第五章 微分方程
第五章-微分方程
第五章 微分方程第一节 微分方程的基本概念 一、基本概念微分方程的定义:①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. 微分方程的阶、解与通解:微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数)(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解.初始条件与特解:用未知函数与其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解。
例1 课本294页 例1二、独立的任意常数线性相关与线性无关:设)(),(21x y x y 是定义在区间),(b a 的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 的任一x ,恒有0)()(2211=+x y k x y k成立,则称函数)(),(21x y x y 在区间),(b a 线性相关,否则称为线性无关.显然,函数)(),(21x y x y 线性相关的充分必要条件是)()(21x y x y 在区间),(b a 恒为常数. 如果)()(21x y x y 不恒为常数,则)(),(21x y x y 在区间),(b a 线性无关.独立的任意常数:在表达式)()(2211x y C x y C y += (1C ,2C 为任意常数) 中,1C ,2C 为独立的任意常数的充分必要条件为)(1x y ,)(2x y 线性无关.例2 课本297页 例4第二节 可分离变量的微分方程 一、定义形如)()(d d y g x f xy= 的微分方程,称为可分离变量的方程.该微分方程的特点是等式右边可以分解成两个函数之积,其中一个仅是x 的函数,另一个仅是y 的函数,即)(),(y g x f 分别是变量y x ,的已知连续函数.二、求解方法可分离变量的微分方程)()(d d y g x f xy=的求解方法,一般有如下两步: 第一步:分离变量 x x f y y g d )(d )(=, 第二步:两边积分 ⎰⎰=x x f y y g d )(d )(.[例1]求微分方程ydy dx y xydy dx +=+2的通解.解先合并dx 与dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得dx x dy y y 1112-=- 两端积分⎰⎰-=-dx x dy y y1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解.)1(122-=-x C y注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下,用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解22)1(1-=-x C y 中.[例2] 已知 ,tan 2cos )(sin 22x x x f +=' 当10<<x 时,求).(x f解设,sin 2x y =则,21sin 212cos 2y x x -=-=.1sin 1sin cos sin tan 22222yyx x x x x -=-==所以原方程变为,121)(y y y y f -+-='即.112)(yy y f -+-=' 所以 =)(y f ⎪⎪⎭⎫ ⎝⎛-+-y y 112dy 2y -=,)1ln(C y +-- 故 C x x x f +-+-=)]1ln([)(2).10(<<x第三节 线性微分方程 一、一阶线性微分方程定义 :形如)()(d d x Q y x P xy=+. 的微分方程,称为一阶线性微分方程,其中)(),(x Q x P 都是x 的已知连续函数,“线性”是指未知函数y 和它的导数y '都是一次的. 求解方法 :一阶线性微分方程)()(d d x Q y x P xy=+的求解方法,一般有如下两步: 第一步:先用分离变量法求一阶线性微分方程)()(d d x Q y x P xy=+所对应的齐次线性微分方程0)(d d =+y x P xy的通解⎰=-x x P c C y d )(e . 第二步:设⎰=-x x P x C y d )(e )(为一阶线性微分方程)()(d d x Q y x P xy=+的解,代入该方程后,求出待定函数)(x C .第三步: 将)(x C 代入⎰=-xx P x C y d )(e )(中,得所求一阶线性微分方程)()(d d x Q y x P xy=+的通解. 注:只要一阶线性微分方程是)()(d d x Q y x P xy=+的标准形式,则将⎰=-x x P x C y d )(e )(代入一阶线性微分方程后,整理化简后,必有)(e )(d )(x Q x C xx P =⎰'-,该结论可用在一阶线性微分方程的求解过程中,以简化运算过程. 一阶线性微分方程)()(d d x Q y x P xy=+的求解公式: ⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C x x Q y x x P x x P d e )(e d )(d )( (其中C 为任意常数). [例1] 求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y 的特解.解 这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e 11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的 C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数).代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .[例2] 求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u uln ln ln 1-=-,将x y u =代入原方程,整理得原方程的通解为yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy xy 分离变量,得xy x y2d d =,x x yyd 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数).解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).小结 一阶微分方程的解法主要有两种:分离变量法,常数变易法.常数变易法主要适用线性的一阶微分方程,若方程能化为标准形式 )()(x Q y x P y =+',也可直接利用公式C x x Q y xx P x x P +⎰⎰=⎰-d e )((e d )(d )()求通解.二、二阶常系数齐次线性微分方程定义:形如0=+'+''qy y p y的微分方程(其中q p ,均为已知常数,称为二阶常系数齐次线性微分方程. 求解方法:求解二阶常系数齐次线性微分方程,一般分为如下三步:第一步 写出方程0=+'+''qy y p y 的特征方程 02=++q pr r ,第二步 求出特征方程的两个特征根 1r ,2r ,第三步 根据下表给出的三种特征根的不同情形,写出0=+'+''qy y p y 的通解.[例3] 求微分方程02=+'-''y y a y 的通解.解 原方程对应的特征方程为 0122=+-ar r ,244222,1-±=a a r =12-±a a ,(1)当1>a ,即 1>a 或1-<a 时,特征方程有两个不相等的实根121-+=a a r ,122--=a a r ,故原方程的通解为xa a xa a C C y )1(2)1(122e e ---++=.(2)当1=a ,即1=a 或1-=a 时,特征方程有两个相等的实根 a r r ==21, 故原方程的通解为 axx C C y e )(21+=.(3)当1<a ,即 11<<-a 时,特征方程有两个共轭复根 22,11i a a r -±=,故原方程的通解为)1sin 1cos (e 2221x a C x a C y ax -+-=.三、二阶常系数非齐次线性微分方程定义:形如)(x f qy y p y =+'+''的微分方程(其中q p ,均为已知常数),称为二阶常系数非齐次线性微分方程.求解方法:求解二阶常系数非齐次线性微分方程, 一般分为如下三步:第一步 先求出非齐次线性微分方程)(x f qy y p y =+'+''所对应的齐次线性微分方程方程0=+'+''qy y p y 的通解c y ;第二步 根据下表设出非齐次线性微分方程)(x f qy y p y =+'+''的含待定常数的特解p y ,并将p y 代入非齐次线性微分方程)(x f qy y p y =+'+''解出待定常数,进而确定非齐次方程)(x f qy y p y =+'+''的一个特解p y ;第三步 写出非齐次线性微分方程)(x f qy y p y =+'+''的通解p c y y y +=.方程)(x f qy y p y =+'+''的特解p y 的形式表注:①表中的)(x P m 为已知的m 次多项式,)(x Q m 为待定的m 次多项式,如C Bx Ax x Q ++=22)( (C B A ,,为待定常数).②在设微分方程 xm x P qy y p y λe )(=+'+''的特解时,必须注意把特解p y 设全.如:2)(x x P m =,那么 2120)(b x b x b x Q m ++=,而不能设20)(x b x Q m =.另外,微分方程的特解都是满足一定初始条件的解,上面所求的特解p y 一般不会满足题设初始条件,因此需要从通解中找出一个满足该初始条件的特解.[例4] 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解 对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.[例5] 求微分方程 x y y y x2sin e 842=+'-''的通解.解 对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。
第五章线性微分方程组
第五章:线性微分方程组本章教学目的和要求:使学生掌握线性微分方程组解的结构。
要求学生熟练掌握求解常系数线性问粉方程组。
熟练掌握常数变易法。
本章重点:解的性质与结构,常系数方程组的解法,常数变易法。
本章难点:向量函数组的线性相关性,一般理论中的定理证明。
本章课时安排:讲16学时,习题及总结测验2学时第五章:线性微分方程组说明:本章所讨论的线性微分方程组仅限与一阶微分方程,从讲义的开头所说的,方程组不仅能在实际中应用广泛,而且她对高阶方程的求解具有不可忽视的作用。
不仅如此,方程组的有关定理在近代微分方程理论中也占有重要地位。
本章内容:一.一阶微分线性方程组及其解的概念;初值问题解的存在和唯一性定理。
二.线性方程组及其解的一般理论/包括解的线线性相关性,基本解组和解的结构定理。
三.方程组的具体解法。
§5.1 存在唯一性定理5.1.1 记号和定义①引言:在第二章我们研究了含有一个未知函数的微分方程的解法以及它们的性质。
但是,在很多实际问题与理论问题中,还要求我们去求解含有多个未知数函数的微分方程组,或者研究它们的解的性质。
如空间运动质点P 的速度与t 以及坐标(,,)x y z 的关系式为:112232(,,,)(,,,)(,,,)x y z v f t x y z x f v f t x y z y f z f v f t x y z ⎧==⎧⎪⎪=⇒=⎨⎨⎪⎪==⎩⎩ 又如: 22sin d dt l θθθ=-令 sin d dtd dtl θωωθθ⎧=⎪⎪⎨⎪=-⎪⎩化成一阶微分方程组。
用类似的方法,如果在 n 阶微分方程 ()(1)(,,...,)n n y x y y y -'=中,令(1)121.,,...,n n y y y y y y --'''=== 它就可以化成方程组 1212(1)121()(1),........(,,...,)n n n n n n y y y y y y y y y yy x y y y -----⎧'=⎪'''==⎪⎪⎨⎪'==⎪⎪'=⎩共同点:出现的未知函数的导数都是一阶的 它 们都是一阶微分方程组。
第五章_第2节 n维线性空间中的微分方程
③ A( x ) [ai j ( x )]nn 在x x0处连续
⑥ A [ai j ]nn 的范数: A
y的范数: y yi
i 1
n
i , j 1
ai j
n
y的范数还有如下等价定义: 2 2 (1) | y | y12 y2 yn ; ( 2) | y | max | y1 | + | y2 | ++ | yn |;
a11 ( x ) y1 a12 ( x ) y2 a1n ( x ) yn f1 ( x ) y1 a21 ( x ) y1 a22 ( x ) y2 a2n ( x ) yn f2 ( x ) y2 an1 ( x ) y1 an2 ( x ) y2 ann ( x ) yn fn ( x ) yn
n 阶方程 (2.4)
等价
一阶n元方程组 (2.4)
或
n 阶方程 (2.4) 转化 一阶n元方程组 (2.4)
转化
2º n 阶方程 (2.4)
一阶n元方程组 (2.4)
例3 一阶二元微分方程组
d y 1 d x 0
0 y, 1
y1 y y2
y1 y1 即 y2 y2
又
( y1 , y2 , , yn ) ( , , , ( n1) ) (C1 , C 2 , , C n ) (C1 , C 2 , , C n )
( , , , ( n1) ) 若J 0, (C1 , C 2 , , C n ) 则 ( y1 , y2 , , yn ) 0 (C1 , C 2 , , C n )
第5章微分方程与差分方程
两边积分,得 故
dy = − p( x) d x , ( y ≠ 0) , y y = 0 对应于 ln | y | = − ∫ p ( x) d x + C1 , C= 。 0
y = ±e ⋅ e ∫
C1 − p( x)d x
。
记 C = ± eC1,得一阶齐线性方程 的通解为 y = Ce ∫
− p( x)d x
2d y = d x, 2 y −1
对上式两边积分, 对上式两边积分,得原方程的通解 y −1 ln = x + C1 。 y +1 经初等运算可得到原方程的通解为 隐函数形式
1 + Ce x y= 。 (C = ± eC1 ) 1 − Ce x 你认为做完了没有? 你认为做完了没有?
代入原方程可知: 令 y 2 − 1 = 0 ,得出 y = ±1,代入原方程可知:
5、初值条件: 给定微分方程的解所满足的条件. 初值条件: 给定微分方程的解所满足的条件. 初值问题: 求微分方程满足初始条件的解的问题. 初值问题: 求微分方程满足初始条件的解的问题.
y′ = f ( x , y ) 一阶: 一阶 y x = x0 = y 0
过定点的积分曲线; 过定点的积分曲线
dx = t2 dt
d2 y dy +b + cy = sin x 2 dx dx d x − x2 = t3 dt
2
一阶 线性 二阶 线性 一阶 非线性
微分方程的一般表示形式
n 阶微分方程的一般形式 为
F ( x, y′, y′′, L , y ( n ) ) = 0 。
dN = rN (1 例1、 ) dt N ( 0) = N 0
5第五章流体动力学(微分方程)
上式减此式: 上式减此式: 定义状态参数焓: 定义状态参数焓: ,则能量方程又可表示为: 则能量方程又可表示为:
关于理想流体假设应用范围的讨论:粘性作用,速度梯度,边界层。 关于理想流体假设应用范围的讨论:粘性作用,速度梯度,边界层。 一般气体的粘性系数和导热系数值都很小, 一般气体的粘性系数和导热系数值都很小,只是在速度梯度和温度梯度 很大的区域中才起作用。 很大的区域中才起作用。
这一方程说明,对于理想流体,在质量有势( 这一方程说明,对于理想流体,在质量有势( 的条件ห้องสมุดไป่ตู้有: 压流场 的条件下有:
),流场为正 ),流场为正
ur ur r 流场如果一开始无旋,Ω ( x , 0) = 0 ,则: DΩ ≡ 0 ,流场将永远无旋。 流场如果一开始无旋, 流场将永远无旋。
上式说明,对于理想流体,在质量力有势、流场正压的条件下, 上式说明,对于理想流体,在质量力有势、流场正压的条件下,
一、应力张量的建立
我们首先讨论表面应力怎样随着受力面的方位变化而变化,并 我们首先讨论表面应力怎样随着受力面的方位变化而变化, 证明可以表示成受力面的外法线单位向量与某个张量的乘积, 证明可以表示成受力面的外法线单位向量与某个张量的乘积,而这 个张量只是空间点的位置和时间的单值函数。 个张量只是空间点的位置和时间的单值函数。 为此我们取一个四面体作为控制体, 为此我们取一个四面体作为控制体,该控制体的三个面是迪卡 尔坐标系中坐标轴构成的三个面,如同在流体静力学中所取一样。 尔坐标系中坐标轴构成的三个面,如同在流体静力学中所取一样。
Dt
我们知道,无旋流动是有势流动,由此可知, 我们知道,无旋流动是有势流动,由此可知,理想流动如果一开始是 有势的,则将一直是有势的。 有势的,则将一直是有势的。
第五章 微分方程模型讲1
i0
1-1/σ σ
di 1 = −λi[i − (1 − )] σ =λ/ µ dt σ
σ >1
i
σ ≤1
di/dt < 0
i0
0
1-1/σ σ
1 i
i0
0
1 , σ > 1 1 − i(∞ ) = σ 0, σ ≤ 1
t
0
t
接触数σ =1 ~ 阈值
σ >1
σ ≤ 1 ⇒ i (t ) ↓
s i ( s ) = ( s 0 + i0 ) − s + ln σ s0
i
1
1D = {( s ,源自i ) s ≥ 0 , i ≥ 0 , s + i ≤ 1}
D 0
s
1
模型4 模型
相轨线 i ( s ) 及其分析
i
1 D
SIR模型 模型
s i(s) = (s0 + i0 ) − s + ln σ s0
dP dP = kP(10000− P) 把 P t=0 =10, = 100代入微分方程 dt dt t=0
1 得 k= 999 鸟的数量和时间的函数关系为 P =
10000 1+ 999 e
− 10000 t 999
Logistic函数 函数
5.1 传染病模型
问题
• 描述传染病的传播过程 • 分析受感染人数的变化规律 • 预报传染病高潮到来的时刻 • 预防传染病蔓延的手段 • 按照传播过程的一般规律, 按照传播过程的一般规律, 用机理分析方法建立模型 已感染者(the infective) 易感染者 易感染者(the susceptible) 已感染者 移出者(the removed) 移出者
常微分方程第五章微分方程组总结
一.线性微分方程组的一般理论1. 线性微分方程组一般形式为:1111122112211222221122()()()(),()()()(), 1 ,()()()(),n n n n nn n nn n n x a t x a t x a t x f t x a t x a t x a t x f t x a t x a t x a t x f t '=++++⎧⎪'=++++⎪⎨⋅⋅⎪⎪'=++++⎩() 记:111212122212111222()()()()()()()()()()()()(), , ()n n n n nn n n n a t a t a t a t a t a t A t a t a t a t f t x x f t x x f t x x f t x x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦'⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥'⎢⎥⎢⎥⎢⎥'===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦非齐次线性方程组表示为:()() x A t x f t '=+齐次线性方程组表示为:()x A t x '=2.齐次线性方程组的一般理论(1)定理 (叠加原理) 如果12(),(),,()n x t x t x t ⋯是齐次方程组()x A t x '=的k 个解,则它们的线性组合1212()()()n n c x t c x t c x t ++⋯+也是齐次方程组的解,这里12,,,n c c c ⋯是任意常数(2)向量函数线性相关性定义在区间],[b a 上的函数12(),(),,()n x t x t x t ⋯,如果存在不全为零的常数k c c c ,,,21⋯使得1212()()()0n n c x t c x t c x t ++⋯+≡在],[b a 上恒成立,我们称这些向量函数是线性相关的,否则称这些向量函数线性无关。
计算物理学(刘金远)第5章:微分方程(课后习题及答案)
5.1 计算物理学第5章:微分方程课后习题答案初值问题【5.1.1】采用euler 方法求初值问题'2/, 01(0)1y y x y x y =-££ìí=î【解】取0.1h =,1(,)(2/)n n n n n n n n y y hf x y y h y x y +=+=+-x0.00.10.20.3y 1.000 1.1000 1.1918 1.2774【5.1.2】用euler 预测-校正公式求初值问题22', (0)1y x y y ì=-í=î【解】取0.1h =,1(,)n n n n y y hf x y +=+111(,)n n n n y y hf x y +++=+1000(,)0.9y y hf x y =+=221011(,)10.1(0.10.9)0.92y y hf x y =+=+´-=【5.1.3】用euler 公式和梯形公式建立的预测-校正公式求初值问题'23, 0(0)1y x y x y =+£ìí=î取0.1h =,(1)求(0.1)y ;(2)编程计算0:0.01:2x =【解】1111(,)1[(,)(,)]2n n n n n n n n n n y y hf x y y y h f x y f x y ++++=+=++10001000110.1(23) 1.30.05[(23)(23)]1.355y y x y y y x y x y =++==++++=【5.1.4】用显式Euler 方法,梯形方法和预估-校正Euler 方法给出求初值问题1,01(0)1d y y x x dx y ì=-++<<ïíï=î的迭代公式(取步长0.1h =)【解】取0.1h =,,0,1,k x kh k ==L ,(1)显式Euler 方法12(,)(1)(1)k k k k k k k y y hf x y y h y kh y h kh h+=+=+-++=-++1911010010k k k y y +=++(2)梯形方法为1121()2(2)(21)2219112110510k k k k k k k h y y f f h y k h h y hy k +++=++-+++=+=++(3)预估-校正Euler 方法为1111(,)[(,)(,)],20,1,,1x k k k k k k k k k k k y y h f x y h y y f x y f x y k n ++++=+ìïï=++íï=-ïîL 221(1/2)(/2)0.9050.00950.1k k k y y h h kh h h hy k +=-++-+=++【5.1.5】考虑下面初值问题2'''(0)1;'(0)2y y y t y y ì=-++í==î使用中点RK2,取步长0.1h =,求出()y h 的近似值【解】00,0.1t h =='y u y æö=ç÷èø,012u æö=ç÷èø,2''(,)'y u f t u y y t æö==ç÷-++èø,1002(,)1k f t u æö==ç÷èø,2001212 1.111(,)(0.05,0.05)(0.05,)21 2.0522 2.05 2.050.891.1 2.050.05k f t h u hk f f æöæöæö=++=+=ç÷ç÷ç÷èøèøèøæöæö==ç÷ç÷-++èøèø102 1.2052.089u u hk æö=+=ç÷èø,1(0.1) 1.205y y ==【5.1.6】考虑下面初值问题2'''2''(0)1;'(0)0,''(0)2y y y t y y y ì=++í===-î使用中点RK2,取步长0.2h =,求出()y h 的近似值【解】00,0.2t h ==取表示符号'''y u y y æöç÷=ç÷ç÷èø,2''(,)''2''y u f t u y y y t æöç÷==ç÷ç÷++èø,0102u æöç÷=ç÷ç÷-èø,010002000'()0(,)''()262()''()y t k f t u y t y t y t t æöæöç÷ç÷===-ç÷ç÷ç÷ç÷++èøèø200121011(,)(0.1,00.12)2226 10.20.2(0.1,0.2) 1.4 1.41.4 3.9721( 1.4)0.1k f t h u hk f f æöæöç÷ç÷=++=+-ç÷ç÷ç÷ç÷-èøèøæö--æöæöç÷ç÷ç÷=-=-=-ç÷ç÷ç÷ç÷ç÷ç÷-´+-èøèøèø1020.960.281.206u u hk æöç÷=+=-ç÷ç÷-èø,(0.2)0.96y =【5.1.7】采用Rk4编程求下列微分方程的初值问题:(1)23'1, (0)0y y x y =++=(2)2'2(1), (1)2y y x y =+--=(3)'', ()0,'()3y y y y p p =-==【5.1.8】求下面微分方程组的数值解2323'2'4(0)1,(0)0x x y t t t y x y t tx y ì=-+--ï=+-+íï==î补充题【5.1.1】对微分方程'(,)y f x y =用Sinpson 求积公式推出数值微分公式【解】{}111111111'(,)4(,)(,)3n n x n n n n n n n n x y dx y y h f x y f x y f x y +-+---++=-=++ò【5.1.2】用标准的4阶龙格库塔方法求初值问题',(0)1y x y y =+ìí=î,取0.1h =,计算出(0.2)y 【解】()1123422/6i i y y h k k k k +=++++1213243(,)(/2,/2)(/2,/2)(,)i i i i i i i i k f x y k f x h y hk k f x h y hk k f x h y hk ==++=++=++'(,)y f x y x y ==+,00(,)(0,1)x y =100200130024003(,)1(/2,/2) 1.1(/2,/2) 1.105(,) 1.2105k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()10123422/6 1.1103y y h k k k k =++++=,11(,)(0.1,1.1103)x y =111211*********(,) 1.2103(/2,/2) 1.3208(/2,/2) 1.3263(,) 1.4429k f x y k f x h y hk k f x h y hk k f x h y hk ===++==++==++=()2112342(0.2)22/6 1.2428y y y h k k k k y ==++++==然后由22(,)(0.2,1.2428)x y =计算3(0.3)y y =,。
第五章 不定积分与微分方程
f (x)dx f (x) 或 d f (x)dx f (x)dx F(x)dx F(x) C 或 dF(x) F(x) C
af (x)dx a f (x)dx (a 0)
f (x) g(x)dx f (x)dx g(x)dx
f [(x)](x)dx F[(x)] C [ f (u)du]u(u)
这个公式称为第一换元积分法,也称为凑微分法.
LOGO 正文.第五章
第 二 节
不不
定定
积积
分分
的 积 分
的 换 元 积
方分
法法
例1 求 (1 进行配凑,因为 dx 1 d(2x) 1 d(1 2x) ,所以
微 分 方 程
引 例
解
设所求曲线方程为 y=f(x),由题意有
dy dx
3x2
,两边积分有
y dy 3x2dx x3 C
当 x=1时,y=2 ,代入上式得C=1 . 因此所求曲线方程为
y x3 1
LOGO 正文 . 第五章
第 21 页
第 三微 节分
方
微程 分的 方基 程本
du exdx ,v sin x ,所以
从而 故
I ex cos x ex cos xdx ex cos x ex sin x ex sin xdx
I ex cos x ex sin x I
I 1 ex (sin x cos x) C 2
6
sin xdx cos x C
8
1 sin2
x
dx
cs c2
xdx
常微分方程第五章微分方程建模案例
第五章微分方程建模案例微分方程作为数学科学的中心学科,已经有三百多年的发展历史,其解法和理论已日臻完善,可以为分析和求得方程的解(或数值解)提供足够的方法,使得微分方程模型具有极大的普遍性、有效性和非常丰富的数学内涵。
微分方程建模包括常微分方程建模、偏微分方程建模、差分方程建模及其各种类型的方程组建模。
微分方程建模对于许多实际问题的解决是一种极有效的数学手段,对于现实世界的变化,人们关注的往往是其变化速度、加速度以及所处位置随时间的发展规律,其规律一般可以用微分方程或方程组表示,微分方程建模适用的领域比较广,涉及到生活中的诸多行业,其中的连续模型适用于常微分方程和偏微分方程及其方程组建模,离散模型适用于差分方程及其方程组建模。
本章主要介绍几个简单的用微分方程建立的模型,让读者一窥方程的应用。
下面简要介绍利用方程知识建立数学模型的几种方法:1.利用题目本身给出的或隐含的等量关系建立微分方程模型这就需要我们仔细分析题目,明确题意,找出其中的等量关系,建立数学模型。
例如在光学里面,旋转抛物面能将放在焦点处的光源经镜面反射后成为平行光线,为了证明具有这一性质的曲线只有抛物线,我们就是利用了题目中隐含的条件——入射角等于反射角来建立微分方程模型的。
2.从一些已知的基本定律或基本公式出发建立微分方程模型我们要熟悉一些常用的基本定律、基本公式。
例如从几何观点看,曲线上某点)yy=点的导数;力学中的牛顿第二运动(x(xyy=的切线斜率即函数在该)F=,其中加速度a就是位移对时间的二阶导数,也是速度对时间的一定律:ma阶导数等等。
从这些知识出发我们可以建立相应的微分方程模型。
例如在动力学中,如何保证高空跳伞者的安全问题。
第5章_常微分方程
将 y 视为自变量,可以变成关于 x 的线性方程: dx 1 1 − x= y P( y ) = − , Q( y ) = y dy y y
∴x = e
1 − − dy y
∫
[ ∫ ye
−
∫
1 dy y
dy + C ]
= y( y + C )
由 y | x =3 = 1 得: C = 2 故所求特解为: x = y ( y + 2)
解方程(2x-5y+3)dx-(2x+4y-6)dy=0. 例 解方程
a b 2 解: = a1 b1 2 -5
2 x - 5 y + 3 = 0, ≠ 0 令 4 2 x + 4 y - 6 = 0,
解得x 解得 0=1, y0=1
dy 2 X − 5Y 2 − 5 Y x = X + 1, X 则 = = 令 dx 2 X + 4Y 2 + 4 Y y = Y + 1, X Y dY du 令u = , 有 =u+ X X dX dX du 2 − 5u 4u + 2 1 方程变为u + X = ,即 2 du = − dX dX 2 + 4u 4u + 7u − 2 X 4u + 2 2 1 4 1 1 du = ∫ ( ⋅ + ⋅ )du = ln | (u + 2) 2 (4u − 1) | +c ' ∫ 4u 2 + 7u − 2 3 u + 2 3 4u − 1 3
二.齐次方程 齐次方程 如果方程(1)可化成: 令u=
y 解法: 化成可分离变量方程. x dy du y = xu =u+x dx dx du 1 du = dx ∴u + x = ϕ (u ) ϕ (u ) − u x u) dx
微分方程第5章.4极限环
目录
• 极限环简介 • 极限环的分类与性质 • 极限环的产生条件 • 极限环的实例分析 • 总结与展望
01
极限环简介
定义与在动态系统中,当系统状态达 到某一特定值时,系统将进入一 个封闭的循环状态。
特性
极限环具有周期性、稳定性和对 初始条件的敏感性等特性。
04
极限环的实例分析
一阶微分方程的极限环实例
总结词
一阶微分方程的极限环实例展示了简单但重要的极限环现象。
详细描述
一阶微分方程的极限环实例包括如下的几种情况,如$y' = y - y^2$,其解为$y = 1 - frac{1}{x}$,在$x = 0$处 形成极限环;又如$y' = y - frac{1}{y}$,其解为$y = sqrt{x}$,在$x = 0$处形成极限环。这些实例展示了极限 环的形成和特性。
对未来研究的建议与展望
01
未来研究可以进一步深化对极限环基本性质和动力学行为的理 解,探索更多具有实际意义的极限环模型。
02
发展新的数学方法和技巧,以解决极限环研究中遇到的问题和
挑战,推动微分方程理论的进步。
加强与其他学科的交叉合作,将极限环的理论应用于实际问题
03
中,促进科学技术的发展。
THANKS
感谢观看
具体来说,如果线性化方程的解是一个稳定的焦点或中心,那么非线性系统在该平衡点附近可能产生 一个极限环。
中心条件
中心条件:当非线性系统的平衡点是一个中心时,系统在该平衡点附近的行为由 其焦点特征值决定。如果焦点特征值是负数,那么系统在该平衡点附近可能产生 一个稳定的极限环。
具体来说,如果焦点特征值小于零,那么系统在该平衡点附近可能产生一个稳定 的极限环。
第五章 微分方程模型
第五章 微分方程模型5.1、 某人每天由饮食获取10467焦热量,其中5038焦用于新陈代谢,此外每公斤体重需支付69焦热量作为运动消耗,其余热量则转化为脂肪,已知以脂肪形式贮存的热量利用率为100%,每公斤脂肪含热量41868焦,问此人的体重如何随时间而变化? 解:设此人的体重为w ,则根据题意有,每天获取的热量,减去新陈代谢,减去运动消耗的热量,剩余的按利用率100% 转化为脂肪,即有下列等式成立:1046750386941868wdw dt --=经化简有:232313956139565429()41868t t w et e c -=-⋅+假设此人现在的体重为0w ,则此人的体重随时间的变化如下:2323139561395605429()41868t t w et e w -=-⋅+5.2、 生活在阿拉斯加海滨的鲑鱼服从Malthus 增长模型)(003.0)(t p dtt dp = 其中t 以分钟计。
在0=t 时一群鲨鱼来到此水域定居,开始捕食鲑鱼。
鲨鱼捕杀鲑鱼的速率是)(001.02t p ,其中)(t p 是t 时刻鲑鱼总数。
此外,由于在它们周围出现意外情况,平均每分钟有0.002条鲑鱼离开此水域。
(1)考虑到两种因素,试修正Malthus 模型。
(2)假设在0=t 是存在100万条鲑鱼,试求鲑鱼总数)(t p ,并问∞→t 时会发生什么情况?解: (1),由题可知, 在考虑两种因素后,修正后的Malthus 模型如下:2()0.003()0.001()0.002dp t p t p t dt=--(2),假设在0t = 时,存在100万条鲑鱼,即(0)1000000p = ,解下列初值问题2()0.003()0.001()0.002(0)1000000dp t p t p t dtp ⎧=--⎪⎨⎪=⎩ 解得0.0010.0012999998()11000001t tae p t a ae --+==-其中当t→∞ 时,2p →。
第五章 微分方程建模 第四节 铅球掷远模型
a = sin
和最佳成绩为
∗
−1
v ; 2 2(v + gh)
v 2 R = v + 2gh . g
∗
第四节
铅球掷远模型
如果测得该运动员的出手高度 h = 1.5 m,铅球初速 , 度为 v = 10m/s,则有 , 得最佳出手角度为 最佳成绩为
a ∗ ≈ 41.4 ,
R∗ = 11.4m .
第四节
铅球掷远模型
在右图坐标系下, 在右图坐标系下,铅球运动方程为
x ɺɺ = 0 ; ɺ x(0) = 0 , x(0) = v cos a .
y ɺɺ = − g ; ɺ y(0) = h , y(0) = v sin a .
第四节
铅球掷远模型
分= x(t ) = sinacos a + 2 sin a + v cos a , g g g
这个关系式还可以表示为
1 2
R2 g = 2v2 cos2 a(h + Rtana) .
第四节
铅球掷远模型
dR = 0 ,得最佳出手角度为 由此计算 da a∗
x ( t ) = ( v cos a )t ;
1 2 y ( t ) = (v sin a )t − gt + h . 2
又令 y ( t ) = 0 ,可得
1 t = v sin a + v 2 sin 2 a + 2 gh , g
∗
(
)
第四节
铅球掷远模型
代入 x ( t ) 可以求得铅球的投掷距离为
第四节
铅球掷远模型
某铅球运动员正在训练,如果不考虑阻力, 某铅球运动员正在训练,如果不考虑阻力,设铅球初 与地面夹角), 速度为 v,出手高度为 h,出手角度为 a (与地面夹角 , , , 与地面夹角 试建立投掷距离 R 与 v,h,a 的关系式的数学模型。并 , , 的关系式的数学模型。 在 v,h 一定的条件下求该运动员的最佳出手角度和最佳 , 成绩。 成绩。
大学高数第五章第5节-微分方程在医学中的应用
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
2
4
6
8
10
12
14
16
18
20
t(hour)
c/c0
23
2、恒速静脉注射
恒速静脉注射:相当于药物以恒定速率k0进入 中心室,此时中心室的初始药量为零。
中心室内药量减小的速率与体内当时的药量 成正比。
D
dx dt
k0
kx,
V,x
x(0) 0.
则通解为 y c1er1x c2er2x.
2. r1 r2 (特征方程有两个相等的实根r1, r2 ), 则通解为 y (c1 c2x)er1x.
3. r1,2 i (特征方程有一对共轭复根), 则通解为 y ex (c1 cos x c2 sin x).
12
三、二阶常系数线性非齐次微分方程 一般形式为
其中l maxm, n l次多项式
k由特征根的情况决定
15
~y xkex[Ql (x)cosx Rl (x)sin x]
k由特征根的情况决定
i不是特征根 k 0
i是单根
k 1
16
第5节 微分方程在医学上的应用
目的与要求
❖了解用微分方程解决一些简单的医学问题
17
一、药物动力学模型
f
(x0 x) f (x0)
f
(
x0
)
x
37
导数的定义
1
lim
x0
f
(x0)
f
(x0 x) f (x0)
f
(
x0
)
第五章 微分方程模型 5.1 传染病模型5.2 经济增长模型5.3 正规战与游击战5.4 药物在体内的分布与排除5
每个劳动 力的产值
z
Q L
每个劳动 力的投资
y
K L
模型假设 z 随着 y 的增加而增长,但增长速度递减
z Q / L f0g( y) g(y) y , 0 1
Q f0L(K / L)
g(y)
Q(K , L) f0K L1 Douglas生产函数
Q , Q 0 K L
2Q 2Q K 2 , L2 0
dt
L(t) L0et
Q f Lg( y) g(y) y 0
dK f Ly
dt
0
y K , K Ly L
dK L dy Ly
dt dt
dK f Ly
dt
0
dK L dy Ly
dt dt
dy y f y
dt
0
Bernoulli方程
1
y(t)
f 0
( y1
0
f 0
)e (1 ) t
y
dxy
x(0) x0 , y(0) y0
y(t)
m0
dy d dx c
cy dx m
m cy dx
0
0
m 0 x 0时y 0
乙方胜
m0
mc
0
m d
m0
y0 d rx srx sx 线性律 x0 c ry sry s y 模型
m 0 甲方胜
x(t)
m 0 平局
混合战争模型 甲方为游击部队,乙方为正规部队
增加假设 3)病人每天治愈的比例为 ~日治愈率
建模 N[i(t t) i(t)] Ns(t)i(t)t Ni(t)t
di dt
i(1
i)
i
i(0) i0
微分方程PPT(罗兆富等编)第五章 偏微分方程的概念
2
机动 目录 上页 下页 返回 结束
和欧拉同时代的瑞士数学家丹尼尔· 伯努利也研究了 数学物理方面的问题, 提出了解弹性系振动问题的一般 方法, 对偏微分方程的发展起了比较大的影响, 拉格朗 日也讨论了一阶偏微分方程, 丰富了这门学科的内容 . 偏微分方程得到迅速发展是在十九世纪, 那时候,数学 物理问题的研究繁荣起来了, 许多数学家都对数学物理 问题的解决做出了贡献. 这里应该提一提法国数学家傅 里叶, 他年轻的时候就是一个出色的数学学者. 在从事热 流动的研究中, 写出了《热的解析理论》, 在书中他提出 了三维空间的热方程, 也就是一种偏微分方程. 他的研究 对偏微分方程的发展的影响是很大的 .
utt a 2uxx 0, x , t 0, u ( x, 0) ( x), ut ( x, 0) ( x).
所描述的是无限长弦或边界对弦的振动的影响可忽略不 计的弦振动规律 .
16
机动 目录 上页 下页 返回 结束
初始条件的提法只有一种,而是边界条件的提法则有 三种 . (1)狄立克莱边界条件 在这种情形, 对未知函数u在有界区域的边界上给出 其值. 例如
utt a 2u xx 0 utt a 2 (u xx u yy ) 0 utt a 2 (u xx u yy u zz ) 0
10
机动 目录 上页 下页 返回 结束
(5.1.04)
例3. 拉普拉斯(Laplace)方程
u xx u yy 0 u xx u yy u zz 0
完全非线性偏微分方程
如果一个偏微分方程具有不含有未知函数及其偏导数 的项, 则称其为非齐次偏微分方程, 否则称其为齐次偏微 分方程 .
x2uxx 2xyuxy y 2uyy 1 e y
微分方程第5章.3 奇点
c 2 ( )t lim e 0 t c 1
即切线切
c 2 ( )t e 当 时 lim t c 1 即切线切 Y 轴趋于 (0, 0) 点。
X 轴趋于 (0, 0) 点。
且由于(5.3.)知此时原点 (0, 0) 是渐近稳定的, 所以系统在原点及附近的相图如下页图所示: 我们把这样的奇点称为稳定结点。
当
c1 , c2 0 时候,再分两种情况讨论: (1) , 同号且均为负数 ( p 0)
dy c 2 ( ) t e 当 t 时由 dx c1
当
(5.3.10) 这时消去 得 y cx 所以轨线均为以 (0, 0) 顶点的抛物线,且
t
时
c 不再是轨线 , 1 0 时消去
dx dt x dy x y dt
(5.3.11)
y cx
x
t
得出: (5.3.13)
ln x
dy 1 y 1 1 x ln x dx x
dy 所以有 lim x 0 dx
化为:
这时系统的标准型为
dr dt r d . dt
(5.3.15)
(1) 0, ( p 0)
r (t ) r0e , (t ) t 0
其中 r0 , 0 是任意常数,消去
t
t得
r ce
t t
(5.3.8)
容易求出其通解为
x(t ) c1e , y (t ) c2e . (5.3.9) c 其中 c1 , c2是任意常数, 1 c2 0 对应于零解,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 微分方程第一节 微分方程的基本概念 一、基本概念微分方程的定义:①凡是含有未知函数的导数(或微分)的方程,称为微分方程. ②未知函数是一元函数的微分方程称为常微分方程,未知函数是多元函数的微分方程称为偏微分方程.本书只讨论常微分方程,简称微分方程. 微分方程的阶、解与通解:微分方程中出现的未知函数最高阶导数的阶数,称为微分方程的阶.如果把函数)(x f y =代入微分方程后,能使方程成为恒等式,则称该函数为该微分方程的解.若微分方程的解中含有任意常数,且独立的任意常数的个数与方程的阶数相同,则称这样的解为微分方程的通解.初始条件与特解:用未知函数及其各阶导数在某个特定点的值作为确定通解中任意常数的条件,称为初始条件.满足初始条件的微分方程的解称为该微分方程的特解。
例1 课本294页 例1二、独立的任意常数线性相关与线性无关:设)(),(21x y x y 是定义在区间),(b a 内的函数,若存在两个不全为零的数21,k k ,使得对于区间),(b a 内的任一x ,恒有0)()(2211=+x y k x y k成立,则称函数)(),(21x y x y 在区间),(b a 内线性相关,否则称为线性无关.显然,函数)(),(21x y x y 线性相关的充分必要条件是)()(21x y x y 在区间),(b a 内恒为常数. 如果)()(21x y x y 不恒为常数,则)(),(21x y x y 在区间),(b a 内线性无关.独立的任意常数:在表达式)()(2211x y C x y C y += (1C ,2C 为任意常数) 中, 1C ,2C 为独立的任意常数的充分必要条件为)(1x y ,)(2x y 线性无关.例2 课本297页 例4第二节 可分离变量的微分方程 一、定义形如)()(d d y g x f xy= 的微分方程,称为可分离变量的方程.该微分方程的特点是等式右边可以分解成两个函数之积,其中一个仅是x 的函数,另一个仅是y 的函数,即)(),(y g x f 分别是变量y x ,的已知连续函数.二、求解方法可分离变量的微分方程)()(d d y g x f xy=的求解方法,一般有如下两步: 第一步:分离变量 x x f y y g d )(d )(=, 第二步:两边积分 ⎰⎰=x x f y y g d )(d )(.【例1】求微分方程ydy dx y xydy dx +=+2的通解.解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得dx x dy y y 1112-=- 两端积分⎰⎰-=-dx x dy y y1112得 ||ln |1|ln |1|ln 2112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 注:在用分离变量法解可分离变量的微分方程的过程中, 我们在假定0)(≠y g 的前提下,用它除方程两边, 这样得到的通解, 不包含使0)(=y g 的特解. 但是, 有时如果我们扩大任意常数C 的取值范围, 则其失去的解仍包含在通解中. 如在例2中,我们得到的通解中应该0≠C ,但这样方程就失去特解1±=y ,而如果允许0=C ,则1±=y 仍包含在通解22)1(1-=-x C y 中.【例2】 已知 ,tan 2cos )(sin 22x x x f +=' 当10<<x 时,求).(x f解 设,sin 2x y =则,21sin 212cos 2y x x -=-=.1sin 1sin cos sin tan 22222yyx x x x x -=-==所以原方程变为,121)(y y y y f -+-='即.112)(yy y f -+-=' 所以 =)(y f ⎪⎪⎭⎫ ⎝⎛-+-y y 112dy 2y -=,)1ln(C y +-- 故 C x x x f +-+-=)]1ln([)(2).10(<<x第三节 线性微分方程 一、一阶线性微分方程定义 :形如)()(d d x Q y x P xy=+. 的微分方程,称为一阶线性微分方程,其中)(),(x Q x P 都是x 的已知连续函数,“线性”是指未知函数y 和它的导数y '都是一次的. 求解方法 :一阶线性微分方程)()(d d x Q y x P xy=+的求解方法,一般有如下两步: 第一步:先用分离变量法求一阶线性微分方程)()(d d x Q y x P xy=+所对应的齐次线性微分方程0)(d d =+y x P xy的通解⎰=-x x P c C y d )(e . 第二步:设⎰=-x x P x C y d )(e )(为一阶线性微分方程)()(d d x Q y x P xy=+的解,代入该方程后,求出待定函数)(x C .第三步: 将)(x C 代入⎰=-xx P x C y d )(e )(中,得所求一阶线性微分方程)()(d d x Q y x P xy=+的通解. 注:只要一阶线性微分方程是)()(d d x Q y x P xy=+的标准形式,则将⎰=-x x P x C y d )(e )(代入一阶线性微分方程后,整理化简后,必有)(e )(d )(x Q x C xx P =⎰'-,该结论可用在一阶线性微分方程的求解过程中,以简化运算过程. 一阶线性微分方程)()(d d x Q y x P xy=+的求解公式: ⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C x x Q y x x P x x P d e )(e d )(d )( (其中C 为任意常数). 【例1】 求微分方程 y y x y x y xy d d d d 2+=+ 满足条件20==x y 的特解.解 这是可以分离变量的微分方程,将方程分离变量,有x x y y y d 11d 12-=-,两边积分,得=-⎰y y yd 12⎰-x x d 11,求积分得121ln 1ln 21C x y +-=-,1222)1ln(1ln C x y +-=-, 1222e )1(1C x y -=-,222)1(e11-±=-x y C ,记 0e12≠=±C C ,得方程的解 22)1(1-=-x C y .可以验证 0=C 时,1±=y ,它们也是原方程的解,因此,式22)1(1-=-x C y 中的 C 可以为任意常数,所以原方程的通解为 22)1(1-=-x C y (C 为任意常数). 代入初始条件 20==x y得 3=C ,所以特解为 22)1(31-=-x y .【例2】 求微分方程(1)xy yy +=',(2) x xy y x cos e 22=-'的通解.(1)解一 原方程可化为1d d +=xyx yx y ,令 x yu =, 则 1d d +=+u u x u x u ,即 x x u u u d d 12-=+ ,两边取积分 ⎰⎰-=+x x u u u d 1d )11(2, 积分得C x u uln ln ln 1-=-,将x y u =代入原方程,整理得原方程的通解为yx C y e = (C 为任意常数).解二 原方程可化为11d d =-x yy x 为一阶线性微分方程,用常数变易法.解原方程所对应的齐次方程01d d =-x yy x ,得其通解为 y C x =. 设y y C x )(=为原方程的解,代入原方程,化简得 1)(='y y C ,1ln)(C yy C =, 所以原方程的通解为 1ln C y y x=,即yx C ye = (C 为任意常数).(2)解一 原方程对应的齐次方程02d d =-xy x y 分离变量,得xy xy2d d =,x x yyd 2d =, 两边积分,得x x y y⎰⎰=d 2d ,C x y +=2ln ,)e ln(ln e ln ln 22x x C C y =+=,2e x C y =,用常数变易法.设2e )(x x C y =代入原方程,得 x x C x x cos e e )(22=',x x C cos )(=',C x x x x C +==⎰sin d cos )(,故原方程的通解为 )(sin e 2C x y x += (C 为任意常数).解二 这里x x P 2)(-=,x x Q x cos e )(2=代入通解的公式得)d e cos e (e d 2d 22⎰+⎰⋅⎰=---C x x y xx x x x=)d ecos e(e 222C x x x x x +⋅⎰-=)d cos (e 2C x x x +⎰=)(sin e 2C x x +(C 为任意常数).小结 一阶微分方程的解法主要有两种:分离变量法,常数变易法.常数变易法主要适用线性的一阶微分方程,若方程能化为标准形式 )()(x Q y x P y =+',也可直接利用公式C x x Q y xx P x x P +⎰⎰=⎰-d e )((e d )(d )()求通解.二、二阶常系数齐次线性微分方程定义:形如0=+'+''qy y p y 的微分方程(其中q p ,均为已知常数,称为二阶常系数齐次线性微分方程. 求解方法:求解二阶常系数齐次线性微分方程,一般分为如下三步:第一步 写出方程0=+'+''qy y p y 的特征方程 02=++q pr r ,第二步 求出特征方程的两个特征根 1r ,2r ,第三步 根据下表给出的三种特征根的不同情形,写出0=+'+''qy y p y 的通解.【例3】 求微分方程02=+'-''y y a y 的通解.解 原方程对应的特征方程为 0122=+-ar r ,244222,1-±=a a r =12-±a a ,(1)当1>a ,即 1>a 或1-<a 时,特征方程有两个不相等的实根121-+=a a r ,122--=a a r ,故原方程的通解为xa a xa a C C y )1(2)1(122e e ---++=.(2)当1=a ,即1=a 或1-=a 时,特征方程有两个相等的实根 a r r ==21, 故原方程的通解为 axx C C y e )(21+=.(3)当1<a ,即 11<<-a 时,特征方程有两个共轭复根 22,11i a a r -±=,故原方程的通解为)1sin 1cos (e 2221x a C x a C y ax -+-=.三、二阶常系数非齐次线性微分方程定义:形如)(x f qy y p y =+'+''的微分方程(其中q p ,均为已知常数),称为二阶常系数非齐次线性微分方程.求解方法:求解二阶常系数非齐次线性微分方程, 一般分为如下三步:第一步 先求出非齐次线性微分方程)(x f qy y p y =+'+''所对应的齐次线性微分方程方程0=+'+''qy y p y 的通解c y ;第二步 根据下表设出非齐次线性微分方程)(x f qy y p y =+'+''的含待定常数的特解p y ,并将p y 代入非齐次线性微分方程)(x f qy y p y =+'+''解出待定常数,进而确定非齐次方程)(x f qy y p y =+'+''的一个特解p y ;第三步 写出非齐次线性微分方程)(x f qy y p y =+'+''的通解p c y y y +=.方程)(x f qy y p y =+'+''的特解p y 的形式表注: ①表中的)(x P m 为已知的m 次多项式,)(x Q m 为待定的m 次多项式,如C Bx Ax x Q ++=22)( (C B A ,,为待定常数).②在设微分方程 xm x P qy y p y λe )(=+'+''的特解时,必须注意把特解p y 设全.如:2)(x x P m =,那么 2120)(b x b x b x Q m ++=,而不能设20)(x b x Q m =.另外,微分方程的特解都是满足一定初始条件的解,上面所求的特解p y 一般不会满足题设初始条件,因此需要从通解中找出一个满足该初始条件的特解.【例4】 求微分方程 xx y y e 4=-''满足初始条件00==x y,10='=x y 的特解.解 对应齐次方程的特征方程为 012=-r ,特征根 12,1±=r .故对应齐次微分方程的通解为 xx c C C y -+=e e 21.因为1=λ是特征方程的单根,所以设特解为 xP b x b x y e )(10+=,代入原方程得 x x b b b 4422010=++,比较同类项系数得 10=b ,11-=b ,从而原方程的特解为 xP x x y e )1(-=, 故原方程的通解为 =y xxC C -+ee 21x x x e )1(-+,由初始条件 0=x 时,0='=y y ,得 ⎩⎨⎧=-=+,2,02121C C C C从而11=C ,12-=C .因此满足初始条件的特解为 =y xx--ee x x x e )1(-+.【例5】 求微分方程 x y y y x2sin e 842=+'-''的通解.解 对应的齐次微分方程的特征方程 0842=+-r r ,特征根 i 222,1±=r .于是所对应的齐次微分方程通解为)2sin 2cos (e 212x C x C y x c +=.为了求原方程x y y y x2sin e842=+'-''的一个特解,先求x y y y )i 22(e 84+=+'-''(*)的特解.由于i 22+=λ是特征方程的单根,且1)(=x P m 是零次多项式。