共射极基本放大电路分析
基本共射极放大电路电路分析
基本共射极放大电路电路分析共射极放大电路是一种常见的放大电路,其基本原理是将输入信号通过基极电容耦合到晶体管的基极,经过放大后输出到负载电阻。
本文将详细介绍共射极放大电路的电路分析。
首先,我们需要了解共射极放大电路的基本组成部分。
它由一个NPN型晶体管、一个输入电容、一个负载电阻、一个偏置电阻和一个电源组成。
偏置电阻用于提供适当的偏置电压,以确保晶体管工作在合适的工作区域。
接下来,我们将进行电路的直流分析。
在直流分析中,我们可以假设输入信号为零,即直流情况下没有输入信号。
在这种情况下,我们可以将输入电容视为开路。
根据基尔霍夫定律,我们可以得到以下方程:1.晶体管的输出特性方程:IC=βIB+(1+β)IB0其中,IC是晶体管的集电极电流,IB是基极电流,β是晶体管的放大倍数,IB0是逆向饱和电流。
2.输入回路的欧姆定律:VBB-IBRB-VBE=0其中,VBB是偏置电压,RB是偏置电阻,VBE是基极与发射极之间的电压。
根据晶体管的特性曲线,我们可以将VBE近似等于0.7V。
通过解这两个方程,我们可以得到基极电流IB和集电极电流IC,从而得到电流放大倍数β。
从而我们可以计算出输出电压的增益Av=ΔVO/ΔVD(其中ΔVO是输出电压变化,ΔVD是输入电压变化)。
接下来,我们进行电路的交流分析。
在交流分析中,我们考虑输入信号,并将输入电容视为闭路。
通常情况下,我们可以使用小信号模型来近似分析。
小信号模型的基本原理是将非线性的晶体管电路线性化,以便我们能够使用常见的线性电路分析方法。
在小信号模型中,我们可以使用一个等效电路来表示晶体管的特性。
该等效电路由一个输入电阻ri、一个输出电阻ro和一个电流放大倍数β组成。
根据这个等效电路,我们可以将输入信号与输入电阻串联,将输出信号与输出电阻并联。
根据这个等效电路,我们可以计算出电路的输入电阻Ri、输出电阻Ro和电压增益Av。
输入电阻Ri等于输入电阻ri与偏置电阻RB并联的结果。
共射极基本放大电路
R b1 C b1
+
u-i
短路
+ 置VC零C
Rc
C b2
T 短路
+
uo RL -
.
上一页 下一页 返回
共射极基本放大电路
交流通路
+
+
ui RB -
+
T Rc
+
RL u o -
上一页 下一页 返回
共射极基本放大电路
三极管微变等效电路
T rbe
26(mV)
C = 12V , RB1 = 20kΩ ,
RB2 =10kΩ, RC=2 kΩ,
RB1
RE=2 kΩ,RL=3 kΩ,β =50, UBE =o.6V。试求:+
C1
+
1)静态值 IB、IC 和UCE 。
u i
RB2
2) 电压放大倍数Au ,输入 -
电阻 Ri和输出电阻 Ro。
+
Rc
+VCC C2
T
共射极基本放大电路
1. 共射基本放大电路的组成
图所示是一个典型的共射基 本放大电路。电路中各元件的 作用如下所述:
(1)三极管T。它是放大电 路的核心器件,具有放大电流 的作用
(2)基极偏流电阻RB。其作 用是向三极管的基极提供合适 的偏置电流,并使发射结正向 偏置。
R b1 Cb1
+
u-i
+ VCC
RL
u
o
-
+
+
u i
R B1
R B2
rbe
-
共射极基本放大电路分析
共射极基本放大电路分析为了更好地理解共射极基本放大电路,我们需要进行以下几个方面的分析:1.伏安特性分析:首先我们需要了解晶体管的伏安特性曲线,它描述了晶体管的电流与电压之间的关系。
晶体管的伏安特性曲线通常具有三个区域:截止区域、饱和区域和放大区域。
在截止区域,输入电压较低,晶体管处于截止状态,没有电流通过。
在饱和区域,输入电压较高,晶体管处于饱和状态,有最大的电流通过。
在放大区域,输入电压介于截止电压和饱和电压之间,晶体管将以放大信号的形式输出。
2.小信号模型分析:在共射极基本放大电路中,输入信号通常是小信号,我们可以将晶体管视为线性放大器。
我们可以使用小信号模型来简化电路,将晶体管视为电流放大器和电压放大器。
在这种情况下,共射极基本放大电路可以被看作是一个共射极放大器。
3.增益分析:共射极基本放大电路的放大增益是指输出电压与输入电压之间的比值。
放大增益通常用β表示,β是晶体管的电流放大因子或射极电流与基极电流之比。
增益值可以通过测量输入和输出信号的幅度来计算。
4.截止频率分析:共射极基本放大电路的截止频率是指输入信号频率超过该频率时,晶体管的放大增益开始下降。
截止频率可以通过晶体管的频率响应特性来确定。
5.稳定性分析:共射极基本放大电路的稳定性是指输出信号对于电源电压和温度变化的抗干扰能力。
稳定性分析可以通过电压分压器和电流源的设计来实现。
除了上述的分析,还可以对共射极基本放大电路进行功率分析、频率响应分析、电流增益分析等等。
这些分析可以帮助我们更好地理解共射极基本放大电路的工作原理,并且有助于我们进行电路设计和性能优化。
总结起来,共射极基本放大电路是一种重要的放大电路,需要对其伏安特性、小信号模型、增益、截止频率和稳定性等方面进行详细分析,以便更好地理解其工作原理并进行电路设计和优化。
共射极放大电路分析
3.输入电阻大小适中,一般为几kΩ;
4.输出电阻大小适中,一般为几kΩ。
2021/4/21
38
谢谢观赏
模拟电子技术
第2章 晶体三极管及其应用
2.微变等效电路法
为什么放大电路要用微变等效电路来分析?
2021/4/21
23
模拟电子技术
第2章 晶体三极管及其应用
1)三极管的微变线性模型
小功率三极管 的输入电阻
2021/4/21
rbe200(1)2I6m EQV
24
模拟电子技术
第2章 晶体三极管及其应用
故基极电流改为
I BQ
U CC RB
2)集电极电流
注:当UCC和RB确定后, IBQ即为固定值, 故 此电路称为固定偏置 式放大电路。
3)三极管输出电压
IC Q IB Q
UCE QUCC RCICQ
2021/4/21
13
模拟电子技术
第2章 晶体三极管及其应用
静态工作点Q的定位
2021/4/21
14
1.放大电路的基本组成
2021/4/21
5
模拟电子技术
第2章 晶体三极管及其应用
2.共射极放大电路的组成
2021/4/21
6
模拟电子技术
第2章 晶体三极管及其应用
电路中各元件的作用如下
⑴三极管:电流放大
⑵电容C1和C2:隔直耦合 ⑶基极偏置电阻: Rb ⑷基极回路电源:UBB ⑸集电极电源:UCC ⑹集电极负载电阻:Rc
模拟电子技术
第2章 晶体三极管及其应用
一、静态工作点确定
1. 近似估算法
由直流通路应用 KVL可算的静态时的 基极电流为
实验一基本共射放大电路实验报告
实验一基本共射放大电路实验报告一、实验目的:1.掌握基本共射放大电路的组成和工作原理;2.学会在实验条件下测量并计算电路的增益。
二、实验仪器:1.示波器;2.多用电表;3.功放电路板。
三、实验原理:基本共射放大电路由NPN晶体管、输入电阻、输出电阻和负载电阻组成。
工作原理如下:当输入信号向基极施加交流信号时,晶体管工作于放大状态。
由于输入电阻的存在,输入信号会将电流注入基极,导致基极电流增大。
而这个增大的电流会引发晶体管的放大作用。
输出电阻起到了与负载电阻相匹配的作用,使原信号可以通过负载电阻得到放大。
四、实验步骤:1.按照电路图搭建基本共射放大电路;2.将输入信号接入示波器的输入端,并调节示波器参数使波形清晰可见;3.测量输出信号的幅值,并用多用电表测量电路各个元件的电压和电流。
五、实验结果与分析:根据示波器上显示的波形,我们可以得到输入信号和输出信号的波形图,并通过测量得到其幅值。
根据实验数据,可以计算电路的输入电阻和输出电阻,以及电路的增益。
具体计算步骤如下:1.计算输入电阻:输入电阻可以通过测量输入电流和输入电压得到,用输入电压除以输入电流即可。
2.计算输出电阻:输出电阻可以通过测量输出电压和输出电流得到,用输出电压除以输出电流即可。
3.计算增益:增益是指输出信号幅值与输入信号幅值之间的比值,通过测量输出信号和输入信号的幅值即可计算。
根据实验数据和上述计算步骤,我们可以得到电路的输入电阻、输出电阻以及增益的数值。
六、实验分析与结论:通过实验,我们成功搭建了基本共射放大电路,并且根据测量数据计算了电路的输入电阻、输出电阻以及增益。
这些数据可以帮助我们评估电路的性能和效果。
实验结果分析:1.输入电阻越大,表示电路对输入信号的损耗越小,但也较容易受到外界干扰。
2.输出电阻越小,表示电路可以驱动更大的负载电阻,但也对负载电阻变化较敏感。
3.增益越大,表示电路对输入信号的放大效果越好,但也容易引起失真。
实验二 BJT共射极电压放大电路的分析
fL
1
10
100
fH
1000
典型幅频 特性曲线
Av Av0 0.707Av0
fL
fH
f
改变信号频率
观察波形
保持 vi为5mV
(四)常见故障的分析方法
(1)实验器件故障的判别
电位器好坏的判别
万用表作为测量电阻使用
探头线好坏的判别
探头线好坏的判别
(2)电路故障点的判别
共地(接地)
电源端
电路的设计分析
参见教材 P 59 – 62页
(三)实验内容
1、静态工作点的测量
调整RW,使静态集电极电流ICQ=2mA,测量静态时晶体 管集电极-发射极之间电压VCEQ 。
ICQ(mA)
2mA
VCEQ(V)
调节
ICQ
不加入任何信号 用直流电压表 测量VCEQ
IEQ
ICQ的确定:根据ICQ= IEQ,测量RE直流电压间接确定
加入正弦信号
观察波形不能失真
用交流毫伏表观察, Vi=5mV
数据表格:
静态工作点电流ICQ/mA
保持输入信号Vi/mV VS/mV 测量值 VO/V VO′/V AV (有负载 时) 由测量 数据 计算值 A’V (空载 时)
1.5
5
2
5
2.5
5 要弄清楚 各个参量 的含义
Ri/kΩ
RO/kΩ
其中:
为直流工作点信号, 要用万用表测
为交流信号, 用示波器测峰峰值
ICQ(mA)
VOP-P (V)
加大信号幅度
调节
观察波形
用电压表间接 测量ICQ
共射极基本放大电路分析解读
共射极基本放大电路分析解读共射极放大电路是一种常见的基本放大电路结构,由晶体管的射极连接到负载电阻,集电极通过电阻连接到直流电源。
在此结构下,输入信号为电压信号,输出信号也为电压信号。
在共射极放大电路中,晶体管的射极作为输出端,负载电阻通过集电极与直流电源相连。
输入信号通过耦合电容连接到基极。
该电路结构的特点是电流放大倍数大,输入阻抗小,输出阻抗大。
因此,它适合作为信号放大器使用。
下面我们将对共射极放大电路进行详细的分析和解读。
首先,我们来看放大电路的小信号模型,通过将晶体管的直流工作点移到集电极所连的负载电阻上,得到共射极放大电路的小信号模型。
在该模型中,集电极电阻、等效输入电阻和输出电阻在直流条件下都是无穷大,可以忽略。
这样可以简化电路分析,只需关注放大电路的增益和频率特性。
接下来,我们分析共射极放大电路的电压增益。
根据放大电路的小信号模型,我们可以得到电压增益的表达式。
通常情况下,共射极放大电路的电压增益为负值,可以通过对电路参数的调整来改变增益的值。
其中,负载电阻的值越大,电压增益越大,但同时输出阻抗也将变大。
除了电压增益外,我们还可以分析共射极放大电路的频率特性。
通常情况下,晶体管的集电极电容和输入电容将影响电路的频率特性。
为了获得更宽的频率响应范围,可以通过添加补偿电容来提高电路的频率响应。
此外,共射极放大电路还有一些特殊的应用。
例如,在无线电通信领域中,共射极放大电路常常用于放大电路和混频器电路中。
在音频放大器中,共射极放大电路也是常见的电路结构。
总体来说,共射极放大电路是一种常见的基本放大电路结构,具有电流放大倍数大、输入阻抗小和输出阻抗大的特点。
通过详细的分析和解读,我们可以更好地理解该电路的工作原理和性能特点。
共射、共集、共基三种放大电路的不同
共射、共集、共基三种放大电路的不同标题:共射、共集、共基三种放大电路的不同导言:在电子领域中,放大电路起到了至关重要的作用,主要用于将弱信号放大为强信号。
共射、共集、共基是三种常见的放大电路,它们各自有着不同的特点和应用。
本文将逐步深入探讨这三种电路的不同之处。
第一部分:共射电路1.共射放大电路的基本原理在共射电路中,输入信号与基极相连,输出信号在集电极处取。
当输入信号为正向时,基极电流增大,集电极电流增大,即可实现放大。
这种电路可将输入信号相位反转,并具有中等的电压增益。
2.共射放大电路的特点(1)输入阻抗高,输出阻抗低:共射电路具有较高的输入阻抗和较低的输出阻抗,可以有效地接收和放大弱信号。
(2)电压增益大:共射电路在电压增益方面表现出色,适用于需要较大放大倍数的应用。
(3)频率响应宽:共射电路的频率响应能力较好,能够在较宽的频率范围内稳定工作。
(4)输出相位反转:共射电路能够将输入信号的相位反转180度,适用于需要相位反转的应用。
第二部分:共集电路1.共集放大电路的基本原理在共集电路中,输入信号与发射极相连,输出信号在集电极处取。
共集电路将输入信号通过集电极输出,同时与电源的电压无关,可以有效地悬浮输出。
该电路以电流放大为主,电压放大相对较小。
2.共集放大电路的特点(1)输入阻抗低,输出阻抗高:共集电路的输入阻抗相对较低,输出阻抗相对较高,能够实现较好的匹配和驱动负载。
(2)电压增益小:共集电路在电压放大方面通常有一个较小的增益,适用于需要电流放大的应用。
(3)频率响应一般:共集电路的频率响应一般,在高频率下会出现一定的衰减,不适用于高频放大应用。
(4)无相位反转:共集电路不对信号进行相位反转,适用于不需要相位反转的应用。
第三部分:共基电路1.共基放大电路的基本原理在共基电路中,输入信号与集电极相连,输出信号在发射极处取。
共基电路以电流放大为主,电压放大相对较小。
它能够在宽频带内放大信号,适用于高频应用。
共射极基本放大电路分析教案
共射极基本放大电路分析教案教案:共射极基本放大电路分析一、教学目标1.了解共射极基本放大电路的基本原理和特点。
2.掌握共射极基本放大电路的分析方法和计算公式。
3.能够利用共射极基本放大电路进行电路分析并计算输出电压增益。
4.能够运用所学知识解答与共射极基本放大电路相关的问题。
二、教学内容1.共射极基本放大电路的基本原理和特点2.共射极基本放大电路的分析方法和计算公式3.共射极基本放大电路的输出电压增益计算4.共射极基本放大电路的应用和实际案例分析三、教学过程1.导入(5分钟)通过引入电流放大器的概念,提出对电流放大器进行详细学习的重要性,并和学生一起回顾前面所学内容。
2.知识讲解(20分钟)通过讲解共射极放大电路的基本原理和特点,引导学生了解共射极放大电路的用途和工作方式。
介绍共射极放大电路的输入输出特性曲线和电压增益的计算公式。
3.案例分析(30分钟)通过实际案例的分析,引导学生运用所学知识解答相关问题,包括输入输出特性曲线的绘制、电压增益的计算、电流的分析等。
4.计算练习(20分钟)分发练习题纸,让学生进行计算练习,包括共射极放大电路的输入输出电压计算、电流计算等。
在这个过程中,老师可以对学生的答题情况进行监控和指导。
5.总结(15分钟)由学生梳理本节课学习到的知识点和解题思路,并进行总结。
老师对学生的总结进行补充和点评。
四、教学工具和资源准备1.电路板和电源作为实验装置(可选)2. PowerPoint或黑板以便做示意图和演示3.案例分析材料和计算练习题纸五、教学评估1.学生在计算练习中的准确率和速度:通过检查学生的练习答案,评估学生对所学知识的掌握程度。
2.学生在案例分析中的表现:通过学生对案例的分析和解答,评估学生应用所学知识解决实际问题的能力。
六、教学延伸1.如果有实验条件,可以进行实验演示,进一步加深学生对共射极放大电路的理解。
2.鼓励学生进行更多的实际案例分析,扩展他们的应用能力和创新思维。
4.1.2-4.1.3-基本共射极放大电路的分析方法ok
例题
VCC VBE 12V 40μA Rb 300k
共射极放大电路
ICQ βIBQ 80 40μA 3.2mA
VCEQ VCC Rc ICQ 12V 2k 3.2mA 5.6V
静态工作点为Q(40A,3.2mA,5.6V),BJT工作在放大区。 VCC 12V I 120μA ICQ IBQ 80 120μA 9.6mA (2)当Rb=100k时, BQ R 100k b
vBE=VBEQ+vbe iB=IBQ+ib iC=ICQ+ic vCE=VCEQ+vce
各值都含有直流分量和交流分量。
3. 负载电阻RL对放大电路的影响
(1)对直流通路、直流分量、直流负载线的影响 (2)对交流通路、交流分量、交流负载线的影响
3. 负载电阻RL对放大电路的影响
(1)对直流通路、直流分量、直流负载线有无影响
2. BJT的H参数及微变等效模型 H参数微变等效模型 受控电流源hfeib ,反 映了BJT的基极电流对集电 极电流的控制作用。电流源 的流向由ib的流向决定。 hrevce是一个受控电压 源。反映了BJT输出回路电 压对输入回路的影响。 H参数都是小信号参数,即微变参数或交流参数。
H参数与工作点有关,在放大区基本不变。
vs Vsm sinωt
vBE (VBB vs ) iB Rb
2. 动态工作情况的图解分析 根据iB的变化范围在输出特性曲线图上画出iC和vCE 的波 形 交流负载线 (交流负载线) vCE VCC iC Rc
2. 动态工作情况的图解分析 共射极放大电路中的电压、 电流波形
ICS 1.5
3 Q’
共射极基本放大电路
为了使放大电路能够正常工作,三极管必须处于放大状态。 因此,要求三极管各极的直流电压、直流电流必须具有合适
的静态工作参数IB、IC、UBE、UCE ,也即是放大电路的静态工
作点。静态工作点是放大电路工作的基础,它设置的合理及 稳定与否,将直接影响放大电确定静态工作点。
交点,即为静态工作点Q。从Q点查出结果与估算法所得 结果一样。
2.动态工作情况
当接入正弦信号时,电路将处在动态工作情况,可
以根据输入信号电压ui通过图解确定输出电压uo,从而 可以得出ui与uo之间的相位关系和动态范围。 图解的步 骤是先根据输入信号电压ui在输入特性上画出ib的波形, 然后根据ib的变化在输出特性上画出ic和UBE的波形,如图
图 7.4 图解法分析动态工作情况
设放大电路的输入电压正弦波,当它加到放大电路
值得指出的是, 放大作用是利用晶体管的基极对集电极的 控制作用来实现的, 即在输入端加一个能量较小的信号,通过 晶体管的基极电流去控制流过集电极电路的电流, 从而将直流
电源VCC的能量转化为所需要的形式供给负载。 因此, 放大作
用实质上是放大器件的控制作用;放大器是一种能量控制部件
1.2共射极基本放大电路的分析
态时的集电极电流
IC IB ICEO IB
(7-2)
由图7.2的输出回路可知 静态时的集电极与发射极间 电压
VCC
Rb
IB Rc
IC
(+12V)
300KΩ
4KΩ
U CE VCC IC RC
(7-3)
图 7.2 共射放大电路直流通 路图从式(7-1),由图7.2所 示参数可求得
UBE
T UCE
件组成,信号源电压ui从AO端输入,放大后的信号电压uo从BO端
基本放大电路中,射极输出器和共射极放大电路的特点
射极输出器和共射极放大电路是基本放大电路中常见的两种电路结构,它们在放大器的设计和性能特点上有着各自的优势和特点。
下面将分别从电路结构、输入输出特性、频率特性和稳定性等方面对其进行详细比较和分析。
1. 电路结构射极输出器是一种基本放大电路结构,它的输入信号加在晶体管的基极上,输出信号从晶体管的射极上输出。
射极输出器的电路结构简单,稳定性好,可以直接驱动大功率负载。
共射极放大电路是另一种常见的放大电路结构,它的输入信号加在晶体管的基极上,输出信号从晶体管的集电极上输出。
共射极放大电路的电路结构复杂,但可以实现较大的电压增益。
2. 输入输出特性射极输出器的输入特性较好,输入电阻较高,可以实现较好的输入匹配性能。
输出特性较一般,输出阻抗较低,可以推动较大的输出负载。
共射极放大电路的输入特性一般,输入电阻较低,需要外部匹配电路来匹配输入信号源。
输出特性较好,输出阻抗较高,可以实现较大的电压增益。
3. 频率特性射极输出器的频率特性较好,可以实现较宽的频率响应范围。
在高频和超高频放大器中应用较多。
共射极放大电路的频率特性一般,受到电容和电感等因素的影响较大,频率响应范围较窄。
4. 稳定性射极输出器的稳定性较好,对供电电压波动和温度变化的影响较小。
可以实现较稳定的放大性能。
共射极放大电路的稳定性一般,对供电电压和温度变化的影响较大,需要外部稳定化电路来保证稳定的工作性能。
射极输出器和共射极放大电路在放大器设计中各有其独特的优势和特点。
在实际应用中需要根据具体的需求来选择合适的电路结构,以实现最佳的性能和稳定性。
射极输出器和共射极放大电路是基本放大电路中常见的两种电路结构,它们在放大器的设计和性能特点上有着各自的优势和特点。
接下来我们将继续深入从输入输出特性、频率特性、稳定性和应用领域等方面对它们进行详细比较和分析。
输入输出特性:1. 射极输出器的输入特性较好,输入电阻较高,可以有效地匹配输入信号源,降低信号源的输出电压波动对放大器的影响。
基本共射极放大电路电路分析
基本共射极放大电路电路分析基本共射极放大电路是一种常用的放大电路,它由一个NPN型晶体管的基极接入输入信号,发射极接入负载电阻,集电极接入电源电压,同时通过一个偶联电容和输入电容与输入信号源相连。
在这种电路中,输出信号时相反的输入信号。
下面我们将详细介绍基本共射极放大电路的电路分析。
1.静态工作点分析首先,我们需要确定晶体管的静态工作点,也就是集电极电流和集电极电压的值。
为了简化分析,我们可以假设晶体管为理想墙形器件,即基极电流很小,基极电压为0V。
根据基尔霍夫电流定律,我们可以写出输入回路的方程:Ib = (Vcc - Vbe) / Rb其中,Ib是基极电流,Vcc是电源电压,Vbe是基极-发射极电压(约为0.6V),Rb是基极电阻。
然后,我们可以根据晶体管的静态放大倍数β值,计算集电极电流Ic:Ic=β*Ib接下来,根据集电极-发射极电压和集电极电流的关系,可以求出集电极电压Vce:Vce = Vcc - Ic * Rc其中,Rc是负载电阻。
2.动态工作点分析除了静态工作点,我们还需要分析动态工作点,即在输入信号存在时晶体管的工作状态。
基本共射极放大电路的输入电容是很小的,可以忽略。
因此,我们可以将输入信号直接加到基极上,即vb = Vb + vb',其中vb是基极电压,Vb为静态基极电压,vb'为输入信号。
根据晶体管的放大特性,可以写出输出电流Ie和输入电流Ib之间的关系:Ie=β*Ib+(β+1)*Ic'其中,Ic'是交流集电极电流的变化部分。
接下来,我们可以通过Ohm定律和基尔霍夫电流定律,写出发射极电流Ie、集电极电流Ic和负载电阻Rc之间的关系:Ie=Ic+IbIc = Ic' + (Vce + Vrc) / Rc将以上两个方程联立,我们可以解得Ic'。
进一步,我们可以通过欧姆定律和基尔霍夫电压定律,计算集电极电压Vce的变化值:Vce = Vce' + Ic' * Rc其中,Vce'和Vrc是交流工作点的变化值。
共射极基本放大电路-ppt课件全
稳定电路的静态工作点。
上一页 下一页 返回
共射极基本放大电路
(2) 静态工作点的估算
直流通路如图(b)所示。
当三极管工作在放大区时,IBQ很小。当满
足I1>>IBQ时,I1≈I2,则有:
UBQ Rb1Rb2Rb2VCC
IEQ
UB
UBEQ Re
IC Q IEQ
I BQ
I CQ
U CE V Q C C IC(R Q c R e)
IBS
ICS
VCC
Rc
上一页
下一页
返回
共射极基本放大电路 4. 动态分析
所谓动态,是指放大电路输入信号ui不为零
时的工作状态。当放大电路中加入正弦交流信号
ui时,电路中各极的电压、电流都是在直流量的
基础上发生变化,即瞬时电压和瞬时电流都是由 直流量和交流量叠加而成的。
上一页 下一页 返回
共射极基本放大电路
共射极基本放大电路
1) 保证三极管工作在放大区 2) 保证信号有效的传输 2. 放大电路中电压、电流的方向及符号规定 1) 电压、电流正方向的规定 为了便于分析,规定:电压的正方向都以输入、 输出回路的公共端为负,其他各点均为正;电流方 向以三极管各电极电流的实际方向为正方向。
上一页 下一页 返回
1. 静态图解法
以图7(a)所示共射放大电路为例,分析静态时,电容C1和
C2视为开路,这时电路可画成图7(b)所示的直流通路。三极管
的静态工作点的四个量,在基极回路中有IBQ和UBEQ,在集电极
回路中有ICQ和UCEQ,下面分别进行讨论。
上一页 下一页 返回
共射极基本放大电路
返回
共射极基本放大电路
共射极基本放大电路分析教案
共射极基本放大电路分析教案教案:共射极基本放大电路分析一、教学目标:1.了解共射极基本放大电路的工作原理和特点。
2.掌握共射极基本放大电路的分析方法。
3.能够利用分析方法进行共射极基本放大电路的设计和调试。
二、教学内容:1.共射极基本放大电路的工作原理和特点。
2.共射极基本放大电路的分析方法。
3.共射极基本放大电路的设计和调试。
三、教学步骤:1.导入(5分钟)通过演示一段音乐,引起学生对音频放大器的兴趣,然后提问学生对共射极基本放大电路的了解程度。
2.讲解(25分钟)通过投影或板书,向学生讲解共射极基本放大电路的工作原理和特点,解释并展示电路图。
重点讲解以下内容:(1)共射极基本放大电路的结构和工作原理。
(2)共射极基本放大电路的特点:电压放大率高,输入电阻低,输出电阻高,能够在一定范围内线性放大信号。
(3)共射极基本放大电路的工作状态和信号输入、输出的特点。
(4)共射极基本放大电路的增益表达式。
3.分析(25分钟)带领学生进行共射极基本放大电路的分析,包括:(1)求解输入特性曲线和输出特性曲线。
(2)计算电压放大倍数和输入输出阻抗。
(3)考虑电容耦合情况下的频率特性。
(4)分析直流工作点和静态工作点的选择。
4.实验操作(30分钟)将理论知识与实际操作相结合,通过搭建共射极基本放大电路实验装置,进行实验操作。
包括以下实验内容:(1)根据给定的参数计算电路元件的数值,并进行元件的选择和安装。
(2)观察输出波形,并测量输入输出电压、电流和频率特性。
(3)调试电路,使其达到理论预期效果。
5.总结与评价(15分钟)总结共射极基本放大电路的学习内容和实验操作,引导学生进行思考和讨论,评价自己的学习成果。
四、教学资源:1.投影仪或黑板白板。
2.教学PPT或板书。
3.实验装置和元件。
4.计算器。
五、教学评价:通过学生表现、实验结果和自我评价的综合评价,评估学生对共射极基本放大电路分析的理解和掌握程度。
分析学生在实验操作过程中的表现和结果,评估其实践能力和调试能力的提高。
课题四 基本共射极放大电路的动态分析(2学时)
RS
+ ES
RC
RL U o
-
-
-
(3)电压放大倍数的计算 Ib Ii Uo B 定义 : Au + Ui来自IcC +
U i I b rbe
RS
U o I c RL
+ ES
Ui
βIb
E
RB rbe
RC RL U o
RL Au rbe
+
ui
RB
RC
RL
– –
小信号工 作
+ uO –
线性化
(1) 晶体管的微变等效电路 ic 1) 输入回路 iB C
Q1 输入特性
ib B + ui B rbe
IB
Q Q2 UBE
E
O
uBE
ui
晶体管 的输入电阻
O
UBE t
U BE rbe I B
U CE
E
26(mV ) rbe rbb (1 β ) I E (mA )
O O
iC/mA
Q
uCE/V uCE/V UCE t uo
讨论:如何消除截止失真?
如果Q设置合适,信号幅值过大也可产生失真, 减小信号幅值可消除失真。
思考题
求图示放大电路的动态性能指标。
(1)基本共射极放大电路的动态分析
(2)放大电路的非线性失真
RC Au β rbe
I b RL
-
-
-
RL RC // RL
当放大电路输出端开路(未接RL)时,
负载电阻愈小,放大倍数愈小。
(4)放大电路输入电阻的计算
共射极基本放大电路的输出信号与输入信号相位相反
共射极基本放大电路的输出信号与输入信号相位相反共射极基本放大电路是一种常见的放大电路,其输出信号与输入信号的相位相反。
这意味着,当输入信号上升时,输出信号下降,而当输入信号下降时,输出信号上升。
这种相位反转是由于共射极放大器的工作原理决定的。
在共射极放大电路中,输入信号被施加到晶体管的基极,通过基极电流的变化来控制晶体管的放大作用,从而获得输出信号。
当输入信号的幅度上升时,基极电流也会增加,导致晶体管的导通程度增加。
这将导致输出电流的增加,而输出电压则是由输出电流经过负载电阻产生的。
由于输出电流和输入信号之间存在一个负载电阻,所以当输入信号上升时,输出电流也会上升,进而导致输出电压下降。
因此,输出信号与输入信号的相位相反。
这种相位反转在很多应用中是非常有用的。
例如,在音频放大器中,共射极基本放大电路常用于将微弱的音频信号放大到可以驱动扬声器的电平。
由于输出信号与输入信号的相位相反,这样可以实现音频信号的放大而不引起失真。
此外,共射极基本放大电路还具有高输入阻抗和低输出阻抗的特
点,这使得它在信号传输和信号处理中广泛应用。
它可以用于放大传感器信号、信号调理和滤波等应用中。
总之,共射极基本放大电路的输出信号与输入信号的相位相反,这种特性使其在音频放大和信号处理等领域中得到广泛应用。
这种相位反转是由于晶体管的工作原理决定的,它使得电路具有高输入阻抗和低输出阻抗的特点,适用于各种信号处理需求。
共射极基本放大电路的输出信号与输入信号相位相反
共射极基本放大电路的输出信号与输入信号相位相反共射极基本放大电路是一种常见的放大电路配置,它可以将输入信号放大并输出。
在这种电路中,输出信号的相位与输入信号相反是一个常见的特点。
在共射极基本放大电路中,晶体管的集电极作为输出端,而输入信号通过电容耦合到晶体管的基极。
当输入信号的振幅变化时,晶体管的工作点会相应地变化,从而使输出信号得以放大。
在该电路中,输入信号的相位与输出信号相位相反的原因是共射极放大器的工作原理。
当输入信号的波形上升时,晶体管会导通,使得集电极电压下降。
而当输入信号的波形下降时,晶体管截止,使得集电极电压上升。
因此,输出信号的相位与输入信号相反。
这种相位反转的现象在许多放大电路中都存在,包括共射极放大器、共基极放大器和共集极放大器等。
这是由于晶体管的三个引脚—基极、发射极和集电极之间的相互作用导致的。
在共射极放大器中,输入信号通过电容耦合到基极,而输出信号则通过集电极传输。
这种连接方式导致了相位反转的结果。
相位反转的特性在许多应用中非常有用。
例如,在音频放大器中,相位反转可以用来实现音频信号的功率放大。
此外,相位反转还可以用
于产生正弦波的180度移相器和RC振荡电路等。
总之,在共射极基本放大电路中,输出信号的相位与输入信号相反是由晶体管的工作原理决定的。
这种相位反转的特点在许多放大电路中都很常见,具有广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共射极基本放大电路分析
教学内容分析:§2-2共发射极低频电压放大电路的分析中的“近似估算法”:
近似估算静态工作点、电压放大倍数。
教学对象及分析: 1、基础知识:学生已基本掌握了共发射极低频电压放大电路
参评组别:B 组 专业分类:电工电子 课程名称:电子技术基础
2009年全国技工教育和职业培训 优秀教研成果评选活动参评教案
组成及工作原理。
2、分析与理解能力:由于放大电路的工作原理比较抽象,学生对此理解不够深刻,并且动手调试电子电路的能力有待提高。
所以本次课堂将结合共发射极低频电压放大电路演示测试方式调动学生的主动性和积极性。
教学目的: 1、了解、掌握放大电路的分析方法:近似估算法;
2、培养学生分析问题的能力。
3、培养学生耐心调试的科学精神。
教学方法:演示法、启发法、讲练结合法
教具准备:分压式偏置放大电路实验板、示波器、万用表。
教学重点: 1、共射极放大电路的静态工作点的估算;
2、放大器的电压放大倍数的估算。
教学难点:静态工作点的估算。
教学过程:
一、复习及新课引入:
1、复习旧知识:(1)放大电路的工作原理。
(提问:简述共发射极放大电路的工作原理。
)
(2)基本放大电路的工作状态分:静态和动态。
(3)静态工作点的设置。
(提问:设置静态工作点的目的是什么?)
2、启发、提出问题:(1)放大电路设置静态工作点的目的是为了避免产生非线
性失真,那么如何设置静态工作点才能避免非线性失真呢?
(2)放大器的主要功能是放大信号,那怎样计算放大器的放
大能力呢?
引入新课题:必须学习如何分析放大电路。
=
板书设计:
§2—2 共发射极放大电路的分析
一、近似估算法
1.静态工作点的估算。
2.电压放大倍数的估算:
u o
i c
+U CC
I +U CC
2
放大电路的分析方法: 近似估算法; 图解分析法
(1)目的:计算I
B 、I
C
、U
CE。
(1)目的:计算A
u
、R
i
、R
o。
(2)步骤:(2)步骤:
①画直流通路。
①画交流通路。
②计算I B、I C、U CE。
②计算A u。
改进措施:强调三极管的非线性,分析非线性元件电量计算的特点。
11。