20
X>5。
本题定义域较难,很容易忽略X>5。
∴5
4、二次函数y=x2-4x+4的定义域为[a,b](a<b),值域也是[a,b],则区间[a,b]是( )
A.[0,4]B. [1,4]C. [1,3]D. [3,4]
当x>2时,2/(2-x) 6≥2-x => x≥-4
∴定义域:[-4,2)
三. 解答题
10、求函数 的定义域。
11、已知 ,若f(a)=3,求a的值。
12、已知函数f(x)满足2f(x)-f(-x)=-x2+4x,试求f(x)的表达式。
解:2f(-x)-f(x)=-x2-4x 4f(x)-2f(-x)=-2x2+8x 相加得 f(x)=-x2+4x/3
2、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。
例2. (1)已知 ,试求 ;
(2)已知 ,试求 ;
解:(1)由条件式,以 代x,则得 ,与条件式联立,消去 ,则得: 。
(2)由条件式,以-x代x则得: ,与条件式联立,消去 ,则得: 。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

高一数学讲义-函数的解析式、定义域和值域

高一数学讲义-函数的解析式、定义域和值域
配方得 f (x) (x 2)2 4(x 0, 4) . 利用二次函数的相关知识得 f (x) 0, 4,从而得出所求函数的值域为 y 0, 2.
技巧提示:配方法能解决与二次函数有关的函数的值域问题.
本题可以直接配方,得 y 2 x 2 4x = 2 4 (x 2)2 ,
然后经分析得所求函数的值域为 y 0, 2 ,因此,有时直接分析也能得到函数的值域.
技巧提示:函数 y f (x) 的定义域为 0,2,意思是 f 只能对 0,2中的数作用,也就是对 0,2中的数
f 才有意义.函数 f (ln x) 要有意义,必须 f 对 ln x 能作用,所以必须 0 ln x 2 .
又例:已知函数 f (x) mx 2 mx 1 的定义域是全体实数,则 m 的取值范围是( )
三、典型例题精讲
1
【例 1】如果 f (x 1) x2 5x 4 ,那么 f (x) =
.
解析:方法一(配凑法)∵ f (x 1) x2 5x 4 = (x 1 1)2 5(x 1 1) 4 ,
∴ f (x) = (x 1)2 5(x 1) 4 = x 2 7 x 10 .
方法二(换元法) 设 x 1 t ,则 x t 1,于是 f (t) (t 1)2 5(t 1) 4 = t 2 7t 10 ,
即 f (x) = x 2 7 x 10 . 技巧提示:(1)凑配法:若已知 f (g(x)) 的表达式,需求 f (x) 的表达式,可把 g ( x) 看成一个整体, 把右边变为由 g (x) 组成的式子,再将 g (x) 统一换为 x ,求出 f (x) 的表达式.
∴ f (x) = x2 x 1.
方法二:令 x =0,得 f ( y) f (0) y( y 1) 1 y 2 y ( y)2 ( y) 1,

求函数的解析式 定义域 值域

求函数的解析式 定义域 值域

一. 求函数的解析式一.待定系数法:在已知函数解析式的构造时,可用待定系数法。

1.已知()f x 是一次函数,且[x ]9x 8f f ()=+,求()f x2.已知二次函数()f x 满足:2(1)(1)24f x f x x x ++-=-,求()f x二.配凑法:已知复合函数[()]f g x 的表达式,求()f x 的解析式,[()]f g x的表达式容易配成()g x 的运算形式时,常用配凑法。

但要注意所求函数()f x 的定义域不是原复合函数的定义域,而是()g x 的值域。

1.已知 2()1f x x =-,求2()f x x +2. 已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式 3.已知3311()f x x x x +=+,求()f x 4.()x f cos 1-=2sin x ,求()f x5.若函数x x x f 2)1(2-=+,则)3(f = .三、换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。

与配凑法一样,要注意所换元的定义域的变化。

1. 已知x x x f 2)1(+=+,求)1(+x f2 .已知f ⎪⎭⎫ ⎝⎛+x 11=21x — 1,求()f x四、构造方程组消元法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。

1. 设,)1(2)()(x xf x f x f =-满足求)(x f 2.()f x 满足:12()()1f x f x x-=+求()f x 3.()f x 满足:()2()32f x f x x --=+,求()f x4、设函数()f x 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求()f x 的解析式.函数的定义域和值域1.求下列函数的定义域:)13lg(13)(2++-=x x x x f y .2. 函数=y R ,则k 的取值范围是( )3.已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。

函数解析式,定义域,值域的求法

函数解析式,定义域,值域的求法

函 数1:设,A B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记做2:对于函数(),y f x x A =∈,其中x 叫做自变量,x 的取值范围A 叫做 ;与x 的值相对应的y 值叫做 ,函数值的集合{}()|f x x A ∈叫做函数的 3:函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。

4:函数的表示法有 、 、 .5:在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数通常叫 ,它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。

函数解析式的四种求法:(1):换元法 (2):配凑法(3):待定系数法 (4):构造方程组法1:确定下列函数的解析式(1) 已知1)(2+=x x f ,求)1(+x f(2) 已知11)1(2++=+)(x x f ,求)(x f(3)(换元法,配凑法)已知23)1(2++=+x x x f ,求()f x(4)(配凑法):已知2211()f x x x x+=+,求()f x (5) (待定系数法)设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f(6)(构造方程组法)已知12()()f f x x x+=,求()f x2:求下列函数的定义域1:21()3f x x =- 2:y = 3:y = 4:()f x =5:()01()x f x x x +=- 6:2(0)()2(01)(14)x x f x x x x ⎧-<⎪=≤<⎨⎪-≤≤⎩ 7: 1122---=x x y1.函数值域的求法:①直接法:利用常见函数的值域来求.②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想⑤利用某些函数的有界性:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如)0(>+=k x k x y ,利用均值不等式公式或单调性来求值域;⑦数形结合:根据函数的几何图形,利用数型结合的方法来求值域. 2.确定函数的值域的原则:定义域优先原则3:求下列函数的值域:1: )322R x x x y ∈-+=( 2:]2,1[,322∈-+=x x x y 3 113+-=x x y 4:1222+-=x x y 5: 5212+-=x x y 6: 542++-=x x y7: x x y 21--= 8:()212log 45y x x =-+9:2sin 3sin 4y x x =-+ 10: 1sin 21sin 2-+=x x y11: sin 1cos 2x y x +=+ 12:1y x x =+(0)x >两个函数相等的条件:定义域和对应法则相同4:判断下列各组中的两个函数是否是同一函数1.3)5)(3(1+-+=x x x y 52-=x y 2。

函数及其表示、定义域、解析式、值域的求法

函数及其表示、定义域、解析式、值域的求法
2、 f ( x 4)定义域为[-1, 0),求函数f(x)的定义域。
小结:已知f[g(x)]的定义域是B,求f(x)的 定义域.其实质是已知f[g(x)]中的x取值范围 是B.求出g(x)的值域,此范围就是f(x)的定 义域。
求函数值域常用方法
(一)观察法:当函数结构不复杂时,通过简
单变形和观察,利用熟知函数值域来求。
2
由 f ( x 2) f ( x 2)
得 4a b 0
x1 x2 2 2 b2 4ac 8a2 a
又 c 1
1 解得 a , b 2, c 1 2 1 2 f ( x) x 2 x 1 2
• 解法二、 由 f ( x 2) f ( x 2) 得 y f ( x) 的对称轴为
函数解析式的常用方法有: 待定系数法 换元法 凑配法 解函数方程组法 代入法
(一)、待定系数法
例1 设二次函数 f ( x) 满足 f ( x 2) f ( x 2) y 且图象在 轴上的截距为1,在 x 轴截
得的线段长为 2 2 ,求
f ( x)
的解析式。
• 解法一、 设 f ( x) ax bx c(a 0)
9.已知 F(x)=f(x)-g(x), 其中 f(x)=loga(x-b), 当且仅当点 (x0, y0) 在 f(x) 的图象上时, 点 (2x0, 2y0) 在 y=g(x) 的图象上(b>1, a>0 且 a≠1), (1)求 y=g(x) 的解析式; (2)当 F(x)≥0 时, 求 x 的范围. y0=loga(x0-b), g(x)=2loga( x -b). 解: (1) 由已知 2y =g(2x ) 2 0 0 x (2) 由(1) 知: F(x)=f(x)-g(x)=loga(x-b)-2loga( 2 -b). 故由 F(x)≥0 可得: loga(x-b)≥2loga( x -b). 2 x-b≥( x -b)2, 2 当 a>1 时, x 解得: 2b<x≤2b+2+2 b+1 . 2 -b>0, x-b≤( x -b)2, 2 解得: x≥2b+2+2 b+1 . 当 0<a<1 时, x -b>0, 2 综上所述: 当 a>1 时, 2b<x≤2b+2+2 b+1 ; 当 0<a<1 时, x≥2b+2+ 2 b+1.

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法:求函数解析式 1、换元法: 例1.已知 题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。

心) X t 解:设 2 f (x ) X X X ,则1,x 1 。

x 2 X 1 x 2 ,试求 f (X )。

1 t 1,代入条件式可得: f (t )t 2 t 1,t ≠ 1。

故得: 说明:要注意转换后变量围的变化,必须确保等价变形。

2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出 另一个程,联立求解。

f (X) 例2. ( 1)已知 (2)已知 f (X) 2f(2f(1) 3X 24X 5 XX)3X 2解:(1)由条件式,以 • 1 消去 X ,则得: X 代2_ X X,则得 8 3x4X 5f(1) X X 24x 3(2) 由条件式,以一 X 代X 则得: X 24x -3。

f( 去说明: 定义域由解析式确定,不需要另外给出。

例4.求下列函数的解析式: (1) (2) (3) ,试求f (X);f(x).3厶 X试求 2f(x)5 3OX) 2f (X)3X 24X5,与条件式联立,,与条件式联立,消,则得: 本题虽然没有给出定义域,但由于变形过程一直保持等价关系, 故所求函数的 已知 已知 已知 f (X )是二次函数,且f (0) f (∙一 X 1) 心) X 3f (x ) 2, f (X 1) f(X) X 1 ,求 f(X); 2 X ,求 f (x), f (x 1), f (x 2) 1 1 亠 2 ,求 X X f (X);(4) 【题意分析】(1) 设法求出a,b,c 即可。

若能将X 2 - X 适当变形,用.XX 1 设 为一个整体,不妨设为 X X , 已知 2 f ( x) X 3 ,求 f (x)。

由已知f (X)是二次函数,所以可设 f(X) ax 2 bx c(a 0),(2) (3) 1的式子表示就容易解决了。

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结

函数定义域、值域,解析式求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒⎩⎨⎧≠-≥21x x 例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高一数学求函数解析式定义域与值域的常用方法(含答案)

高一数学求函数解析式定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

函数定义域、值域、解析式求法

函数定义域、值域、解析式求法
2
可用判别式法
9月25日作业:
1.设等差数列{an}的前n项和为Sn,若a1=-11,
a4+a6=-6,求当Sn取最小值时,n的值 2.已知 ABC 的三边长成公比为 2 的等比数列,
求三角形ABC最大角的余弦值。
五、解析式求法
(一)待定系数法 例1:f(x)是一个一次函数,已知f(0)=1, f(-1)=6,求 f(x)。 例2:一次函数f(x)满足f[f(x)]=4x+6, 求 f(x)。 例3:二次函数f(x),有f(x+1)+f(x-1)= 2 2x -4x,求f (x)。
g ( x) g ( x) 0
0
3、 g(x) g ( x) 0
4、真数大于零,底数大于零且不等于1
例 题:
1 : 求函数f ( x)
解: 依题有:
x 2 5x 6 的定义域 x2
x2 5x 6 0 x2 0
解得:
x 3或x 2
x 2 5x 6 的定义域是 : {x x 3或x 2} x2
f ( x)
练 习:
1 : 求函数f ( x) log x
解: 依题有
(1 x )
(1 x) 的定义域
x 1 x 0且x 1 x 1
1 2
x 1 0 x 0且x 1 1 x 0
1 2
f ( x) log x
(1 x )
的 取 值 范 围
分离常数法(或反函数法)
ax b y cx d
例.求下列函数值域
函数值域为 y y
a c
3x 1 y x2
1 3x y x6

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)高中函数定义域和值域的求法总结一、常规型常规型是指已知函数的解析式,求函数的定义域和值域。

解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例如,对于函数 $y=\frac{x^2-2x-15}{|x+3|-8}$,要使函数有意义,则必须满足 $x^2-2x-15\geq 0$ 且 $|x+3|\neq 8$。

解得$x\leq -3$ 或 $x\geq 5$,且 $x\neq -11$ 或 $x\neq 5$。

将两个条件求交集得 $x\leq -3$ 且 $x\neq -11$ 或 $x>5$,即函数的定义域为 $\{x|x\leq -3\text{ 且 }x\neq -11\}\cup\{x|x>5\}$。

二、抽象函数型抽象函数型是指没有给出解析式的函数,需要根据已知条件求解。

一般有两种情况:1)已知 $f(x)$ 的定义域,求 $f[g(x)]$ 的定义域。

解法是:已知 $f(x)$ 的定义域为 $[a,b]$,则 $f[g(x)]$ 的定义域为解$a\leq g(x)\leq b$。

例如,已知 $f(x)$ 的定义域为 $[-2,2]$,求 $f(x^2-1)$ 的定义域。

令 $-2\leq x^2-1\leq 2$,得 $-1\leq x^2\leq 3$,即 $-|x|\leq x\leq |x|$。

因此,$-3\leq x\leq 3$,即函数的定义域为$\{x|-3\leq x\leq 3\}$。

2)已知 $f[g(x)]$ 的定义域,求 $f(x)$ 的定义域。

解法是:已知 $f[g(x)]$ 的定义域为 $[a,b]$,则 $f(x)$ 的定义域为$g(x)$ 的值域。

例如,已知 $f(2x+1)$ 的定义域为 $[1,2]$,求 $f(x)$ 的定义域。

因为 $1\leq x\leq 2$,所以 $2\leq 2x\leq 4$,$3\leq2x+1\leq 5$。

高中数学函数入门——三要素:定义域、值域、对应关系的求法

高中数学函数入门——三要素:定义域、值域、对应关系的求法

高中数学函数入门——函数的三要素及其求法函数的定义:设B A 、是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数)(function记作 A x x f y ∈=),(其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合}|)({A x x f ∈叫做函数的值域,显然值域是集合B 的子集.一、定义域求法(1)具体函数(函数给定解析式)1、)(x f 是整式:R ;2、)(x f 是分式:使分母不为0的数集;3、)(x f 是二次(偶次)根式:根号内式子≥0;4、幂式0x :0≠x ;5、对数:真数大于0;6、以上几部分组合:各式都有意义的数集。

【总结反思】求具体函数定义域——看“x ”在哪里【例1】 求下列函数的定义域。

).4(log 123)()3(;23||2)()2(;213)()1(220x x x x f x xx x f x x x f -+-=-+-=+++=).2,21()(,221,04012),4(log 123)()3(]3,()(3,03||02023||2)()2(),2()2,3[)(,23,0203213)()1(2220的定义域为即解得的定义域为,即解得的定义域为即且解得,【解析】x f x x x x x xx f x f x x x x x x x x f x f x x x x x x x f <<⎩⎨⎧>->-∴-+-=--∞-≤⎪⎩⎪⎨⎧≥->-≠∴-+-=+∞-⋃---≠-≥⎩⎨⎧≠+≥+∴+++=(2)抽象函数(没有给定解析式)【例2】 (1)若函数y=f(x)的定义域是[0,2020],则函数g(x)=f(x+1)x−1的定义域是()A.[0,1)∪(1,2020]B.[-1,1)∪(1,2020]C.[0,1)∪(1,2019]D.[-1,1)∪(1,2019](2)已知函数f(x+1)的定义域为(-4,-2),则f(2x -1)的定义域为( )A.(-1,0)B.-12,12C.(0,1)D.-12,0【解析】(1)由函数y=f(x)的定义域是[0,2020]可知要使f(x+1)有意义,需满足0≤x+1≤2020,解得-1≤x ≤2019,所以要使g(x)=f(x+1)x−1有意义,需满足{-1≤x ≤2019,x −1≠0,解得-1≤x<1或1<x ≤2019.故选D.(2)∵函数f(x+1)的定义域为(-4,-2),∴-4<x<-2,∴-3<x+1<-1,则f(x)的定义域为(-3,-1),由-3<2x -1<-1,得-1<x<0,∴f(2x -1)的定义域为(-1,0).故选A【总结反思】求抽象函数定义域——抓住定义域的定义:x 的取值范围二、求解析式的方法①换元法:已知复合函数f[g(x)]的解析式,注意新元范围.②配凑法:已知f[g(x)]=F(x),可将F(x)改写成关于g(x)的表达式,再以x 代替g(x)得到f(x)的解析式.③待定系数法:已知函数类型,如一次函数、二次函数等基本初等函数.④解方程组法:已知f(x)与f(-x)、f(x 1)的等量关系,再以-x 代替x 、x1代替x 构造一个等式.⑤“求谁设谁”(对称法):已知f(x)的奇偶性及某一区间上解析式,求对称区间上的解析式.【例3】 (1)已知函数f(√x +1)=x-4,则f(x)= .(2)已知f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,则f(x)= .(3)已知函数f(x)对一切不为0的实数x 均满足f(x)+2f 2020x =2020x +2,则f(x)= . (4)已知函数f(x)为R 上的奇函数,当x>0,f(x)=-2x 2+3x+1,求f(x)的解析式.【解析】(1)方法一(换元法):令t=√x +1≥1,则x=(t-1)2,故f(t)=(t-1)2-4=t 2-2t-3(t ≥1),故f(x)=x 2-2x-3(x ≥1).方法二(配凑法):由题可知√x +1≥1,f(√x +1)=x-4=(√x +1)2-2(√x +1)-3,故f(x)=x 2-2x-3(x ≥1).(2)(待定系数法)∵f(x)为二次函数,∴设f(x)=ax 2+bx+c(a ≠0),∵f(0)=3,∴c=3.由f(x+2)-f(x)=4x+2,得a(x+2)2+b(x+2)+3-ax 2-bx-3=4x+2,解得a=1,b=-1,∴f(x)=x 2-x+3.(3)(解方程组法)f(x)+2f2020x =2020x +2,① 将①中的x 换成2020x ,得f2020x +2f(x)=x+2, ② 将①②联立并消去f 2020x ,得f(x)=23x-20203x +23(x ≠0).(4) (求谁设谁)设x<0,则-x>0,f(-x)=-2x 2-3x+1,∵f(x)为R 上的奇函数,∴f(x)=-f(-x)=2x 2+3x-1∴x<0时f(x)=2x 2+3x-1,f(0)=0⎪⎩⎪⎨⎧<-+=>++-=∴0,1320,00,132)(22x x x x x x x x f三、求值域的方法(1)原则:依据函数的定义域求值域,即先确定定义域再求值域.(2)常用方法.①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.注意新元的范围.【例4】 求下列函数的值域12)4(3)3(]5,1[,64)2(1)1(2-+=-=∈+-=+=x x y x x y x x x y x y),21[210,00,)1(212121,0,12)4(}1|{1,03333133)3(3)3(]11,2[115,222]5,1[,2)2()2().,1[111,0,0)1(2222+∞∴==≥∴≥+=++=∴+=≥-=≠∴≠∴≠--+=-+-=-=∴====∴=∈+-=+∞+=∴≥+∴≥∴≥函数的值域为处取得最小值即在上单调递增函数在设函数值域为函数值域为取最大值在取最小值在,在给定区间对称轴为配方得的值域为解:x u u u u u u y u x u x u y y y x x x x x x y y x y x x x x y x y x x x 【总结反思】定义域、值域是集合,要用集合或区间表示.。

高一数学函数的定义域与值域的常用方法

高一数学函数的定义域与值域的常用方法

高一数学求函数得定义域与值域得常用法一:求函数解析式1、换元法:题目给出了与所求函数有关得复合函数表达式,可将函数用一个变量代换。

例1、 已知,试求。

解:设,则,代入条件式可得:,t ≠1。

故得:。

说明:要注意转换后变量围得变化,必须确保等价变形.2、构造程组法:对同时给出所求函数及与之有关得复合函数得条件式,可以据此构造出另一个程,联立求解。

例2、 (1)已知,试求; (2)已知,试求; 解:(1)由条件式,以代x,则得,与条件式联立,消去,则得:。

(2)由条件式,以—x 代x则得:,与条件式联立,消去,则得:.说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数得定义域由解析式确定,不需要另外给出。

例4、 求下列函数得解析式:(1)已知就是二次函数,且,求; (2)已知,求,,; (3)已知,求; (4)已知,求. 【题意分析】(1)由已知就是二次函数,所以可设,设法求出即可。

(2)若能将适当变形,用得式子表示就容易解决了。

(3)设为一个整体,不妨设为,然后用表示,代入原表达式求解。

(4),同时使得有意义,用代替建立关于,得两个程就行了。

【解题过程】⑴设,由得, 由,得恒等式,得。

故所求函数得解析式为。

(2)1)1(112)(2)1(22-+=-++=+=+x x x x x x f , 又。

(3)设,则1)1()1(111111)1()(22222+-=-+-+=++=++=+=t t t t x xx x x x x f t f 所以。

(4)因为 ① 用代替得 ② 解①②式得。

【题后思考】求函数解析式常见得题型有:(1)解析式类型已知得,如本例⑴,一般用待定系数法。

对于二次函数问题要注意一般式,顶点式与标根式得选择;(2)已知求得问题,法一就是配凑法,法二就是换元法,如本例(2)(3); (3)函数程问题,需建立关于得程组,如本例(4)。

若函数程中同时出现,,则一般将式中得用代替,构造另一程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题7:函数的概念(一)一、复习准备:1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。

表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。

显然,值域是集合B 的子集。

(1)一次函数y=ax+b (a ≠0)的定义域是R ,值域也是R ;(2)二次函数2y ax bx c =++ (a ≠0)的定义域是R ,值域是B ;当a>0时,值域244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a ﹤0时,值域244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭。

(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。

(二)区间及写法:设a 、b 是两个实数,且a<b ,则:(1) 满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[a,b];(2) 满足不等式a x b <<的实数x 的集合叫做开区间,表示为(a,b );(3) 满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做半开半闭区间,表示为[)(],,,a b a b ;这里的实数a 和b 都叫做相应区间的端点。

符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。

我们把满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别表示为[)(),,,,a a +∞+∞(](),,,b b -∞-∞。

巩固练习:用区间表示R 、{x|x ≥1}、{x|x>5}、{x|x ≤-1}、{x|x<0}(三)例题讲解:例1.已知函数2()23f x x x =-+,求f(0)、f(1)、f(2)、f(-1)的值。

变式:求函数223,{1,0,1,2}y x x x =-+∈-的值域例2.已知函数1()2f x x =+, (1) 求()()2(3),(),33f f f f --的值;(2) 当a>0时,求(),(1)f a f a -的值。

(四)课堂练习:1. 用区间表示下列集合:{}{}{}{}4,40,40,1,02x x x x x x x x x x x x ≤≤≠≤≠≠-≤>且且或2. 已知函数f(x)=3x 2+5x -2,求f(3)、f(-2)、f(a)、f(a+1)的值;3. 课本P 19练习2。

课题8:函数的概念(二)一、复习准备:1. 提问:什么叫函数?其三要素是什么?函数y =xx 23与y =3x 是不是同一个函数?为什么? 2. 用区间表示函数y =ax +b (a ≠0)、y =ax 2+bx +c (a ≠0)、y =xk (k ≠0)的定义域与值域。

二、讲授新课:(一)函数定义域的求法:函数的定义域通常由问题的实际背景确定,如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合。

例1:求下列函数的定义域(用区间表示)⑴ f(x)=232--x x ; ⑵; ⑶ f(x)=1+x -x x -2;小结:定义域求法(分式、根式、组合式)说明:求定义域步骤:列不等式(组) → 解不等式(组)*复合函数的定义域求法:(1)已知f(x)的定义域为(a,b ),求f(g(x))的定义域;求法:由a<x<b ,知a<g(x)<b ,解得的x 的取值范围即是f(g(x))的定义域。

(2)已知f(g(x))的定义域为(a,b ),求f(x)的定义域;求法:由a<x<b ,得g(x)的取值范围即是f(x)的定义域。

例2.已知f(x)的定义域为[0,1],求f(x +1)的定义域。

例3.已知f(x -1)的定义域为[-1,0],求f(x+1)的定义域。

巩固练习:1.求下列函数定义域:(1)()f x = (2)1()11f x x =+ 2.(1)已知函数f(x)的定义域为[0,1],求2(1)f x +的定义域;(2)已知函数f(2x -1)的定义域为[0,1],求f(1-3x)的定义域。

(二)函数相同的判别方法:函数是否相同,看定义域和对应法则。

例5.下列函数中哪个与函数y=x 相等?(1)2y =; (2)y =; (3)y =; (4) 2x y x =。

(三)课堂练习:1.课本 P 19练习1,3;2.求函数y =-x 2+4x -1 ,x ∈[-1,3) 的值域。

课题9:函数的表示法(一)一、复习准备:1.提问:函数的概念?函数的三要素?2.讨论:初中所学习的函数三种表示方法?试举出日常生活中的例子说明.二、讲授新课:(一)函数的三种表示方法:解析法:就是用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1);优点:简明扼要;给自变量求函数值。

图象法:就是用图象表示两个变量之间的对应关系,如1.2.1的实例(2);优点:直观形象,反映两个变量的变化趋势。

列表法:就是列出表格来表示两个变量之间的对应关系,如1.2.1的实例(3);优点:不需计算就可看出函数值,如股市走势图; 列车时刻表;银行利率表等。

例1.(课本P 19 例3)某种笔记本的单价是2元,买x (x ∈{1,2,3,4,5})个笔记本需要y 元.试用三种表示法表示函数y=f(x).(二)分段函数:分段函数的定义:在函数的定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数通常叫做分段函数,如以下的例3的函数就是分段函数。

说明:(1).分段函数是一个函数而不是几个函数,处理分段函数问题时,首先要确定自变量的数值属于哪个区间段,从而选取相应的对应法则;画分段函数图象时,应根据不同定义域上的不同解析式分别作出;(2).分段函数只是一个函数,只不过x 的取值范围不同时,对应法则不相同。

例3:某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里的俺公里计算)。

如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象。

例4.已知f(x)=⎩⎨⎧+∞∈+-∞∈+),0[,12)0,(,322x x x x ,求f(0)、f[f(-1)]的值(三)课堂练习:1.课本P 23 练习1,2;2.作业本每本0.3元,买x 个作业本的钱数y (元)。

试用三种方法表示此实例中的函数。

3.某水果批发店,100kg 内单价1元/kg ,500kg 内、100kg 及以上0.8元/kg ,500kg 及以上0.6元/kg 。

试用三种方法表示批发x 千克与应付的钱数y (元)之间的函数y=f(x)。

课题10:函数的表示法(二)一、复习准备:二、讲授新课:(一) 映射的概念教学:定义:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping )。

记作::f A B →讨论:映射有哪些对应情况?一对多是映射吗?例1.以下给出的对应是不是从A 到集合B 的映射?(1) 集合A ={P | P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应;(2) 集合A ={P | P 是平面直角坐标系中的点},B = {}(,),x y x R y R ∈∈,对应关系f : 平面直角坐标系中的点与它的坐标对应;(3) 集合A ={x | x 是三角形},集合B ={x | x 是圆},对应关系f :每一个三角形都对应它的内切圆;(4) 集合A ={x | x 是新华中学的班级},集合B ={x | x 是新华中学的学生},对应关系:每一个班级都对应班里的学生。

例2.设集合A={a,b,c},B={0,1} ,试问:从A 到B 的映射一共有几个?并将它们分别表示出来。

(二)求函数的解析式:常见的求函数解析式的方法有待定系数法,换元法,配凑法,消去法。

例3.已知f(x)是一次函数,且满足3f(x+1)-2f(x -1)=2x+17,求函数f(x)的解析式。

(待定系数法)例4.已知f(2x+1)=3x -2,求函数f(x)的解析式。

(配凑法或换元法)例5.已知函数f(x)满足1()2()f x f x x-=,求函数f(x)的解析式。

(消去法)例6.已知()1f x x =+,求函数f(x)的解析式。

(三)课堂练习:1.课本P 23练习4; 2.已知 2211()11x x f x x--=++,求函数f(x)的解析式。

3.已知2211()f x x x x +=+,求函数f(x)的解析式。

4.已知()2()1f x f x x +-=-,求函数f(x)的解析式。

课题11:函数的表示法(三)一、复习准备:1.举例初中已经学习过的一些函数的图象,如一次函数,二次函数,反比例函数的图象,并在黑板上演示它们的画法。

2. 讨论:函数图象有什么特点?二、讲授新课:例1.画出下列各函数的图象:(1)()22(22)f x x x =--<≤ (2)2()243(03)f x x x x =--≤< ;例2.画出函数()f x x =的图象。

例3.设(),x ∈-∞+∞,求函数()213f x x x =--的解析式,并画出它的图象。

变式1:求函数()213f x x x =--的最大值。

变式2:解不等式2131x x -->-。

例4.当m 为何值时,方程245x x m -+=有4个互不相等的实数根。

变式:不等式245x x m -+>对x R ∈恒成立,求m 的取值范围。

(三)课堂练习:1.课本P 23练习3; 2.画出函数1(01)()(1)x f x x x x ⎧<<⎪=⎨⎪≥⎩, , 的图象。

课题12:函数及其表示复习课一、基础习题练习:1.说出下列函数的定义域与值域: 835y x =+; 243y x x =-+; 2143y x x =-+; 2.已知1()1f x x =-,求f , ((3))f f , (())f f x ; 3.已知0(0)()(0)1(0)x f x x x x π<⎧⎪==⎨⎪+>⎩, (1)作出()f x 的图象;(2)求(1),(1),(0),{[(1)]}f f f f f f -- 值二、讲授典型例题:例1.已知函数)(x f =4x+3,g(x)=x 2, 求f[f(x)],f[g(x)],g[f(x)],g[g(x)].例2.求下列函数的定义域:(1)0y =(2)y =;例3.若函数y =a 的取值范围.例4. 中山移动公司开展了两种通讯业务:“全球通”,月租50元,每通话1分钟,付费0.4元;“神州行”不缴月租,每通话1分钟,付费0.6元. 若一个月内通话x 分钟,两种通讯方式的费用分别为12,y y (元). (1).写出12,y y 与x 之间的函数关系式?(2).一个月内通话多少分钟,两种通讯方式的费用相同?(3).若某人预计一个月内使用话费200元,应选择哪种通讯方式?三.巩固练习:1.已知)(x f =x 2-x+3 ,求:f(x+1), f(x1)的值; 2.若1f x =+)求函数(x f )的解析式;3.设二次函数)(x f 满足)2()2(x f x f -=+且)(x f =0的两实根平方和为10,图象过点(0,3),求)(x f4.已知函数2()3f x ax ax =+-的定义域为R,求实数a 的取值范围.。

相关文档
最新文档