全国各地中考试题压轴题精选讲座三几何问题

合集下载

专题33几何综合压轴问题(解答题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

专题33几何综合压轴问题(解答题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)

2021年中考数学真题分项汇编【全国通用】(第01期)专题33几何综合压轴问题(解答题)一、解答题1.(湖南省郴州市2021年中考数学试卷)如图1,在等腰直角三角形ABC 中,90BAC ∠=︒.点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90︒得到AG ,连接GC ,HB .(1)证明:AHB AGC ≌;(2)如图2,连接GF ,HC ,AF 交AF 于点Q .①证明:在点H 的运动过程中,总有90HFG ∠=︒;①若4AB AC ==,当EH 的长度为多少时,AQG 为等腰三角形?【答案】(1)见详解;(2)①见详解;①当EH 的长度为2AQG 为等腰三角形【分析】(1)由旋转的性质得AH =AG ,①HAG =90°,从而得①BAH =①CAG ,进而即可得到结论;(2)①由AHB AGC ≌,得AH =AG ,再证明AEH AFG ≌,进而即可得到结论;①AQG 为等腰三角形,分3种情况:(a )当①QAG =①QGA =45°时,(b )当①GAQ =①GQA =67.5°时,(c )当①AQG =①AGQ =45°时,分别画出图形求解,即可.【详解】解:(1)①线段AH 绕点A 逆时针方向旋转90︒得到AG ,①AH =AG ,①HAG =90°,①在等腰直角三角形ABC 中,90BAC ∠=︒,AB =AC ,①①BAH =90°-①CAH =①CAG ,①AHB AGC ≌;(2)①①在等腰直角三角形ABC 中,AB =AC ,点E ,F 分别为AB ,AC 的中点,①AE =AF ,AEF 是等腰直角三角形,①AH =AG ,①BAH =①CAG ,①AEH AFG ≌,①①AEH =①AFG =45°,①①HFG =①AFG +①AFE =45°+45°=90°,即:90HFG ∠=︒;①①4AB AC ==,点E ,F 分别为AB ,AC 的中点,①AE =AF =2,①①AGH =45°,AQG 为等腰三角形,分3种情况:(a )当①QAG =①QGA =45°时,如图,则①HAF =90°-45°=45°,①AH 平分①EAF ,①点H 是EF 的中点,①EH 12== (b )当①GAQ =①GQA =(180°-45°)÷2=67.5°时,如图,则①EAH =①GAQ =67.5°,①①EHA =180°-45°-67.5°=67.5°,①①EHA =①EAH ,①EH =EA =2;(c )当①AQG =①AGQ =45°时,点H 与点F 重合,不符合题意,舍去,综上所述:当EH 的长度为2AQG 为等腰三角形.【点睛】本题主要考查等腰直角三角形的性质,旋转的性质,全等三角形的判定和性质,勾股定理,熟练掌握全等三角形的判定定理,根据题意画出图形,进行分类讨论,是解题的关键.2.(2021·湖北中考真题)问题提出 如图(1),在ABC 和DEC 中,90ACB DCE ∠=∠=︒,BC AC =,EC DC =,点E 在ABC 内部,直线AD 与BE 交于点F ,线段AF ,BF ,CF 之间存在怎样的数量关系?问题探究 (1)先将问题特殊化.如图(2),当点D ,F 重合时,直接写出一个等式,表示AF ,BF ,CF 之间的数量关系;(2)再探究一般情形.如图(1),当点D ,F 不重合时,证明(1)中的结论仍然成立.问题拓展 如图(3),在ABC 和DEC 中,90ACB DCE ∠=∠=︒,BC kAC =,EC kDC =(k 是常数),点E 在ABC 内部,直线AD 与BE 交于点F ,直接写出一个等式,表示线段AF ,BF ,CF 之间的数量关系.【答案】(1)BF AF -=.(2)见解析;问题拓展:BF k AF -⋅=. 【分析】(1)先证明①BCE ①①ACD ,得到AF =BE ,BF -BE =BF -AF =EF ;(2)过点C 作CG CF ⊥交BE 于点G ,证明ACD BCE ≅△△,ACF BCG ≅△△,CGF △是等腰直角三角形即可;利用前面的方法变全等为相似证明即可.【详解】问题探究 (1)BF AF -=.理由如下:如图(2), ①①BCA =①ECF =90°,①①BCE =①ACF ,①BC =AC ,EC =CF ,①BCE ①①ACF ,①BE =AF ,①BF -BE =BF -AF =EF ;(2)证明:过点C 作CG CF ⊥交BE 于点G ,则90FCG ACB ∠=∠=︒,①BCG ACF ∠=∠.①90ACB DCE ∠=∠=︒,①BCE ACD ∠=∠.又①AC BC =,DC EC =,①ACD BCE ≅△△,①CAF CBG ∠=∠.①ACF BCG ≅△△.①AF BG =,CF CG =,①CGF △是等腰直角三角形.①GF =.①BF AF BF BG GF -=-==.问题拓展 BF k AF -⋅.理由如下:①①BCA =①ECD =90°,①①BCE =①ACD ,①BC =kAC ,EC =kCD ,①①BCE ①①ACD ,①①EBC =①F AC ,过点C 作CM CF ⊥交BE 于点M ,则90FCM ACB ∠=∠=︒,①BCM ACF ∠=∠.①①BCM ①①ACF ,①BM :AF =BC :AC =MC :CF =k ,①BM =kAF ,MC =kCF ,①BF -BM =MF ,MF①BF - kAF .【点睛】本题考查了等腰直角三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,勾股定理,熟练掌握三角形全等的判定,三角形相似的判定,勾股定理是解题的关键.3.(2021·浙江中考真题)(证明体验)(1)如图1,AD 为ABC 的角平分线,60ADC ∠=︒,点E 在AB 上,AE AC =.求证:DE 平分ADB ∠. (思考探究)(2)如图2,在(1)的条件下,F 为AB 上一点,连结FC 交AD 于点G .若FB FC =,2DG =,3CD =,求BD 的长.(拓展延伸)(3)如图3,在四边形ABCD 中,对角线AC 平分,2BAD BCA DCA ∠∠=∠,点E 在AC 上,EDC ABC ∠=∠.若5,2BC CD AD AE ===,求AC 的长.【答案】(1)见解析;(2)92;(3)163 【分析】(1)根据SAS 证明EAD CAD ≌△△,进而即可得到结论;(2)先证明EBD GCD ∽,得BD DE CD DG=,进而即可求解; (3)在AB 上取一点F ,使得AF AD =,连结CF ,可得AFC ADC ≌,从而得DCE BCF ∽,可得,CD CE CED BFC BC CF=∠=∠,4CE =,最后证明EAD DAC ∽,即可求解. 【详解】解:(1)①AD 平分BAC ∠,①EAD CAD ∠=∠,①,==AE AC AD AD ,①()EAD CAD SAS ≌,①60ADE ADC ∠=∠=︒,①18060EDB ADE ADC ∠=︒-∠-∠=︒,①BDE ADE =∠∠,即DE 平分ADB ∠;(2)①FB FC =,①EBD GCD ∠=∠,①60BDE GDC ∠=∠=︒,①EBD GCD ∽, ①BD DE CD DG=. ①EAD CAD ≌△△,①3DE DC ==.①2DG =, ①92BD =; (3)如图,在AB 上取一点F ,使得AF AD =,连结CF .①AC 平分BAD ∠,①FAC DAC ∠=∠①AC AC =,①()AFC ADC SAS ≌,①,,CF CD ACF ACD AFC ADC =∠=∠∠=∠.①2ACF BCF ACB ACD ∠+∠=∠=∠,①DCE BCF ∠=∠.①EDC FBC ∠=∠,①DCE BCF ∽, ①,CD CE CED BFC BC CF=∠=∠.①5,BC CF CD ===,①4CE =.①180180AED CED BFC AFC ADC ∠=︒-∠=︒-∠=∠=∠,又①EAD DAC ∠=∠,①EAD DAC ∽ ①12EA AD AD AC ==, ①4AC AE =, ①41633AC CE ==. 【点睛】本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,添加辅助线,构造全等三角形和相似三角形,是解题的关键.4.(2021·浙江中考真题)如图1,四边形ABCD 内接于O ,BD 为直径,AD 上存在点E ,满足AE CD =,连结BE 并延长交CD 的延长线于点F ,BE 与AD 交于点G .(1)若DBC α∠=,请用含α的代数式表列AGB ∠.(2)如图2,连结,CE CE BG =.求证;EF DG =.(3)如图3,在(2)的条件下,连结CG ,2AD =.①若tan ADB ∠=FGD 的周长. ①求CG 的最小值.【答案】(1)90AGB α∠=︒-;(2)见解析;(3)①52+;【分析】(1)利用圆周角定理求得90BAD ∠=︒,再根据AE CD =,求得ABG DBC α∠=∠=,即可得到答案; (2)由90BEC BDC α∠=∠=︒-,得到BEC AGB ∠=∠,从而推出CEF BGD ∠=∠,证得()CFE BDG ASA ≌,由此得到结论;(3)①连结DE .利用已知求出AB AD ==,证得DA CE =,得到2BG AD ==,利用Rt ABG中,根据正弦求出160,12AGB AG BG ∠=︒==,求出EF 的长,再利用Rt DEG △中,60EGD ∠=︒,求出EG 及DE ,再利用勾股定理求出DF 即可得到答案;①过点C 作CH BF ⊥于H ,证明()BAD CHF AAS ≌,得到FH AD =,证明BHC CHF ∽,得到BH CH CH FH=,设GH x =,得到()222CH x =-,利用勾股定理得到222CG GH CH =+ ,求得2222(2)(1)3CG x x x =+-=-+,利用函数的最值解答即可.【详解】解:(1)①BD 为O 的直径,①90BAD ∠=︒,①AE CD =,①ABG DBC α∠=∠=,①90AGB α∠=︒-.(2)①BD 为O 的直径,①90BCD ∠=︒,①90BEC BDC α∠=∠=︒-,①BEC AGB ∠=∠,①180,180CEF BEC BGD AGB ∠=︒-∠∠=︒-∠,①CEF BGD ∠=∠.又①,CE BG ECF GBD =∠=∠,①()CFE BDG ASA ≌,①EF DG =.(3)①如图,连结DE .①BD 为O 的直径,①90A BED ∠=∠=︒.在Rt ABD △中,tan 2ADB ∠=,2AD =,①AB AD ==.①AE CD =,①AE DE CD DE +=+,即DA CE =,①AD CE =.①CE BG =,①2BG AD ==.①在Rt ABG 中,sin 2AB AGB BG ∠==, ①160,12AGB AG BG ∠=︒==, ①1EF DG AD AG ==-=.①在Rt DEG △中,60EGD ∠=︒,①11,2222EG DG DE DG ====.在Rt FED 中,DF ==,①52FG DG DF +++=,①FGD . ①如图,过点C 作CH BF ⊥于H .①BDG CFE ≌,①,BD CF CFH BDA =∠=∠.①90BAD CHF ∠=∠=︒,①()BAD CHF AAS ≌.①FH AD =,①AD BG =,①FH BG =.①90BCF ∠=︒,①90BCH HCF ∠+∠=︒.①90BCH HBC ∠+∠=︒,①HCF HBC ∠=∠,①90BHC CHF ∠=∠=︒,①BHC CHF ∽, ①BH CH CH FH=. 设GH x =,①2BH x =-,①()222CH x =-. 在Rt GHC 中,222CG GH CH =+ ,①2222(2)(1)3CG x x x =+-=-+,当1x =时,2CG 的最小值为3,①CG【点睛】此题考查圆周角的定理,弧、弦和圆心角定理,全等三角形的判定及性质,勾股定理,三角函数,相似三角形的判定,函数的最值问题,是一道综合的几何题型,综合掌握各知识点是解题的关键.5.(2021·浙江中考真题)在扇形AOB 中,半径6OA =,点P 在OA 上,连结PB ,将OBP 沿PB 折叠得到O BP '.(1)如图1,若75O ∠=︒,且BO '与AB 所在的圆相切于点B .①求APO ∠'的度数.①求AP 的长.(2)如图2,BO '与AB 相交于点D ,若点D 为AB 的中点,且//PD OB ,求AB 的长.【答案】(1)①60°;①6-(2)125π 【分析】(1)根据图像折叠的性质,确定角之间的关系,通过已知的角度来间接求所求角的角度;求AP 的长,先连接'OO ,先在Rt OBQ △中,求出OQ ;再在Rt OPQ 中,求出OP 即可得到答案;(2)要求AB 的长,扇形的半径已知,就转化成求AOB ∠的度数,连接'OO ,通过条件找到角之间的等量关系,再根据三角形内角和为180︒,建立等式求出AOB ∠,最后利用弧长的计算公式进行计算.【详解】解:(1)①如图1,'BO 为圆的切线'90OBO ∴∠=︒.由题意可得,'45O BP OBP ∠=∠=︒,'O PB OPB ∠=∠.'60APO ∴∠=︒,①如图1,连结'OO ,交BP 于点Q .则有'BP OO ⊥.在Rt OBQ △中,sin 45OQ OB =⨯︒=在Rt OPQ △中,sin 60OQ OP ==︒6AP OA OP ∴=-=-(2)如图2.连结OD .设1a ∠=.①点D 为AB 的中点.321a ∴∠=∠=∠=.由题意可得,','PO PO O BOP =∠=∠.又//,''2PD OB OBO PDO a ∴∠=∠=43'180PDO ∠+∠+∠=︒,22180a a a ∴++=︒,解得36a =︒.726121801805n R AB πππ⨯∴===. 【点睛】本题考查了求线段的长度和弧长的长度问题,解题的关键是:根据题目中的条件,找到边角之间的等量关系,通过等量代换的思想间接求出所需要求的量.6.(2021·浙江中考真题)已知在ACD △中,Р是CD 的中点,B 是AD 延长线上的一点,连结,BC AP .(1)如图1,若90,60,,ACB CAD BD AC AP ︒∠=︒∠===BC 的长.(2)过点D 作//DE AC ,交AP 延长线于点E ,如图2所示.若60,CAD BD AC ∠︒==,求证:2BC AP =. (3)如图3,若45CAD ∠=︒,是否存在实数m ,当BD mAC =时,2BC AP =?若存在,请直接写出m 的值;若不存在,请说明理由.【答案】(1)(2)见解析;(3)存在,m 【分析】(1)先解直角三角形ABC 得出2AB AC =,从而得出ADC 是等边三角形,再解直角三角形ACP 即可求出AC 的长,进而得出BC 的长;(2)连结BE ,先利用AAS 证出≌CPA DPE ,得出AE =2PE ,AC =DE ,再得出ADC 是等边三角形,然后由SAS 得出≌CAB EBA ,得出AE =BC 即可得出结论;(3)过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ①AB 于G ,过E 作EN ①AB 于N ,由(2)得AE =2AP ,DE =AC ,再证明≌AEN BCG ,从而得出≌CAB EBA 得出DE =BE ,然后利用勾股定理即可得出m 的值.【详解】(1)解 90,60ACB CAD ∠=∠=︒︒,2cos60AC AB AC ︒==, BD AC =,AD AC =∴,ADC ∴是等边三角形, Р是CD 的中点,AP CD ∴⊥,在Rt APC 中,AP =2sin 60AP AC ∴==︒,tan 60BC AC =︒=∴(2)证明:连结BE ,//DE AC ,CAP DEP ∴∠=∠,,CP DP CPA DPE =∠=∠,()CPA DPE AAS ∴≌,1,2AP EP AE DE AC ∴===,BD AC =,BD DE ∴=,又//DE AC ,60BDE CAD ∴∠=∠=︒,BDE ∴是等边三角形,BD AC =,AC BE ∴=,又60,CAB EBA AB BA ∠=∠=︒=,()CAB EBA SAS ∴≌,AE BC ∴=,2BC AP ∴=.(3)存在这样的,m m =.过点D 作//DE AC ,交AP 延长线于点E ,连接BE ,过C 作CG ①AB 于G ,过E 作EN ①AB 于N ,则45∠=∠=︒BDE CAD ,sin 45∴=⨯CG AC ,sin 45=⨯EN DE由(2)得AE =2AP ,DE =AC ,①CG =EN ,①2BC AP =,①AE =BC ,①①ANE =①BGC =90°,≌∴AEN BCG ,①①EAN =①CBG①AE =BC ,AB =BA ,①≌CAB EBA①AC =BE ,①DE =BE ,①①EDB =①EBD =45°,①①DEB =90°,①=BD ,①BD mAC = ①m【点睛】本题属于三角形综合题,考查了解直角三角形,全等三角形的性质与判定,等边三角形和等腰三角形的性质、勾股定理,解题的关键是合理添加辅助线,有一定的难度.7.(2021·安徽中考真题)如图1,在四边形ABCD 中,ABC BCD ∠=∠,点E 在边BC 上,且//AE CD ,//DE AB ,作CF //AD 交线段AE 于点F ,连接BF .(1)求证:ABF EAD △≌△;(2)如图2,若9AB =,5CD =,ECF AED ∠=∠,求BE 的长;(3)如图3,若BF 的延长线经过AD 的中点M ,求BE EC 的值.【答案】(1)见解析;(2)6;(3)1【分析】(1)根据平行线的性质及已知条件易证ABE AEB ∠=∠,DCE DEC ∠=∠,即可得AB AE =,DE DC =;再证四边形AFCD 是平行四边形即可得AF CD =,所以AF DE =,根据SAS 即可证得ABF EAD △≌△;(2)证明EBF EAB ∽△△,利用相似三角形的性质即可求解;(3)延长BM 、ED 交于点G .易证ABE DCE ∽,可得AB AE BE DC DE CE==;设1CE =,BE x =,DC DE a ==,由此可得AB AE ax ==,AF CD a ==;再证明MAB MDG △≌△,根据全等三角形的性质可得DG AB ax ==.证明FAB FEG △∽△,根据相似三角形的性质可得FA AB FE EG =,即(1)(1)a ax a x a x =-+,解方程求得x 的值,继而求得BE EC的值. 【详解】(1)证明://AE CD ,AEB DCE ∴∠=∠;//DE AB ,ABE DEC ∴∠=∠,12∠=∠,ABC BCD ∠=∠,ABE AEB ∴∠=∠,DCE DEC ∠=∠,AB AE =∴,DE DC =,//AF CD ,//AD CF ,∴四边形AFCD 是平行四边形在ABF 与EAD 中.12AB EA AF ED =⎧⎪∠=∠⎨⎪=⎩,(2)ABF EAD △≌△,BF AD ∴=,在AFCD □中,AD CF =,BF CF ∴=,FBC FCB ∴∠=∠,又2FCB ∠=∠,21∠=∠,1FBC ∴∠=∠,在EBF △与EAB 中.1EBF BEF AEB∠=∠⎧⎨∠=∠⎩, EBF EAB ∴△∽△;EB EF EA EB∴=; 9AB =,9AE ∴=;5CD =,5AF ∴=;4EF ∴=,49EB EB∴=, 6BE ∴=或6-(舍); (3)延长BM 、ED 交于点G . ABE 与DCE 均为等腰三角形,ABC DCE ∠=∠,ABE DCE ∴△∽△,AB AE BE DC DE CE∴==, 设1CE =,BE x =,DC DE a ==,则AB AE ax ==,AF CD a ==,(1)EF a x ∴=-,//AB DG ,3G ∴∠=∠;在MAB △与MDG 中,345G MA MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()MAB MDG AAS ∴△≌△;DG AB ax ∴==.(1)EG a x ∴=+;//AB EG ,FAB FEG ∴△∽△,FA AB FE EG ∴=, (1)(1)a ax a x a x ∴=-+, (1)1x x x -∴=+,2210x x ∴--=,2(1)2x ∴-=,1x ∴=11x ∴=,21x =1BE EC∴= 【点睛】本题是三角形综合题,考查了全等三角形的性质及判定、相似三角形的性质及判定,熟练判定三角形全等及相似是解决问题的关键.8.(2021·四川中考真题)在等腰ABC 中,AB AC =,点D 是BC 边上一点(不与点B 、C 重合),连结AD .(1)如图1,若60C ∠=°,点D 关于直线AB 的对称点为点E ,结AE ,DE ,则BDE ∠=________;(2)若60C ∠=°,将线段AD 绕点A 顺时针旋转60︒得到线段AE ,连结BE .①在图2中补全图形;①探究CD 与BE 的数量关系,并证明;(3)如图3,若AB AD k BC DE ==,且ADE C ∠=∠,试探究BE 、BD 、AC 之间满足的数量关系,并证明.【答案】(1)30°;(2)①见解析;①CD BE =;见解析;(3)()AC k BD BE =+,见解析【分析】(1)先根据题意得出①ABC 是等边三角形,再利用三角形的外角计算即可(2)①按要求补全图即可①先根据已知条件证明①ABC 是等边三角形,再证明AEB ADC △≌△,即可得出CD BE =(3)先证明AC BC AD DE=,再证明ACB ADE △∽△,得出BAC EAD ∠=∠,从而证明AEB ADC △≌△,得出BD BE BC +=,从而证明()AC k BD BE =+【详解】解:(1)①AB AC =,60C ∠=°①①ABC 是等边三角形①①B =60°①点D 关于直线AB 的对称点为点E①AB ①DE ,①BDE ∠=30故答案为:30;(2)①补全图如图2所示;①CD 与BE 的数量关系为:CD BE =;证明:①AB AC =,60BAC ∠=︒.①ABC 为正三角形,又①AD 绕点A 顺时针旋转60︒,①AD AE =,60EAD ∠=︒,①60BAD DAC ∠+∠=︒,60BAD BAE ∠+∠=︒,①BAE DAC ∠=∠,①AEB ADC △≌△,①CD BE =.(3)连接AE . ①AB AD k BC DE ==,AB AC =,①AC AD BC DE=. ①AC BC AD DE =. 又①ADE C ∠=∠,①ACB ADE △∽△,①BAC EAD ∠=∠.①AB AC =,①AE AD =,①BAD DAC BAD BAE ∠+∠=∠+∠,①DAC BAE ∠=∠,①AEB ADC △≌△,CD BE =.①BD DC BC +=,①BD BE BC +=.又①AC k BC=, ①()AC k BD BE =+.【点睛】本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点9.(2021·山东中考真题)如图1,O 为半圆的圆心,C 、D 为半圆上的两点,且BD CD =.连接AC 并延长,与BD 的延长线相交于点E .(1)求证:CD ED =;(2)AD 与OC ,BC 分别交于点F ,H .①若CF CH =,如图2,求证:CF AF FO AH ⋅=⋅;①若圆的半径为2,1BD =,如图3,求AC 的值.【答案】(1)见解析;(2)①见解析;①72AC =【分析】(1)连接BC ,根据90ACB BCE ∠=∠=︒,90ECD BCD ∠+∠=︒且BD CD =,则E ECD ∠=∠,即可推导出CD ED =;(2)①CF CH =,则AFO CHF ∠=∠,又BD CD =,CAD BAD ∠=∠,则AFO AHC △∽△,进而推导出CF AF FO AH ⋅=⋅;①连接OD 交BC 于G ,设OG x =,则2DG x =-,根据在Rt OGB △和Rt BGD △中列式222221(2)x x -=--,进而求得x 的值,再根据中位线定理求出AC 的长.【详解】证明:(1)连接BC ,①AB 为直径①90ACB BCE ∠=∠=︒①BD CD =①EBC BCD ∠=∠①E ECD ∠=∠①CD ED =.(2)①①CF CH =①CFH CHF ∠=∠又①AFO CFH ∠=∠①AFO CHF ∠=∠又①BD CD =①CAD BAD ∠=∠①AFO AHC △∽△ ①AF OF AH CH=①AF OF AH CF= ①CF AF OF AH ⋅=⋅①连接OD 交BC 于G .设OG x =,则2DG x =-①CD BD =①COD BOD ∠=∠又①OC OB =①OD BC ,CG BG =在Rt OGB △和Rt BGD △中 ①74x =即74OG = ①OA OB =①OG 是ABC 的中位线 ①12OG AC =①72AC =. 【点睛】本题考查了等弧对等角、相似三角形、等腰三角形、中位线等有关知识点,属于综合题型,借助辅助线是解决这类问题的关键.10.(2021·江苏中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.(1)ABC 是边长为3的等边三角形,E 是边AC 上的一点,且1AE =,小亮以BE 为边作等边三角形BEF ,如图1,求CF 的长;(2)ABC 是边长为3的等边三角形,E 是边AC 上的一个动点,小亮以BE 为边作等边三角形BEF ,如图2,在点E 从点C 到点A 的运动过程中,求点F 所经过的路径长;(3)ABC 是边长为3的等边三角形,M 是高CD 上的一个动点,小亮以BM 为边作等边三角形BMN ,如图3,在点M 从点C 到点D 的运动过程中,求点N 所经过的路径长;(4)正方形ABCD 的边长为3,E 是边CB 上的一个动点,在点E 从点C 到点B 的运动过程中,小亮以B 为顶点作正方形BFGH ,其中点F 、G 都在直线AE 上,如图4,当点E 到达点B 时,点F 、G 、H 与点B 重合.则点H 所经过的路径长为______,点G 所经过的路径长为______.【答案】(1)1;(2)3;(3(4)34π 【分析】 (1)由ABC ∆、BEF ∆是等边三角形,BA BC =,BE BF =, ABE CBF ∠=∠,可证ABE CBF ∆∆≌即可;(2)连接CF ,ABC ∆、BEF ∆是等边三角形,可证ABE CBF ∆∆≌,可得BCF ABC ∠=∠,又点E 在C 处时,CF AC =,点E 在A 处时,点F 与C 重合.可得点F 运动的路径的长3==AC ;(3)取BC 中点H ,连接HN ,由ABC ∆、BMN ∆是等边三角形,可证≌∆∆DBM HBN ,可得NH BC ⊥.又点M 在C 处时,==HN CD M 在D 处时,点N 与H 重合.可求点N 所经过的路径的长==CD (4)连接CG,AC ,OB ,由①CGA =90°,点G 在以AC 中点为圆心,AC 为直径的BC 上运动,由四边形ABCD 为正方形,BC 为边长,设OC =x ,由勾股定理222CO BO BC +=即,可求2x =G 所经过的路径长为BC 长=4,点H 所经过的路径长为BN 的长34π=. 【详解】 解:(1)①ABC ∆、BEF ∆是等边三角形,①BA BC =,BE BF =,60∠=∠=︒ABC EBF .①∠+∠=∠+∠ABE CBE CBF CBE ,①ABE CBF ∠=∠,①ABE CBF ∆∆≌,①1CF AE ==;(2)连接CF ,①ABC ∆、BEF ∆是等边三角形,①BA BC =,BE BF =,60∠=∠=︒ABC EBF .①∠+∠=∠+∠ABE CBE CBF CBE ,①ABE CBF ∠=∠,①ABE CBF ∆∆≌,①CF AE =,60∠=∠=︒BCF BAE ,①60ABC ∠=︒,①BCF ABC ∠=∠,①//CF AB ,又点E 在C 处时,CF AC =,点E 在A 处时,点F 与C 重合.①点F 运动的路径的长3==AC ;(3)取BC 中点H ,连接HN , ①12BH BC =, ①12=BH AB , ①CD AB ⊥, ①12BD AB =, ①BH BD =,①ABC ∆、BMN ∆是等边三角形,①BM BN =,60∠=∠=︒ABC MBN ,①∠+∠=∠+∠DBM MBH HBN MBH ,①∠=∠DBM HBN ,①≌∆∆DBM HBN ,①=HN DM ,90∠=∠=︒BHN BDM ,①NH BC ⊥,又点M 在C 处时,2==HN CD ,点M 在D 处时,点N 与H 重合,①点N 所经过的路径的长==CD (4)连接CG,AC ,OB ,①①CGA =90°, ①点G 在以AC 中点为圆心,AC 为直径的BC 上运动,①四边形ABCD 为正方形,BC 为边长,①①COB =90°,设OC =x ,由勾股定理222CO BO BC +=即2223x x +=,①2x =,点G 所经过的路径长为BC 长=12424π⎛⨯= ⎝⎭, 点H 在以BC 中点为圆心,BC 长为直径的弧BN 上运动,点H 所经过的路径长为BN 的长度,①点G 运动圆周的四分之一,①点H 也运动圆周的四分一,点H 所经过的路径长为BN 的长=1332424ππ⨯⨯=,故答案为34π;4. 【点睛本题考查等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式,掌握等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式是解题关键.11.(2021·吉林中考真题)实践与探究操作一:如图①,已知正方形纸片ABCD ,将正方形纸片沿过点A 的直线折叠,使点B 落在正方形ABCD 的内部,点B 的对应点为点M ,折痕为AE ,再将纸片沿过点A 的直线折叠,使AD 与AM 重合,折痕为AF ,则EAF ∠=度.操作二:如图①,将正方形纸片沿EF 继续折叠,点C 的对应点为点N .我们发现,当点E 的位置不同时,点N 的位置也不同.当点E 在BC 边的某一位置时,点N 恰好落在折痕AE 上,则∠=AEF 度. 在图①中,运用以上操作所得结论,解答下列问题:(1)设AM 与NF 的交点为点P .求证ANP FNE △≌△:.(2)若AB =AP 的长为.【答案】操作一:45°,操作二:60°;(1)证明见解析;(2)2【分析】操作一:直接利用折叠的性质,得出两组全等三角形,从而得出BAE EAM ∠=∠,,MAF FAD ,从而得出①EAF 的值;操作二:根据折叠的性质得出,ABEAME CEF NEF ,从而得出BEA AEF FEC ,即可求得AEF ∠的度数;(1)首先利用60AEF ∠=︒ ,得出30,15NAP PAF ,则45NAF ∠=︒,从而得出①ANF 为等腰直角三角形,即可证得ANP FNE △≌△;(2)利用三角函数或者勾股定理求出BE 的长,则BE EM =,设DF =x ,那么FC x ,在Rt ①EFC 中,利用勾股定理得出DF 的长,也就是MF 的长,即可求得EF 的长,进而可得结果.【详解】操作一:45°,证明如下:①ABE △折叠得到AME △ ,ADF 折叠得到AMF ,①,ABEAME ADF AMF , ①11,22BAEMAE BAM MAF DAF MAD , ①111()222EAF EAM MAF BAM MAD BAM MAD190452=⨯︒=︒, 故填:45°;操作二:60°,证明如下:①ABEAME , ①BEA AEM , 又①CEF △沿着EF 折叠得到ENF △ , ①CEFNEF , ①NEF FEC , ①1603BEAAEF FEC BEC ,故填:60°;(1)证明:由上述证明得CEF NEF ,60NEC CEF , ①NFE CFE ,C ENF ①四边形ABCD 为正方形,①①C =①D =90°,①30CFE NFE ,90ENF ANF , 又①ADF AMF , ①90D AMF, 在ANP 和PMF △中,①90,ANP PMF NPA MPF , ①30NAP MFP , ①30BAE NAP , ①15MAF FAD , ①301545NAF NAP PAF ,①ANF 为等腰直角三角形,即AN =NF ,在ANP 和FNE 中:①NAP NFE AN NF ANP ENF ∠=∠⎧⎪=⎨⎪∠=∠⎩①()ANP FNE ASA △≌△(2)由题可知ABE △是直角三角形,30BAE ∠=︒, ①3tan 33BE BE BAEAB , 解得BE =1,①BE =EM =1,31EC ,设DF =x ,则MF =x ,CF x,在Rt ①CEF 中,2221)(3)(1)x x ,解得x =3, 则1232x EF ,①()ANP FNE ASA △≌△①AP =EF =2.【点睛】本题考查正方形的性质,折叠的性质,全等三角形的判定,勾股定理,解题的关键是熟练运用折叠的性质,找出全等三角形.12.(2021·湖南中考真题)如图,在ABC 中,AB AC =,N 是BC 边上的一点,D 为AN 的中点,过点A 作BC 的平行线交CD 的延长线于T ,且AT BN =,连接BT .(1)求证:BN CN =;(2)在如图中AN 上取一点O ,使AO OC =,作N 关于边AC 的对称点M ,连接MT 、MO 、OC 、OT 、CM 得如图.①求证:TOM AOC ∽;①设TM 与AC 相交于点P ,求证:1//,2PD CM PD CM =. 【答案】(1)见解析;(2)①见解析,①见解析.【分析】(1)先用//AT BN ,且AT BN =证明出四边形ATBN 是平行四边形,得到①TAD ①①CND ,用对应边相等与等量代换,从而得出结论.(2)①连接AM 、MN ,利用矩形的性质与等腰三角形的性质,证明出①OCM 是直角三角形,证明出Rt ①OAT ①Rt ①OCM ,得到对应角相等,则得到答案;①连接OP ,由①中TOM AOC ∽,得到①OTM =①OAP ,点O 、T 、A 、P 共圆,由直径所对的圆周角为直角,证明出①OPT =90①,再根据等腰三角形的三线合一性得出结论.【详解】证明:(1)①//AT BC ,且AT BN =①//AT BN ,且AT BN =,①四边形ATBN 是平行四边形,①//AN TB ,①①DTA=①DCN,①①ADT=①NDC,①点D为AN的中点,①AD=ND,①①TAD①①CND(AAS)①TA=CN,①AT BN,①BN=CN,(2)①如图所示,连接AM、MN,①点N关于边AC的对称点为M,①①ANC①①AMC,①①ACN=①ACM,①AB=AC,点N为AC的中点,①平行四边形ATBN是矩形,①①TAB=①ABN=①ACN=①ACM,①BAN=①MAC=①CAN,AT=BN=NC=MC,①OA=OC,①①CAN=①ACO,①①TAB+①BAN=①ACM+①ACO=90①,①①OAT=①OCM=90①,在Rt①OAT和Rt①OCM中,①AT=CM,①OAT=①OCM ,OA=OC,①Rt①OAT①Rt①OCM(SAS),①①AOT=①COM,OT=OM,①①AOT+①AOM=①COM+①AOM,①①TOM=①AOC①OA=OC,OT=OM,①OT OM OA OC=,①TOM AOC∽;①如图所示,连接OP,①TOM AOC∽,①①OTM=①OAP,①点O、T、A、P共圆,①①OAT=90①,①OT为圆的直径,①①OPT=90①,①OT=OM,①点P为TM的中点,①由(1)得①TAD①①CND,①TD=CD,①点D为TC的中点,①DP为①TCM的中位线,①1//,2PD CM PD CM.【点睛】本题主要考查了矩形的判定与性质、等腰三角形的性质、三角形全等的判定与性质、以及相似三角形的判定与性质、圆中直径的性质,关键在于通过等量代换,换出角相等,证明出直角三角形全等,再证明三角形相似.13.(2021·浙江台州市·中考真题)如图,BD是半径为3的①O的一条弦,BD=,点A是①O上的一个动点(不与点B,D重合),以A,B,D为顶点作平行四边形ABCD.(1)如图2,若点A是劣弧BD的中点.①求证:平行四边形ABCD是菱形;①求平行四边形ABCD的面积.(2)若点A运动到优弧BD上,且平行四边形ABCD有一边与①O相切.①求AB的长;①直接写出平行四边形ABCD对角线所夹锐角的正切值.【答案】①证明见解析;①(2)①AB【分析】(1)①利用等弧所对的弦相等可得AD AB =,根据一组邻边相等的平行四边形是菱形可得证;①连接AO ,交BD 于点E ,连接OD ,根据垂径定理可得DE BE ==OE 的长,即可求解; (2)①分情况讨论当CD 与O 相切时、当BC 与O 相切时,利用垂径定理即可求解;①根据等面积法求出AH 的长度,利用勾股定理求出DH 的长度,根据正切的定义即可求解.【详解】解:(1)①①点A 是劣弧BD 的中点,①AD AB =,①AD AB =,①四边形ABCD 是平行四边形,①平行四边形ABCD 是菱形;①连接AO ,交BD 于点E ,连接OD ,,①点A 是劣弧BD 的中点,OA 为半径,①OA BD ⊥,OA 平分BD ,①DE BE ==①平行四边形ABCD 是菱形,①E 为两对角线的交点,在Rt ODE △中,1OE ==,①2AE =,①122ABCD S BD AE =⋅⨯=; (2)①如图,当CD 与O 相切时,连接DO 并延长,交AB 于点F ,①CD 与O 相切,①DF CD ⊥,①2AB BF =,①四边形ABCD 是平行四边形,①//AB CD ,①DF AB ⊥,在Rt BDF △中,()2222323BF BD DF OF =-=-+,在Rt BOF △中,22229BF BO OF OF =-=-,①()223239OF OF -+=-,解得73OF =,①BF =①2AB BF == 如图,当BC 与O 相切时,连接BO 并延长,交AD 于点G ,同理可得AG DG ==73OG =,所以AB ==综上所述,AB ①过点A 作AH BD ⊥,,由(2)得:7163,33BD AD BG ===+= 根据等面积法可得1122BD AH AD BG ⋅=⋅,解得329AH =,在在Rt ADH 中,DH ==,①HI ==①tan AH AIH HI ∠== 【点睛】本题考查垂径定理、平行四边形的判定与性质、解直角三角形等内容,掌握分类讨论的思想是解题的关键. 14.(2021·青海中考真题)在我们学习过的数学教科书中,有一个数学活动,若身旁没有量角器或三角尺,又需要作60,30,15︒︒︒等大小的角,可以采用如下方法:操作感知:第一步:对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展开(如图13-1). 第二步:再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN (如图13-2).猜想论证:(1)若延长MN 交BC 于点P ,如图13-3所示,试判定BMP 的形状,并证明你的结论.拓展探究:(2)在图13-3中,若AB a BC b ==,,当a b ,满足什么关系时,才能在矩形纸片ABCD 中剪出符(1)中的等边三角形BMP ?【答案】(1)BMP 是等边三角形,理由见解析;(2)a ≤,理由见解析 【分析】(1)连接AN ,由折叠性质可得ABN 是等边三角形, 30PBN ∠=︒,30ABM NBM ∠=∠=︒,然后可得到 60MBP BMP ∠=∠=︒,即可判定 BMP 是等边三角形.(2)由折叠可知BC BP ≥,由(1)可知BP BM =,利用 30︒的三角函数即可求得.【详解】(1)解:BMP 是等边三角形,证明如下:连接AN .由折叠可知:AB BN =,EF 垂直平分AB .①AN BN =,①AN AB BN ==,①ABN 为等边三角形,①60ABN ∠=︒,①30PBN ∠=︒,①30ABM NBM ∠=∠=︒,90BNM BAM ∠=∠=︒,①60BMP ∠=︒,①60MBP BMP BPM ∠=∠=∠=︒,①BMP 是等边三角形.(2)解:方法一:要在矩形纸片ABCD 上剪出等边BMP ,则BC BP ≥,在Rt BNP △中,BN BA a ==,30PBN ∠=︒,①cos303a BP a ==︒, ①BC BP ≥,①b ≥,即a ≤,当2a ≤或(3b a ≥)时,在矩形纸片上能剪出这样的等边BMP . 方法二:要在矩形纸片ABCD 上剪出等边BMP ,则BC BP ≥,在Rt BNP △中,30NBP ∠=︒,BN AB a ==,设NP x =,则2BP x =,①222BP NP BN -=,即()2222x x a -=,得x =,①3BP a =, ①BC BP ≥,①b ≥,即a ≤,当2a ≤(或3b a ≥)时,在矩形纸片上能剪出这样的等边BMP . 【点睛】本题考查了折叠的性质,及锐角三角函数的应用,正确理解折叠性质灵活运用三角函数解直角三角形是解本题的关键.15.(2021·海南中考真题)如图1,在正方形ABCD 中,点E 是边BC 上一点,且点E 不与点B C 、重合,点F 是BA 的延长线上一点,且AF CE =.(1)求证:DCE DAF ≌;(2)如图2,连接EF ,交AD 于点K ,过点D 作DH EF ⊥,垂足为H ,延长DH 交BF 于点G ,连接,HB HC .①求证:HD HB =;①若DK HC ⋅=HE 的长.【答案】(1)见解析;(2)①见解析;①1HE =.【分析】(1)直接根据SAS 证明即可;(2)①根据(1)中结果及题意,证明DFE △为等腰直角三角形,根据直角三角形斜边上的中线即可证明HD HB =;①根据已知条件,先证明DCH BCH ≌,再证明DKF HEC ∽,然后根据等腰直角三角形的性质即可求出HE 的长.【详解】(1)证明:①四边形ABCD 是正方形,,90CD AD DCE DAF ∴=∠=∠=︒.又CE AF =,DCE DAF ∴≌.(2)①证明;由(1)得DCE DAF ≌,,DE DF CDE ADF ∴=∠=∠.90FDE ADF ADE CDE ADE ADC ∴∠=∠+∠=∠+∠=∠=︒.DFE ∴为等腰直角三角形.又DH EF ⊥,∴点H 为EF 的中点.12HD EF ∴=. 同理,由HB 是Rt EBF △斜边上的中线得,12HB EF =. HD HB ∴=.①①四边形ABCD 是正方形,CD CB ∴=.又,HD HB CH CH ==,DCH BCH ∴≌.45DCH BCH ∴∠=∠=︒.又DEF 为等腰直角三角形,45DFE ∴∠=︒.HCE DFK ∴∠=∠.四边形ABCD 是正方形,//AD BC ∴.DKF HEC ∴∠=∠.DKF HEC ∴∽.DK DF HE HC∴=. DK HC DF HE ∴⋅=⋅.又①在等腰直角三角形DFH 中,DF ==2DK HC DF HE ∴⋅=⋅==1HE ∴=.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、直角三角形斜边上的中线以及等腰直角三角形的性质,熟知图形的性质与判定是解决本题的关键.16.(2021·甘肃中考真题)问题解决:如图1,在矩形ABCD 中,点,E F 分别在,AB BC 边上,,DE AF DE AF =⊥于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,判断AHF △的形状,并说明理由.类比迁移:如图2,在菱形ABCD 中,点,E F 分别在,AB BC 边上,DE 与AF 相交于点G ,,60,6,2DE AF AED AE BF =∠=︒==,求DE 的长.【答案】问题解决:(1)见解析;(2)等腰三角形,理由见解析;类比迁移:8【分析】问题解决:(1)证明矩形ABCD 是正方形,则只需证明一组邻边相等即可.结合DE AF ⊥和90DAE ∠=︒可知BAF ADG ∠=∠,再利用矩形的边角性质即可证明ABF DAE ≌,即AB AD =,即可求解; (2)由(1)中结论可知AE BF =,再结合已知BH AE =,即可证明ABH DAE △≌△,从而求得AHF △是等腰三角形;类比迁移:由前面问题的结论想到延长CB 到点H ,使得6BH AE ==,结合菱形的性质,可以得到ABH DAE ∆∆≌,再结合已知60AED ∠=︒可得等边AHF ∆,最后利用线段BF 长度即可求解.【详解】解:问题解决:(1)证明:如图1,①四边形ABCD 是矩形,90ABC DAB ∴∠=∠=︒.90BAF GAD ∴∠+∠=︒.,90DE AF ADG GAD ⊥∴∠+∠=.BAF ADG ∴∠=∠.又,,AF DE ABF DAE AB AD =∴∴=≌.①矩形ABCD 是正方形.(2)AHF △是等腰三角形.理由如下:,90,AB AD ABH DAE BH AE =∠=∠=︒=,,ABH DAE AH DE ∴∴=≌.又,DE AF AH AF =∴=,即AHF △是等腰三角形.类比迁移:如图2,延长CB 到点H ,使得6BH AE ==,连接AH .①四边形ABCD 是菱形,,,AD BC AB AD ABH BAD ∴=∴∠=∠∥.,BH AE ABH DAE =∴∆≌.,60AH DE AHB DEA ∴=∠=∠=︒.又,DE AF AH AF =∴=.60,AHB AHF ∠=︒∴是等边三角形,AH HF ∴=,628DE AH HF HB BF ∴===+=+=.【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.17.(2021·四川中考真题)如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF . (1)求证:ABF CBE ∽;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求PMN∠的度数及MN PM的值;(3)在(2)的条件下,若BC =PMN 面积的最大值.【答案】(1)证明见解析;(2)135PMN ∠=;MN PM (3)14 【分析】(1)根据两边对应成比例,夹角相等判定即可.(2)PMN ∠的值可以根据中位线性质,进行角转换,通过三角形内角和定理求解即可,MN PM 的比值转换为AF CE的比值即可求得. (3)过点P 作PQ 垂直于NM 的延长线于点Q ,12PMN S MN PQ =△,将相关线段关系转化为CE ,可得。

几何难题精选中考压轴题带答案和详细解析30道解答题.docx

几何难题精选中考压轴题带答案和详细解析30道解答题.docx

几何难题精选解答题(共30小题)1. (2015・河南)如图 1,在 RtAABC 中,ZB=90°, BC=2AB=8,点 D 、E 分别是边 BC 、 AC 的中点,连接DE,将AEDC 绕点C 按顺时针方向旋转,记旋转角为a. (1) 问题发现①当a=0°时,—= ;②当a=180°时,—= BD BD(2) 拓展探究试判断:当0。

"<360。

时,華的大小有无变化?请仅就图2的情形给出证明. BD(3) 问题解决当AEDC 旋转至A, D, E 三点共线时,直接写出线段BD 的长.2. (2015・济南)如图 1,在厶ABC 中,ZACB=90°, AC=BC, ZEAC=90°,点 M 为射线 AE 上任意一点(不与A 重合),连接CM,将线段CM 绕点C 按顺时针方向旋转9()。

得到线 段CN,直线NB 分别交直线CM 、射线AE 于点F 、D.(1) 直接写JIIZNDE 的度数;(2) 如图2、图3,当ZEAC 为锐角或钝角时,其他条件不变,(1)中的结论是否发生变 化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3) 如图4,若ZEAC=15°, ZACM=60°,肓线CM 与AB 交于G, BD 二匝士亜,其他条 件不变,求线段AM 的长.图1图23. (2015・岳阳)已知直线01〃山 点C 是直线m 上一点,点D 是直线n 上一点,CD 与直 线m 、n 不垂直,点P 为线段CD 的中点.(1) 操作发现:直线l±m, l±n,垂足分别为A 、B,当点A 与点C 重合时(如图①所示), 连接PB,请直接写出线段PA 与PB 的数量关系: _______ .(2) 猜想证明:在图①的情况下,把直线1向上平移到如图②的位置,试问(1)中的PA 与PB 的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3) 延伸探究:在图②的情况卜把直线1绕点A 旋转,使得ZAPB=90° (如图③所示), 若两平行线m 、n 之间的距离为2k ・求证:PA ・PB 二k ・AB.4. (2015*重庆)在厶ABC 中,AB=AC, ZA=60°,点 D 是线段 BC 的中点,ZEDF=120°, DE 与线段AB 相交于点E. DF 与线段AC (或AC 的延长线)相交于点F.(1)如图1,若DF 丄AC,垂足为F, AB=4,求BE 的长;图① …图②E(2)如图2,将(1)中的ZEDF绕点D顺时针旋转一定的介度,DF仍与线段AC相交于点F.求证:BE+CF=-AB;2(3)如图3,将(2)中的ZEDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN丄AC于点N,若DN丄AC于点N,若DN=FN,求证:BE+CF二逅(BE-CF).5.(2015•烟台)【问题提出】如图①,已知ZXABC是等腰三角形,点E在线段AB ±,点D在直线BC上,H.ED二EC, 将Z\BCE绕点C顺时针旋转60。

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)

中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。

中考压轴题—三角形、四边形综合(解析版)--2024年中考数学

中考压轴题—三角形、四边形综合(解析版)--2024年中考数学

中考压轴题-三角形、四边形综合1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2.图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

4.几何图形的归纳、猜想问题中考加大了对考生归纳,总结,猜想这方面能力的考察,但是由于数列的系统知识要到高中才会正式考察,所以大多放在填空压轴题来出。

对于这类归纳总结问题来说,思考的方法是最重要的。

5.阅读理解问题如今中考题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点。

阅读理解往往是先给一个材料,或介绍一个超纲的知识,或给出针对某一种题目的解法,然后再给条件出题。

对于这种题来说,如果考生为求快速而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失。

所以如何读懂题以及如何利用题就成为了关键。

解题策略1.学会运用数形结合思想数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想.数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

2013中考压轴题选讲专题7_几何三大变换问题(排版+答案)

2013中考压轴题选讲专题7_几何三大变换问题(排版+答案)

2012年中考数学压轴题分类解析专题7:几何三大变换相关问题授课老师:黄立宗典型例题选讲:例题1:(2012福建龙岩13分)矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A 的对应点A′落在线段BC上,再打开得到折痕EF.(1)当A′与B重合时(如图1),EF= ;当折痕EF过点D时(如图2),求线段EF的长;(2)观察图3和图4,设BA′=x,①当x的取值范围是时,四边形AEA′F是菱形;②在①的条件下,利用图4证明四边形AEA′F是菱形.例题2:(2012辽宁丹东)已知:点C、A、D在同一条直线上,∠ABC=∠ADE=α,线段BD、CE交于点M.(1)如图1,若AB=AC,AD=AE①问线段BD与CE有怎样的数量关系?并说明理由;②求∠BMC的大小(用α表示);(2)如图2,若AB= BC=kAC,AD =ED=kAE则线段BD与CE的数量关系为,∠BMC= (用α表示);(3)在(2)的条件下,把△ABC绕点A逆时针旋转180°,在备用图中作出旋转后的图形(要求:尺规作图,不写作法,保留作图痕迹),连接EC并延长交BD于点M.则∠BMC= (用α表示).例题3:(2012福建福州)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D 的坐标;(3) 如图②,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P的坐标(点P、O、D分别与点N、O、B对应).例题4:(2012广西贵港12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M (2,-1),交x轴于A、B两点,交y轴于点C,其中点B的坐标为(3,0)。

(1)求该抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式;(3)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数。

中考数学 精讲篇 中考压轴题重难点突破七 二次函数与几何综合题 类型三

中考数学 精讲篇 中考压轴题重难点突破七 二次函数与几何综合题 类型三

解:(1)在直线 y=-2x+10 中, 令 x=0,则 y=10,令 y=0,则 x=5, ∴A(5,0),B(0,10),
∵点 C 是 OB 中点,∴C(0,5),
0=25+5b+c, b=-6,
将 A 和 C 代入抛物线 y=x2+bx+c 中,5=c,
解得c=5,
∴抛物线的函数解析式为 y=x2-6x+5.
∴E(m,-2m+10), ∴DE=-2m+10-m2+6m-5=-m2+4m+5,
∴S△ABD=12×OA×DE=12×5×(-m2+4m+5)=425, 解得 m=2, ∴点 D 的坐标为(2,-3).
(3)抛物线解析式为 y=x2-6x+5, ∵△APB 是以 AB 为直角边的直角三角形设点 P(n,n2-6n+5), ∵A(5,0),B(0,10),∴AP2=(n-5)2+(n2-6n+5)2, BP2=n2+(n2-6n+5-10)2,AB2=125,
①若 AB 为斜边时, 点 Q 与点 O 重合,不符合题意,舍去;
②若 AB 为直角边时, 如图,当∠BAQ1=90°时, 点 Q1 在 x 轴上,∵∠ABQ1=45°, ∴△BAQ1 为等腰直角三角形, ∵AO⊥BQ1,∴OQ1=OB=6, ∴Q1(-6,0);
当∠ABQ2=90°时,点 Q2在 y 轴上,
y=-2x+10, x=-1, x=5, (2)联立y=x2-6x+5,解得y=12 或y=0, ∴直线 AB 与抛物线交于点(-1,12)和(5,0), ∵点 D 是直线 AB 下方抛物线上的一点,设 D(m,m2-6m+5), ∴-1<m<5, 如解图 1,过点 D 作 DE⊥x 轴,交直线 AB 于点 E,
【思路点拨】 第一步:先确定点 C,F 的坐标,求出△ACF 的各边长; 第二步:判断△ACF 的形状.

几何图形中求线段,线段和,面积等最值问题(4题型)—2024年中考数学压轴题(全国通用)(解析版)

几何图形中求线段,线段和,面积等最值问题(4题型)—2024年中考数学压轴题(全国通用)(解析版)

几何图形中求线段,线段和,面积等最值问题(压轴通关)目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)几何图形中求线段、线段和、面积最值题是全国中考的热点内容,更是全国中考的必考内容。

每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。

1.从考点频率看,几何图形中的性质综合问题,是高频考点、也是必考点。

2.从题型角度看,以解答题的最后一题或最后二题为主,分值12分左右,着实不少!题型一 线段最值问题【例1】(2024·四川成都·一模)如图1,在四边形ABFE 中,90F ∠=︒,点C 为线段EF 上一点,使得AC BC ⊥,24AC BC ==,此时BF CF =,连接BE ,BE AE ⊥,且AE BE =.(1)求CE 的长度;(2)如图2,点D 为线段AC 上一动点(点D 不与A ,C 重合),连接BD ,以BD 为斜边向右侧作等腰直角三角形BGD .①当DG AB ∥时,试求AD 的长度;②如图3,点H 为AB 的中点,连接H G ,试问H G 是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由.【答案】(2)①103;②2【分析】(1)取AB 的中点H ,连接,EH HC ,证明FEB CAB ∠=∠,得出1tan tan 2FB FEB CAB EF ∠==∠=则12BF EF =,进而根据CE EF CF =−(2)①如图所示,过点D 作DM EF ⊥于点M ,过点D 作DN AB ⊥于点N ,证明DBC GBF ∽得出DC ,即可得出DM GF =,证明DMG GFB ≌,进而证明G 在EF 上,根据已知条件证明D 在EB上,然后解直角三角形,即可求解;②如图所示,过点H 作HP EF ⊥于点P ,连接EH ,由①可得G 在EF 上运动,当HG EF ⊥时,H G 取得最小值,即,G P 重合时,HP 的长即为HG 的最小值,由①可得103AT =,求得sin ETA ∠=45HEF ETA α∠=+︒=∠,即可求解.【详解】(1)解:如图所示,取AB 的中点H ,连接,EH HC ,∵BF CF =,90F ∠=︒,∴45BCF ∠=︒,BC , 又∵AC BC ⊥ ∴45ECA ∠=︒ ∵AE BE =,BE AE ⊥ ∴45EBA ∠=︒ ∴45ECA ABE ∠=∠=︒ ∴FEB CAB ∠=∠ ∵24AC BC ==, ∴2BC =∴BF CF = ∴1tan 2CB CAB AC ∠== ∴1tan tan 2FB FEB CAB EF ∠==∠= ∴12BF EF =∴EF =∴CE EF CF =−(2)①如图所示,过点D 作DM EF ⊥于点M ,过点D 作DN AB ⊥于点N ,由(1)可得45ACE ABE ∠=∠=︒ ∴CDM V 是等腰直角三角形,∴CD ,∵,CBF DBG 都是等腰直角三角形,∴CB DBBF BG==∴BD BGBC BF= 又∵DBG CBF ∠=∠ ∴DBC GBF ∠=∠ ∴DBC GBF ∽∴DC DBGF GB==∴DC ∴DM GF = 在,DMG GFB 中,DM GF DMG F DG BG =⎧⎪∠=∠⎨⎪=⎩∴DMG GFB ≌ ∴MGD FBG ∠=∠ ∵90FBG FGB ∠+∠=︒∴90MGD FGB ∠+∠=︒ 又∵90DGB ∠=︒ ∴180MGF ∠=︒ ∴G 在EF 上,∵DG AB ∥,90DGB ∠=︒ ∴90GBA ∠=︒∵45,45ABE DBG ABD ∠=︒∠=︒=∠ ∴D 在EB 上, ∵1tan 2CAB ∠=,∴12DN AN =,则AD ∵,45DN AB ABE ⊥∠=︒ ∴DN DB = ∴3AB DN =, ∵4AC =,2CB =∴AB ==∴13DN AB ==∴103AD ==, ②如图所示,过点H 作HP EF ⊥于点P ,连接EH ,由①可得G 在EF 上运动,∴当HG EF ⊥时,HG 取得最小值,即,G P 重合时,HP 的长即为H G 的最小值, 设,AC EB 交于点T ,即与①中点D 重合,由①可得103AT =∵AB =∴AE 12EH AB ==∴sin 3AE ETA AT ∠=== 设FEB CAB α∠=∠= 则45HEF ETA α∠=+︒=∠,在Rt PEH △中,sin sin 102PH HEF EH ETA EH =∠⨯=∠⨯= 【点睛】证明G 点在EF 上是解题的关键.【例2】(2024·天津红桥·一模)在平面直角坐标系中,点()0,0O ,()2,0A , (2,B ),C ,D 分别为OA ,OB 的中点.以点O 为中心,逆时针旋转OCD ,得OC D '',点C ,D 的对应点分别为点C ',D ¢.(1)填空∶如图①,当点D ¢落在y 轴上时,点D ¢的坐标为_____,点C '的坐标为______; (2)如图②,当点C '落在OB 上时, 求点D ¢的坐标和 BD '的长; (3)若M 为C D ''的中点,求BM 的最大值和最小值(直接写出结果即可). 逆时针旋转OCD ,得OC D '',知为中心,逆时针旋转OCD,得OC D'',可得(2,23B为中心,逆时针旋转OCD,得OC D'',()A,2,0()A2,0,(2,23 B是AOB的中位线,为中心,逆时针旋转OCD,得OC D'','==,D CD3M是C'(2,23B1.(2024·山东济宁·模拟预测)已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE CF ,.(1)如图1,求证:ADE CDF ≅; (2)直线AE 与CF 相交于点G .①如图2,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 是正方形;②如图3,连接BG ,若6AB =,3DE =,直接写出在DEF 旋转的过程中,线段BG 长度的最小值为 . 再证明AMB CNB ≅可得MB ,证明BGM 是等腰直角三角形,然后求出【详解】(1)证明:四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒,DE DF =,90EDF ∠=︒,ADC EDF ∴∠=∠,ADE CDF \Ð=Ð,在ADE V 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩, SAS ADE CDF ∴()≌. (2)解:①证明:如图2中,设AG 与CD 相交于点P ,90ADP ∠=︒, 90DAP DPA ∴∠+∠=︒,ADE CDF ≅,DAE DCF ∴∠=∠,DPA GPC ∠∠=,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒, 90PGN ∠∴=︒,BM AG ⊥,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒,四边形ABCD 是正方形,AB BC ∴=,90ABC MBN∠∠==︒,ABM CBN ∴∠=∠,又90AMB BNC ∠∠==︒,AMB CNB ∴≅,MB NB ∴=,∴矩形BMGN 是正方形;∵DAH BAM ABM ∠+∠=∠∴DAH ABM ∠=∠,又∵AD BA =,DHA ∠∴AMB DHA ≌△△, BM AH ∴=,2AH AD =DH ∴最大时,可知,BGM 是等腰直角三角形,23⨯=(1)若AC AB AD BC >⊥,,当点E 在线段AC 上时,AD BE ,交于点F ,点F 为BE 中点.①如图1,若37BF BD AD ===,,求AE 的长度;②如图2,点G 为线段AF 上一点,连接GE 并延长交BC 的延长线于点H .若点E 为GH 中点,602BAC DAC EBC ∠=︒∠=∠,,求证:12AG DF AB +=. (2)如图3,若360AC AB BAC ︒==∠=,.当点E 在线段AC 的延长线上时,连接DE ,将DCE △沿DC 所在直线翻折至ABC 所在平面内得到DCM △,连接AM ,当AM 取得最小值时,ABC 内存在点K ,使得ABK CAK ∠=∠,当KE 取得最小值时,请直接写出2AK 的值.的长,证明(AAS)FDB FGE ≌AD BC EG AD ⊥⊥,, 90BDF ∴∠=︒,EGF ∠=BDF EGF ∴∠=∠,在Rt BDF △中,90BDF ∠=点(AAS)FDB FGE ∴≌3BD GE ∴==DFAD=,7∴=AG ADRt AGE中,2⊥,AD BC90∴∠=︒,ADC点E为GH的中点,∴=,GE HE在AGE和KHE△中,=AE KE∴≌(SAS) AGE KHE∴∠=∠34∠=DAC∴设EBC∠点和KEF中,(SAS)AFB KEF ∴≌89AB FK ∴=∠=∠,BAC ∠=Rt FDM 中,1由题意可知:160∠=︒,AC 30CAM ∴∠=︒,1322CM AC ∴==, ABK ∠=ABK ∴∠+∠EKQ EOA ∴∽,KE KQ QE(1)如图①,在ABC 中,点M ,N 分别是AB ,AC 的中点,若BC =MN 的长为__________. 问题探究:(2)如图②,在正方形ABCD 中,6AD =,点E 为AD 上的靠近点A 的三等分点,点F 为AB 上的动点,将AEF △折叠,点A 的对应点为点G ,求CG 的最小值. 问题解决:(3)如图③,某地要规划一个五边形艺术中心ABCDE ,已知120ABC ∠=︒,60BCD ∠=︒,40m AB AE ==,80m BC CD ==,点C 处为参观入口,DE 的中点P 处规划为“优秀”作品展台,求点C 与点P 之间的最小距离.是ABC 的中位线,由中位线的性质,即可求解,Rt EDC 中,根据勾股定理,求出∵点E为AD上的靠近点∴11633AE AD==⨯=在Rt EDC中,EC 根据折叠的性质,【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______; 【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值; 【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.994CBAABDSS ==,即可得到ACD 的面积;为直径的O 上交O 于点P )证明,CBH EBC ∽得到,再证明,ABH EBA ∽得到在O 的劣弧与O 相交于点ABDCBAS S=994CBAABDSS ==,∴ACD 的面积为9CBAABDS S−=故答案为:为直径的O 上运动,交O 于点P,作ABH 的外接圆O ,连接∴,CBH EBC ∽ BC BH∴,ABH EBA ∽ 120AHB EAB ∠=∠=在O 的劣弧120=︒在AOB 中,则1602BM AM AB ===米, 与O 相交于点题型二 线段和的最小值问题【例1】(2024·四川达州·模拟预测)【问题发现】(1)如图1,在OAB 中,3OB =,若将OAB 绕点O 逆时针旋转120︒得OA B '',连接BB ',则BB '=________. 【问题探究】(2)如图2,已知ABC 是边长为BC 为边向外作等边BCD △,P 为ABC 内一点,连接AP BP CP ,,,将BPC △绕点C 逆时针旋转60︒,得DQC △,求PA PB PC ++的最小值; 【实际应用】(3)如图3,在长方形ABCD 中,边1020AB AD ==,,P 是BC 边上一动点,Q 为ADP △内的任意一点,是否存在一点P 和一点Q ,使得AQ DQ PQ ++有最小值?若存在,请求出此时PQ 的长,若不存在,请说明理由.将AQD 绕点BC ⊥在OAB 中,3OB =,将OAB 绕点120BOB '∴∠=︒,3OB OB '==,OBB OB B ''∴∠=∠,OBB '∠+OC BB ⊥OCB '∴∠将∴++=+PA PB PC PA∴当点D、Q、P、A⊥连接AD,作DE AC∠=,ABC边长为DCBDCE BCA∴∠=∠=60)如图所示,将AQD绕点,90EA︒=【例2】(2024·贵州毕节·一模)在学习了《图形的平移与旋转》后,数学兴趣小组用一个等边三角形继续进行探究.已知ABC 是边长为2的等边三角形.(1)【动手操作】如图1,若D 为线段BC 上靠近点B 的三等分点,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接CE ,则CE 的长为________;(2)【探究应用】如图2,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接CE ,若,,B D E本题主要考查了等边三角形的性质与判定,矩形的性质与判定,旋转的性质,勾股定理,含度角的直角三角形的性质,解题的关键在于利用旋转构造等边三角形,从而把三条不在一条直线的线段之和的问题,转换成几点共线求线段的最值问题是解题的关键.三点共线,求证:EB 平分AEC ∠;(3)【拓展提升】如图3,若D 是线段BC 上的动点,将线段AD 绕点D 顺时针旋转60︒得到线段DE ,连接CE .请求出点D 在运动过程中,DEC 的周长的最小值. 证明BAD CAE ≌,的三等分点和ABC 是边长为ADB AEC =∠60BEC ∠=︒EB(3)由ABD ACE ≌△△,得CE BD =,可得DEC 的周长BC DE =+,而DE AD =,知AD 的最小时,DEC的周长最小,此时AD BC ⊥,即可求得答案.∵ABC 是等边三角形,AB AC =,∴SAS ABD ACE ≌()BD CE =;的三等分点,且ABC 是边长为∵ABC 是等边三角形,AB AC =,∴SAS ABD ACE≌(),120ADB AEC ∠=∠=上时,DEC 的周长存在最小值,如图:∵ABD ACE ≌△△, ∴CE BD =,∴DEC 的周长DE CE =++∴当点D 在线段BC 上时,DEC 的周长∵DEC 为等边三角形,DE AD =,的最小时,DEC 的周长最小,此时∴DEC 的周长的最小值为【点睛】本题考查几何变换综合应用,旋转性质、涉及等边三角形的性质,全等三角形的判定和性质,垂1.(2024·陕西·二模)在平面直角坐标系中,A 为y 轴正半轴上一点,B 为x 轴正半轴上一点,且4OA OB ==,连接AB .(1)如图1,C 为线段AB 上一点,连接OC ,将OC 绕点O 逆时针旋转90︒得到OD ,连接AD ,求AC AD +的值.(2)如图2,当点C 在x 轴上,点D 位于第二象限时,90ADC ∠=︒,且AD CD =,E 为AB 的中点,连接DE ,试探究线段AD DE +是否存在最小值?若存在,求出AD DE +的最小值;若不存在,请说明理由.≌,可得出点,证明AND CMDAOC的平分线对称,由∴AND CMD≌,DN DM=,P大值和最小值分别是______和______;(2)如图2,在矩形ABCD中,4AB=,6AD=,点P在AD上,点Q在BC上,且AP CQ=,连接CP、QD,求PC QD+最小时AP的长;(3)如图3,在ABCDY中,10AB=,20AD=,点D到AB的距离为动点E、F在AD边上运动,始终保持3EF=,在BC边上有一个直径为BM的半圆O,连接AM与半圆O交于点N,连接CE、FN,求CE EF FN++的最小值.()SASABP CDQ≌=的O 外有一点在O 上, 如图,当点P 在AO 的延长线上时,此时PA 的最大值为:PO OA +故答案为:11;3;(2)延长BA 至点B ',使AB ∵在矩形ABCD 中,4AB =,∴DAB BAP CBA DCQ '∠=∠=∠=∠在ABP 和CDQ 中,AB CD =∴()SAS ABP CDQ ≌Rt B BC '中,AB P BB ''=∠ (3)如图,过点F 作FG EC ∥,交BC OG ',NO ,∵在ABCD Y 中,10AB =,20AD =,点∴AD BC ∥,即EF CG ∥,BC AD =EFGC【点睛】本题考查圆的基本性质,全等三角形的判定和性质,相似三角形的判定和性质,矩形的性质,平行四边形的判定和性质,对称的性质,勾股定理,三角形三边关系定理,两点之间线段最短等知识点.灵活运用所学知识、弄清题意并作出适当辅助线是解题的关键.3.(2024·陕西西安·三模)【问题提出】(1)如图①,AB 为半圆O 的直径,点P 为半圆O 的AB 上一点,BC 切半圆O 于点B ,若10AB =,12BC =,则CP 的最小值为 ; 【问题探究】(2)如图②,在矩形ABCD 中,3AB =,5BC =,点P 为矩形ABCD 内一点,连接PB 、PC ,若矩形ABCD 的面积是PBC 面积的3倍,求PB PC +的最小值; 【问题解决】(3)如图③,平面图形ABCDEF 为某校园内的一片空地,经测量,AB BC ==米,=60B ∠︒,150BAF BCD ∠=∠=︒,DE DC ⊥,20CD =米,劣弧E F 所对的圆心角为90︒,E F 所在圆的圆心在AF 的延长线上,10AF =米.某天活动课上,九(1)班的同学准备在这块空地上玩游戏,每位同学在游戏开始前,在BC 上选取一点P ,在弧E F 上选取一点Q ,并在点P 和点Q 处各插上一面小旗,从点A 出发,先到点P 处拔下小旗,再到点Q 处拔下小旗,用时最短者获胜.已知晓雯和晓静的跑步速度相同,要使用时最短,则所跑的总路程()AP PQ +应最短,问AP PQ +是否存在最小值?若存在,请你求出AP PQ +的最小值;若不存在,请说明理由.交O于点P⊥PH BC交O于点P点P为半圆O的AB上一点,∴当点P与点P不重合时,1当点P与点P重合时,BC切半圆∴∠=ABC=OB OP矩形ABCD 的面积是PBC 面积的13553PBCS∴=⨯⨯=CF PH =又5BC =,60ABC ∠=︒,AB BC ==ABC ∴是等边三角形, 60BAC BCA ∴∠=∠=︒,150BAF BCD ∠=∠=︒,DE AA M '∴和CMN ∴∠=点'A Q OQ+∴的最小值为A Q'ABC为等边三角形,点∴点为BC△,E G分别作,,⊥⊥与EF交于点F,连接CF.EF AD FG AB FG特例感知(1)以下结论中正确的序号有______;ED CF BG为边围成的三角形不是直①四边形AGFE是矩形;②矩形ABCD与四边形AGFE位似;③以,,角三角形;类比发现(2)如图2,将图1中的四边形AGFE绕着点A旋转,连接BG,观察CF与BG之间的数量关系和位置关系,并证明你的发现;拓展应用(3)连接CE ,当CE 的长度最大时, ①求BG 的长度;②连接,,AC AF CF ,若在ACF △内存在一点P ,使CP AP ++的值最小,求CP AP ++的最小值.先证明APF AKL ∽,得到∴HF DE =,CH BG =,∴CHF 是直角三角形,∵四边形ABCD 是矩形,∴43AB CD ==,AD =∴228AC AB BC =+=,则由(2)知,90CEF ∠=︒,∵2247CF CE EF =+=,根据旋转,可得30PAF KAL ∠=∠=,根据两边对应成比例且夹角相等可得APF AKL ∽, ∴3KL PF =,过P 作PS AK ⊥于S ,则12PS AP =题型三 面积的最小值问题【例1】(新考法,拓视野)(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ; 【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积; 【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.,证明()SAS ABG ADF ≌,再证明()SAS AEF AEG ≌,得到ABG ,则)()33AEF AEG SS==最小值最小值∵ABC 是边长为 ∴()SAS ABG ADF ≌∴()SAS AEF AEG ≌,得到ABG , )()33AEF AEG SS==最小值最小值【例2】(2024·陕西西安·二模)图形旋转是解决几何问题的一种重要方法.如图1,正方形ABCD 中,E F 、分别在边AB BC 、上,且45EDF ∠=︒,连接EF ,试探究AE CF EF 、、之间的数量关系.解决这个问题可将ADE V 绕点D 逆时针旋转90︒到CDH △的位置(易得出点H 在BC 的延长线上),进一步证明DEF 与DHF △全等,即可解决问题.(1)如图1,正方形ABCD 中,45,3,2EDF AE CF ∠=︒==,则EF =______;(2)如图2,正方形ABCD 中,若30EDF ∠=︒,过点E 作EM BC ∥交DF 于M 点,请计算AE CF +与EM 的比值,写出解答过程;(3)如图3,若60EDF ∠=︒,正方形ABCD 的边长8AB =,试探究DEF 面积的最小值. 进一步证明DEF,,,D F H G 四点共圆;进而可得30FHG ∠=,根据1tan 30AE CF CH CF FH EM GH GH ++====︒(3)过点E 作EK CD ⊥于K ,交DF 于M ,作FT EK ⊥于T ,得出 4DEFS EM =,进而根据(2)的方法得出EM GH =,根据FC AE CH ==时,面积最小,得出32OF =− 【详解】(1)解:∵将ADE V 绕点D 逆时针旋转90︒, ∴90DCH A DCB ∠=∠=︒=∠,DH DE HDC EDA =∠=∠, ∴点H 在BC 的延长线上, ∵四边形ABCD 是正方形 ∴90ADC ∠=︒, ∵45EDF ∠=︒,∴45HDF CDH FDC ADE FDC EDF ∠=∠+∠=∠+∠=︒=∠ 又∵DF DF =,∴DEF ()SAS DHF ≌,∴235EF FH FC CH FC AE ==+=+=+=, 故答案为:5.(2)解:将ADE V ,DEM △绕点D 逆时针旋转90︒,得,DCH DHG∴,AED CHD DEM DHG ∠=∠∠=∠, ∵EM BC ∥,则EM AB ⊥, ∴90AEM ∠=︒,∴90CHG CHD DHG AED DEM AEM ∠=∠+∠=∠+∠=∠=︒, ∵30EDF ∠=︒,EM BC ∥则EM AD ∥, ∴ADE CDH ∠=∠,30GDH MDE ∠=∠=︒, ∵EM BC ∥, ∴EMF DFC ∠=∠,∴180EMD EMF EMD DFC ∠+∠=∠+∠=︒, 即180DFC DGH ∠+∠=︒, ∴,,,D F H G 四点共圆; ∴30GFH GDH ∠=∠=︒, 又30FHG ∠=︒∴1tan 30AE CF CH CF FH EM GH GH ++====︒(3)如图,过点E 作EK CD ⊥于K ,交DF 于M ,作FT EK ⊥于T ,90FTK TKC BCD ∠=∠=∠=︒∴四边形CFTK 是矩形, FT CK ∴=8DK CK DK FT ∴+=+= 111()4222DEFEMDEMFSSSEM DK EM FT EM DK FH EM ∴=+=⋅+⋅=+=同(2)将ADE V ,DEM △绕点D 逆时针旋转90︒,得,DCH DHG , 可得60GFH EDM ∠=∠=︒,EM GH = 取得最小值时,DEF 的面积最小,∵2220−=≥,∴FH x y =+≥ 当且仅当x y =时取得等于号, 此时FC AE CH ==, 设,,,D F H G 的圆心为O , ∵DC FH ⊥,FC CH =, ∴DC 经过点O ,∴OF OD =,sin 602OC OF =︒= ∵8OD OC +=8OF +=解得:32OF =−∴232FH FC OF ===−∴48GH =,∴()44448192DEFSEM GH ====,即DEF 面积的最小为192.【点睛】本题考查了旋转的性质,正方形的性质、全等三角形的判定与性质、四点共圆等知识,解直角三角形,熟练掌握旋转的性质是解题的关键.1.(2023·陕西西安·一模)问题发现(1)在ABC 中,2AB =,60C ∠=︒,则ABC 面积的最大值为 ;(2)如图1,在四边形ABCD 中,6AB AD ==,90BCD BAD ∠=∠=︒,8AC =,求BC CD +的值. 问题解决(3)有一个直径为60cm 的圆形配件O ,如图2所示.现需在该配件上切割出一个四边形孔洞OABC ,要求60O B ∠=∠=︒,OA OC =OABC 的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC ?若存在,请求出四边形OABC 面积的最小值及此时OA 的长;若不存在,请说明理由.为弦的确定的圆上,作ABC 的外接圆,可得当点时,ABC 的面积最大,求出,再根据三角形的面积公式计算即可;将ABC 绕点A 逆时针旋转、D 、E 在同一条直线上,求出BCES,可得要使四边形面积最小,就要使BCE 的面积最大,然后由(时,BCE 的面积最)的方法求出BCE 面积的最大值,可得四边形,根据OA 如图,作ABC 的外接圆,∴当点C 在C '的位置,即时,ABC 的面积最大,∴C A C B ''=,BD =∴ABC '△是等边三角形,∴ABC 面积的最大值为)如图,将ABC 绕点∴B ADE ∠=∠,BAC ∠∵6AB AD ==,BCD ∠∴180B ADC ∠+∠=︒,∵60AOC ∠=︒,OA OC =∴将AOB 绕O 点顺时针旋转至COE ,连接∴60BOE ∠=︒,OE OB =∴BOE △是等边三角形,AOBBCOSS+COEBCOSS+ BOE BCES S− BCESBCES,的面积最小,就要使BCE 的面积最大,作BCE 的外接圆I ,点F 是I 上一点,CF 交由(1)可知,当CF 是直径,且CF BE ⊥时,BCE 的面积最大,∴BCE 面积的最大值为150BCES=(1)如图①,已知ABC 是面积为AD 是BAC ∠的平分线,则AB 的长为______. 问题探究:(2)如图②,在ABC 中,90C ∠=︒,AC BC =,4AB =,点D 为AB 的中点,点E ,F 分别在边AC ,BC 上,且90EDF ∠=︒.证明:DE DF =.问题解决:(3)如图③,李叔叔准备在一块空地上修建一个矩形花园ABCD ,然后将其分割种植三种不同的花卉.按照他的分割方案,点P ,Q 分别在AD ,BC 上,连接PQ 、PB 、PC ,60BPC ∠=︒,E 、F 分别在PB 、PC 上,连接QE 、QF ,QE QF =,120EQF ∠=︒,其中四边形PEQF 种植玫瑰,ABP 和PCD 种植郁金香,剩下的区域种植康乃馨,根据实际需要,要求种植玫瑰的四边形PEQF 的面积为2,为了节约成本,矩形花园ABCD 的面积是否存在最小值?若存在,请求出矩形ABCD 的最小面积,若不存在,请说明理由.)设ABC 的边长为EQG ,根据四边形则当PQ BC ⊥时,矩形ABCD 的面积最小,根据2ABCD PEQF S S =四边形四边形,即可求解.【详解】解:(1)∵ABC 是面积为AD 是BAC ∠的平分线, ∴12BD CD AB ==设ABC 的边长为a∴AD ==∴2112224ABCS BC AD a =´=´´=∴24a =解得:4a =, 故答案为:4.(2)如图所示,连接CD ,∵在ABC 中,90C ∠=︒,AC BC =,4AB =,点D 为AB 的中点, ∴CD AD =,90ADC ∠=︒,45A DCF ∠=∠=︒ 又∵90EDF ∠=︒∴ADE ADC CDE EDF EDC CDF ∠=∠−∠=∠−∠=∠ 在,ADE CDF △△中,45A DCF ADE CDF AD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴ADE CDF V V ≌ ∴DE DF =; (3)如图所示,∵60BPC ∠=︒,120EQF ∠=︒, ∴36060120180PFQ PEQ ∠+∠=︒−︒−︒=︒ 将QFP △绕点Q 逆时针旋转120︒,得到EQG , ∴,,P E G 三点共线,∴四边形PEQF 的面积等于PQG , 又∵120,PQG PQ GQ ∠=︒=,∴30QPG QGP ∠=∠=︒过点Q 作QN PG ⊥于点N ,则12QN PQ =设PQ b =,则1,22NQ b PN ==∴2PG PN ==∴2111222PQGSPG NQ b =⨯=⨯=∵四边形PEQF 的面积为 ∴16b =,即16PQ =,如图所示,作QM PM ⊥于点M ,∵30EPQ FPQ ∠=∠=︒,QM PM ⊥,QN PG ⊥,则QN QM =, 在,ENQ FMQ 中,QN QM EQ FQ =⎧⎨=⎩∴()HL ENQ FMQ ≌, 同理可得PNQ PMQ ≌ 则2PNQPEQF S S=四边形∴PEQF PNQM S S =四边形四边形,作点Q 关于PE 的对称点T ,连接PT ,则PTQ 是等边三角形,则PTQS=如图所示,依题意,当PQ BC ⊥时,矩形ABCD 的面积最小,此时,E F 与,N M 重合,,∴22ABCD PEQF S S ==⨯四边形四边形∴矩形ABCD 的最小面积为2【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形的性质与判定,勾股定理,旋转的性质,综合运用以上知识是解题的关键.3.(2024·陕西榆林·二模)(1)如图1,AB CD ∥,1,2AB CD ==,AD ,BC 交于点E ,若4=AD ,则AE = ;(2)如图2,矩形ABCD 内接于O , 2,AB BC ==点 P 在AD 上运动,求 PBC 的面积的最大值; (3)为了提高居民的生活品质,市政部门计划把一块边长为 120米的正方形荒地 ABCD (如图3)改造成一个户外休闲区,计划在边AD ,BC 上分别取点P ,Q ,修建一条笔直的通道PQ ,要求 2CQ AP =,过点 B 作 BE PQ ⊥于点E ,在点E 处修建一个应急处理中心,再修建三条笔直的道路BE CE DE ,,,并计划在 CDE 内种植花卉, DEP 内修建老年活动区, BCE 内修建休息区,在四边形ABEP 内修建儿童游乐园.问种植花卉的 CDE 的面积是否存在最小值? 若存在,求出最小值;若不存在,请说明理由.得ABE DCE ∽,得对应成比例的线段,于是得到结论;时,PBC 的面积有最大值,解直角三角形求出PBC 的高即可得到结论;于点M ,作BME 的外接圆O ,过点OF DC ⊥₂E CD ₂的面积最小. ()∥AB CD DCE ,是O的直径.₂的面积最大.P BC上任意另取一点P₁PBC的面积最大.Rt OBE中,.S=PBC。

2024年中考数学压轴题重难点知识剖析及训练—一线三等角相似、三垂直模型压轴题专题(含解析)

2024年中考数学压轴题重难点知识剖析及训练—一线三等角相似、三垂直模型压轴题专题(含解析)

2024年中考数学压轴题重难点知识剖析及训练—一线三等角相似、三垂直模型压轴题专题(含解析)一线三等角概念“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

不同地区对此有不同的称呼,“K形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。

“一线三等角”的两种基本类型1.三等角都在直线的同侧2.三等角分居直线的两侧3.在初三各学校的考试和中考试题中,一线三等角的相似属于压轴题的热点题型之一,本专题从中考试题和初三各名校的试题中,精选一线三等角相似模型的经典好体,并根据角度区别把一线三等角模型细分为三类题型:三垂直模型、一线三锐角、一线三钝角,适合于初三学生进行压轴题专项突破时使用。

类型一:三垂直模型1.(雅礼)如图,点A 是双曲线()80y x x=<上一动点,连接OA ,作OB OA ⊥,使2OA OB =,当点A 在双曲线()80y x x =<上运动时,点B 在双曲线ky x=上移动,则k 的值为.【解答】解:过A 作AC ⊥y 轴于点C ,过B 作BD ⊥y 轴于点D ,∵点A 是反比例函数y =(x <0)上的一个动点,点B 在双曲线y =上移动,∴S △AOC =×|﹣8|=4,S △BOD =|k |,∵OB ⊥OA ,∴∠BOD +∠AOC =∠AOC +∠OAC =90°,∴∠BOD =∠OAC ,且∠BDO =∠ACO ,∴△AOC ∽△OBD ,∵OA =2OB ,∴=()2=,∴=,∴|k |=2.∴k <0,∴k =﹣2,故答案为:﹣2.2.(青竹湖)如图,︒=∠90AOB ,反比例函数()04<-=x xy 的图象过点()a A ,1-,反比例函数xky =()0,0>>x k 的图象过点B ,且x AB //轴,过点B 作OA MN //,交x 轴于点M ,交y 轴于点N ,交双曲线x ky =于另一点,则OBC ∆的面积为.【解答】解:∵反比例函数的图象过点A (﹣1,a ),∴a =﹣=4,∴A(﹣1,4),过A作AE⊥x轴于E,BF⊥x轴于F,∴AE=4,OE=1,∵AB∥x轴,∴BF=4,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴=,∴OF=16,∴B(16,4),∴k=16×4=64,∵直线OA过A(﹣1,4),∴直线AO的解析式为y=﹣4x,∵MN∥OA,∴设直线MN的解析式为y=﹣4x+b,∴4=﹣4×16+b,∴b=68,∴直线MN的解析式为y=﹣4x+68,∵直线MN交x轴于点M,交y轴于点N,∴M(17,0),N(0,68),解得,或,∴C(1,64),﹣S△OCN﹣S△OBM=﹣﹣=510,∴△OBC的面积=S△OMN故答案为510.3.(广益)如图,点A,B在反比例函数y=(k>0)的图象上,点A的横坐标为2,点B的纵坐标为1,OA⊥AB,则k的值为.【解答】解:过点A作AM⊥x轴于点M,过点B作BN⊥AM于N,∵∠OAB=90°,∴∠OAM+∠BAN =90°,∵∠AOM+∠OAM=90°,∴∠BAN=∠AOM,∴△AOM∽△BAN,∴=,∵点A,B在反比例函数y=(k>0)的图象上,点A的横坐标为2,点B的纵坐标为1,∴A(2,),B(k,1),∴OM=2,AM=,AN=﹣1,BN=k﹣2,∴=,解得k1=2(舍去),k2=8,∴k的值为8,故答案为:8.4.(长沙中考2020)在矩形ABCD 中,E 为DC 上的一点,把ADE ∆沿AE 翻折,使点D 恰好落在BC 边上的点F .(1)求证:ABF FCE∆∆:(2)若23,4AB AD ==,求EC 的长;(3)若2AE DE EC -=,记,BAF FAE αβ∠=∠=,求tan tan αβ+的值.【详解】(1)证明:∵四边形ABCD 是矩形,∴∠B=∠C=∠D=90°,∴∠AFB+∠BAF=90°,∵△AFE 是△ADE 翻折得到的,∴∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,∴∠BAF=∠CFE ,∴△ABF ∽△FCE .(2)解:∵△AFE 是△ADE 翻折得到的,∴AF=AD=4,∴()22224232AF AB --,∴CF=BC-BF=AD-BF=2,由(1)得△ABF ∽△FCE ,∴CE CF BF AB =,∴2223CE =,∴EC=233(3)解:由(1)得△ABF ∽△FCE ,∴∠CEF=∠BAF=α,∴tan α+tan β=BF EF CE EFAB AF CF AF+=+,设CE=1,DE=x ,∵2AE DE EC -=,∴AE=DE+2EC=x+2,AB=CD=x+1,2244AE DE x -=+∵△ABF ∽△FCE ,∴AB CF AF EF =2144x x x x -=+(211121x x x xx ++-+ ,∴112x x +=,∴1x x =-x 2-4x+4=0,解得x=2,∴CE=1,213x -=,EF=x=2,AF=2244AE DE x -=+=23tan α+tan β=CE EF CF AF +33323.5.(广益)矩形ABCD中,8AB=,12AD=,将矩形折叠,使点A落在点P处,折痕为DE.(1)如图1,若点P恰好在边BC上.①求证:△EBP∽△PCD;②求AE的长;(2)如图2,若E是AB的中点,EP的延长线交BC于点F,求BF的长.图1图2【解答】解:(1)①∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,∴∠BPE+∠BEP=90°,由折叠知,∠DPE=∠BAD=90°,∴∠BPE+∠CPD=90°,∴∠BEP=∠CPD,∵∠B=∠C=90°,∴△EBP∽△PCD;②∵四边形ABCD是矩形,∴∠B=∠C=90°,CD=AB=8,BC=AD=12,由折叠知,PE=AE,DP=AD=12,在Rt△DPC中,CP==4,∴BP=BC﹣CP=12﹣4,在Rt△PBE中,PE2﹣BE2=BP2,∴AE2﹣(8﹣AE)2=(12﹣4)2,∴AE=18﹣6;(2)如图,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x,∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.6.(长郡)如图,在平面直角坐标系中,O 为原点,已知点Q 是射线OC 上一点,182OQ =,点P 是x 轴正半轴上一点,tan 1POC ∠=,连接PQ ,A 经过点O 且与QP 相切于点P ,与边OC 相交于另一点D .(1)若圆心A 在x 轴上,求A 的半径;(2)若圆心A 在x 轴的上方,且圆心A 到x 轴的距离为2,求A 的半径;(3)在(2)的条件下,若10OP <,点M 是经过点O ,D ,P 的抛物线上的一个动点,点F 为x 轴上的一个动点,若满足1tan 2OFM ∠=的点M 共有4个,求点F 的横坐标的取值范围.【解答】解:(1)∵圆心A 在x 轴上,⊙A 经过点O 且与QP 相切于点P ,∴PQ ⊥x 轴,OP 为直径,∵tan ∠POC =1,,∴PQ =OP ,∵在Rt △OPQ 中,.∴OP =18.∴⊙A 的半径为9;(2)如图所示,过点A 作AM ⊥x 轴于点M ,过点Q 作QB ⊥x 轴于B ,连接AP ,∵PQ是⊙A的切线,∴AP⊥PQ,则∠APQ=90°,∵AM⊥x轴,QB⊥x轴,∴∠AMP=∠PBC=90°,∴∠PAM=90°﹣∠APM=∠QPB,∴△APM∽△PBQ,∴,∵tan∠POC=1,QB=18,∴OB=QB=18,∵AM=2,设MP=MO=x,∴PB=18﹣2x,∴,解得x=3或x=6,∴MO=3或MO=x,∴A(3,2)或A(6,2),∴AP==或AP==2.∴半径为或2.(3)∵OP<10,∴BO=3,P(6,0),∴A(3,2),∵tan∠POC=1,设D(a,a),∵,∴(3﹣a)2+(2﹣a)2=13,解得:a=0或a=5,∴D(5,5),设抛物线解析式为y=ax2+bx,将点P(6,0),D(5,5)代入得,,解得:,∴y=﹣x2+6x,∵点F可能在点O的左边或点P的右边,,则|K FM|=,设直线MF:或,联立,,得或,当或,解得:或,∴直线MF:或,令y=0,解得:或,∴或.7.(麓山国际)有一边是另一边的倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)已知Rt△ABC为智慧三角形,且Rt△ABC的一边长为,则该智慧三角形的面积为;(2)如图①,在△ABC中,∠C=105°,∠B=30°,求证:△ABC是智慧三角形;(3)如图②,△ABC是智慧三角形,BC为智慧边,∠B为智慧角,A(3,0),点B,C在函数y=上(x>0)的图象上,点C在点B的上方,且点B的纵坐标为.当△ABC是直角三角形时,求k的值.=AC•AB,【解答】解:(1)如图1,设∠A=90°,AC≤AB,S△ABC①若AC=,i)AB=AC=2,∴S=,ii)BC=AC=2,则AB=,∴S=,②若AB=,i)AB=AC,即AC=,∴S=,ii)BC=AB=2,则AC=∴S=,③若BC=,若AB=AC==1,∴S=,若AB=AC,AB=,,S=××=,故答案为:或1或或或.(2)证明:如图2,过点C作CD⊥AB于点D,∴∠ADC=∠BDC=90°,在Rt△BCD中,∠B=30°,∴BC=2CD,∠BCD=90°﹣∠B=60°,∵∠ACB=105°,∴∠ACD=∠ACB﹣∠BCD=45°,∴Rt△ACD中,AD=CD,∴AC=,∴,∴△ABC是智慧三角形.(3)∵△ABC是智慧三角形,BC为智慧边,∠B为智慧角,∴BC=AB,∵△ABC是直角三角形,∴AB不可能为斜边,即∠ACB≠90°∴∠ABC=90°或∠BAC=90°①当∠ABC=90°时,过B作BE⊥x轴于E,过C作CF⊥EB于F,过C作CG⊥x轴于G,如图3,∴∠AEB=∠F=∠ABC=90°,∴∠BCF+∠CBF=∠ABE+∠CBF=90°,∴∠BCF=∠ABE,∴△BCF∽△ABE,∴,设AE=a,则BF=AE=a,∵A(3,0),∴OE=OA+AE=3+a,∵B的纵坐标为,即BE=,∴CF=BE=2,CG=EF=BE+BF=,B(3+a,),∴OG=OE﹣GE=OE﹣CF=3+a﹣2=1+a,∴C(1+a,),∵点B、C在在函数y=上(x>0)的图象上,∴(3+a)=(1+a)(+a)=k解得:a1=﹣2(舍去),a2=1,∴k=,②当∠BAC=90°时,过C作CM⊥x轴于M,过B作BN⊥x轴于N,如图4,∴∠CMA=∠ANB=∠BAC=90°,∴∠MCA+∠MAC=∠MAC+∠NAB=90°,∴∠MCA=∠NAB,∴△MCA∽△NAB,∵BC=,∴2AB2=BC2=AB2+AC2,∴AC=AB,∴△MCA≌△NAB(AAS),∴AM=BN=,∴OM=OA﹣AM=3﹣,设CM =AN =b ,则ON =OA +AN =3+b ,∴C (3﹣,b ),B (3+b ,),∵点B 、C 在在函数y =上(x >0)的图象上,∴(3﹣)b =(3+b )=k解得:b =,∴k =18+15,综上所述,k 的值为或。

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案一、解答题(共30小题)1.观察猜想(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论2.在△ABC的边BC上取B′、C′两点,使∠AB′B=∠AC′C=∠BAC(1)如图1中∠BAC为直角,∠BAC=∠AB′B=∠AC′C=90°(点B′与点C′重合),则△ABC∽△B'BA∽△C'AC,,,进而可得AB2+AC2=;(2)如图2中当∠BAC为锐角,图3中∠BAC为钝角时(1)中的结论还成立吗?若不成立,则AB2+AC2等于什么(用含用BC和B′C′的式子表示)?并说明理由(3)若在△ABC中,AB=5,AC=6,BC=9,请你先判断出△ABC的类型,再求出B′C′的长3.(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.4.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE 和AF数量关系.(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.5.如图,在平行四边形ABCD中,AC与BD交于点O,以点O为顶点的∠EOF的两边分别与边AB、AD交于点E、F,且∠EOF与∠BAD互补.(1)若四边形ABCD是正方形,则线段OE与OF有何数量关系?请直接写出结论;(2)若四边形ABCD是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由;(3)若AB:AD=m:n,探索线段OE与OF的数量关系,并证明你的结论.6.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=.7.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.探索发现:图1中,的值为;的值为.(2)拓展探完若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.8.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.(1)问题发现如图1,△CDE的形状是三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.(3)解决问题是否存在m的值,使△DEB是直角三角形?若存在,请直接写出m的值;若不存在,请说明理由.9.等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD 的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为,线段MN 和线段NF的数量关系为;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为.10.四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD中,AB=AD,CB=CD,则AC与BD的位置关系是,请说明理由.(2)试探究图1中四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE的长.11.问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.12.如图1,菱形ABCD与菱形GECF的顶点C重合,点G在对角线AC上,且∠BCD=∠ECF=60°,(1)问题发现的值为;(2)探究与证明将菱形GECF绕点C按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:菱形GECF在旋转过程中,当点A,G,F三点在一条直线上时,如图3所示连接CG并延长,交AD于点H,若CE=2,GH=,则AH的长为.13.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.14.如图,已知点E是射线BC上的一点,以BC、CE为边作正方形ABCD和正方形CEFG,连接AF,取AF的中点M,连接DM、MG(1)如图1,判断线段DM和GM的数量关系是,位置关系是;(2)如图2,在图中的正方形CEFG绕点C逆时针旋转的过程中,其他条件不变,(1)中的结论是否成立?说明理由;(3)已知BC=10,CE=2,正方形CEFG绕点C旋转的过程中,当A、F、E共线时,直接写出△DMG的面积.15.在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.16.如图(1),在等边三角形ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M,N,P分别是BE,CD,BC的中点,连接DE,PM,PN,MN.(1)观察猜想,图(1)中△PMN是(填特殊三角形的名称)(2)探究证明,如图(2),△ADE绕点A按逆时针方向旋转,则△PMN的形状是否发生改变?并就图(2)说明理由.(3)拓展延伸,若△ADE绕点A在平面内自由旋转,AD=2,AB=6,请直接写出△PMN 的周长的最大值.17.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.18.问题提出:(1)如图1,在四边形ABCD中,连接AC、BD,AB=AD,∠BAD=∠BCD=90°,将△ABC绕点A逆时针旋转90°,得到△ADE,点B的对应点落在点D,点C的对应点为点E,可知点C、D、E在一条直线上,则△ACE为三角形,BC、CD、AC的数量关系为;探究发现:(2)如图2,在⊙O中,AB为直径,点C为的中点,点D为圆上一个点,连接AD、CD、AC、BC、BD,且AD<BD,请求出CD、AD、BD间的数量关系.拓展延伸:(3)如图3,在等腰直角三角形ABC中,点P为AB的中点,若AC=13,平面内存在一点E,且AE=10,CE=13,当点Q为AE中点时,PQ=.19.已知△ABC中,CA=CB,0°<∠ACB≤90°,点M、N分别在边CA,CB上(不与端点重合),BN=AM,射线AG∥BC交BM延长线于点D,点E在直线AN上,EA=ED.(1)【观察猜想】如图1,点E在射线NA上,当∠ACB=45°时,①线段BM与AN的数量关系是;②∠BDE的度数是;(2)【探究证明】如图2点E在射线AN上,当∠ACB=30°时,判断并证明线段BM与AN的数量关系,求∠BDE的度数;(3)【拓展延伸】如图3,点E在直线AN上,当∠ACB=60°时,AB=3,点N是BC 边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.20.如图①,在正方形ABCD和正方形AB'C'D'中,AB=2,AB'=,连接CC’(1)问题发现:.(2)拓展探究:将正方形AB'C'D'绕点A逆时针旋转,记旋转角为θ,连接BB',试判断:当0°≤θ<360°时,的值有无变化?请仅就图②中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C,C′,D'三点共线时BB′的长.21.如图1,在正方形ABCD中,点O是对角线BD的中点.(1)观察猜想将图1中的△BCD绕点O逆时针旋转至图2中△ECF的位置,连接AC,DE,则线段AC与DE的数量关系是,直线AC与DE的位置关系是.(2)类比探究将图2中的△ECF绕点O逆时针旋转至图3的位置,(1)中的结论是否成立?并说明理由.(3)拓展延伸将图2中的△ECF在平面内旋转,设直线AC与DE的交点为M,若AB=4,请直接写出BM的最大值与最小值.22.如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.23.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)观察猜想:线段EF与线段EG的数量关系是;(2)探究证明:如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.24.如图1,在Rt△ABC中,∠B=90°,AB=2,BC=1,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、B、E三点共线时,直接写出线段BD的长.25.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.26.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE ⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.27.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O 于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.28.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.29.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.30.如图1和图2,在△ABC中,AB=AC,BC=8,tan C=.点K在AC边上,点M,N 分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3<x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)如图①中,∵∠EAF=∠BAC=90°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为:BF⊥BE,BC.(2)如图②中,作DH∥AC交BC于H.∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=2,∴BF+BE=BH=2;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M.∵AC∥DH,∴∠ACB=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF=DE,DB=DH,∴△BDF≌△HDE,∴BF=EH,∴BF+BE=EH+BE=BH,∵DB=DH,DM⊥BH,∴BM=MH,∠BDM=∠HDM,∴BM=MH=BD•sin.∴BF+BE=BH=2n•sin.2.【解答】解:(1)如图1中,∵△ABC∽△B'BA∽△C'AC,∴=,=,∴AB2=BB′×BC,AC2=CC′×BC,∴AB2+AC2=BC(BB′+CC′)=BC×BC=BC2,故答案为BC2.(2)不成立.理由:如图2中当∠BAC为锐角时,BB′+CC′﹣B′C′=BC,且△ABC∽△B'BA∽△C'AC,∴∴=,=,∴AB2=BB′×BC,AC2=CC′×BC,∴AB2+AC2=BC(BB′+CC′)=BC2+BC•B′C′.图3中∠BAC为钝角时,BB′+CC′+B′C′=BC.AB2+AC2=BC(BB′+CC′)=BC2﹣BC•B′C′.(3)当AB=5,AC=6,BC=9时,则AB2+AC2<BC2,可知△ABC为钝角三角形,由图3可知:AB2+AC2=BC2﹣BC•B′C′,∴52+62=92﹣9B′C′,∴B′C′=.3.【解答】解:(1)∵∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,∴∠ABC=∠CAB=45°=∠CDE=∠CED,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CAB=∠CBE=45°,∴∠DBE=∠ABC+∠CBE=90°,=1,故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,∵△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣4.【解答】解:(1)∵△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,∴AD=BD=DC,∠BDA=90°,∵四边形DFGE是正方形,∴DE=DF,∠EDF=90°,∴∠BDE=∠ADF=90°,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF故答案为:BE=AF;(2)成立;理由如下:当正方形DFGE在BC的上方时,如图②所示,连接AD,∵在Rt△ABC中,AB=AC,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADE+∠EDB=90°,∵四边形DFGE为正方形,∴DE=DF,且∠EDF=90°,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF;当正方形DFGE在BC的下方时,连接AD,如图③所示:∵∠BDE=∠BDF+90°,∠ADF=∠BDF+90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF;综上所述,(1)中的结论BE=AF成立;(3)在△ADE中,∵AE<AD+DE,∴当点A、D、E共线时,AE取得最大值,最大值为AD+DE.如图④所示:则AD=BC=1,DE=DF=2,∴AE=AD+DE=3,即AE的最大值为3.5.【解答】解:(1)如图1,过点O作OM⊥AB于M,ON⊥AD于N,∴∠OME=∠ONF=90°,∴∠BAD+∠MON=180°,∵∠BAD+∠EOF=180°,∴∠MON=∠EOF,∴∠EOM=∠FON,∵O是正方形ABCD的对角线的交点,∴∠BAO=∠DAO,∵OM⊥AB,ON⊥AD,∴OM=ON,∴△OME≌△ONF(AAS)∴OE=OF;(2)(1)的结论成立;理由:如图2,过点O作OM⊥AB于M,ON⊥AD于N,∴∠OME=∠ONF=90°,∴∠BAD+∠MON=180°,∵∠BAD+∠EOF=180°,∴∠MON=∠EOF,∴∠EOM=∠FON,∵O是菱形ABCD的对角线的交点,∴∠BAO=∠DAO,∵OM⊥AB,ON⊥AD,∴OM=ON,∴△OME≌△ONF(AAS)∴OE=OF;(3)如图3,过点O作OG⊥AB于G,OH⊥AD于H,∴∠OGE=∠OHF=90°,∴∠BAD+∠GOH=180°,∵∠BAD+∠EOF=180°,∴∠GOH=∠EOF,∴△EOG∽△FOH,∴,∵O是▱ABCD的对角线的交点,∴S△AOB=S△AOD,∵S△AOB=AB•OG,S△AOD=AD•OH,∴AB•OG=AD•OH,∴=,∴.6.【解答】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.7.【解答】解:(1)如图1,连接AE,∵AB=AC=2,点E分别是BC的中点,∴AE⊥BC,∴∠BEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根据勾股定理得,BE=∵点E是BC的中点,∴BC=2BE=2,∴==,∵点D是AC的中点,∴AD=CD=AC=1,∴==,故答案为:,;(2)无变化,理由:由(1)知,CD=1,CE=BE=,∴=,,∴=,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)当点D在线段AE上时,如图2,过点C作CF⊥AE于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴DF=CD=,∴CF=DF=,在Rt△AFC中,AC=2,根据勾股定理得,AF==,∴AD=AF+DF=,由(2)知,,∴BE=AD=当点D在线段AE的延长线上时,如图3,过点C作CG⊥AD交AD的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴DG=CD=,∴CG=DG=,在Rt△ACG中,根据勾股定理得,AG=,∴AD=AG﹣DG=,由(2)知,,∴BE=AD=即:线段BE的长为或.8.【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;故答案为:等边;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;③当6<m<10时,由∠DBE=120°>90°,∴此时不存在;④当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14,综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.9.【解答】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,此时∠CBP的值最小,点P到BC的距离最小,即△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2﹣2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.10.【解答】(1)解:AC⊥BD,理由如下:连接AC、BD,如图2所示:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,故答案为:AC⊥BD;(2)解:AD2+BC2=AB2+CD2;理由如下:如图1,已知四边形ABCD中,AC⊥BD,设BD、AC相交于E,∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)解:如图3,连接CG、BE,∵四边形ACFG和四边形ABDE是正方形,∴AC=AG,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,由(2)得,CG2+BE2=CB2+GE2,在Rt△ABC中,AC=4,AB=5,根据勾股定理得,BC2=52﹣42=9,∵CG和BE分别是正方形ACFG和正方形ABDG的对角线,∴CG2=42+42=32,BE2=52+52=50,∴GE2=CG2+BE2﹣CB2=32+50﹣9=73,∴GE=.11.【解答】解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴BH=CD=2,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∴==,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.12.【解答】解:(1)如图1中,作EH⊥CG于H.∵四边形ECFG是菱形,∠ECF=60°,∴∠ECH=∠ECF=30°,EC=EG,∵EH⊥CG,∴GH=CG,∴=cos30°=,∴=2•=,∵EG∥CD,AB∥CD,∴GE∥AB,∴==.故答案为.(2)结论:AG=BE.理由:如图2中,连接CG.∵四边形ABCD,四边形ECFG都是菱形,∠ECF=∠DCB=60°,∴∠ECG=∠EGC=∠BCA=∠BAC=30°,∴△ECG∽△BCE,∴=,∵∠ECB=∠GCA,∴△ECB∽△GCA,∴==,∴AG=BE.(3)如图3中,∵∠AGH=∠CGF=30°.∠AGH=∠GAC+∠GCA,又∵∠DAC=∠HAG+∠GAC=30°,∴∠HAG=∠ACH,∵∠AHG=∠AHC,∴△HAG∽△HCA,∴HA:HC=GH:HA,∴AH2=HG•HC,∴FC=2,CG=CF,∴GC=2,∵HG=,∴AH2=HG•HC=•3=9,∵AH>0,∴AH=3.故答案为3.13.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.14.【解答】解:(1)如图1,延长GM交AD于H,∵AD∥GF,∴∠GFM=∠HAM,在△FMG和△AMH中,,∴△FMG≌△AMH(ASA),∴HM=GM,AH=FG,∵AD=CD,AH=FG=CG,∴DH=DG,∵∠HDG=90°,HM=GM,∴DM=MG,DM⊥MG,故答案为DM=MG,DM⊥MG.(2)结论成立:DM=MG,DM⊥MG,理由:如图2中,延长GM使得MH=GM,连接AH、DH、DG,延长AD交GF的延长线于N,交CD于O.∵AM=MF,∠AMH=∠FMG,MH=MG,∴△AMH≌△FMG(SAS),∴AH=GF=CG,∠AHM=∠FGM,∴AH∥GN,∴∠HAD=∠N,∵∠ODN=∠OGC=90°,∠DON=∠GOC,∴∠N=∠OCG,∴∠HAD=∠DCG,∵AH=CG,AD=CD,∴△HAD≌△GCD(SAS),∴DH=DG,∠HDA=∠CDG,∴∠HDG=∠ADC=90°,∴△HDG是等腰直角三角形,∵MH=MG,∴DM⊥GH,DM=MH=MG,(3)①如图3﹣1中,连接AC.在Rt△ABC中,AC==10,在Rt△ACE中,AE==14,∴AF=AE=EF=14﹣2=12,∴FM=AM=AF=6,在Rt△MGF中,MG==2,∴S△DMG=×2×2=20,②如图3﹣2中,连接AC.同法可得AE=14,AF=16,FM=8,MG==2,∴S△DMG=×2×2=34,综上所述,满足条件的△DMG的面积为20或34.15.【解答】解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°,∴∠BQC=∠BCP=∠A,∴tan∠BQC=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形P A'B′Q=S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形P A'B′Q最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,∵∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣.16.【解答】解:(1)结论:△PMN是等边三角形.理由:如图1中,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=EC,∵PB=PC,CN=ND,BM=EM,∴PN∥BD,PM∥EC,PN=BD,PM=EC,∴PM=PN,∠NPC=∠ABC=60°,∠MPB=∠ACB=60°,∴∠MPN=60°,∴△PMN是等边三角形,故答案为等边三角形.(2)△PMN的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°又∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=,且PM∥CE.同理可证PN=BD且PN∥BD,∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC﹣∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.(3)∵PM=EC,∴当EC最大时,等边△PMN的周长最大,∵EC≤AE+AC,∴EC≤8,∴PM≤4,∴PM的最大值为4,∴△PMN的周长的最大值为12.17.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.18.【解答】解:(1)由旋转变换的性质可知,∠CAE=90°,AC=AE,∴△ACE为等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC,故答案为:等腰直角;BC+CD=AC;(2)延长CO交⊙O于E,连接AE、BE、DE,则∠CDE=90°,∵点C为的中点,∴点E为的中点,∴EA=EB,∵AB为⊙O的直径,∴∠ADB=90°,由(1)得,DE=(AD+BD),由勾股定理得,CD2=CE2﹣DE2=AD2+BD2﹣(AD+BD)2=(AD﹣BD)2,∴CD=(BD﹣AD);(3)如图3,当点E在直线AC的左侧时,连接CQ、PC,∵CA=CB,点P为AB的中点,∴CP⊥AB,∵CA=CE,点Q为AE中点,∴CQ⊥AE,AQ=QE=AE=5,∴由勾股定理得,CQ==12,由(1)得,AQ+CQ=PQ,。

2023年各地中考几何压轴题汇编附详解

2023年各地中考几何压轴题汇编附详解

2023年各地中考几何压轴题汇编1.(2023·安徽)在Rt ABC △中.M 是斜边AB 的中点.将线段MA 绕点M 旋转至MD 位置.点D 在直线AB 外.连接,AD BD .(1)如图1.求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2.连接CD .求证:BD CD =;(ⅱ)如图3.连接BE .若8,6AC BC ==.求tan ABE ∠的值.2.(2023·北京)在ABC 中、()045B C αα∠=∠=︒<<︒.AM BC ⊥于点M .D 是线段MC 上的动点(不与点M .C 重合).将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1.当点E 在线段AC 上时.求证:D 是MC 的中点;(2)如图2.若在线段BM 上存在点F (不与点B .M 重合)满足DF DC =.连接AE .EF .直接写出AEF ∠的大小.并证明.3.(2023·福建)如图1.在ABC 中.90,,BAC AB AC D ∠=︒=是AB 边上不与,A B 重合的一个定点.AO BC ⊥于点O .交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的.,FD CA 的延长线相交于点M .(1)求证:ADE FMC △∽△;(2)求ABF ∠的度数;(3)若N 是AF 的中点.如图2.求证:ND NO =.4.(2023·广西)如图.ABC是边长为4的等边三角形.点D.E.F分别在边AB.BC.CA==.上运动.满足AD BE CF≌;(1)求证:ADF BED(2)设AD的长为x.DEF的面积为y.求y关于x的函数解析式;(3)结合(2)所得的函数.描述DEF的面积随AD的增大如何变化.5.(2023·河北)如图1和图2.平面上.四边形ABCD 中.8,12,6,90AB BC CD DA A ====∠=︒.点M 在AD 边上.且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P .设点P 在该折线上运动的路径长为(0)x x >.连接A P '.(1)若点P 在AB 上.求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数.并直接写出当180n =时.x 的值;①若点P 到BD 的距离为2.求tan A MP '∠的值;(3)当08x <≤时.请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).6.(2023·山西)问题情境:“综合与实践”课上.老师提出如下问题:将图1中的矩形纸片沿对角线剪开.得到两个全等的三角形纸片.表示为ABC 和DFE △.其中90,ACB DEF A D ∠=∠=︒∠=∠.将ABC 和DFE △按图2所示方式摆放.其中点B 与点F 重合(标记为点B ).当ABE A ∠=∠时.延长DE 交AC 于点G .试判断四边形BCGE 的形状.并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转.使点E 落在ABC 内部.并让同学们提出新的问题.①“善思小组”提出问题:如图3.当ABE BAC ∠=∠时.过点A 作AM BE ⊥交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系.并加以证明.请你解答此问题;①“智慧小组”提出问题:如图4.当CBE BAC ∠=∠时.过点A 作AH DE ⊥于点H .若9,12BC AC ==.求AH 的长.请你思考此问题.直接写出结果.7.(2023·深圳)(1)如图.在矩形ABCD 中.E 为AD 边上一点.连接BE .①若BE BC =.过C 作CF BE ⊥交BE 于点F .求证:ABE FCB ≌△△;②若20ABCD S =矩形时.则BE CF ⋅=______.(2)如图.在菱形ABCD 中.1cos 3A =.过C 作CE AB ⊥交AB 的延长线于点E .过E 作EF AD ⊥交AD 于点F .若24ABCD S =菱形时.求EF BC ⋅的值.(3)如图.在平行四边形ABCD 中.60A ∠=︒.6AB =.5AD =.点E 在CD 上.且2CE =.点F 为BC 上一点.连接EF .过E 作EG EF ⊥交平行四边形ABCD 的边于点G .若EF EG ⋅=.请直接写出AG 的长.8.(2023·无锡)如图.四边形ABCD 是边长为4的菱形.60A ∠=︒.点Q 为CD 的中点.P 为线段AB 上的动点.现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时.求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时.设BP x =.四边形BB C C ''的面积为S .求S 关于x 的函数表达式.9.(2023·武汉)问题提出:如图(1).E 是菱形ABCD 边BC 上一点.AEF △是等腰三角形.AE EF =.()90,α∠=∠=≥︒AEF ABC a AF 交CD 于点G .探究GCF ∠与α的数量关系.问题探究:(1)先将问题特殊化.如图(2).当90α=︒时.直接写出GCF ∠的大小;(2)再探究一般情形.如图(1).求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化.如图(3).当120α=︒时.若12DG CG =.求BE CE 的值.10.(2023·徐州)【阅读理解】如图1.在矩形ABCD 中.若,AB a BC b ==.由勾股定理.得222AC a b =+.同理222BD a b =+.故()22222AC BD a b+=+.【探究发现】如图2.四边形ABCD 为平行四边形.若,AB a BC b ==.则上述结论是否依然成立?请加以判断.并说明理由.【拓展提升】如图3.已知BO 为ABC 的一条中线.,,AB a BC b AC c ===.求证:222224a b c BO +=-.【尝试应用】如图4.在矩形ABCD 中.若8,12AB BC ==.点P 在边AD 上.则22PB PC +的最小值为_______.11.(2023·黄冈)【问题呈现】CAB △和CDE 都是直角三角形.90,,ACB DCE CB mCA CE mCD ∠=∠=︒==.连接AD .BE .探究AD .BE 的位置关系.(1)如图1.当1m =时.直接写出AD .BE 的位置关系:____________;(2)如图2.当1m ≠时.(1)中的结论是否成立?若成立.给出证明;若不成立.说明理由. 【拓展应用】(3)当4m AB DE ===时.将CDE 绕点C 旋转.使,,A D E 三点恰好在同一直线上.求BE 的长.12.(2023·十堰)过正方形ABCD 的顶点D 作直线DP .点C 关于直线DP 的对称点为点E .连接AE .直线AE 交直线DP 于点F .(1)如图1.若25CDP ∠=︒.则DAF ∠=___________︒;(2)如图1.请探究线段CD .EF .AF 之间的数量关系.并证明你的结论;(3)在DP 绕点D 转动的过程中.设AF a =.EF b =请直接用含,a b 的式子表示DF 的长.13.(2023·随州)1643年.法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A .B .C .求平面上到这三个点的距离之和最小的点的位置.意大利数学家和物理学家托里拆利给出了分析和证明.该点也被称为“费马点”或“托里拆利点”.该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法.请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空.①处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空.①处填写角度数.①处填写该三角形的某个顶点) 当ABC 的三个内角均小于120︒时.如图1.将APC △绕.点C 顺时针旋转60︒得到A P C ''.连接PP '.由60PC P C PCP ''=∠=︒,.可知PCP '△为 ① 三角形.故PP PC '=.又P A PA ''=.故PA PB PC PA PB PP A B '''++=++≥.由 ① 可知.当B .P .P '.A 在同一条直线上时.PA PB PC ++取最小值.如图2.最小值为A B '.此时的P 点为该三角形的“费马点”.且有APC BPC APB ∠=∠=∠= ① ; 已知当ABC 有一个内角大于或等于120︒时.“费马点”为该三角形的某个顶点.如图3.若120BAC ∠≥︒.则该三角形的“费马点”为 ① 点.(2)如图4.在ABC 中.三个内角均小于120︒.且3430AC BC ACB ==∠=︒,,.已知点P 为ABC 的“费马点”.求PA PB PC ++的值;(3)如图5.设村庄A .B .C 的连线构成一个三角形.且已知4km 60AC BC ACB ==∠=︒,,.现欲建一中转站P 沿直线向A .B .C 三个村庄铺设电缆.已知由中转站P到村庄A.B.C的铺设成本分别为a元/km.a元/km元/km.选取合适的P的位置.可以使总的铺设成本最低为___________元.(结果用含a的式子表示)14.(2023·东营)(1)用数学的眼光观察.如图.在四边形ABCD 中.AD BC =.P 是对角线BD 的中点.M 是AB 的中点.N 是DC 的中点.求证:PMN PNM ∠=∠.(2)用数学的思维思考.如图.延长图中的线段AD 交MN 的延长线于点E .延长线段BC 交MN 的延长线于点F .求证:AEM F ∠=∠.(3)用数学的语言表达.如图.在ABC 中.AC AB <.点D 在AC 上.AD BC =.M 是AB 的中点.N 是DC 的中点.连接MN 并延长.与BC 的延长线交于点G .连接GD .若60ANM ∠=︒.试判断CGD △的形状.并进行证明.15.(2023·临沂) 如图.90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系;(2)延长BC 到E .使CE BC =.延长DC 到F .使CF DC =.连接EF .求证:EF AB ⊥. (3)在(2)的条件下.作ACE ∠的平分线.交AF 于点H .求证:AH FH =.16.(2023· 烟台)如图.点C 为线段AB 上一点.分别以,AC BC 为等腰三角形的底边.在AB 的同侧作等腰ACD 和等腰BCE .且A CBE ∠=∠.在线段EC 上取一点F .使EF AD =.连接,BF DE .(1)如图1.求证:DE BF =;(2)如图2.若2AD BF =,的延长线恰好经过DE 的中点G .求BE 的长.17.(2023·邵阳)如图.在等边三角形ABC 中.D 为AB 上的一点.过点D 作BC 的平行线DE 交AC 于点E .点P 是线段DE 上的动点(点P 不与D E 、重合).将ABP 绕点A 逆时针方向旋转60︒.得到ACQ .连接,EQ PQ PQ 、交AC 于F .(1)证明:在点P 的运动过程中.总有120PEQ ∠=︒. (2)当APDP为何值时.AQF 是直角三角形?18.(2023·湘潭)问题情境:小红同学在学习了正方形的知识后.进一步进行以下探究活动:在正方形ABCD的边BC上任意取一点G.以BG为边长向外作正方形BEFG.将正方形BEFG绕点B顺时针旋转.特例感知:,相交于点P.小红发现点P恰为DF的中点.如图(1)当BG在BC上时.连接DF AC①.针对小红发现的结论.请给出证明;(2)小红继续连接EG.并延长与DF相交.发现交点恰好也是DF中点P.如图②.根据小∆的形状.并说明理由;红发现的结论.请判断APE规律探究:(3)如图③.将正方形BEFG绕点B顺时针旋转α.连接DF.点P是DF中点.连接AP. EP.AE.APE∆的形状是否发生改变?请说明理由.19.(2023·岳阳)如图1.在ABC 中.AB AC =.点,M N 分别为边,AB BC 的中点.连接MN .初步尝试:(1)MN 与AC 的数量关系是_________.MN 与AC 的位置关系是_________.特例研讨:(2)如图2.若90,BAC BC ∠=︒=先将BMN 绕点B 顺时针旋转α(α为锐角).得到BEF △.当点,,A E F 在同一直线上时.AE 与BC 相交于点D .连接CF .(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒.将BMN 绕点B 顺时针旋转α.得到BEF △.连接AE .CF .当旋转角α满足0360α︒<<︒.点,,C E F 在同一直线上时.利用所提供的备用图探究BAE ∠与ABF ∠的数量关系.并说明理由.20.(2023·大连)综合与实践问题情境:数学活动课上.王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质. 已知,90AB AC A =∠>︒.点E 为AC 上一动点.将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时.2EDC ACB ∠=∠.”小红:“若点E 为AC 中点.给出AC 与DC 的长.就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1.请你回答:问题1:在等腰ABC 中.,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1.当点D 落在BC 上时.求证:2EDC ACB ∠=∠;(2)如图2.若点E 为AC 中点.43AC CD ==,.求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形.可以将问题进一步拓展.问题2:如图3.在等腰ABC 中.90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =.则求BC 的长.2023年各地中考几何压轴题汇编详解1.(2023·安徽)在Rt ABC △中.M 是斜边AB 的中点.将线段MA 绕点M 旋转至MD 位置.点D 在直线AB 外.连接,AD BD .(1)如图1.求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2.连接CD .求证:BD CD =;(ⅱ)如图3.连接BE .若8,6AC BC ==.求tan ABE ∠的值.【答案】(1)90ADB ∠=︒ (2)(ⅰ)见解析;(ⅱ)21 【小问1详解】解:①MA MD MB ==.∴,MAD MDA MBD MDB ∠=∠∠=∠.在ABD △中.=180MAD MDA MBD MDB ∠+∠+∠+∠︒. ∴180902ADB ADM BDM ︒∠=∠+∠==︒. 【小问2详解】证明:(ⅰ)证法一:如图.延长BD AC 、.交于点F .则90BCF ∠=︒.∵ME AD ⊥.90ADB ∠=︒.∴EM BD ∥.又∵DE AB ∥.∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点..∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥.∴AMDE 是菱形.∴AE AM =.∵EM BD ∥. ∴AE AM AF AB=. ∴AB AF =.∵90ADB ∠=︒.即AD BF ⊥.∴BD DF =.即点D 是Rt BCF 斜边的中点.∴BD CD =.证法二:∵90ACB ADB ∠=∠=︒.M 是斜边AB 的中点.∴点A C D B 、、、在以M 为圆心.AB 为直径的M 上.∵ME AD ⊥.∴ME 垂直平分AD .∴EA ED =.∴EAD EDA ∠=∠.∵DE AB ∥.∴BAD EDA ∠=∠.∴EAD BAD ∠=∠.∴BD CD =.证法三:∵ME AD ⊥.90ADB ∠=︒.∴EM BD ∥.又∵DE AB ∥.∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点.∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥.∴AMDE 是菱形.∴EAD MAD ∠=∠.∵90ACB ADB ∠=∠=︒.M 是斜边AB 的中点.∴点A C D B 、、、在以M 为圆心.AB 为直径的M 上.∴BD CD =.(2)如图所示.过点E 作EH AB ⊥于点H .①8,6AC BC ==.∴10AB =.则152AE AM AB ===. ∵,90EAH BAC ACB AHE ∠=∠∠=∠=︒.①AHE ACB ∽. ①510EH AH AE BC AC AB ===. ①3,4EH AH ==.∴1046BH AB AH =-=-=.∴31tan 62EH ABE BH ===. 2.(2023·北京)在ABC 中、()045B C αα∠=∠=︒<<︒.AM BC ⊥于点M .D 是线段MC 上的动点(不与点M .C 重合).将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1.当点E 在线段AC 上时.求证:D 是MC 的中点;(2)如图2.若在线段BM 上存在点F (不与点B .M 重合)满足DF DC =.连接AE .EF .直接写出AEF ∠的大小.并证明.【答案】(1)见解析 (2)90AEF ∠=︒.证明见解析【小问1详解】证明:由旋转的性质得:DMDE =.2MDE α∠=.∵C α∠=.∴D DEC M E C α∠-∠∠==.∴C DEC ∠=∠.∴DE DC =.∴DM DC =.即D 是MC 的中点;【小问2详解】 90AEF ∠=︒;证明:如图2.延长FE 到H 使FE EH =.连接CH .AH .∵DF DC =.∴DE 是FCH ∆的中位线.∴DE CH ∥.2CH DE =.由旋转的性质得:DMDE =.2MDE α∠=.∴2FCH α∠=.∵B C α∠=∠=.∴ACH α∠=.ABC 是等腰三角形.∴B ACH ∠∠=.AB AC =.设DM DE m ==.CD n =.则2CH m =.CM m n =+.∴DF CD n ==.∴FM DF DM n m =-=-.∵AM BC ⊥.∴BM CM m n ==+.∴()2BF BM FM m n n m m =-=+--=.∴CH BF =.在ABF △和ACH 中.AB AC B ACH BF CH =⎧⎪∠=∠⎨⎪=⎩.∴()SAS ABF ACH ≅.∴AF AH =.∵FE EH =.∴AE FH ⊥.即90AEF ∠=︒.3.(2023·福建)如图1.在ABC 中.90,,BAC AB AC D ∠=︒=是AB 边上不与,A B 重合的一个定点.AO BC ⊥于点O .交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的.,FD CA 的延长线相交于点M .(1)求证:ADE FMC △∽△;(2)求ABF ∠的度数;(3)若N 是AF 的中点.如图2.求证:ND NO =.【答案】(1)见解析 (2)135ABF ∠=︒ (3)见解析.【小问1详解】解: DF 是由线段DC 绕点D 顺时针旋转90︒得到的.45DFC ∴∠=︒.,AB AC AO BC =⊥.12BAO BAC ∴∠=∠. 90BAC ∠=︒.45BAO ABC ∴∠=∠=︒.BAO DFC ∴∠=∠.90,90EDA ADM M ADM ︒∠+∠︒=∠+∠=.EDA M ∴∠=∠.ADE FMC ∴△∽△.【小问2详解】解:如图1:设BC 与DF 的交点为I .45,DBI CFI BID FIC ︒∠=∠=∠=∠.BID FIC ∴△∽△.BI DI FI CI∴=. BI FI DI CI ∴=. BIF DIC ∠=∠.BIF DIC ∴△∽△.IBF IDC ∴∠=∠.又90IDC =︒∠.90IBF ∴∠=︒.45,ABC ABF ABC IBF ∠=∠︒=∠+∠.135ABF ∴∠=︒.【小问3详解】解:如图2:延长ON 交BF 于点T .连接,DT DO .90FBI BOA ∠︒∠==.BF AO ∴∥.FTN AON ∴∠=∠. N 是AF 的中点.AN NF ∴=.又TNF ONA ∠=∠.TNF ONA ∴△≌△.,NT NO FT AO ∴==.90,,BAC AB AC AO BC =︒∠=⊥.AO CO ∴=.FT CO ∴=.由(2)知.BIF DIC △∽△.DFT DCO ∴∠=∠.DF DC .DFT DCO ∴△≌△.,DT DO FDT CDO ∴=∠=∠.FDT FDO CDO FDO ∴∠+∠=∠+∠.即ODT CDF ∠=∠.90CDF ∠=︒.90ODT CDF ∴∠=∠=︒.12ND TO NO ∴==. 4.(2023·广西) 如图.ABC 是边长为4的等边三角形.点D .E .F 分别在边AB .BC .CA 上运动.满足AD BE CF ==.(1)求证:ADF BED ≌;(2)设AD 的长为x .DEF 的面积为y .求y 关于x 的函数解析式;(3)结合(2)所得的函数.描述DEF 的面积随AD 的增大如何变化.【答案】(1)见详解 ; (2)24y x =-+ ; (3)当24x <<时.DEF 的面积随AD 的增大而增大.当02x <<时.DEF 的面积随AD 的增大而减小.【小问1详解】证明:∵ABC 是边长为4的等边三角形.∴60∠=∠=∠=︒A B C .4AB BC AC ===.∵AD BE CF ==.∴AF BD CE ==.在ADF △和BED 中.AF BD A B AD BE =⎧⎪∠=∠⎨⎪=⎩.∴()SAS ADF BED ≌;【小问2详解】解:分别过点C 、F 作CH AB ⊥.FG AB ⊥.垂足分别为点H 、G .如图所示:在等边ABC 中.60A B ACB ∠=∠=∠=︒.4AB BC AC ===.∴sin 60CH AC =⋅︒=∴12ABCSAB CH =⋅= 设AD 的长为x .则AD BE CF x ===.4AF x =-.∴)sin 6042FG AF x =⋅︒=-.∴()142ADFSAD FG x =⋅=-. 同理(1)可知ADF BED CFE ≌≌. ∴()344ADFBEDCFESSSx x ===-. ∵DEF 的面积为y .∴()234444ABCADFy SSx xx =-=-=-+ 【小问3详解】 解:由(2)可知:2y x=-+∴04a =>.对称轴为直线2x ==. ∴当2x >时.y 随x 的增大而增大.当2x <时.y 随x 的增大而减小;即当24x <<时.DEF 的面积随AD 的增大而增大.当02x <<时.DEF 的面积随AD 的增大而减小.5.(2023·河北)如图1和图2.平面上.四边形ABCD 中.8,12,6,90AB BC CD DA A ====∠=︒.点M 在AD 边上.且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P .设点P 在该折线上运动的路径长为(0)x x >.连接A P '.(1)若点P 在AB 上.求证:A P AP '=; (2)如图2.连接BD .①求CBD ∠的度数.并直接写出当180n =时.x 的值; ①若点P 到BD 的距离为2.求tan A MP '∠的值;(3)当08x <≤时.请直接..写出点A '到直线AB 的距离.(用含x 的式子表示). 【答案】(1)见解析 (2)①90CBD ∠=︒.13x =;①76①236 .(3)22816x x +. 【小问1详解】①将线段MA 绕点M 顺时针旋转()0180n n ︒<≤到MA '. ①A M AM '=.①A MA '∠的平分线MP 所在直线交折线AB BC -于点P . ①A MP AMP '∠=∠. 又①PM PM =.①)('SAS AMP MP A ∆≅∆. ①A P AP '=; 【小问2详解】①①8AB =.6DA =.90A ∠=︒.①10BD ==.①=BC 12CD =.①(222210144BC BD +=+=.2212144CD ==.①222BC BD CD +=. ①90CBD ∠=︒; 如图所示.当180n =时.①PM 平分A MA '∠. ①90PMA ∠=︒. ①PM AB ∥.①DNM ∆∽DBA ∆. ①DN DM MNDB DA BA ==. ①2DM =.6DA =. ①21068DN MN==. ①103DN =.83MN =.①203BN BD DN =-=. ①90PBN NMD ∠=∠=︒.PNB DNM ∠=∠. ①PBN ∆∽DMN ∆.①PB BNDM MN=.即203823PB =. ①解得5PB =.①8513x AB PB =+=+=.①如图所示.当P 点在AB 上时.2PQ =.A MP AMP '∠=∠.∵8,6,90AB DA A ==∠=︒.∴10BD ==.63sin 105AD DBA BD ∠===. ∴2103sin 35BQ BP DBA ===∠.①1014833AP AB BP =-=-= ∴1473tan tan 46AP A MP AMP AM '∠=∠===; 如图所示.当P 在BC 上时.则2PB =.过点P 作PQ AB ⊥交AB 的延长线于点Q .延长MP 交AB 的延长线于点H .∵90PQB CBD DAB ∠=∠=∠=︒. ①90QPB PBQ DBA ∠=︒-∠=∠. ①PQB BAD ∽.∴PQ QB PBBA AD BD ==. 即8610PQ QB PB==.∴4855PQ PB ==.3655BQ PB ==. ∴465AQ AB BQ =+=. ∵,PQ AB DA AB ⊥⊥. ∴PQ AD ∥. ∴HPQ HMA ∽.∴HQ PQHA AM=. ∴854645HQHQ =+. 解得:9215HQ =. ∴922315tan tan tan 865HQ A MP AMP QPH PQ '∠=∠=∠===. 综上所述.tan A MP '∠的值为76①236① 【小问3详解】 解:①当08x <≤时. ∴P 在AB 上.如图所示.过点A '作A E AB '⊥交AB 于点E .过点M 作MF A E '⊥于点F .则四边形AMFE 是矩形.①AE FM =.4EF AM ==.①A MP AMP '≌. ①90PA M A '∠=∠=︒. ①90PA E FA M ''∠+∠=︒. 又90A MF FA M ''∠+∠=︒. ∴PA E A MF ''∠=∠. 又∵90A EP MFA ''∠=∠=︒. ∴A PE MA F ''∽. ∴A P PE A EMA A F FM''==''. ∵A P AP x '==.4MA MA '==.设FM AE y ==.A E h '=即44x x y h h y-==-. ∴4hy x=.()()44x y x h -=-. ∴()444h x x h x ⎛⎫-=- ⎪⎝⎭. 整理得22816x h x =+. 即点A '到直线AB 的距离为22816x x +.6.(2023·山西)问题情境:“综合与实践”课上.老师提出如下问题:将图1中的矩形纸片沿对角线剪开.得到两个全等的三角形纸片.表示为ABC 和DFE △.其中90,ACB DEF A D ∠=∠=︒∠=∠.将ABC 和DFE △按图2所示方式摆放.其中点B 与点F 重合(标记为点B ).当ABE A ∠=∠时.延长DE 交AC 于点G .试判断四边形BCGE 的形状.并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转.使点E 落在ABC 内部.并让同学们提出新的问题.①“善思小组”提出问题:如图3.当ABE BAC ∠=∠时.过点A 作AM BE ⊥交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系.并加以证明.请你解答此问题;①“智慧小组”提出问题:如图4.当CBE BAC ∠=∠时.过点A 作AH DE ⊥于点H .若9,12BC AC ==.求AH 的长.请你思考此问题.直接写出结果.【答案】(1)正方形.见解析 .(2)①AM BE =.见解析;①275. 【小问1详解】解:四边形BCGE 为正方形.理由如下: ①90BED ∠=︒.①18090BEG BED ∠=︒-∠=︒. ①ABE A ∠=∠. ①AC BE ∥.①90CGE BED ∠=∠=︒. ①90C ∠=︒.①四边形BCGE 为矩形. ①ACB DEB ≅. ①BC BE =.①矩形BCGE 为正方形. 【小问2详解】 :①AM BE =.证明:①ABE BAC ∠=∠. ①AN BN =. ①90C ∠=︒. ①BC AN ⊥.①AM BE ⊥.即AM BN ⊥. ①1122ABN S AN BC BN AM =⋅=⋅△. ①AN BN =. ①BC AM =.由(1)得BE BC =. ①AM BE =.①解:如图:设,AB DE 的交点为M .过M 作MG BD ⊥于G . ①ACB DEB ≅.①9,12BE BC DE AC ====.A D ABC DBE ∠=∠∠=∠,. ①CBE DBM ∠=∠; ①CBE BAC ∠=∠. ①D BAC ∠=∠. ①MD MB =. ①MG BD ⊥. ①点G 是BD 的中点;由勾股定理得15AB ==.①11522DG BD ==; ①cos DG DED DM BD∠==.①1515752128DG BD DM DE ⨯⋅===.即758BM DM ==; ①75451588AM AB BM =-=-=; ①,AH DE BE DE ⊥⊥.AMH BME ∠=∠. ①AMH BME .①35AH AM BE BM ==. ①33279555AH BE ==⨯=.即AH 的长为275.7.(2023·深圳)(1)如图.在矩形ABCD 中.E 为AD 边上一点.连接BE . ①若BE BC =.过C 作CF BE ⊥交BE 于点F .求证:ABE FCB ≌△△; ②若20ABCD S =矩形时.则BE CF ⋅=______.(2)如图.在菱形ABCD 中.1cos 3A =.过C 作CE AB ⊥交AB 的延长线于点E .过E 作EF AD ⊥交AD 于点F .若24ABCD S =菱形时.求EF BC ⋅的值.(3)如图.在平行四边形ABCD 中.60A ∠=︒.6AB =.5AD =.点E 在CD 上.且2CE =.点F 为BC 上一点.连接EF .过E 作EG EF ⊥交平行四边形ABCD 的边于点G .若EF EG ⋅=.请直接写出AG 的长.【答案】(1)①见解析;②20;(2)32;(3)3或4或32. 【详解】解:(1)①①四边形ABCD 是矩形.则90A ABC ∠=∠=︒. ①90ABE CBF ∠+∠=︒. 又①CF BC ⊥.∴90FCB CBF ∠+∠=︒.90CFB A ∠=∠=︒. ∴FCB ABE ∠=∠. 又∵BC BE =. ∴ABE FCB ≌△△;②由①可得FCB ABE ∠=∠.90CFB A ∠=∠=︒. ∴∽ABE FCB . ∴AB BE CF BC=. 又∵20ABCD S AB CD =⋅=矩形.∴20BE CF AB BC ⋅=⋅=.故答案为:20.(2)①在菱形ABCD 中.1cos 3A =. ∴AD BC ∥.AB BC =.则CBE A ∠=∠.①CE AB ⊥.①90CEB ∠=︒. ①cos BE CBE CB∠=. ∴1cos cos 3BE BC CBE BC A BC =⋅∠=⨯∠=. ①114333AE AB BE AB BC AB AB AB =+=+=+=. ①EF AD ⊥.CE AB ⊥.①90AFE BEC ∠=∠=︒.又CBE A ∠=∠.①AFE BEC △∽△. ∴AE EF AF BC CE BE==. ∴EF BC ⋅2443342433ABCD AE CE AB CE S =⨯==⨯⋅==菱形; (3)①当点G 在AD 边上时.如图所示.延长FE 交AD 的延长线于点M .连接GF .过点E 作EH DM ⊥于点H .①平行四边形ABCD 中.6AB =.2CE =.∴6CD AB ==.624DE DC EC =-=-=.①DM FC ∥.①EDM ECF ∽. ∴422EM ED EF EC ===. ∴2MGE FEG S EM SEF ==. ∴2MGE EFGS S ==EF EG ⋅=在Rt DEH △中.60HDE A ∠=∠=︒.则4EH ===.122DH DE ==. ∴12MG HE ⨯= ∴7MG =.∵,GE EF EH MG ⊥⊥.∴90MEH HEG HGE ∠=︒-∠=∠.∴tan tan MEH HGE ∠=∠.∴HE HM HG HE=. ∴2HE HM HG =⋅.设AG a =.则5GD AD AG a =-=-.527GH GD HD a a =+=-+=-.()77HM GM GH aa =-=--=.∴(()27x x =-.解得:3a =或4a =.即3AG =或4AG =.②当G 点在AB 边上时.如图所示.连接GF .延长GE 交BC 的延长线于点M .过点G 作GN AD ∥.则GN BC ∥.四边形ADNG 是平行四边形.设AG x =.则DN AG x ==.4EN DE DN x =-=-.①GN CM ∥.∴ENG ECM ∽. ∴42EG EN GN x EM EC CM -===. ∴21044GN CM x x ==--. ∴42GEF MEF S EG x S EM -==. ∵EF EG⋅=∴244GEF MEF S S x x==--. 过点E 作EH BC ⊥于点H .在Rt EHC △中.2,60ECECH =∠=︒.①EH =1CH =.①12MEF S MF EH =⨯⨯.则12MF = ∴144MF x =-. ∴14101444x FH MF CM CH x x x=--=--=---.1014144x MH CM CH x x-=+=+=--. 90MEF EHM ∠=∠=︒.∴90FEH MEH M ∠=︒-∠=∠.∴tan tan FEH M ∠=∠. 即FH EH EH HM=. ∴2EH FH HM =⋅.即21444x x x x-=⨯--. 解得:123,82x x ==(舍去). 即32AG =; ③当G 点在BC 边上时.如图所示.过点B 作BT DC ⊥于点T .在Rt BTC 中.1522CT BC ==.2BT ==.∴115222BTC S BT TC =⨯==∵EF EG ⋅=∴EFG S =< ∴G 点不可能在BC 边上. 综上所述.AG 的长为3或4或32. 8.(2023·无锡)如图.四边形ABCD 是边长为4的菱形.60A ∠=︒.点Q 为CD 的中点.P 为线段AB 上的动点.现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q ''.(1)当45QPB ∠=︒时.求四边形BB C C ''的面积;(2)当点P 在线段AB 上移动时.设BP x =.四边形BB C C ''的面积为S .求S 关于x 的函数表达式.【答案】(1)8(2)212S x =++ 【小问1详解】如图.连接BD 、BQ .四边形ABCD 为菱形.∴4CB CD ==.60A C ∠=∠=︒.∴BDC 为等边三角形. Q 为CD 中点.∴2CQ =.BQ CD ⊥.∴BQ =QB PB ⊥.45QPB ∠=︒.∴PBQ 为等腰直角三角形.∴PB =PQ =翻折.∴90BPB ∠='︒.PB PB '=.∴BB '=PE =同理2CQ =.∴CC '=QF = ∴((2211122228222PBB CQC BB C C PBCQ S S SS ''''=-+=⨯⨯+⨯⨯+⨯=四边形梯形;【小问2详解】 如图2.连接BQ 、B Q '.延长PQ 交CC '于点F .PB x =.BQ =90PBQ ∠=︒.∴PQ=.∵1122PBQS PQ BE PB BQ =⨯=⨯.∴BQ PBBEPQ⨯==.∴QE=.∴21212QEBSx==+.90BEQ BQC QFC∠=∠=∠=︒.则90EQB CQF FCQ∠=︒-∠=∠.∴BEQ QFC~.∴2213QFCBEQS CQS QB⎛⎫===⎪⎝⎭.∴QFCS=.∵122BQCS=⨯⨯=∴()22222121212QEB BQC QFCS S S Sx x x⎛⎫=++=+=+⎪⎪+++⎝⎭.9.(2023·武汉)问题提出:如图(1).E是菱形ABCD边BC上一点.AEF△是等腰三角形.AE EF=.()90,α∠=∠=≥︒AEF ABC a AF交CD于点G.探究GCF∠与α的数量关系.问题探究:(1)先将问题特殊化.如图(2).当90α=︒时.直接写出GCF ∠的大小; (2)再探究一般情形.如图(1).求GCF ∠与α的数量关系. 问题拓展:(3)将图(1)特殊化.如图(3).当120α=︒时.若12DG CG =.求BE CE 的值. 【答案】(1)45︒(2)3902GCF α∠=-︒ (3)23BE CE = 【解析】【小问1详解】延长BC 过点F 作FH BC ⊥.∵90BAE AEB ∠+∠=︒.90FEH AEB ∠+∠=︒.∴BAE FEH ∠=∠.在EBA △和FHE 中ABE EHF BAE FEH AE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE BHF ≌.∴AB EH =.BE FH =.∴BC EH =.∴BE CH FH .∴045=∠=∠FCH GCF .故答案为:45︒.【小问2详解】解:在AB 上截取AN .使AN EC =.连接NE .180∠+∠+∠=∠+∠+∠=︒ABC BAE AEB AEF FEC AEB . ABC AEF ∠=∠.∴∠=∠EAN FEC .AE EF =.∴△≌△ANE ECF .∴∠=∠ANE ECF .,AB BC =BN BE ∴=α∠=EBN .1902α︒∴∠=-BNE . ∴∠=∠-∠=∠-∠GCF ECF BCD ANE BCD()139********ααα⎛⎫=︒+-︒-=-︒ ⎪⎝⎭.【小问3详解】解:过点A 作CD 的垂线交CD 的延长线于点P .设菱形的边长为3m . 1,2DG CGm CG m DG 2==∴,.在Rt ADP 中.0120=∠=∠ABC ADC .60ADP ∴∠=︒.3,2∴==PD m AP . 120α=︒.由(2)知.390902∠=-︒=︒GCF a .FGC AGP ∠=∠ .FCG ∽∆∆∴APG . ∴=AP PG CF CG. 5222=m CF m.5CF m ∴=. 在AB 上截取AN .使AN EC =.连接NE .作BO NE ⊥于点O . 由(2)知.ANE ECF △≌△.①NE CF =.∵AB BC =.∴BN BE =.12OE EF EN ===. ∵120ABC ∠=︒.∴30BNE BEN ∠=∠=︒. BE OE =0cos30 . ∴6,5BE m m CE 59= . 23BE CE ∴=.。

2021年九级中考数学压轴题 –几何综合问题(圆的专题)(三)

2021年九级中考数学压轴题 –几何综合问题(圆的专题)(三)

2021年九级中考数学压轴题满分训练–几何综合问题(圆的专题)(三)1.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=4cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)2.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.3.如图,四边形ABCD内接于⊙O,BC为⊙O的直径,⊙O的切线AP与CB的延长线交于点P.(1)求证:∠PAB=∠ACB;(2)若AB=12,cos∠ADB=,求PB的长.4.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC =13,过点O作OD⊥AC于点D.(1)求证:∠B=∠COD;(2)求AB的长.5.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA 的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=,OD=3,求AE的长.6.如图,AD与⊙O相切于点D,点A在直径CB的延长线上.(1)求证:∠DCB=∠ADB;(2)若∠DCB=30°,AC=3,求AD的长.7.如图1,在⊙O中,弦AB⊥弦CD,垂足为点E,连接AD、BC、AO,AD=AB.(1)求证:∠CAO=2∠CDB;(2)如图2,过点O作OH⊥AD,垂足为点H,求证:2OH+CE=DE;(3)如图3,在(2)的条件下,延长DB、AC交于点F,过点D作DM⊥AC,垂足为M交AB于N,若BC=12,AF=3BF,求MN的长.8.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.9.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、CF、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以EF为腰的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.10.直线l与⊙O相离,OB⊥l于点B,且OB=5,OB与⊙O交于点P,A为圆上一点,AP的延长线交直线l于点C,且AB=BC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段AP的长.11.如图,已知直线l与⊙O无公共点,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)若BP=2,sin∠ACB=,求AB的长.12.如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,连接AD.过点D作DF⊥AC,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.14.如图,AB是⊙O的直径,点C和点D分别在AB和⊙O上,且AC=AD,DC的延长线交⊙O于点E,过E作AC的平行线交⊙O于点F,连接AF,DF.(1)求证:四边形ACEF是平行四边形;(2)当sin∠EDF=,BC=4时,求⊙O的半径.15.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC,分别交AC、AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.参考答案1.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°.∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD==2(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,=.∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°.在△CDE与△OBE中,.∴△CDE≌△OBE(AAS).∴S阴影=S扇OBC=π•42=(cm2),答:阴影部分的面积为cm2.2.(1)证明:连接OC,如图1,∵DC=DE,∴∠DCE=∠DEC,∵∠DEC=∠AEO,∴∠DCE=∠AEO,∵OA⊥OE,∴∠A+∠AEO=90°,∴∠DCE+∠A=90°,∵OA=OC,∴∠A=∠ACO,∴∠DCE+∠ACO=90°,∴OC⊥DC,∴CD是⊙O的切线;(2)如图2,过点D作DF⊥CE于点F,∵AC=2,BC=,∴AB===5,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AOE,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴,∴AE=,∴CE=AC﹣AE=2﹣=,∵CD=DE,∴CF=CE=,∠DEC=∠DCE,∵∠DEC=∠AEO,∠AEO=∠B,∴∠DCE=∠B,又∵∠DFC=∠ACB,∴△DFC∽△ACB,∴,∴,∴DC=.3.解:(1)证明:如图,连接OA,∵AP为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∴∠OAB+∠PAB=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠PAB=90°,∵BC为⊙O的直径,∴∠ACB+∠OBA=90°,∴∠PAB=∠ACB;(2)由(1)知∵∠PAB=∠ACB,且∠ADB=∠ACB,∴∠PAB=∠ACB=∠ADB,∴,∵AB=12,∴AC=16,∴,∴OB=10,过B作BF⊥AP于F,∵∠ADB=∠FAB,,∴,∴,∴在Rt△ABF中,,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴△PBF∽△POA,∴,∴,∴.答:PB的长为.4.解:(1)作直径AE,连接CE,∴∠ACE=90°,∴∠CAE+∠E=90°,∵OA=OC,∴∠CAE=∠OCD,∴∠OCD+∠E=90°,∵OD⊥AC,∴∠OCD+∠COD=90°,∴∠COD=∠E,∵∠B=∠E,∴∠B=∠COD;(2)∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==.5.(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:∵OC⊥GC,GC∥AE,∴OC⊥AE,∵CD⊥AB,∴∠CHF=∠FDA=90°,∵∠CFH=∠AFD,∴∠OCD=∠EAB.∴.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE,∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵,∴BE=6,∴AE=8.6.(1)证明:如图,连接OD,∵AD与⊙O相切于点D,∴OD⊥AD,∴∠ODB+∠ADB=90°,∵CB是直径,∴∠CDB=90°,∴∠ODB+∠ODC=90°,∴∠ODC=∠ADB,∵OD=OC,∴∠ODC=∠OCD,∴∠C=∠ADB;(2)解:∵∠DCB=∠ADB,∠DAC=∠CAD,∴△ADB∽△ACD,∴=,∵CB是直径,∴∠CDB=90°,∠DCB=30°,∴tan∠DCB==,∴=,∵AC=3,∴AD=3.7.解:(1)如图,连接AO、DO,∵AB=AD,∴,∴∠AOB=∠AOD,∴AO=OB,AO=OD,∴△AOB≌△AOD,∴∠BAO=∠DAO,延长AO交BD于点H,∵AB=AD,∴AH⊥BD,∴∠AHB=∠AHD=90°,∵,∴∠ACD=∠ABD,∴∠CAB=∠BAO=∠OAD,∴∠CAO=2∠CDB.(2)过点O作OT⊥CD,则CT=DT,∵CD⊥AB,CD⊥OT,OQ⊥AB,∴∠OQB=∠OTE=∠AED=90°,∴四边形OTEQ为矩形,∴OQ=ET,∵TD=CT=ET+CE,∵AB=AD,∴OQ=OH,∴2OH+CE=DE.(3)如图,∵∠ACB+∠ADB=180°,∠FCB+∠ACB=180°,∴∠ADB=∠FCB,∵∠F=∠F,∴△FCB∽△FDA,∵CB=12,∴AB=AD=36,∵∠BCD=∠BAD,∠AEB=∠AED,∴△CEB∽△AED,∴,设BE=x,则AE=36﹣x,ED=3x,∵AB⊥CD,∴∠AED=90°,则在Rt△AED中,AE2+ED2=AD2,(36﹣x)2+(3x)2=362,解得:,∴BD=∵CD⊥AB,∴∠BED=90°,∠NMA=90°,∠ANM=∠END,∴∠NED=∠MAN,∴∠BDE=∠EDN,∵ED=ED,∴△BED≌△NED,∴,∵∠CDB=∠CAB,∠NMA=∠BED,∴△AMN∽△DEB,∴,∴,8.(1)证明:连接BD,DO,∵BC是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°,又∵E为AB的中点,∴DE=EB=EA,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)解:在Rt△ABC中,AB=8,BC=6,∴AC===10,∵,∴.9.解:(1)∵∠CFE=90°,∠CFE=∠CDE,∴∠CDE=45°,∵∠ACB=90°,∴∠DAC=45°,∴∠DAC=∠ADC,∴AC=CD=6;(2)证明:∵∠ACB=90°,∴∠BAC+∠B=90°,∵CF∥AB,∴∠B=∠FCB,又∵∠FCB=∠DEF,∴∠BAC+∠DEF=90°,∵CD为⊙O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)①如图1,当EF=CE时,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3;②如图2,当EF=CF时,则∠CEF=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CEF=∠CDF=∠BDG,∴∠ADG=∠BDG,∵FC∥AB,∠DFC=90°,∴∠FGA=90°,∴∠FGA=∠ACD,∵GD=GD,∴△BGD≌△AGD(ASA),∴BD=AD,在Rt△ACD中,设CD=x,∵CD2+AC2=AD2,∴x2+62=(8﹣x)2,∴x=,即CD=;综合以上可得CD的长为3或.10.证明:(1)连接OA,∵OA=OP,∴∠OPA=∠OAP=∠BPC,∵AB=BC,∴∠BAC=∠ACB,∵OB⊥l,∴∠ACB+∠BPC=90°,∴∠BAC+∠OAP=90°,即OA⊥AB,∴AB与⊙O相切;(2)解:如图,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△CPB,∴,即,解得,AP=.11.(1)证明:连接OB,如图1,∵AB=AC,∴∠ABC=∠ACB,∵OA⊥l,∴∠ACB+∠APC=90°,∵OB=OP,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠OBP+∠ACB=90°,∴∠OBP+∠ABC=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作直径BD,连接PD,则∠BPD=90°,如图2,∵AB是⊙O的切线,∴∠ABC=∠D,∵∠ABC=∠ACB,∴∠D=∠ABC=∠ACB,∵sin∠ACB=,∴sin∠D==,∵BP=2,∴BD=10,∴OB=OP=5,∵sin∠ACB=,∴=,∴=,设PA=x,则AB=AC=2x,在Rt△AOB中,AB=2x,OB=5,OA=5+x,∴(2x)2+52=(5+x)2,解得x=,∴AB=2x=.12.(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又AB=AC=13,BC=10,D是BC的中点,∴BD=5.连接OD;由中位线定理,知DO∥AC,又DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线;(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8∴S阴影=S扇形AOE﹣S△AOE=4π﹣8.13.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.14.(1)证明:∵AC=AD,∴∠ADC=∠ACD,∵AC∥EF,∴∠ACD=∠E,∴∠ADC=∠E,∴=,∴=,∴AD=EF,∵AD=AC,∴AC=EF,∵AC∥EF,∴四边形ACEF是平行四边形;(2)解:连接BD,∵四边形ACEF是平行四边形,∴AF∥CE,∴∠EDF=∠AFD,∵所对圆周角∠B和∠AFD,∴∠AFD=∠B,∴∠B=∠EDF,∵AB是⊙O的直径,∴∠ADB=90°,∵sin∠EDF=,∴sin B=sin∠EDF==,∴设AD=2x,AB=3x,∵AC=AD,BC=4,∴3x﹣2x=4,解得:x=4,即AB=3x=3×4=12,∵AB为⊙O的直径,∴⊙O的半径是6.15.(1)证明:连接OD交BC于H,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠HCE=90°,又∵DE⊥AC,∴∠E=90°,由(1)得:OD⊥EF,∴∠HDE=90°,∴四边形CEDH是矩形,∴HD=CE=2,∴∠CHD=90°,∴∠OHB=90°,∴OD⊥BC,∴OH平分BC,∴OH是△ABC的中位线,∴OH=AC=3,∴OB=OD=OH+HD=5,∴AB=2OB=10,∴CB===8.。

中考数学题型三 选择压轴题之几何最值问题

中考数学题型三 选择压轴题之几何最值问题

类型 2 利用“轴对称”求最值
高分技法
“将军饮马”问题是中考的热点问题之一,解决这类问题的方法 是找出两定点中任一点关于动点所在直线的对称点,再将另一点 与对称点相连,连线与直线的交点即为所求的点.通常情况下,求 三角形或四边形的周长的最小值时,往往也是利用轴对称进行解 题(详细讲解见“高分突破·微专项 利用对称解决与线段长有 关的最值问题”).
类型 3 利用“隐形圆”求最值
高分技法
利用“到定点的距离等于定长的点位于同一个圆上”或“90°的 圆周角所对的弦是直径”等可以确定某些动点的运动轨迹是圆 (或圆弧).当圆外一定点与圆上一动点位于圆心同侧,且三点共线 时,该动点到圆外定点的距离最短; 当圆外一定点与圆上一动点 位于圆心异侧,且三点共线时,该动点到圆外定点的距离最长.
题型帮
题型三 选择压轴题之几何最值问题
目录
考法帮
• 类型1 利用“垂线段最短”求最值 • 类型2 利用“轴对称”求最值 • 类型3 利用“隐形圆”求最值 • 类型4 利用“旋转”求最值 • 类型5 利用二次函数的性质求最值
考法帮
类型 1 利用“垂线段最短”求最值
例1 如图,△ABC中,∠A=30°,∠ACB=90°,BC=2,D是AB
类型 4 利用“旋转”求最值 例4 [2021山东淄博中考改编]两张宽为3的纸条交叉重叠成四边形 ABCD,如图所示.若α=30°,则对角线BD上的动点P到A,B,C三点距 离之和的最小值是 ( )B
A.3 B.6 2C.2 5D.5
类型 5 利用二次函数的性质求最值
例5 如图,在△ABC中,AB=AC=5,BC=4 5,D为边AB上一动点(不与B 点重合),以CD为一边作正方形CDEF,连接BE,则△BDE的面积的最大 值为 8 .

2024年中考数学压轴题(全国通用):以相似为载体的几何综合问题(教师版含解析)

2024年中考数学压轴题(全国通用):以相似为载体的几何综合问题(教师版含解析)
挑战 2023 年中考数学压轴题之学霸秘笈大揭秘(全国通用)
专题 27 以相似为载体的几何综合问题
21.(2022·四川内江·中考真题)如图,在矩形 ABCD 中,AB=6,BC=4,点 M、N 分别在 AB、AD 上,且 MN⊥MC,点 E 为 CD 的中点,连接 BE 交 MC 于点 F.
(1)当 F 为 BE 的中点时,求证:AM=CE; (2)若퐸퐵 =2,求퐴 的值; (3)若 MN∥BE,求퐴 的值.
(1)问题解决:如图①,若
AB//CD,求证:��12
=
�퐶⋅� �퐴⋅�퐵
(2)探索推广:如图②,若퐴퐵与퐶 不平行,(1)中的结论是否成立?若成立,请证明;
若不成立,请说明理由.
(3)拓展应用:如图③,在�퐴上取一点 E,使�퐸 = �퐶,过点 E 作퐸 ∥퐶 交� 于点
F,点 H 为퐴퐵的中点,� 交퐸 于点 G,且� = 2
=
�퐶⋅� �퐴⋅�퐵
=
5�⋅5� 6�⋅9�
∴ 퐸 = � ⋅ sin∠ �퐸,퐵 = �퐵 ⋅ sin∠퐵� ,
∴�△�퐶
=�1=
1 2
�퐶

�△퐴�퐵=�2=
1 2
�퐴


퐸=
1 2
�퐶


⋅ sin∠ �퐸,
=
1 2
�퐴

�퐵

sin∠퐵�

∵∠DOE=∠BOF,
∴sin∠ �퐸 = sin∠퐵� ;
∴�1
�2
=
12�퐶⋅� ⋅sin∠ �퐸 12�퐴⋅�퐵⋅sin∠퐵�
(3)首先利用同角的余角相等得
∠CBF=
∠CMB,则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国各地中考试题压轴题精选讲座三
函数及图像与几何问题
【知识纵横】
函数(本节主要指一次函数、反比例函数)及图像与几何问题,是以函数为背景探求几
何性质,这类题很重要点是利用函数的性质,解决几个主要点的坐标问题,使几何知识和函数知识有机而自然结合起来,这样,才能突破难点。

但在解这类题目时,要注意方程的解与坐标关系,及坐标值与线段长度关系。

【典型例题】
【例1】(山西太原)如图,在平面直角坐标系xOy 中,直线1y x =+与3
34
y x =-
+交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1)求点A B C ,,的坐标.
(2)当CBD △为等腰三角形时,求点D 的坐标. (3)在直线AB 上是否存在点E ,使得以点E D O A ,,,为顶点的四边形是平行四边形?
如果存在,直接写出BE CD
的值;如果不存在,请说明理由.
【思路点拨】(1)注意直线方程的解与坐标关系; (2)当CBD △为等腰三角形时,分三种情况讨论,. (3)以点E D O A ,,,为顶点的四边形是平行四边形
三种情形。

【例2】(浙江湖州)已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与
B C ,重合)
,过F 点的反比例函数(0)k
y k x
=>的图象与AC 边交于点E .
(1)求证:AOE △与BOF △的面积相等;
(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?
(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.
A y
x
D
C
O
B
【思路点拨】(1)用k 的代数式表示AOE △与FOB △的面积; (2)写出E F ,两点坐标(含k 的代数式表示),利用三角形面积公式解之;(3)设存在这样的点F ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .证ENM MBF ∴△∽△.
【例3】(浙江嘉兴)如图,直角坐标系中,已知两点(00)(20)O A ,,,,点B 在第一象限且OAB △为正三角形,OAB △的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D .
(1)求B C ,两点的坐标; (2)求直线CD 的函数解析式;
(3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长. 试探究:AEF △的最大面积? 【思路点拨】(1)作BG OA ⊥于G ; (2)连结A C,证CD ‖OB.(3)通过 几何图形建立二次函数模型解之,注意 自变量的取值范围。

【例4】(07杭州市) 在直角梯形ABCD 中,90C ∠=︒,高6CD cm =(如图1)。

动点
,P Q 同时从点B 出发,点P 沿,,BA AD DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,
两点运动时的速度都是1/cm s 。

而当点P 到达点A 时,点Q 正好到达点C 。

设,P Q 同时从点B 出发,经过的时间为()t s 时,BPQ ∆的面积为()2y cm (如图2)。

分别以,t y 为横、纵坐标建立直角坐标系,已知点P 在AD 边上从A 到D 运动时,y 与t 的函数图象是图3中的线段
MN 。

(1)分别求出梯形中,BA AD 的长度; (2)写出图3中,M N 两点的坐标;
(3)分别写出点P 在BA 边上和DC 边上运动时,y 与t 的函数关系式(注明自变量的取值范围),并在图3中补全整个运动中y 关于t 的函数关系的大致图象。

【思路点拨】(1)设动点出发t 秒后,点P 到达点A 且点Q 正好到达点C 时,由图3知此时△ABC 面积为30. (2)结合(1)的结论写出,M N 两点的坐标;(3)考虑当点P 在BA 上时及当点P 在DC 上时两种的y 关于t 的函数关系式.
【学力训练】
1、(07台州市) 如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D 处.已知折叠55CE =,且
3tan 4
EDA ∠=
. (1)判断OCD △与ADE △是否相似?请说明理由; (2)求直线CE 与x 轴交点P 的坐标;
(3)是否存在过点D 的直线l ,使直线l 、直线CE 与x
轴所围成的三角形和直线l 、直线CE 与y 轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.
C
B A
D
(图1)
C
B
A D
P
Q
(图2)
O
y
t
30
(图3)
O
x
y C
B E
D
2、(浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ;
(1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围;
(3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由。

3、(江苏盐城)如图,在平面直角坐标系中,已知△AOB 是等边三角形,点A
的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把△AOP 绕
着点A 按逆时针方向旋转,使边AO 与AB 重合,得到△ABD . (1)求直线AB 的解析式;
(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标; (3)是否存在点P ,使△OPD 的面积等于3
4
,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.
y x
O
B
C
A
T
y
x
O
B
C
A
T
图1
x
y B
A
O D P
图2
x
y
B
A
O
4、(四川乐山)在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的
圆过点C,若C的坐标为(0,2),AB=5, A,B两点的横坐标X A,X B是关于X的方程2(2)10
x m x n
-++-=的两根:
(1)求m,n的值;
(2)若△ACB的平分线所在的直线l交x轴于点D,试求直线l对应的一次函数的解析式;
(3)过点D任作一直线`l分别交射线CA,CB(点C除外)于点M,N,则
11 CM CN
+的
值是否为定值,若是,求出定值,若不是,请说明理由.
A
C
O B
N
D
M
l。

相关文档
最新文档