浙教版数学八下《二次根式》单元测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版数学八下《二次根式》单元测试题
考试时间:120分钟满分:120分
一、选择题(本大题有10小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的.
1.下列计算正确的是()
A. B.
C. D.
2.下列各实数中最大的一个是()
A. 5×
B.
C.
D. +
3.已知x为实数,化简的结果为()
A. B. C. D.
4.函数的自变量x的取值范围是( )
A. x≥1
B. x≥1且x≠3
C. x≠3
D. 1≤x≤3
5.已知是正整数,则实数n的最大值为()
A. 12
B. 11
C. 8
D. 3
6.对于任意的正数m、n定义运算※为:m※n=,计算(3※2)×(8※12)的结
果为()
A. 2﹣4
B. 2
C. 2
D. 20
7.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()
A. ﹣5
B. 5
C. ﹣9
D. 9
8.已知a是1997的算术平方根的整数部分,b是1991的算术平方根的小数部分,则化简
的结果为()
A. B. C. D.
9.若,则的值为( )
A. 2
B. -2
C.
D. 2
10.已知:m, n是两个连续自然数(m A. 总是奇数 B. 总是偶数 C. 有时奇数,有时偶数 D. 有时有理数,有时无理数 二、填空题(本大题有6小题,每小题4分,共24分) 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.化简二次根式的结果是________. 12.已知x1= + ,x2= ﹣,则x12+x22=________. 13.观察下列各式:┉┉请你将猜想到的规律用含自然数n(n≥1)的代数式表示出来是________. 14.若实数x,y,m满足等式,则m+4的算术平方根为________. 15.已知为有理数,分别表示的整数部分和小数部分,且,则 ________. 16.如果(x﹣)(y﹣)=2008,求3x2﹣2y2+3x﹣3y﹣2007=________. 三、解答题(本大题有7小题,共66分) 解答应写出文字说明,证明过程或推演步骤. 17.(6分)已知,求的值. 18.(8分)解答下列问题: (1)试比较与的大小; (2)你能比较与的大小吗?其中k为正整数. 19.(10分)已知x= ( +),y= ( -),求下列各式的值: (1)x2-xy+y2;(2)+. 20.(10分)阅读下列材料,然后回答问题. 在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简: (一)(二) (三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简: (四) (1)请用不同的方法化简 参照(三)式得=________;参照(四)式得=________. (2)化简:. 21.(10分)观察下列各式及其验算过程: =2 ,验证: = = =2 ; =3 ,验证: = = =3 (1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证. 22.(10分)观察下列各式: =1+﹣=1 =1+﹣=1 =1+﹣=1 请你根据上面三个等式提供的信息,猜想: (1)=________ (2)请你按照上面每个等式反映的规律,写出用n(n为正整数)表示的等式:________ (3)利用上述规律计算:(仿照上式写出过程) 23.(12分)在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式. 比如:.善于动脑的小明继续探究: 当为正整数时,若,则有,所以,. 请模仿小明的方法探索并解决下列问题: (1)当为正整数时,若,请用含有的式子分别表示,得:________,________; (2) (3)若,且为正整数,求的值。 浙教版数学八下《二次根式》单元测试题答案部分 一、单选题 1.【答案】D 【考点】二次根式的混合运算 【解析】【解答】选项D符合平方差公式,计算也是正确的,故选D. 【分析】能够根据题意判断计算二次根式的正确性是深刻理解二次根式加减法法则的重要体现.2.【答案】C 【考点】二次根式的应用 【解析】【解答】解:A中5×= = <1; B中∵π=3.14159>3.141, ∴<1; C中= = = (-1)>1; D中∵<=0.25, ∴2 <0.5, ∴0.3+2 +0.2<1,即(+ )2<1, ∴+ <1. 故答案为:C 【分析】先利用将根号外因式移到根号内、分母有理化、放缩法、平方法对各选项进行判断,据此即可答案。 3.【答案】C 【考点】二次根式的加减法 【解析】【解答】由原式成立,所以x<0,所以原式=+=,故选C. 【分析】根据二次根式成立的条件,正确判断字母的正负性,从而判断每一项的正负性,最后进行二次根式的加减法计算. 4.【答案】B 【考点】分式有意义的条件,二次根式有意义的条件 【解析】【解答】解:根据被开方数为非负数以及分母不为零,可得知, x-1≥0且x-3≠0,解得x≥1,x≠3. 故答案为:B. 【分析】根据被开方数的非负性以及分母有意义的条件,可得出x的取值范围。