物理学前沿论文

合集下载

物理学前沿问题研究论文

物理学前沿问题研究论文

物理学前沿问题研究论文摘要:从简单的自然规律出发,推导出了宇宙的诞生、万有引力、万有斥力的、物质的构造形式、原子核的放射性、低温超导现象、同位素等之间有着内在的必然的联系。

合理的解释了时间的不可逆性、电磁力的产生、太阳系的起源、原子构造、原子核放射性规律、重核元素构造等。

其中有许多的新观点和新思维,对拓宽视野,推进物理学的开展很有好处。

关键词:万有引力万有斥力宇宙低温超导原子构造同位素放射性太阳系的起源1.万有引力和万有斥力弹簧振子作往复振动,压缩时,弹簧产生一个向外伸展的弹力;拉长时,产生一个向内拉伸的弹力;平衡位置时,弹簧不产生弹力。

如同弹簧振子,对于宇宙,也具有类似的特性。

现代天文学发现,当今宇宙正好处在“拉伸”的状态,正在向着要收缩的趋势开展.既使宇宙今天仍在膨胀,总有一天,整个宇宙将会膨胀到终极点后再向内收缩.这就是为什么现在存在万有引力的原因。

根据对称性原理,宇宙在特定的条件下会产生万有斥力,当宇宙收缩且通过其平衡位置(即万有引力和万有斥力的临界点)时,宇宙中的所有物体就开场相互排斥.但由于宇宙的巨大惯性,仍将在其惯性的作用下抑制物质间的万有斥力继续收缩,直到所有宏观宇宙动能转换为物质间的万有斥力为止.这时宇宙成了原始宇宙蛋,这时宇宙的体积最小。

在这宇宙的整个宏观运动过程中,宇宙的运动动能和势能(引力势和斥力势)相互转换.当宇宙收缩到极点时,宇宙的引力势能释放殆尽,这时宇宙的万有斥力势能积蓄到最大值,物质间的万有排斥力到达顶峰,宇宙瞬时静止.紧接着宇宙又开场反方向将宇宙万有斥力势能逐步释放转变为宇宙动能,当到达平衡位置时,其斥力势能释放完毕,引力势能开场诞生并发挥作用.在引力势和斥力势的临界点(即平衡位置)的一瞬间,宇宙中的物质不受斥力和引力的作用,这时宇宙的膨胀速度到达最大值,通过平衡位置后,宇宙引力势能的逐渐积累,导致宇宙的膨胀速度缓慢降低.由于宇宙巨大的惯性作用,将继续膨胀,宇宙动能慢慢转变为宇宙引力势能,当宇宙动能完全转变为引力势能时,宇宙将停顿膨胀,这时宇宙膨胀体积到达最大,其引力势能的积累也到达最大,宇宙将有一个瞬间的静止.紧接着,宇宙又在强大的引力势能的作用下开场收缩,又将其积累的引力势能转变为宇宙动能.如此往复,以至无穷.在宇宙膨胀(或收缩)的不同时期,万有引力(或斥力)的大小是不相同的,且呈周期性变化.宇宙的膨胀(或收缩)的周期对人类来说大得惊人.人类历史与宇宙运动周期相比,仅相当于其中的一个极小极小极小的点.所以人类无法用实验或观察的方法进展验证。

物理学发展趋势研究论文

物理学发展趋势研究论文

物理学发展趋势研究论文20世纪是科学技术飞速发展的时代。

在这个时代,目睹了人类分裂原子、拼接基因、克隆动物、开通信息高速公路、纳米加工和探索太空。

很难设想,若没有科学技术的飞速发展,没有原子能、没有计算机、没有半导体,现代生活将是什么样子。

与科学技术的发展一样,物理学也经历了极其深刻的革命。

可以说,物理学每时每刻都在不停的发展,其活跃的前沿领域很多,是最有生命力、成果最多的学科之一。

一、21世纪物理学的几个活跃领域蒸蒸日上的凝聚态物理学自从80年代中期发现了所谓高临界温度超导体以来,世界上对这种应用潜力很大的新材料的研究热情和乐观情绪此起彼伏,时断时续。

这种新材料能在液氮温区下传导电流而没有阻抗。

高临界温度超导材料的研究仍是今后凝聚态物理学中活跃的领域之一。

目前,许多国家的科学工作者仍在争分夺秒,继续进行竞争,向更高温区,甚至室温温区超导材料的研究和应用努力。

可以预计,这个势头今后也不会减弱,此外,高临界温度的超导材料的机械性能、韧性强度和加工成材工艺也需进一步提高和解决。

科学家们预测,21世纪初,这些技术问题可以得到解决并将有广泛的应用前景,有可能会引起一场新的工业革命。

超导电机、超导磁悬浮列车、超导船、超导计算机等将会面向市场,届时,世界超导材料市场可望达到2000亿美元。

由不同材料的薄膜交替组成的超晶格材料可望成为新一代的微电子、光电子材料。

超晶格材料诞生于20世纪70年代末,在短短不到30年的时间内,已逐步揭示出其微观机制和物理图像。

目前已利用半导体超晶格材料研制成许多新器件,它可以在原子尺度上对半导体的组分掺杂进行人工“设计”,从而可以研究一般半导体中根本不存在的物理现象,并将固态电子器件的应用推向一个新阶段。

但目前对于其他类型的超晶格材料的制备尚需做进一步的努力。

一些科学家预测,下一代的电子器件可能会被微结构器件替代,从而可能会带来一场电子工业的革命。

微结构物理的研究还有许多新的物理现象有待于揭示。

大学物理论文3000字(精选5篇)

大学物理论文3000字(精选5篇)

⼤学物理论⽂3000字(精选5篇) ⽆论是在学习还是在⼯作中,⼤家都尝试过写论⽂吧,借助论⽂可以达到探讨问题进⾏学术研究的⽬的。

你知道论⽂怎样写才规范吗?下⾯是⼩编收集整理的⼤学物理论⽂3000字(精选5篇),希望能够帮助到⼤家。

⼤学物理论⽂篇1 摘要: 电磁运动是物质的⼜⼀种基本运动形式,电磁相互作⽤是⾃然界已知的四种基本相互作⽤之⼀,也是⼈们认识得较深⼊的⼀种相互作⽤。

在⽇常⽣活和⽣产活动中,在对物质结构的深⼊认识过程中,都要涉及电磁运动。

因此,理解和掌握电磁运动的基本规律,在理论上和实际上都有及其重要的意义,这也就是我们所说的电磁学。

关键词: 电磁学,电磁运动 1.库伦定律 17xx年法国物理学家库伦⽤扭秤实验测定了两个带电球体之间的相互作⽤的电⼒。

库伦在实验的基础上提出了两个点电荷之间的相互作⽤的规律,即库仑定律: 在真空中,两个静⽌的点电荷之间的相互作⽤⼒,其⼤⼩和他们电荷的乘积成正⽐,与他们之间距离的⼆次⽅成反⽐;作⽤的⽅向沿着亮点电荷的连线,同号电荷相斥,异号电荷相吸。

这是电学以数学描述的第⼀步。

此定律⽤到了⽜顿之⼒的观念。

这成为了⽜顿⼒学中⼀种新的⼒。

与驽钝万有引⼒有相同之处。

此定律成了电磁学的基础,如今所有电磁学,第⼀必须学它。

这也是电荷单位的来源。

因此,虽然库伦定律描述电荷静⽌时的状态⼗分精准,单独的库伦定律却不容易,以静电效应为主的复印机,静电除尘、静电喇叭等,发明年代也在1960以后,距库伦定律之发现⼏乎近两百年。

我们现在⽤的电器,绝⼤部份都靠电流,⽽没有电荷(甚⾄接地以免产⽣多余电荷)。

也就是说,正负电仍是抵消,但相互移动。

──河中没⽔,不可能有⽔流;但电线中电荷为零,却仍然可以有电流! 2.安培定律 法国物理学家安培(Andre Marie Ampere, 1775-1836)提出:所有磁性的来源,或许就是电流。

他在18xx年,听到奥斯特实验结果之后,两个星期之内,便开始实验。

物理学论文(5篇)

物理学论文(5篇)

物理学论文(5篇)物理学论文(5篇)物理学论文范文第1篇本文提出的针对于理论物理教学与实践的探究方案,是遵循微观到宏观,理论讨论到详细实践,单体到多体的挨次绽开的,一共包括三个学问单元,它们是统计物理,量子力学和固体物理。

为了使得同学充分把握理论物理学问,我们需要结合教材中原有的三个单元的学问体系,改善原有体系中学问的规律性,合理支配各个学问的所占比例,以帮助同学循序渐进的把握学问点。

热力学和统计物理学主要是讨论宏观物体。

宏观物体主要是由微观粒子组成,因此,在这个学问单元里面,我们依照宏观到微观的挨次绽开讲解,并遵循统计学和宏观物体的联系。

以一般物理学为背景,循序渐进,引入量子统计理论,渐渐激发同学对量子力学的学习爱好。

由此引出其次个学问单元。

量子力学学问单元。

在其次个学问单元里面,我们首先讲解单原子分子量子理论,渐渐引入到多原子分子量子理论,最终引出第三个学问单元——固体物理。

在第三个学问单元里面,先讲解理论,在注意实践应用,引导同学实现创新。

这样,三个学问单元相互联系,前后连接,最终贯穿成为一个整体,赐予同学整体上对于理论物理学的学问。

二、理论教学与实践教学相结合物理理论较为抽象,即便是来源于详细的事例,同学学习起来也具有肯定的困难。

因此,在理论物理的教学中,需要引导同学从感性上熟悉物理现象和物理过程。

培育同学的感性熟悉,一方面可以从同学的日常生活中着手,另一方面可以引导同学从物理试验中不断培育。

本质与非本质的熟悉影响着同学对物理概念的熟悉,因此同学熟悉物理规律会有肯定的困难。

物理试验能够供应给同学最详细、最直观的感性熟悉,由于这些出来的物理试验,是最通俗易通,简明扼要表达物理理念的感性材料。

与生活中的现实例子有所不同,物理试验也有自己的特点,例如:物理试验比较典型,可以代表肯定的物理现象;物理试验需要有动手操作,有肯定的趣味性;物理试验定性定量的表明白全面性。

同学通过物理试验,可以积累制造意识,同时可以帮助同学科学的讨论理论物理。

物理学前沿论文

物理学前沿论文

物理学前沿论文Last updated on the afternoon of January 3, 2021物理学前沿论文—对核能应用与核安全的体会核能理论基础19世纪末 英国物理学家发现了电子。

1895年物理学家发现了X射线。

1896年物理学家发现了放射性。

1898年与居里先生发现新的。

1902年 居里夫人经过三年又九个月的艰苦努力又发现了。

1905年提出。

1914年 英国物理学家通过实验,确定氢是一个单元,称为。

1935年 英国物理学家查得威克发现了中子。

1938年 德国科学家托·哈恩用中子轰击铀原子核,发现了现象。

简介利用中核裂变所释放出的进行发电的方式。

它与极其相似。

只是以核反应堆及蒸汽发生器来代替火力发电的,以能代替的。

除沸水堆外(见),其他类型的堆都是一回路的通过堆心加热,在发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮。

沸水堆则是一回路的冷却剂通过堆心加热变成70个左右的过饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。

核能发电利用铀进行核分裂所产生的热,将水加热成高温高压,利用产生的推动蒸汽轮机并带动发电机。

所放出的热量较燃烧所放出的要高很多(相差约百万倍),比较起来所以需要的燃料体积比火力少相当多。

核能发电所使用的的只约占3%-4%,其馀皆为无法产生核分裂的。

发电过程核能→水和水蒸气的→发电机转子的→。

优点1.核能发电不像化石燃料发电那样排放巨量的污染物质到中,因此核能发电不会造成。

2.核能发电不会产生加重温室效应的。

3.核能发电所使用的铀燃料,除了发电外,暂时没有其他的用途。

4.核燃料比起化石燃料高上几百万倍,故核能电厂所使用的燃料体积小,运输与储存都很方便,一座1000百万瓦的核能电厂一年只需30公吨的铀燃料,一航次的飞机就可以完成运送。

5.核能发电的成本中,燃料费用所占的比例较低,核能发电的较不易受到国际情势影响,故较其他发电方法为稳定。

6.核能发电实际上是最安全的电力生产方式.相比较而言,在煤炭、石油和天然气的开采过程中,爆炸和坍塌事故已杀死了成千上万的从业者。

物理学前沿问题探究

物理学前沿问题探究

课程名称:前进中的物理学论文题目:物理学前沿问题探究学号:姓名:年级:专业:学院:完成日期:物理学前沿问题探究我是南开大学物理学院的学生,自然对物理学的前沿问题较一般的同学有更多的了解,对这方面也更感兴趣,我希望能更多地了解这方面的知识,以使自己对物理学的未来有一个更清晰的认识。

物理学——一门非常严肃的科学,源自哲学,由于数学方法的引进而成为一门独立的科学,其终极目的是探知宇宙的精神。

我们的物理学发展到现在已经为我们认识和改造世界提供了一件又一件法宝:光学显微镜,使生物学拥有了细胞学说;蒸汽机,引发了工业革命;引力理论,成为了太空航行的理论依据;电力的发现,让化学出现了新的分支——电化学;能量守恒定律,使人们不在盲目建造永动机;热力学第二定律,指出了时间的方向性;电子显微镜,使生命科学进入分子生物学时代;电子计算机,引领世界进入信息时代;将来,量子通信,量子计算机,必将使世界进入全新的量子时代!我相信物理学必将继续引领世界前进的步伐,但是其基础是一个个前沿难题的解决或新发现,物理领域有着大量的前沿课题,相信我们年轻的一代,以及其他未来的科学家必将在这些方面有所建树。

下面我将对这些疑难问题做一个概述:1、关于整个宇宙和天体的创生和演化宇宙起源问题、黑洞的研究、宇宙年龄问题、宇宙有怎样的结构、暗物质、暗能量、类星体的结构、引力波的存在问题、太阳系诞生问题、地-月创生和演化、生命起源于哪里、外星生命是否存在、宇宙加速膨胀之谜……2、微观世界中物质结构和基本粒子的相互作用及其运动规律物质深层结构之谜(质子自旋危机)、概率论和决定论的争论、统一场论的最终导出(大统一、超统一)、超弦、真空不空问题、量子计算机、量子隐形传态、量子非局域性、量子论与相对论之矛盾、狭义相对论与超光速疑难……3、宏观范围内的非线性复杂性问题自组织与耗散结构、分形与分维、多体问题、混沌理论、孤立波、湍流、高温超导、超流、纳米材料、凝聚态物理、人工智能和神经计算……其实我们研究这一切的最终目的,是理解我们所身处的宇宙,明白自己从何处来,到何处去,理解我们生活中的一切现象。

物理学发展方向论文_2

物理学发展方向论文_2

物理学发展方向论文摘要:回顾了物理学发展的历史,讨论了二十一世纪物理学发展的方向。

认为二十一世纪物理学将在三个方向上继续发展:(1)在微观方向上深入下去;(2)在宏观方向上拓展开去;(3)深入探索各层次间的联系,进一步发展非线性科学。

可能应该从两方面去探寻现代物理学革命的突破口:(1)发现客观世界中已知的四种力以外的其他力;(2)通过审思相对论和量子力学的理论基础的不完善性,重新定义时间、空间,建立新的理论。

二十世纪即将结,二十一世纪即将来临,二十世纪是光辉灿烂的一个世纪,是个类社会发展最迅速的一个世纪,是科学技术发展最迅速的一个世纪,也是物理学发展最迅速的一个世纪。

在这一百年中发生了物理学革命,建立了相对信纸和量子力学,完成了从经典物理学到现代物理学的转变。

在二十世纪二、三十年代以后,现代物理学在深度和广度上有了进一步的蓬勃发展,产生了一系列的新学科的交叉学科、边缘学科,人类对物质世界的规律有了更深刻的认识,物理学理论达到了一个新高度,现代物理学达到了成熟的阶段。

在此世纪之交的时候,人们自然想展望一下二十一世纪物理学的发展前景,探索今后物理学发展的方向。

我想谈一谈我对这个问题的一些看法和观点。

首先,我们来回顾一下上一个世纪之交物理学发展的情况,把当前的情况与一百年前的情况作比较对于探索二十一世纪物理学发展的方向是很有帮助的。

一、历史的回顾十九世纪末二十世纪初,经典物物学的各个分支学科均发展到了完善、成熟的阶段,随着热力学和统计力学的建立以及麦克斯韦电磁场理论的建立,经典物理学达到了它的顶峰,当时人们以系统的形式描绘出一幅物理世界的清晰、完整的图画,几乎能完美地解释所有已经观察到的物理现象。

由于经典物理学的巨大成就,当时不少物理学家产生了这样一种思想:认为物理学的大厦已经建成,物理学的发展基本上已经完成,人们对物理世界的解释已经达到了终点。

物理学的一些基本的、原则的问题都已经解决,剩下来的只是进一步精确化的问题,即在一些细节上作一些补充和修正,使已知公式中的各个常数测得更精确一些。

凝聚态论文

凝聚态论文

凝聚态物理前沿论文物理学前沿领域——凝聚态物理学凝聚态物理学是当今物理学最大也是最重要的分支学科之一。

据70 年代中期的调查统计,从60 年代末到80 年代末,获诺贝尔物理奖的人数中,从事凝聚态研究的人数,超过了研究粒子物理的人数,接近总人数的一半,也居首位。

凝聚态物理学得以迅猛发展,首先表现在其研究对象的开拓上。

在由原来传统的三维周期性结构,向着低维甚至非周期结构的发展中,所涉及到的理论也逐渐地趋于深化与成熟,从30 年代的晶体结构分析的唯象理论与固体的比热理论、金属自由电子论和铁磁性理论,发展到30 年代后的能态理论、电子衍射和X 射线衍射的动力学理论,以及点阵动力理论。

60 年代以后,在凝聚态物理学中,对称性破缺理论又占据了中心地位。

以它为基础,建立了能态、元激发、缺陷及临界区域四个层次。

与之相应,各种有序态的序参量、广义刚度、标度不变性、自相似结构等一系列新的概念随之诞生。

此外,大量非线性课题相继出现,使凝聚态物理不仅在深度及广度上冲破了传统固体物理学,而且向着更深层次与更大的范围蓬勃发展。

其中一项非常重要的新型研究就是硅原子纳米线的生长,可以通过这种方式在半导体硅表面精确制造磁性结构,有重要意义.本文中将通过对PRL上硅表面单原子纳米线研究的相关论文Above room temperature ferromagnetism in Mn-ion implanted Si与Magic Monatomic Linear Chains for Mn Nanowire Self-Assembly on Si(001)的研究,解读利用第一性原理研究归纳米线生长的方式,.利用第一性原理研究各种直径和生长方向的氢钝化硅纳米线的能量相对稳定性和机械性能。

为了比较硅纳米线的物理性质和理解在某些方向优先生长的原因,研究了沿着[100],[110],[111],[112]结晶取向生长的纳米线。

第一性原理(First Principle):广义的第一性原理计算指的是一切基于量子力学原理的计算;物质由分子组成,分子由原子组成,原子由原子核和电子组成。

标准的物理论文范文(建议13篇)

标准的物理论文范文(建议13篇)

标准的物理论文范文(通用13篇)1、物理学史与物理教学结合的理论与实践研究2、二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究3、二十世纪中国原子分子物理学的建立和发展4、普通高中物理课程内容与大学物理课程内容的适切性研究5、从现代物理学理论发展探讨孙思邈修道养生观6、地震岩石物理学及其应用研究7、碎屑岩地震岩石物理学特征研究8、信息技术支持下的物理学与教的研究9、物理学中对称现象的语境分析及其意义10、本质直观视域下的量子引力学困境11、复杂金融系统的相互作用结构与大波动动力学研究12、大小细胞视觉通路在早期开角型青光眼和双眼竞争中作用的功能磁共振成像及视觉心理物理学研究13、经济物理学中的金融数据分析:统计与建模14、农村高中物理学困生的差异教学研究15、基于PD控制的拟态物理学优化算法的研究16、多目标拟态物理学优化算法解集分布性研究17、利用物理学史教育资源优化中学物理教学的研究18、中学生与物理学家共同体概念形成过程的对比研究19、物理学专业师范生PCK研究20、物理学史融入高中物理教学的实践研究21、莱布尼茨物理学哲学思想研究22、运用高中物理教材栏目开展物理学史教育的实践23、新课程下高一物理学困生转化策略24、运用高中物理“学案教学”提高学生问题意识的实践25、基于书目记录的《中图法》物理学类目调整方法26、物理学专业师范生教学技能训练现状调查与对策研究27、高中物理学困生成因及转化策略研究28、从物理学家的研究方法看物理学的进展29、高中物理学困生学习动机的实证调查与影响因素分析30、食管癌调强放疗物理学参数对放射性肺炎的评估价值31、近代物理学史在高中物理教学中的应用32、提升物理学困生自主学习能力的教学策略研究33、物理学史在高中物理教学中的应用研究34、关于培养学生物理学科素养的教学实践研究35、高一物理学困生学习效率低下成因及转化策略36、校本课程《生活中的物理学原理DIY》的开发与实践37、高中物理教学中物理学史教育现状调查与研究38、高中物理学困生学业情绪现状及影响因素的调查研究39、利用物理学史促进高中生理解科学本质的实践研究40、物理学史融入中学课堂教学的实践研究41、高中物理学史校本课程文本资源的开发与应用42、物理学史与中学物理教学结合的理论与实践研究43、中学物理教学中渗透物理学史教育的研究44、通过物理学史培养高中学生科学精神的实践研究45、中学物理教学中渗透近代物理学思想的研究46、高中物理教学中物理学史教育的理论及实践研究47、近代物理学在中国的本土化探索48、中学物理教学中引入物理学史的作用研究49、物理学方法教育的研究和教学实践50、生物物理学的物理支撑与发展历程标准的物理论文范文第2篇物理学论文投稿摘要:1 导入多元情境,刺激求知欲望积极且多元的课堂情境是促使学生踊跃表现自我的基本因素,是实现研究性学习的必备条件之一.物理学科作为自然学科之一,其所涵括的内容小到生活细节,大到宇宙世界,如果学生对物理学科本身就缺乏学习的热情和求知的欲望,那么。

物理学前沿讲座论文

物理学前沿讲座论文

金属玻璃摘要:文章简要地介绍了金属玻璃的定义、分类、机理、结构及性能间的关系、用途、应用领域和特点,以及目前国内外的研究内容及研究进展。

关键词:金属玻璃1 定义将熔融的合金喷射到冷的铜板上,速度在一百万摄氏度每秒以上,由于冷凝速度极高,液态合金来不及形成结晶就凝固了,结果获得了如同玻璃一样的非晶态合金。

用X射线衍射法进行测试,发现这种急冷的合金与平常的金属不同,它不是晶体而是玻璃体,故非晶态合金又称为金属玻璃。

2 发展历程要想了解金属玻璃,首先还是从玻璃讲起。

我们生活在充斥着玻璃的世界,很多人都以为玻璃的广泛应用是工业革命的产物,但事实上,玻璃是人类使用最古老、最广泛的材料之一。

我们的远古祖先——原始人,很早就在利用天然玻璃黑曜石的断口,也就是我们常说的“玻璃碴”来宰杀动物、裁制兽皮衣服。

玻璃材料对人类文明史产生了不容忽视的影响。

正如陶瓷材料贯穿中华文明和文化一样,自被发现以来,玻璃材料贯穿古希腊文明、罗马文明、文艺复兴、欧洲启蒙运动、工业革命等历史时期,直至当代。

例如,因为平板玻璃材料的出现,才有了玻璃窗户,才让寒冷的北欧适于居住和文明化;有了玻璃,我们的前辈才能研究星体的运动,太阳系的构造,以及微生物的奥秘。

不少学者认为,玻璃在东西方文化和文明的差异、分歧中扮演了致关重要的角色。

玻璃材料是人类历史上最偶然的发明之一。

3000多年前,一艘腓尼基人的商船,满载着晶体矿物“天然苏打”,航行在地中海沿岸的贝鲁斯河上。

由于海水落潮,商船搁浅了,于是船员们登上沙滩,把几块“天然苏打”支起作为大锅,在沙滩上做起饭来。

他们撤退时发现锅下面的沙地上有一些晶莹明亮、闪闪发光的东西!这些闪亮的物体就是最早的人工玻璃。

金属玻璃的发现也非常偶然。

1959年,美国加州理工大学的Duwez在研究晶体结构和化合价极其不同的两个元素能否形成固溶体时,偶然发现了这种新材料。

他将高温金—硅合金熔体喷射到高速旋转的铜辊上,以每秒一百万度的冷却速度快速冷却熔体,第一次制备了不透亮的玻璃。

物理学前沿专题论文题目

物理学前沿专题论文题目

物理学前沿专题论文题目第一篇:物理学前沿专题论文题目物理学前沿专题论文题目1.宇宙演化的观测与分析中物理规律的应用(天体物理,宇宙学)2.超导体的基本性质和研究历史(凝聚态物理)3.量子纠缠和量子测量(量子物理)4.相变和量子相变的研究(理论物理,凝聚态物理)5.对构成物质的基本粒子的认识(粒子物理)第二篇:物理学前沿学习心得物理学前沿学习心得专业班级:物联网13-01 姓名:司文哲学号:311309080116物理学前沿这门课是我看名字就选的一门选修课,因为本身对于物理拥有极大的兴趣,喜欢物理这门学科,并且还因为对物理前沿的知识感到好奇和前沿物理学的研究对世界的改变让我感到惊奇而选的这门课。

在上前几节课的时候,一直听老师讲的是有关物理学历史的问题,这让我有困惑和不解,为什么报了个物理学前沿却在这听物理学历史,后来在一节课中老师也说到这个问题,然后思考过后,才觉得对于物理学的历史学习还是很有必要的,有助于整个对物理学的发展有个看法和了解,这样对物理学前沿问题才会感到有兴趣。

经过4个星期的上课,多多少少也了解了点屋里前沿知识的大概皮毛,这篇心得就把老师提到的几个21世纪物理学的发展方向以及各个前沿的基本概念、前景总结一下,也算是对物理学前沿这门课程的学习总结。

在查阅物理前沿的资料之前,我先对有一节课老师放的宇宙的视频说一点我对宇宙的看法和认识,我觉得我们生活在繁杂世界中,纷纷扰扰,喜怒哀乐,总以为人才是世界的中心,殊不知这是多么渺小的想法。

一个大自然就能轻轻松松把人类毁灭,更不用说浩瀚无边的宇宙了,宇宙就像心胸广袤,坐定如山的巨大长者。

又如各个地方都在发生着变换,停歇不得的魔鬼。

我们对宇宙的认识从华夏大地的人们认为的盖天说和巴比伦的拱形天地被大海环绕的世界,到无锡拉人从美学观念觉得地球是圆形的,认为天体和我们居住的大抵都是圆形的,再到地心说,日心说和万有引力定律的发现,再到发现银河系以外的星系,期间经过了人类多少的努力和困难,才认识到我们生活千万年的外界是什么东西,然而宇宙却千万年间一直在这里,巍然无比,让人心生敬畏。

物理学论文范文

物理学论文范文

物理学论文范文物理学给人类提供了大量的物质财富,同时也提供了精神财富。

物理学的高技术和强渗透性也使之成为社会发展的重要推动力。

下面是店铺为大家整理的物理学论文,供大家参考。

物理学论文范文一:物理学在科技创新中的效用摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理1引言物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照教育部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程报告论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.2物理学是科技创新的源泉且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR 魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X 光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X 射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=9.11×10-31kg,电子荷电e=-1.602×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S軋,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现笔记本电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为21.4千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.20世纪最杰出的成果是计算机,物理学是计算机硬件的基础.从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小.近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小.量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道.1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14].由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用.激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用.激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在0.1-0.2mm;适合大件产品的加工等.在汽车、飞机、微电子、钢铁等行业得到广泛应用.2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币.2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源.他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适.这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处.2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖.目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差.而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管.此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好.因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14].2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(DavidJ.win-land),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”.他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16].2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应.早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应.我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题.这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗.而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗.通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大.因此,这一科研成果的应用前景十分广阔[17].物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富.纵观科学与技术发展史,可以看出物理学是科技创新的源泉.3结语论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉.打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18].国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时.在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学.各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时.参考文献:〔1〕祝之光.物理学[M].北京:高等教育出版社,2012.1-10.〔2〕马文蔚,周雨青.物理学教程[M].北京:高等教育出版社,2006.I-V1.〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M].合肥:中国科学技术大学出版社,2005.前言.〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理课程教学基本要求[J].物理与工程,2006,16(5)〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会.非物理类理工学科大学物理实验课程教学基本要求[J].物理与工程,2006,16(4):1-3.〔6〕姚启钧,光学教程[M].北京;高等教育出版社,2002.138-139.〔7〕张怪慈.量子力学简明教授[M].北京:人民教育出版社,1979.182-183.〔8〕孙阳(导师:张裕恒).钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D].中国科学技术大学,2001.10-11.物理学论文范文二:初中物理学科全息教学的运用一、全息教学在初中物理教学中运用的策略1.运用全息理论,对初中物理教学课型进行合理选择与搭配新课改以后,物理课堂教学由传统的讲授内容方面转变到物理的过程方面,其核心是给学生提供机会、创造机会。

当代物理前沿结课论文

当代物理前沿结课论文

《当代物理前沿》结课论文题目:太阳能热开发利用及其现状简述学号:200705080201姓名:唐广指导教师:张正阶太阳能热开发利用及其现状简述摘要:经过一段时间对太阳能的了解和学习,我逐渐意识到了太阳能的开发和利用有着巨大的发展潜力。

上个世纪五十年代世界上第一块太阳能电池在贝尔实验室问世,为此揭开了太阳能开发利用的新篇章,之后,太阳能开发利用技术发展很快,特别是70年代爆发的世界性的石油危机有力地促进了太阳能开发利用。

经过近半个世纪的努力,太阳能利用技术及其产业异军突起,成为能源工业的一支生力军。

随着社会经济的发展,全球性的能源危机,人类将面临实现经济和社会可持续发展的重大挑战,一方面,常规能源的需求剧增和能源资源严重匮乏,另一方面,化石能源的开发利用带来了一系列诸如环境污染,温室效应等问题,目前的环境问题,很大程度上是由于能源特别是化石能源的开发利用造成的。

因此,人类要解决上述能源问题,实现可持续发展,只能依靠科技进步,大规模地开发利用可再生洁净能源。

人类的发展和科技的进步把太阳能开发利用推向了历史的科技大舞台。

各国对太阳能的开发利用给予了极大关注,突出表现在各国政府推出的光伏计划,如德国的“千顶计划”,日本的“朝日七年计划”以及美国的“百万屋顶计划”等。

我国太阳能开发利用有其成功之处,但也存在诸多问题和不足。

去年十月份,中国太阳能电池板再次遭遇美国301贸易调查。

可见对新能源的把握对于一个国家的未来的发展的重要性。

关键字:太阳能光热产业光电产业电池板转换率光伏工程所谓的太阳能,不仅包括直接投射到地球表面上的太阳辐射能(即狭义太阳能),而且还包括像水能、风能和海洋能等间接的太阳能资源,以及包括通过绿色植物的光合作用所固定下来的能量(生物质能),即使是现在广泛开采并使用的石油、天然气和煤炭等矿物燃料,也都是古老的太阳能资源的产物(广义太阳能)。

我们传统所说的太阳能主要是指太阳直接投射在地球表面的太阳辐射能,也就是狭义的太阳能。

物理学的发展论文5000字

物理学的发展论文5000字

物理学的发展论文5000字篇一:物理学发展史论文(4000+字)物理学的发展史及心得体会物理学的发展史归根到底其实就是人类劳动文明的一部发展史,劳动创造了人本身,而劳动是从创造工具开始的人类从开始制作第一把石刀的时候,就认识到它锐利的刃部可以集中较大的压力。

工具的进一步发展和改进,导致简单机械的出现,由于运输举重物的需要,逐步出现了杠杆,滑轮、斜面等装置。

由于古代生产水平的低下,人们对自然规律的认识除了直接的生产经验积累外,就是靠对自然界的观察和在这些观察经验的基础上进行的天才的直觉的思辨的猜测。

在这个时期,静力学包括简单机械、杠杆原理、浮力定律等首先有所发展。

在光学方面积累了光的直进、折射、反射、小孔成象、凹凸面镜等方面的知识,古希腊的欧几里德等的著作中也已经认识到光的直线传播和反射定律,并且研究了光的折射现象。

关于静电和静磁现象,发现了摩擦起电磁石召铁,先发明了司南, 以后又制成了指南针。

声学由于音乐的发展和乐器的制造,积累了不少乐律共鸣方面的知识等等。

关于物质世界的结构和相互作用, 人们提出了诸如原子论、元气论、阴阳五行说、以太等天才的假说, 这对后来物理思想的发展, 产生了深远的影响。

总之, 这个时期的物理学处于萌芽时期, 还没有从自然哲学中分化出来。

观察思辫是这个时期研究的主要方法。

与这种物理学状况相适应,在自然科学家中占统治地位的自然观,是原始的唯物论和朴素的辩证法。

而物理学大体上可以分为两个时期,一个是十九世纪前人类对声光热电力的研究的经典物理学时期,另一个是十九世纪后直至现在的人类对光子量子类的研究的现代物理学时期。

经典物理学经历了一段漫长的时期,由于生产的推动,物理学开始以神奇的速度发展起来。

刚刚在封建社会内部诞生的资产阶级,为了促进生产力的发展, 在文艺复兴的旗帜下,向封建专制制度和宗教神权的统治发动了一场历史上空前规模的政治、经济革命和思想解放运动。

自然科学就在这场伟大的进步的变革中得到突飞猛进的发展。

初中物理教学论文中学物理教师与物理学前沿

初中物理教学论文中学物理教师与物理学前沿

初中物理教学论文:中学物理教师与物理学前沿当今科学技术正在迅速发展,知识经济已初见端倪,世界各国之间的竞争也日趋激烈,为此,各国对教育的改革与发展都给予了极大的关注。

谁掌握了21世纪的教育,谁就在未来的信息社会及国际竞争中取得主动权。

面对新形势,实施素质教育,尤其是物理教学现代化已成了时代的要求。

与这种现代化要求相伴随的是中学物理教师必须把握物理学前沿的脉搏。

为了能与物理学前沿接轨,中学物理教师该怎么办呢?本文就这一问题谈一点浅见。

前,全国各地正在进行着轰轰烈烈的教育改革,即从传统的应试教育转变到素质教育上来,但这种改革的步伐缓慢,实质性的进展不明显,究其原因是多方面的,但教育思想严重滞后,对于传统的教育观念、教学内容、教学手段、教学方法偏爱至深,形成了一种强大的传统惯性,以至难以转向,不能不说是主要的原因之一。

目前世界各国的理科教育,特别是物理教育,明显的特征是:从强调知识内容向获取知识的科学过程转变;从强调单纯积累知识向探求知识转变;从强调单科教学向注重不同学科相互渗透转变。

相比之下,我国的中学物理教学忽视科学归纳,忽视发散思维、形象思维和创造性的直觉思维,忽视主动获得信息与信息交流的训练,忽视学生独立学习与思考的训练,忽视开发学生非智力因素的训练。

这些弊端由来已久。

水不漏,对课程内容的每一个细节都作详尽的解说,对学生可能出现的问题一一予以告诫,久而久之,学生养成了唯书、唯师的学习习惯,缺乏创造的热情和竞争的态势。

同样,我国的中学物理教师长期在统一的教学大纲,统一的教材,统一的考纲,统一的考试下,已习惯于把自己的思想和兴趣局限于这统一的框架内。

教师的创造性逐渐地被磨灭,多数教师不敢轻易地将有争议的尚未定论的或正处于发展之中的科技新成就,科学新思想介绍给学生,将物理学的前沿知识排斥于教育之外。

在这样的物理教育思想指导下,只让中学生了解物理学的昨天,而不懂得重要的是应让中学生知道物理学的今天,更不会让他们去探索物理学的明天。

大学物理论文范文(10篇)

大学物理论文范文(10篇)

大学物理论文范文(10篇)本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!第一篇:浅谈大学物理教学改革的研究大学物理是研究物质的基本结构、相互作用和物质最基本最普遍的运动形式及其相互转化规律的学科。

物理学的研究对象是非常广泛的,它的基本理论渗透到自然科学的很多领域,应用于生产技术的各个部门,它是自然科学和工程技术的基础。

它包含经典物理、近代物理和物理学在科学技术方面的应用等基本内容,这些内容都是各专业进一步学习的基础和今后从事各种工作所需要的必备知识。

因此,它是各个专业学生必修的一门重要基础课[1]。

在理工科各专业开设大学物理课的作用,一方面在于为学生较系统地打好必要的物理基础,另一方面是使学生学会初步的科学的思维和研究问题的方法。

这对开阔学生的思路、激发探索和创新精神、增强适应能力、提高人才的素质都将起到非常重要的作用。

同时,也为学生今后在工作中进一步学习新的知识、新的理论、新的技术等产生深远的影响。

1.大学物理教学现状分析21世纪是学技术飞速发展的时代,对人才的要求将更高、更全面,这对我们的大学物理教学也提出了更高的要求,必须跟上时代的步伐。

但是,目前以地理专业大学物理教学为例存在以下问题:(1)大学物理教材的内容中,以经典物理为主,分为力学、热学、光学、电磁学和近代物理,内容各自独立,彼此之间缺乏联系,没有形成统一的物理系统。

教学内容大部分标题与中学类似,学生看到目录后学习热情和兴趣锐减。

(2)经典物理和近代物理的比例极不平衡,经典物理部分占物理教学内容的80%以上,而且基本上都是20世纪以前的成果,没有站在近代物理学发展的高度,用现代的观点审视、选择和组织传统的教学内容。

同时近代物理的内容非常少,特别是没有反映20世纪后半个世纪以来物理学飞速发展的现代物理思想,使学生对近代物理知识知之甚少,与现代物理严重脱节,因此大学物理教学改革势在必行。

物理科技小论文优秀4篇

物理科技小论文优秀4篇

物理科技小论文优秀4篇物理的小论文篇一早在1800年,英国著名天文学家赫歇尔在观测太阳光谱时,利用温度计就已经发现了红外线辐射。

所谓红外线,就是一种波长于1~350微米的电磁波。

然后它的发现,却改善了我们的生活,推动了人类社会的发展。

首先,红外线的研究,有利于我们探索星系的起源。

“1983年,第一颗红外天文卫星在远红外波段进行了巡天观测,第一次获得了远红外线的天空图象,在短短的10个月内发现了25万个红外线源。

”我们知道,任何物体都在源源不断地向外辐射红外线。

那么这25万个红外线源的发现,也就意味着外太空至少存在着25万个以上的天体。

通过对它们所辐射的红外线的研究与监测,就能很容易的知道这些天体的构造及其表面温暖。

然而有些光源是经过几亿光年才到达地球的,这就为我们研究星系的起源提供了最好的材料。

其次,红外线的研究,有助于我们识别物体,进而为我们创造了一个安全,良好的生活环境。

按照描述热辐射的黑体辐射定律,物理的T与其辐射最强的波长入之间的关系为:T·λ=0.29cm·k。

这样,只要知道物体的温度,就可以计算出波长。

例如太阳表面温度约为5800k,就可以计算出太阳辐射最强的波长为500nm。

而我们人体的温度为37oC,其绝对温度T=273+37=310K,这样就可算出人辐射最强的波长λ=0.00094cm。

由此,当我们使用精密仪器,便可把人与其它物体区分开来。

既然人类的研究是从宏观到微观的,同时又存在着“世界上找不到两片相同的树叶”的真理,那么我们每个人的温度也可能随个体的差异而存在细小的差别。

因而我们所辐射出的最强入也不同了,所以在未来实现对人的监控也不是没有可能的。

等到那一天来临时,我们只要利用红外线就可监测人的行为。

当他有不良的举动时,只要发射出一些相关的物质,便能准确的射到该人的身上,从而达到制止不良行为发生的目的,这时,我们不是处在一个和平、安宁的社会里么?最后,红外线的使用,能给我们的生活带来诸多方便。

现代物理前沿知识教学浅析论文

现代物理前沿知识教学浅析论文

摘要论述了在实施素质教育的今天,作为公共课的大学物理教学中应注重渗透现代物理前沿知识教学。

其有利于学生的物理思想培养,有利于学生思维能力的培养,有利于激发浓厚的研究兴趣,是时代发展的要求。

关键词物理教学物理前沿知识渗透当前,我国高等教育改革已步入深化教学改革,实施素质教育、提高教学质量的新阶段,物理学为现代科学与技术的基础,作为公共课的大学物理课程自然有着极其重要的作用。

在面临课时少、内容多等客观因素情况下,教师总是回避和忽视物理教学的现代和前沿知识的介绍。

其实这是1种不妥的认识和作法。

如何加强素质教育、提高课堂教学质量,是当前我国教育改革的重要课题之1。

而在大学物理教学中适时地渗透现代物理和前沿知识,让学生了解当前物理学前沿正在研究的热门科学难题,是提高教学水平的必由之路,其有利于学生的物理思想培养,有利于学生思维能力的培养,有利于激发浓厚的研究兴趣、唤醒神圣的好奇心,更是时代发展的需求。

1 渗透现代物理前沿知识教学有利于学生的物理思想培养物理学发展的重要1环,就是在不断地提出假说,并经过实验验证,对提出假说进行完善或者摈弃的过程。

在现代物理和前沿知识的研究中这1思想体现得尤其突出。

例如:“玻尔理论”的提出,打破了经典物理学1统天下的局面,开创了揭示微观世界基本特征的前景,为量子理论体系奠定了基础,这是1种了不起的创举,不愧为爱因斯坦的评价——玻尔的电子壳层模型是思想领域中最高的音乐神韵。

玻尔理论也有其局限性:这个理论本身仍是以经典理论为基础,且其理论又与经典理论相抵触.它只能解释氢原子的光谱,在解决其他原子的光谱时就遇到了困难。

如把理论用于非氢原子时,理论结果与实验不符,且不能求出谱线的强度及相邻谱线之间的宽度.这些缺陷主要是由于把微观粒子(电子,原子等)看作是经典力学中的质点,从而把经典力学规律强加于微观粒子上(如轨道概念)而导致的。

可见,科学的进步就是有继承才有发展,继承必须寻找正确的方法,科学的继承方法就是有批判地继承,这样才能前进。

物理科技论文

物理科技论文

物理科技论文1今天,人类所有的令人惊叹不已的技术成就,无不是建立早年科学家们对身边锁事进行观察并研究的基础之上,在学习中,我们要树立科学意识,大处着眼,小处着手。

在物理学方面不断进步。

我最喜欢看其中的《来到了跳跳国》、《咔嗒,咔嗒,粘住了》和《大象也可以被举起来》,它以讲故事的方式向我们讲述科学知识,语句充满童真,讲的是发生在我们日常生活中的物理知识,很生动,将我们牢牢吸引。

文中的主人公是与我们一般大的孩子,读完以后,我们会发现原来文中的“她”也会问这个问题呀?这个问题一点也不傻?原来答案是这样的!太神奇了!飞机是怎么飞起来的?天空中为什么有彩虹?船为什么能在水中浮起来?……这些问题的答案就在这套丛书里,快翻开这套丛书找一找答案,看一看里面的内容吧!物理科技论文2畅游物理之海,体味物理之爱。

——题记初识你时,便一见倾心,为你的神奇、灵魂、调皮所迷恋。

爱你的神奇初入物理之海,首先入眼的便是你——透镜。

你是顽皮的精灵,挺起肚子,便是凸透镜,聚光于镜;当你一弯腰,又成了凹透镜,散光于镜,化光成一道道光纤;当你身处模型之中,你是一位安静又神秘的魔术师,当物像徘徊在二倍焦距左右,你更是将其像放倒,随意把人家等大、放大或缩小;当它不小心走进一倍焦距时,你便灭其像,吓得它连忙跳过,才使得其像放大于其后,它便再不敢造次了。

神奇如你,我已不能自拔地爱上了你的神奇。

爱你的灵动你是灵魂舞者——光。

当你射向玻璃时,你便会灵巧一跃,弹起一束光。

你总把两角调节的那样完美,使不搭的法线也生机勃勃。

当你跳起折射舞时,还总是献殷勤似的让空气当老大,却不管同为介质的水,那仿佛是被你设计的。

入空气角总比入水角度数大许多,在你灵魂的躯体下,连介质也被分了层。

灵魂如你,我已不能自拔地爱上了你的灵动。

爱你的调皮你学习了自然魔法,化身自然使者,将固、液、气转换得轻松自如。

是谁让水变冰,冰变水呢?这便是你的魔法——熔化和凝固吧,这个调皮鬼还用升华让雪人化时无水;用凝华为灯壁蒙上一层灰炭。

学术研究:探索物理学前沿的脚步

学术研究:探索物理学前沿的脚步

探索物理学前沿的脚步摘要:本文旨在探索物理学前沿的研究现状、发展动态和未来趋势。

通过综述近年来物理学领域的研究成果,分析物理学前沿的挑战和机遇,提出未来研究方向和可能的突破口。

本文旨在为物理学研究者提供参考和启示,促进物理学的发展和进步。

一、引言物理学是自然科学的基础学科之一,它研究物质、能量、空间和时间的本质规律。

随着科技的飞速发展,物理学的前沿研究不断取得突破性进展,为人类社会的进步提供了强大的动力。

本文将探讨物理学前沿的研究现状、发展动态和未来趋势,以期为物理学研究者提供参考和启示。

二、当前物理学前沿的研究现状近年来,物理学领域的研究成果丰硕,包括量子计算、量子通信、凝聚态物质、宇宙学等方面的研究取得了重要进展。

在量子计算方面,量子比特的数量和性能不断提升,为量子计算机的商业化应用奠定了基础。

在凝聚态物质方面,新型超导材料、拓扑材料等前沿领域的研究成果不断涌现,为新型电子器件、光电器件等领域的创新提供了强有力的支撑。

在宇宙学方面,引力波探测、黑洞/星系形成等方面的研究进展,为我们更深入地理解宇宙的本质提供了新的视角。

三、物理学前沿的挑战与机遇尽管物理学领域的研究取得了诸多进展,但仍存在许多挑战和机遇。

首先,物理学需要应对当前学科交叉融合的挑战,跨学科的研究方法和手段成为推动物理学发展的关键。

其次,物理学面临着实验技术和理论分析方法的瓶颈问题,如何提高实验精度、优化理论模型是当前亟待解决的问题。

最后,物理学面临着人类对自然界的认知局限,如何突破现有理论框架、探索未知领域是物理学未来的发展方向。

然而,这些挑战也为物理学带来了前所未有的机遇。

随着科技的不断进步,我们有望在物质本质、宇宙起源等方面取得更多的突破性成果。

同时,物理学的发展也将为其他学科提供更多的理论支撑和技术支持,推动人类社会的进步。

四、未来研究方向和可能的突破口未来物理学的发展方向主要包括量子计算与量子通信、拓扑材料与新型超导材料、宇宙学与天体物理学的交叉研究等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学前沿课程作业题目:一、超导材料的研究与发展光催化反应机理二、TiO2姓名:谭琳学号:S130720032一、超导材料的研究与发展1、 引言1911年荷兰物理学家翁奈在研究水银低温电阻时首先发现了超导现象。

后来又陆续发现了一些金属、合金和化合物在低温时电阻也变为零,即具有超导现象。

物质在超低温下,失去电阻的性质称为超导电性;相应的具有这种性质的物质就称这超导体。

超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。

目前,超导材料已被应用于很多领域,本文拟就超导材料的分类、性质、应用、原理等方面展开论述,以帮助人们更好的认识超导材料。

2、 分类2.1按成分分为:元素超导体、合金和化合物超导体,有机高分子超导体三类。

2.2按Meissner 效应分为:第一类超导体:超导体在磁场中有一同的规律,如图a 所示:当H<H c 时,B=0,H>H c 时,B=μH ,即在超导态内能完全排除外磁场,且只有一个值。

除钒、铌、钌外,元素超导体都是第一类超导体。

第二类超导体:如图b 所示,第二类超导体的特点是:当H<H c1时,B=0,排斥外磁场。

当H c1<H<H c2时,B>0而B< μH ,磁场部分穿透。

当H>H c2时,B= μH ,磁场完全穿透。

也就是在超导态和正常态之间有一种混合态存在,H c 有两个值H c1和H c2 。

钒、铌、钌及大多数合金或化合物超导体都是属于第二类导体。

3、 性质3.1零电阻性超导材料处于超导态时电阻为零,能够无损耗地传输电能。

如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。

这种“持续电流”已多次在实验中观察到。

超导体的零电阻现象与常导体零电阻在实质上截然不同。

常导体的零电阻是指在理想的金属晶体中,由于电子运动畅通无阻,因此没有电阻;而超导体零电或以下时,其电阻突然变为零。

电阻率ρ与温度T 阻是指当温度降至某一数值Tc的关系见右图3.2完全抗磁性1933年迈斯纳和奥尔德首次发现了超导体具有完全抗磁性的特点。

把锡单晶球超导体在磁场(H≦Hc)中冷却,在达到临界温度Tc以下时,超导体内的磁通线一下子被排斥出去;或者先把超导体冷却至Tc以下,再通以磁场,这时磁通线也被排斥出动;如图所示。

即在超导状态下,超导体内磁感应强度B=0.这就是迈斯纳效应。

3.3约瑟夫森效应两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。

当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。

这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。

3.4同位素效应超导体的临界温度Tc与其同位素质量M有关。

M越大,Tc越低,这称为同位素效应。

例如,原子量为199.55的汞同位素,它的Tc是4.18开,而原子量为203.4的汞同位素,Tc为4.146开。

4、基本临界参量4.1临界温度外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。

Tc值因材料不同而异。

已测得超导材料的最低Tc是钨,为0.012K。

到1987年,临界温度最高值已提高到100K左右。

4.2临界磁场使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。

Hc 与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。

4.3临界电流和临界电流密度通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。

Ic一般随温度和外磁场的增加而减少。

单位截面积所承载的Ic称为临界电流密度,以Jc表示。

超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。

以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc 才达到23.2K(Nb3Ge,1973)。

1986年瑞士物理学家K.A.米勒和联邦德国物理学家J.G.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。

之后仅一年时间,新材料的Tc已提高到100K左右。

这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。

5、超导机理当前在阐明超导机理的几种理论中,二流体模型是较有说服力的,较为流行的一种。

二流体模型认为:超导体处于超导态时,传导电子分为两部分,一部分叫常导电子,另一部分叫超流电子,两种电子占据同一体积,彼此独立运动,在空间上互相渗透;常导电子的导电规律与常规导体一样,受晶格振动而散射,因而产生电阻,对热力学熵有贡献;超流电子处于某种凝聚状态,不受晶格振动而散射,对熵无贡献,其电阻为零,它在晶格中无阻地流动。

这两种电子的相对数目与温度有关,T>Tc 时,没有凝聚;T=Tc时,开始凝聚;T=0时,超流电子成分占100%。

这就是二流体模型的理论观点。

它很好的解释了超导体在超导状态时零电阻现象。

6、超导材料的应用6.1低温超导材料的应用低温超导材料的应用分为:强电应用,主要包括超导在强磁场中的应用和大电流输送;弱电应用,主要包括超导电性在微电子学和精密测量等方面的应用。

6.2高温超导体材料的应用与进展目前高温超导材料大量应用在磁体、电子器件、电力等方面。

但仍有许多材料和技术方面的问题需要解决。

在材料方面,主要是要求超导体应有较高的临界温度和临界电流7、结论超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。

但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。

自1911年荷兰科学家卡末林、昂尼斯发现“超导”现象至今,世界各国的科学家从未间断过对“超导”的研究,特别是进入20世纪80年代以来,随着1987年中国、日本和美国科学家采用金属氧化物,将超导临界温度提高,使超导体前进了一大步,从而引起了一场前所未有的“超导大战”。

近年来,世界各国纷纷投入巨资加紧研究与开发,不断推动超导技术产生新的飞跃。

当日本宣布获得了175K的超导材料后不久,美、中、俄、联邦德国、丹麦等国也都相继有了突破性的研究报告,有的甚至已看到了308K的超导迹象,即已达到常温的转变温度。

这表明,超导技术广泛应用的时代即将来临。

8、展望未来十年是高温超导市场发展和材料产业化的十年。

据预测,2010年和2020年,世界超导市场将分别达到300亿美元/年和2440亿美元/年。

在不久的将来,我国的能源、医疗卫生、电子技术和科学仪器等方面将会迫切需要超导技术。

超导体的应用将导致一场新技术革命。

二、TiO2光催化反应机理光催化反应基本途径当能量大于TiO2禁带宽度的光照射半导体时,光激发电子跃迁到导带,形成导带电子(矿),同时在价带留下空穴(矿)。

由于半导体能带的不连续性,电子和空穴的寿命较长,它们能够在电场作用下或通过扩散的方式运动,与吸附在半导体催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。

空穴和电子在催化剂粒子内部或表面也可能直接复合。

空穴能够同吸附在催化剂粒子表面的OH或H2O发生作用生成HO·。

HO·是一种活性很高的粒子,能够无选择地氧化多种有机物并使之矿化,通常认为是光催化反应体系中主要的氧化剂。

光生电子也能够与O2发生作用生成HO2·和O2-·等活性氧类,这些活性氧自由基也能参与氧化还原反应。

该过程如图1(a)所示,可用如下反应式表示:HO·能与电子给体作用,将之氧化,矿能够与电子受体作用将之还原,同时h+也能够直接与有机物作用将之氧化:光催化反应的量子效率低(理论上不会超过20%)是其难以实用化的最为关键因素之一。

光催化反应的量子效率取决于载流子的复合几率,载流子复合过程则主要取决于两个因素:载流子在催化剂表面的俘获过程和表面电荷迁移过程。

增加载流子的俘获或提高表面电荷迁移速率能够抑制电荷载流子复合,增加光催化反应的量子效率。

电子和空穴复合的速率很快,在TiO2表面其速率在10-9s 以内,而载流子被俘获的速率相对较慢,通常在10-7~10-8s(Hoffmann,1995)。

所以为了有效俘获电子或空穴,俘获剂在催化剂表面的预吸附是十分重要的。

催化剂的表面形态、晶粒大小、晶相结构及表面晶格缺陷均会影响载流子复合及电荷迁移过程。

如果反应液中存在一些电子受体能够及时与电子作用,通常能够抑制电子空穴的复合,如Elmorsi(2000)发现溶液中含10-3M的Ag+时,其光催化效率提高,原因在于Ag+作为电子受体与电子反应生成金属银,从而减少了空穴.电子对复合的几率。

尽管通常认为电子被俘获的过程相对于载流子复合过程要慢得多,但Joseph(1998)等人发现当光强很弱时,在ns时间范围内电子吸收谱主要取决于电子在催化剂表面的俘获,而fs至ps范围以及ms以上时电子吸收谱则取决于载流子的复合,即在ns时间尺度电子被俘获的过程相对于电子.空穴复合的过程更具有优势,如果没有空穴俘获剂的存在,数ms后仍能测到电子的存在。

光催化氧化反应体系的主要氧化剂究竟是HO·还是空穴,一直存在争论,许多学者认为HO·起主要作用(Turchi,1990;Sun,1996;Schwarz,1997)。

ESR研究结果证实了光催化反应中HO·及一些活性氧自由基的存在(Noda,1993),Mao(1991)等则证实了氯乙烷的降解速率限制步骤是HO·对C-H键的攻击过程。

但空穴对有机物的直接氧化作用在适当的情形下也非常重要,特别是一些气相反应,空穴的直接氧化可能是其反应的主要途径。

不同的情形下空穴与羟基自由基能够同时作用,有时溶液的pH值也决定了羟基自由基还是空穴起主要作用(Sun,1995)。

Assabane(2000)等研究1,2,4三羧基安息香酸光催化降解时则认为羟基自由基与空穴的作用是一个互相竞争的过程。

但是也有许多学者认为空穴的作用更为重要(Carrway,1994)。

如Ishibashi和Fujishima(2000)等通过测定反应过程中HO·和空穴的量子产率来推测它们在反应中所起的作用,结果发现HO·的产率为7×10-5,空穴的产率为5.7×10-2,由此认为空穴是光催化反应的主要物质。

对光催化反应发生的位置是在催化剂表面还是溶液中也存在争论。

从许多光催化反应动力学符合Langmuir-Hinshelwood模式,以及反应物在催化剂表面的吸附符合Langmuir等温式来看,更有理由认为反应发生在催化剂的表面位置(Elmorsi,2000)。

相关文档
最新文档