专题七:结合数轴化简绝对值

合集下载

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

部编数学七年级上册专题绝对值压轴题(最值与化简)专项讲练重难题型技巧提升专项精练(人教版)含答案

专题03 绝对值压轴题(最值与化简)专项讲练专题1. 最值问题最值问题一直都是初中数学中的最难点,但也是高分的必须突破点,需要牢记绝对值中的最值情况规律,解题时能达到事半功倍的效果。

题型1. 两个绝对值的和的最值【解题技巧】b x a x -+-目的是在数轴上找一点x ,使x 到a 和b 的距离和的最小值:分类情况(x 的取值范围)图示b x a x -+-取值情况当a x <时无法确定当b x a ≤≤时b x a x -+-的值为定值,即为b a -当b x >无法确定结论:式子b x a x -+-在b x a ≤≤时,取得最小值为b a -。

例1.(2021·珠海市初三二模)阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示实数,这样就建立起了“数”与“形”之间的联系.在数轴上,若点A ,B 分别表示数a ,b ,则A ,B 两点之间的距离为AB a b =-.反之,可以理解式子3x -的几何意义是数轴上表示实数x 与实数3两点之间的距离.则当25x x ++-有最小值时,x 的取值范围是()A .2x <-或5x >B .2x -≤或5x ≥C .25x -<<D .25x -≤≤【答案】D【分析】根据题意将25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,分三种情况分别化简,根据解答即可得到答案.【解析】方法一:代数法(借助零点分类讨论)当x<-2时,25x x ++-=(-2-x )+(5-x )=3-2x ;当25x -≤≤时,25x x ++-=(x+2)+(5-x )=7;当x>5时,25x x ++-=(x+2)+(x-5)=2x-3;∴25x x ++-有最小值,最小值为7,此时25x -≤≤,故选:D.方法二:几何法(根据绝对值的几何意义)25x x ++-可以理解为数轴上表示实数x 与实数-2的距离,实数x 与实数5的距离,两者的和,通过数轴分析反现当25x -≤≤时,25x x ++-有最小值,最小值为7。

初一绝对值化简,数轴动点问的题目

初一绝对值化简,数轴动点问的题目

知识要点1、a 的几何意义是:在数轴上,表示这个数的点离原点的距离;b -a 的几何意义是:在数轴上,表示数b a ,对应数轴上两点间的距离。

2、去绝对值符号的法则:一、根据题设条件化简:例1、设化简例2、三个有理数c b a ,,,其积不为零,求c c b b a a ++的值二、借助数轴化简 例3、有理数c b a ,,在数轴上对应的点(如下图),图中O 为原点,化简a cb b a b a --+++-。

例4、c b a ,,的大小如下图所示,求ac ab ac ab a c a c c b c b b a b a --+--+-----的值a c x0 b ab 0 x1 c ()()()⎪⎩⎪⎨⎧<-=>=时当时当时当0000a a a a a a三、采用零点分段讨论法化简例5、化简|x+2|+|x-3|例6、若245134x x x +-+-+的值恒为常数,求x 该满足的条件及此常数的值。

例题精讲1、当52<<-x 时,化简5772----+x x2、如果32≤≤-x ,求322-+-+x x x 的最大值.3、化简3223++-x x4、已知0≠abc ,求abcabc bc bc ac ac ab ab c c b b a a ++++++的值5、当x 的取值范围为多少时,式子4311047+---+-x x x 的值恒为一个常数,试求出这个值及x 的取值范围.6、若21<<x ,求代数式x x x x x x +-----1122的值7、若0<x ,求x x x x ---32及32x x -的值8、已知有理数c b a ,,在数轴上的对应点的位置如图所示:那么求a c c b b a -+---的值9、化简200774+-+-x xa c x0 b数轴上的线段与动点问题1.已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。

化简绝对值的方法和技巧

化简绝对值的方法和技巧

绝对值是一种数学概念,表示一个数在数轴上的距离。

在化简绝对值时,我们需要考虑如何去掉绝对值符号,同时保留数的大小。

下面是一些化简绝对值的方法和技巧:
绝对值的定义:绝对值是一个数到原点的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

利用数轴:在数轴上,一个数的绝对值对应的是从原点到该数的距离。

因此,可以通过在数轴上标记一个数的点来找到它的绝对值。

去掉绝对值符号:要化简一个绝对值表达式,可以通过判断里面的数是正数还是负数,从而去掉绝对值符号。

如果里面的数是正数,直接把绝对值符号去掉;如果里面的数是负数,需要把符号反一下(变成正号)。

利用绝对值的性质:绝对值有一些重要的性质,如|a|≥0,|a|=-|a|,||a|-|b||≤|a+b|≤|a|+|b|等。

这些性质可以帮助我们在化简绝对值时进行推导和计算。

分情况讨论:对于一些复杂的绝对值表达式,需要分情况讨论里面的数是否为0,或者是否为某个特殊值等情况,从而得到化简后的结果。

利用运算律:在化简绝对值时,可以运用运算律(如交换律、结合律、分配律等)来简化计算过程。

总之,化简绝对值需要灵活运用绝对值的定义、性质和相关的运算律。

通过不断地练习和总结经验,可以逐步提高化简绝对值的技巧和能力。

利用数轴化简绝对值

利用数轴化简绝对值

利用数轴化简绝对值
通过实数在数轴上的位置,判断数的大小,去绝对值符号
例题、1. 如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值. b -1 c 0 a 1
2.数a b ,在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--
b
0a
3.实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-
0c
b a
课堂检测:
1.实数a 、b 、c 在数轴上的位置如图所示,则代数式 的值等于( ).
(A ) (B ) (C ) (D )
2.已知有理数c b a ,,在数轴上的对应点的位置如图所示:那么求a c c b b a -+---的值
a c x
0 b
3.有理数c b a ,,在数轴上对应的点(如下图),图中O 为原点,化简a c b b a b a --+++-。

4.a 、b 、c 的大小关系如图所示,求a b b c c a ab ac a b b c c a ab ac
-----++----的值. c 10b a
5.若用A 、B 、C 、D 分别表示有理数a 、b 、c ,0为原点。

如图所示,已知a<c<0,b>0。

化简下列各式:
(1)||||||a c b a c a -+---;
(2)||||||a b c b a c -+---+-+;
(3)2||||||c a b c b c a +++---
a c x
0 b。

初一数学绝对值的化简

初一数学绝对值的化简

绝对值的化简一、同步知识梳理1、绝对值的意义(1)几何意义:一个数的绝对值就是数轴上表示这个数的点到原点的距离。

(2)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数:零的绝对值是零。

即a(a > 0)|n| = < 0(。

= 0)-a(a < 0)注:任何一个有理数都是由两部分组成:符号和它的绝对值,如:-5的符号是负号,绝对值是5。

2、绝对值的性质(1)绝对值具有非负性,取绝对值的结果总是正数或0。

绝对值非负性的运用:如果若干个非负数的和为0,那么这若干个非负数都必为0。

如:若同+问+同=0,则a=0, b = 0, c=0o(2)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数。

即闷2a,且同2-a(3)若同=|臼,JillJ a=b a= -(4)积的绝对值等于绝对值的积:卜而尸同小商的绝对值等于绝对值的商:(=工(b^0)6(5)某数的绝对值的平方等于这个数的平方的绝对值等于这个数的平方:\a^=\a2\=a2o3、绝对值几何意义的补充同的几何意义:在数轴上,表示数a的点与原点间的距离。

,一〃|的几何意义:在数轴上,表示数a、b对应数轴上两点间的距离。

一、专题精讲(1)题型一、根据题设条件化简若题目已经给出未知数的取值或取值范围,则可据此条件并结合绝对值的代数意义,进行绝对值的化简。

如:已知x>2,化简|2x—3|-12一X,解:Vx>2, A2x-3>0, 2—xVO, ・“2L3|=, |2~x|=原式=变式训练1、已知 xV - L (1)化简 2一|A 一2| : (2)化简 2—2—一2||2、已知-2WxV3,化简 |x —3|—g 第+1题型二、利用数形结合的方法化简绝对值根据数轴,我们可以确定未知数的取值范围和大小关系,进而可以判断相关代数式的正负性,从而根据绝对值 的意义去掉绝对值的符号。

例题:(1)已知:实数a, b 在数轴上的位置如图所示,化简:-,-4-- ---- ^1 4 ---- i ---- fc —L -1 a 0 b 1(2)已知有理数a 、b 在数轴上的位置如图所示,化简:时+卜4+//+。

绝对值的性质绝对值的化简方法口诀绝对值符号的去掉法则

绝对值的性质绝对值的化简方法口诀绝对值符号的去掉法则

绝对值化简步骤:(1)先根据数轴“从左到右数增大”的原则比较绝对值里面字母的大小关系;(2)再根据绝对值里面字母的大小关系计算“和”或“差”为正还是为负;(3)然后根据“一个整数的绝对值等于它本身”把绝对值里面的代数式直接去掉绝对值符号移出来,根据“一个负数的绝对值等于它的相反数”把绝对值里面的代数式去掉绝对值符号再变成它的相反数移出来;(4)最后,绝对值符号全都去掉了之后,再进行加减运算(有的可能需要先去括号再运算),得到最简结果。

绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;②绝对值等于0的数只有一个,就是0;③绝对值等于同一个正数的数有两个,这两个数互为相反数;④互为相反数的两个数的绝对值相等。

绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。

①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。

绝对值定义:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值。

绝对值用“||”来表示。

在数轴上,表示一个数a的点到数b的点之间的距离的值,叫做ab 的绝对值,记作|ab|。

◎绝对值的知识扩展1、定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

2、绝对值的代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

3、绝对值的有关性质:(1)任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;(2)绝对值等于0的数只有一个,就是0;(3)绝对值等于同一个正数的数有两个,这两个数互为相反数;(4)互为相反数的两个数的绝对值相等。

绝对值的化简方法口诀绝对值化简步骤

绝对值的化简方法口诀绝对值化简步骤

绝对值的化简方法口诀绝对值化简步骤
绝对值的化简方法口诀:同号得正,异号得负。

绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a(a为正值即a〉=0时);│a│=-a(a为负值即a 《=0时)。

绝对值的化简方法口诀
1、绝对值的化简方法口诀:同号得正,异号得负。

2、绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a(a为正值即a〉=0时);│a│=-a(a为负值即a《=0时)
绝对值化简步骤
(1)先根据数轴“从左到右数增大”的原则比较绝对值里面字母的大小关系;
(2)再根据绝对值里面字母的大小关系计算“和”或“差”为正还是为负;
(3)然后根据“一个整数的绝对值等于它本身”把绝对值里面的代数式直接去掉绝对值符号移出来,根据“一个负数的绝对值等于它的相反数”把绝对值里面的代数式去掉绝对值符号再变成它的相反数移出来;
(4)最后,绝对值符号全都去掉了之后,再进行加减运算(有的可能需要先去括号再运算),得到最简结果。

【常考压轴题】2023学年七年级数学上册(人教版) 绝对值的三种化简方法(原卷版)

【常考压轴题】2023学年七年级数学上册(人教版) 绝对值的三种化简方法(原卷版)

绝对值的三种化简方法绝对值版块的内容在我们这学期比重较大,尤其是绝对值的化简。

并且,在压轴题中,常见的题型是利用数轴化简绝对值和利用其几何意义化简绝对值,本专题就这两块难点详细做出分析。

【知识点梳理】 1.绝对值的定义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a | 2.绝对值的意义①代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0; ②几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小。

3.绝对值的化简:类型一、利用数轴化简绝对值例1.有理数a 、b 、c 在数轴上位置如图,则a c a b b c --++-的值为( ).A .2aB .222a b c +-C .0D .2c -例2.有理数a ,b 在数轴上对应的位置如图所示,那么代数式11a b a b ab a b-++--+的值是( )A .-1B .1C .3D .-3【变式训练1】已知,数a 、b 、c 的大小关系如图所示:化简||||2||3||a c b a a c b c +----+-=____.【变式训练2】有理数a 、b 、c 在数轴上的位置如图.(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,a c -+ 0. (2)化简:||||c|b c a b a -+++-+∣【变式训练3】有理数a ,b 在数轴上的对应点如图所示:(1)填空:b a -______0;1b -______0;1a +______0;(填“<”、“>”或“=”) (2)化简:11b a b a ---++【变式训练4】有理数a 、b 、c 在数轴上的位置如图:(1)用“>”或“<”填空a _____0,b _____0,c ﹣b ______0,ab_____0. (2)化简:|a |+|b +c |﹣|c ﹣a |.类型二、利用几何意义化简绝对值例1.同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索 (1)求|5-(-2)|=________;(2)同样道理|x +1008|=|x -1005|表示数轴上有理数x 所对点到-1008和1005所对的两点距离相等,则x =________;(3)类似的|x +5|+|x -2|表示数轴上有理数x 所对点到-5和2所对的两点距离之和,请你找出所有符合条件的整数x ,使得|x +5|+|x -2|=7,这样的整数是__________.(4)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有,写出最小值;如果没有,说明理由.【变式训练1】阅读下面的材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,∣AB ∣=∣OB ∣=∣b ∣=∣a -b ∣;当A 、B 两点都不在原点时:①如图2,点A 、B 都在原点的右边: ∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b -a =∣a -b ∣; ②如图3,点A 、B 都在原点的左边: ∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=-b -(-a )=∣a -b ∣; ③如图4,点A 、B 在原点的两边:∣AB ∣=∣OA ∣+∣OB ∣=∣a ∣+∣b ∣=a +(-b )=∣a -b ∣, 综上,数轴上A 、B 两点之间的距离∣AB ∣=∣a -b ∣. 回答下列问题:(1)数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;(2)数轴上表示x 和-1的两点A 和B 之间的距离是________,如果∣AB ∣=2, 那么x 为__________.(3)当代数式∣x +1∣+∣x -2∣取最小值时,相应的x 的取值范围是__________.【变式训练2】结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;数轴上表示﹣3和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离可以表示为|m ﹣n |.那么,数轴上表示数x 与5两点之间的距离可以表示为 ,表示数y 与﹣1两点之间的距离可以表示为 .(2)如果表示数a 和﹣2的两点之间的距离是3,那么a = ;若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a = 时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是 . 【变式训练3】(问题提出)1232021a a a a -+-+-+⋅⋅⋅+-的最小值是多少?(阅读理解)为了解决这个问题,我们先从最简单的情况入手.a 的几何意义是a 这个数在数轴上对应的点到原点的距离,那么1a -可以看作a 这个数在数轴上对应的点到1的距离;12-+-a a 就可以看作a 这个数在数轴上对应的点到1和2两个点的距离之和.下面我们结合数轴研究12-+-a a 的最小值.我们先看a 表示的点可能的3种情况,如图所示:(1)如图①,a 在1的左边,从图中很明显可以看出a 到1和2的距离之和大于1. (2)如图②,a 在1,2之间(包括在1,2上),看出a 到1和2的距离之和等于1. (3)如图③,a 在2的右边,从图中很明显可以看出a 到1和2的距离之和大于1.因此,我们可以得出结论:当a 在1,2之间(包括在1,2上)时,12-+-a a 有最小值1. (问题解决)(1)47a a -+-的几何意义是 ,请你结合数轴探究:47a a -+-的最小值是 .(2)请你结合图④探究123a a a -+-+-的最小值是 ,由此可以得出a 为 .(3)12345a a a a a -+-+-+-+-的最小值为 . (4)1232021a a a a -+-+-+⋅⋅⋅+-的最小值为 .(拓展应用)如图,已知a 使到-1,2的距离之和小于4,请直接写出a 的取值范围是 .类型三、分类讨论法化简绝对值 例1.化简:214x x x --++-.【变式训练1】若0,0a b c abc ++<>,则23a ab abc a ab abc++的值为_________.【变式训练2】(1)数学小组遇到这样一个问题:若a ,b 均不为零,求a bx a b=+的值. 请补充以下解答过程(直接填空)①当两个字母a ,b 中有2个正,0个负时,x= ;②当两个字母a ,b 中有1个正,1个负时,x= ;③当两个字母a ,b 中有0个正,2个负时,x= ;综上,当a ,b 均不为零,求x 的值为 . (2)请仿照解答过程完成下列问题: ①若a ,b ,c 均不为零,求a b cx a b c=+-的值. ②若a ,b ,c 均不为零,且a+b+c=0,直接写出代数式b c a c a ba b c+++++的值.。

(完整版)利用数轴化简绝对值

(完整版)利用数轴化简绝对值

利用数轴化简绝对值 1. 如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值. b -1 c 0 a 12.数a b ,在数轴上对应的点如右图所示,试化简a b b a b a a ++-+--b0a3.实数a b c ,,在数轴上的对应点如图,化简a c b a b a c +--++-0cb a课堂检测:1.实数a 、b 、c 在数轴上的位置如图所示,则代数式 的值等于( ).(A ) (B ) (C ) (D )2.已知有理数c b a ,,在数轴上的对应点的位置如图所示:那么求a c c b b a -+---的值a c x0 b3.有理数c b a ,,在数轴上对应的点(如下图),图中O 为原点,化简a c b b a b a --+++-。

4.a 、b 、c 的大小关系如图所示,求a b b c c a ab ac a b b c c a ab ac-----++----的值. c 10b a5.若用A 、B 、C 、D 分别表示有理数a 、b 、c ,0为原点。

如图所示,已知a<c<0,b>0。

化简下列各式:(1)||||||a c b a c a -+---;(2)||||||a b c b a c -+---+-+;(3)2||||||c a b c b c a +++---a c x0 b已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。

若不存在,请说明理由?(3)当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B一每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?如图,已知A、B分别为数轴上两点,A点对应的数为—20,B点对应的数为100。

利用数轴化简绝对值答案

利用数轴化简绝对值答案

知识点整合绝对值的几何意义:一个数 a 的绝对值就是数轴上表示数 a 的点与原点的距离.数a 的绝对值记作 a .绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0 .③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如: 5 符号是负号,绝对值是 5 .求字母 a 的绝对值:a(a 0) ① a 0( a 0)a(a 0)a( a 0)② aa(a 0)a( a 0)③aa(a 0)利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值的其它重要性质:(1 )任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即 a a ,且 a a ;(2 )若 a b ,则a b 或a b ;(两个数的绝对值相等,那么这两个数相等或者互为相反数)(3)ab a b ;(两个数的乘积的绝对值等于这两个数的绝对值的乘积)(4)a a(b 0) ;b b(两个数相除的绝对值等于这两个数的绝对值再相除)(5)| a |2| a2 | a 2 ;(一个数的平方等于这个数的平方的绝对值,也等于这个数的绝对值的平方)绝对值非负性:如果若干个非负数的和为0 ,那么这若干个非负数都必为0.例如:若 a b c 0 ,则a0 ,b 0 ,c 0利用数轴化简绝对值通过实数在数轴上的位置,判断数的大小,去绝对值符号例题 1 有理数a,b,c 在数轴上的对应位置如图,化简:|a ﹣b|+|b ﹣c|+|a ﹣c|原式=|a-b|-(b-c)-(a-c)=a-b-b+c-a+c=-2b+2c例题 2 如果有理数 a 、b 、c 在数轴上的位置如图所示,求 a b a c b c 的值.b -1c 0 a 1原式=|a-(-b)|+(a-c)-|b-(-c)|=-[a-(-b)]+a-c+[b-(-c)]=-a-b+a-c+b+c=0第一步标位第二步改写成相减的形式第三步利用数轴判断是大减小还是小减大从而去掉绝对值,但是要记得带上括号第四步去括号( 根据去括号的法则)第五步合并同类项从而化简求值特别注意绝对值前面是减号的例题 3 若用A、B、C、D 分别表示有理数a、b、c,0 为原点。

七年级上册数学绝对值的化简微课课件

七年级上册数学绝对值的化简微课课件
∴原式= -a-[-(a+b)]+c-a =-a+a+b+c-a =b+c-a
审题,列出abc值的大小关系
根据abc绝对值大小去判断题 目中含绝对值式子中符号
根据绝对值的代数意义,去绝 对值符号,并用括号括起来 去括号、合并同类项,计算最终结果
解题策略点:
根据abc绝对值
大小去判断题目
第 二
中含绝对值式子
感谢您的耐心倾听
步 中符号大小
审题,列出abc值 的大小关系
第一步
第三步
第 四 步
去括号、合并同类 项,计算最终结果
根据绝对值的代 数意义,去掉绝 对值符号,并全 部用括号括起来
练习: 有理数a、b、c在数轴上的位置如图,试化简:
|a-b|+|b-c|-|源自-a|.解:原式=-(a-b)+(b-c)-[-(c-a)] =-a+b+育b-老师c+c-a =-2a+2b
初中数学课件 之
绝对值化简技巧专题
实数a,b,c在数轴上的位置如图所示,则代数式 |a|-|a+b|+|c-a|的值等于( ),
绝对值的代数意义:
实数a,b,c在数轴上的位置如图所示,则代数式 |a|-|a+b|+|c-a|的值等于( ),
∵由数轴上a,b,c位置可知 b<a<0<c
∵a+b<0,∴|a+b|= -(a+b) ∵|c|>|a|,∴c-a>0,∴|c-a|=c-a

利用数轴化简绝对值答案

利用数轴化简绝对值答案

a ab b=(0)b ≠知识点整合绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作a . 绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.注意:①取绝对值也是一种运算,运算符号是“”,求一个数的绝对值,就是根据性质去掉绝对值符号.②绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.③绝对值具有非负性,取绝对值的结果总是正数或0.④任何一个有理数都是由两部分组成:符号和它的绝对值,如:5-符号是负号,绝对值是5.求字母a 的绝对值:①(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ②(0)(0)a a a a a ≥⎧=⎨-<⎩ ③(0)(0)a a a a a >⎧=⎨-≤⎩ 利用绝对值比较两个负有理数的大小:两个负数,绝对值大的反而小.绝对值的其它重要性质:(1)任何一个数的绝对值都不小于这个数,也不小于这个数的相反数,即a a ≥,且a a ≥-;(2)若a b =,则a b =或a b =-; (两个数的绝对值相等,那么这两个数相等或者互为相反数) (3)ab a b =⋅;(两个数的乘积的绝对值等于这两个数的绝对值的乘积)(4) ;(两个数相除的绝对值等于这两个数的绝对值再相除) (5)222||||a a a ==;(一个数的平方等于这个数的平方的绝对值,也等于这个数的绝对值的平方)绝对值非负性:如果若干个非负数的和为0,那么这若干个非负数都必为0.例如:若0a b c ++=,则0a =,0b =,0c =利用数轴化简绝对值通过实数在数轴上的位置,判断数的大小,去绝对值符号例题1 有理数a ,b ,c 在数轴上的对应位置如图,化简:|a ﹣b|+|b ﹣c|+|a ﹣c|原式=|a-b|-(b-c)-(a-c)=a-b-b+c-a+c=-2b+2c例题2 如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值.原式=|a-(-b)|+(a-c)-|b-(-c)|=-[a-(-b)]+a-c+[b-(-c)]=-a-b+a-c+b+c=0第一步 标位第二步 改写成相减的形式b -1c 0 a 1第三步 利用数轴判断是大减小还是小减大从而去掉绝对值,但是要记得带上括号第四步 去括号(根据去括号的法则)第五步 合并同类项 从而化简求值特别注意绝对值前面是减号的例题3 若用A 、B 、C 、D 分别表示有理数a 、b 、c ,0为原点。

数轴与绝对值结合的化简题易错点分析

数轴与绝对值结合的化简题易错点分析

数轴与绝对值结合的化简题易错点分析数轴与绝对值结合的化简题是热点考题,考查学生利用数形结合思想去解决关于绝对值化简题的能力,要求学生牢固掌握求某数绝对值和相反数、去括号、合并同类项的法则等知识点,因此,此类题综合性强、难度大,考试时学生丢分严重。

下面以七年级秋期定时作业(二)第二章《有理数》单元检测第18题为例,分析学生解题的错因,寻求解决问题的方法。

一、 例题展示在数轴上表示a 、b 、c 三个数的点的位置如图所示,化简式子:|a-b|+|a-c|-|c-b|二、学生错解(1)原式=a-b+a-c-c-b=2a-2b-2C(2)原式=(b-a )+(c-a )-(c-b )=b-a+c-a-c-b=-2a三、错因剖析1.多数学生是将绝对值符号直接去掉,不管绝对值符号内的代数式的正负性。

主要原因是对绝对值的法则没理解。

即:⎩⎨⎧≤-≥=⎪⎩⎪⎨⎧<-=>=)0()0(0000a a a a a a a a a a a 它本身,所以,因为零的相反数就是时),(当时),(当时),(当2.学生没有结合数轴的“形”去判断a 、b 、c 三点所表示的数的大小关系为a<b<c ,从而无法确定a-b 、a-c 、c-b 的结果是正数还是负数。

3.学生对于形如a-b 或a-c 这样的多项式的相反数怎么表示有困难,主要是对相反数的表示方法未掌握。

4.学生易犯的另一种典型错误是对作为减数的多项式不把它看作一个整体,从而不添加括号。

5.去括号时学生的易错点是括号前为负号,去掉括号后不变号。

四、正确解题原式=(b-a )+(c-a )-(c-b )=b-a+c-a-c+b=2b-2a五、反思及解决策略;针对错因,在今后的复习教学中,教师应注意引导学生突破以下难点。

1.培养学生在会求某数绝对值的基础上,转变到会求含字母的代数式的绝对值,告诉学生在化简时,一定要先确定绝对值符号内的式子表示的是正数还是负数,然后再根据求某数绝对值的法则将绝对值符号去掉。

有理数、数轴动点、绝对值、求值化简问题(解析版)-初中数学

有理数、数轴动点、绝对值、求值化简问题(解析版)-初中数学

有理数、数轴动点、绝对值、求值化简问题【题型归纳】题型一:正数与负数1.(2024七年级上·浙江)小戴同学的微信钱包账单如图所示, 5.20+表示收入5.20元,下列说法正确的是( )A . 1.00-表示收入1.00元B . 1.00-表示支出1.00元C . 1.00-表示支出 1.00-元D .收支总和为6.20元【答案】B 【分析】根据 5.20+表示收入5.20元,可以得出“收入”用正数表示,从而“支出”就用负数表示,得出答案.【详解】解:∵ 5.20+表示收入5.20元,“收入”用正数表示,∴“支出”就用负数表示,∴ 1.00-表示支出1.00元,故选:B .2.(2024七年级上·江苏·专题练习)在下列选项中,具有相反意义的量是( )A .上升了6米和后退了7米B .卖出10斤米和盈利10元C .收入20元与支出30元D .向东行30米和向北行30米【答案】C【分析】本题考查了对正负数概念的理解,关键明确正负数是表示一对意义相反的量.根据相反意义的量的概念,逐项判断分析即可解题.【详解】解:A.不是一对具有相反意义的量,不符合题意;B.不是一对具有相反意义的量,不符合题意;C.是一对具有相反意义的量,符合题意;D.不是一对具有相反意义的量,不符合题意.故本题选:C .3.(2024七年级上·江苏·专题练习)机床厂工人加工一种直径为30mm 的机器零件,要求误差不大于0.05mm ,质检员现抽取10个进行检测(超出部分记为正,不足部分记为负,单位:mm )得到数据如下:0.050.040.020.070.030.040.010.010.030.06+--+-+--+-,,,,,,,,,.其中不合格的零件有( )A .1个B .2个C .3个D .4个【答案】B 【分析】本题主要考查了正负数的实际应用,首先审清题意,明确“正”和“负”所表示的意义,找到数值大于0.05的零件数即可得到答案.【详解】解:∵要求误差不大于0.05mm ,∴只有0.07+和0.06-误差大于0.05,∴不合格的零件有2个,故选:B .题型二:有理数的分类4.(2024七年级上·全国·专题练习)下列说法正确的是( )A .正整数、负整数、正分数和负分数统称为有理数B .整数和分数统称有理数C .正数和负数统称有理数D .正整数和负整数统称整数5.(2024七年级上·江苏·专题练习)关于4-,227,0.41,116-,0,3.14这六个数,下列说法错误的是( )A .4-,0是整数B .227,0.41,0,3.14是正数C .4-,227,0.41,116-,0,3.14是有理数D .4-,116-是负数6.(23-24七年级上·贵州黔东南·阶段练习)对于有理数,有下列说法:(1)正整数和负整数的总和就是整数;(2)分数包括了正分数和负分数和0;(3)有理数是整数和分数的统称;(4)0是整数;(5)分数包含有限小数、循环小数,其中说法全正确的有( )A .(1)(2)(3)B .(2)(3)(4)C .(3)(4)(5)D .(1)(4)(5)题型三:利用数轴比较有理数大小7.(23-24七年级上·河南郑州·期末)已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0a b->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④【答案】C 【分析】本题考查根据点在数轴上的位置比较代数式大小,熟练掌握利用数轴比较数的大小是解决问题的关键.\故①0a b <<正确;a b >,②错误;由8.(23-24七年级上·四川达州·期末)如图,若A 是有理数a 在数轴上对应的点,则关于a ,a -,1的大小关系表示正确的是( )A .1a a <<-B .1a a <-<C .1a a <-<D .1a a -<<9.(2024·广东广州·二模)有理数a ,b 在数轴上的对应点的位置如图所示,把a ,a -,b 按照从小到大的顺序排列,正确的是( )A .a a b<-<B .a b a -<<C .a a b -<<D .b a a<-<【答案】A 【分析】本题考查了数轴与有理数大小的比较,正确理解数轴与有理数大小的比较的方法是解题的关键.在数轴上标出有理数a 的相反数a -所表示的点,再根据“在数轴上表示的两个数,右边的数总比左边的数大”,即可判断答案.【详解】在数轴上标出有理数a 的相反数a -所表示的点,则a ,a -,b 按照从小到大的顺序排列为a a b <-<.故选:A .题型四:数轴的距离问题10.(2024·福建福州·三模)如图是单位长度为1的数轴,点A,B是数轴上的点,若点A表示的数是3-,则点B 表示的数是()A.1-B.0C.1D.2【答案】C【分析】本题考查了数轴,熟练掌握数轴上两点之间的距离公式是解题的关键.根据数轴上两点之间的距离公式计算即可.【详解】解:Q点A表示的数是3-,点B距离点A有4个单位,\点B表示的数是341-+=,故选:C.11.(2024·北京·二模)在数轴上,点A,B在原点O的两侧,分别表示数a,3,将点A向左平移1个单位长度,=,则a的值为()得到点C.若CO BOA.2-B.1-C.1D.212.(23-24七年级上·河南新乡·期末)如图,在数轴上点A在原点右侧,距离原点5个单位长度,表示的数是5,点B距离点A是6个单位长度,则点B表示的数是()A.6B.6或6-C.11或6-D.11或1-【答案】D【分析】本题考查了数轴上两点之间的距离,根据题意可列的式子,进而求解,求解数轴上两点之间的距离是解题的关键.【详解】解:∵点B 距离点A 是6个单位长度,则5611+=,或561-=-,∴点B 表示的数是11或1-,故选:D .题型五:数轴的动点问题13.(23-24九年级下·河北保定·期中)如图,一个点在数轴上从原点开始先向右移动1个单位长度,再向左移动a 个单位长度后,该点所表示的数为3-,则a 的值是( )A .4-B .4C .3-D .3【答案】B【分析】本题以数轴为背景考查了两点之间距离公式、解一元一次方程等知识,根据题意,数形结合,由数轴上两点之间距离的表示方法列式求解即可得到答案,熟记数轴上两点之间距离的表示方法是解决问题的关键.【详解】解:根据题意可知,13a -=-,∴4a =,故选:B .14.(23-24七年级上·湖南衡阳·期末)一个动点P 从数轴上的原点出发,沿数轴的正方向以前进4个单位,后退2个单位的程序运动,已知点P 每秒前进或后退1个单位.设n x 表示第n 秒点P 在数轴上的位置所对应的数,如22x =,44x =,53x =,则2023x 为( )A .673B .674C .675D .676【答案】C 【分析】本题主要考查了数轴上的动点问题,数字类的规律探索,根据题意可知每6秒点P 完成一次前进和一次后退运动,且每6秒内点P 向数轴正方形运动2个单位,再由202363371¸=K 即可得到答案.【详解】解:∵动点P 从数轴上的原点出发,沿数轴的正方向以前进4个单位,后退2个单位的程序运动,∴每6秒点P 完成一次前进和一次后退运动,且每6秒内点P 向数轴正方形运动2个单位,∵202363371¸=K ,∴2023x 为33721675´+=,故选:C .15.(23-24七年级上·江苏苏州·阶段练习)如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数1-的点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示数2124-的点与圆周上表示数字( )的点重合.A .0B .1C .2D .3【答案】B 【分析】本题主要考查数轴,熟练掌握数轴的特点和围绕圆周对应的数之间的关系的相互关系是解题的关键.根据题意发现规律,即可解得答案.【详解】解:依题意,4次为一个周期,依次为0,3,2,1,21244531¸=,故数轴上表示数2124-的点与圆周上表示数字1的点重合.故选B .题型六:绝对值非负数的应用16.(23-24七年级下·山东潍坊·阶段练习)若5x -与7y +互为相反数,则3x y -的值是( )A .22B .8C .8-D .22-17.(23-24七年级上·河南新乡·阶段练习)若230a b -++=,则a b +的值是( )A .0B .1C .1-D .202118.(23-24七年级上·广东韶关·期末)若320x y -++=,则x y +的值是( ).A .5B .1C .2D .0题型七:化简绝对值问题19.(2024七年级上·全国·专题练习)若0ab ¹,那么a ab b +的取值不可能是( )A .2-B .0C .1D .220.(23-24七年级下·海南省直辖县级单位·期末)实数m 、n 在数轴上的位置如图所示,化简||n m n -+的结果为( )A .mB .m -C .2m n -D .2n m-21.(2024七年级上·江苏·专题练习)若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为( )A .1B .2C .3D .4题型八:有理数的综合问题22.(2024七年级上·浙江·专题练习)把下列各数分别填在表示它所属的横线上:① 3.14-;②(9)++;③425-;④0;⑤(7)+-;⑥13.14;⑦2000;⑧80%-.(填写序号)(1)正数:___________;(2)负数:___________;(3)整数:___________;(4)分数___________.【答案】(1)②⑥⑦(2)①③⑤⑧(3)②④⑤⑦(4)①③⑥⑧【分析】本题考查有理数的分类及定义,掌握有理数的分类及相关定义是解题的关键;(1)根据正数定义进行分类即可;(2)根据负数定义进行分类即可;(3)根据整数定义进行分类即可(4)根据分数定义进行分类即可.【详解】(1)正数:②⑥⑦;故答案为:②⑥⑦;(2)负数:①③⑤⑧;故答案为:①③⑤⑧;(3)整数:②④⑤⑦;故答案为:②④⑤⑦;(4)分数:①③⑥⑧.故答案为:①③⑥⑧.23.(23-24七年级上·广东·单元测试)如图,数轴上的三点A 、B 、C 分别表示有理数a ,b ,c .(1)填空:a b -______0,a c +______0,b c -______0.(用<或>或=号填空)(2)化简:a b a c b c ---+-.24.(23-24七年级下·甘肃陇南·阶段练习)阅读材料:点A ,B 在数轴上分别表示有理数a ,b ,A ,B 两点之间的距离可表示为AB a b =-.例如:7与1-两数在数轴上所对应的两点之间的距离表示为()718--=,6x -的几何意义是数轴上表示有理数x 的点与表示6的点之间的距离.这种数形结合的方法,可以用来解决一些问题.如图,已知数轴上两点A 、B 对应的数分别为1-和2,数轴上另有一个点P 对应的数为有理数x .(1)请根据阅读材料填空:点P 、A 之间的距离PA =________(用含x 的式子表示);若该距离为4,则x =________.(2)根据几何意义,解决下列问题:①若点P 在线段AB 上,则12x x ++-=________.②若125x x ++-=,求点P 表示的有理数x .值等知识.熟练掌握在数轴上表示有理数是,数轴上两点之间的距离,绝对值的几何意义,绝对值方程,化简绝对值是解题的关键.【专题训练】一、单选题25.(23-24七年级上·四川南充)在π223.141500.333 2.010********--¼-¼,,,中,非负数的个数( )A .2个B .3个C .4个D .5个【答案】B【分析】本题考查了非负数的定义,解题的关键是掌握非负数的定义.根据“零和正数统称为非负数”,即可求解.【详解】解:非负数有:3.141502.010010001¼,,,共3个,故选:B .26.(2024七年级上·全国·专题练习)下列各对数中,互为相反数的有( )()1-与1+;()2--与()2+-;12æö--ç÷èø与12æö++ç÷èø;()1-+与()1+-;()2-+与()2--A .1对B .2对C .3对D .4对即互为相反数的有3对.故选:C .27.(2024七年级上·山东青岛·专题练习)下列关于零的说法中,正确的是( )A .零是正数B .零是负数C .零既不是正数,也不是负数D .零仅表示没有【答案】C【分析】本题考查了对数的理解与运用,注意:负数都小于零,正数都大于零,零既不是正数也不是负数,整数包括正整数、零、负整数;零不仅表示没有,还表示一个介于负数与正数之间的一个数.依据题意,零大于负数,小于正数,零既不是正数也不是负数,整数包括正整数、零、负整数,从而即可根据以上内容判断求解.【详解】解:A 、零不是正数,说法错误;B 、零不是负数,说法错误;C 、零既不是正数,也不是负数,说法正确;D 、零不仅仅表示没有,不同情形下,零表示的意义不同,说法错误;故选:C .28.(23-24七年级上·安徽合肥·期末)在()5--,0.8-,0,|6|-四个数中,最小的数是( )A .()5--B .0.8-C .0D .|6|-【答案】B【分析】本题考查了有理数比较大小,正数大于0,0大于负数,两个负数其绝对值大的反而小,负数都小于0是解题关键.根据正数大于0,0大于负数,两个负数其绝对值大的反而小,可得答案.【详解】解:()50.80|6|--<-<<-,故最小的数是5-.故选:B29.(2024七年级上·江苏·专题练习)下列说法正确的是( )A .数轴上的一个点可以表示不同的有理数B .数轴上有两个不同的点可以表示同一个有理数C .任何有理数都可以在数轴上找到与它对应的唯一的点D .有的有理数不能在数轴上表示出来【答案】C【分析】本题考查了数轴的应用,根据数轴上的点与有理数的对应关系进行解答.【详解】解:A .数轴上一个点只能表示一个数,不能表示两个不同的数,故选项错误;B .数轴上两个不同的点表示两个不同的数,故选项错误;C .任何一个有理数都可以在数轴上找到和它对应的唯一的一个点,正确;D .所有的有理数都可以用数轴上的点表示,故选项错误.故本题选:C .30.(23-24七年级上·江苏常州·期末)有理数a ,b 在数轴上的对应点的位置如图所示.把a -,b ,0按照从小到大的顺序排列,正确的是( )A .0a b<-<B .0a b -<<C .0b a <<-D .0b a <-<按照从小到大的顺序排列为0a <-31.(2024七年级上·全国·专题练习)下列有关相反数的说法:①符号相反的数叫相反数;②数轴上原点两旁的数是相反数;③()3--的相反数是3-;④a -一定是负数;⑤若两个数之和为0,则这两个数互为相反数; ⑥若两个数互为相反数,则这两个数一定是一个正数一个负数.其中正确的个数有( )A .2个B .3个C .4个D .5个【答案】A【分析】本题考查相反数的定义,依据相反数的定义进行判断即可.【详解】解:①符号相反的两个数不一定互为相反数,如2-与3,故①错误;②数轴上原点两旁的数不一定互为相反数,如2-和3,故②错误;③()33--=,3的相反数是3-,故③正确;④a -不一定是负数,如0a =时,0a -=,故④错误;⑤若两个数之和为0,则这两个数互为相反数,故⑤正确;⑥0的相反数是0,故⑥错误.故选:A .32.(24-25七年级上·全国·随堂练习)如果0a b c ++=且c b a >>.则下列说法中可能成立的是( )A .a 、b 为正数,c 为负数B .a 、c 为正数,b 为负数C .b 、c 为正数,a 为负数D .a 、b 、c 为正数二、填空题33.(24-25七年级上·河南安阳·开学考试)乒乓球被誉为我国的“国球”,在正规比赛中,乒乓球的标准质量为2.7克.0.15克的乒乓球记作0.15+,那么另一个低于标准质量0.03克的乒乓球记作.【答案】0.03-【分析】本题考查正负数的意义.熟练掌握正负数表示意义相反的量,是解题的关键.【详解】解:把一个超出标准质量0.15克的乒乓球记作0.15+,那么另一个低于标准质量0.03克的乒乓球记作0.03-,故答案为:0.03-.34.(2024七年级上·北京·专题练习)把下列各数填入它所属的集合内3-,30%,215-,0, 5.32-(1)整数集合{____________________……};(2)分数集合{____________________……};(3)非负数集合{____________________……}.【答案】(1)3-,035.(24-25七年级上·河南南阳·开学考试)在56-,2-,0.35,2.4,25%,0,6,1-,97,24,100.2这些数中,( )是自然数,()是整数,( )最大,( )最小.36.(24-25七年级上·全国·随堂练习)已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.【答案】(1)337.(2024七年级上·浙江·专题练习)已知m 是有理数,则|2||4||6||8|m m m m -+-+-+-的最小值是.三、解答题38.(2024七年级上·江苏·专题练习)在数轴上表示下列各数的相反数,并比较原数的大小.3, 1.5-,132-,4||5-,0,4-比较原数的大小为:1443 1.50325-<-<-<<-<.39.(2024七年级上·全国·专题练习)化简下列各式的符号,并回答问题:(1)()2--;(2)15æö+-ç÷èø;(3)()4éù---ëû(4)()3.5éù--+ëû;(5)(){}5éù----ëû(6)(){}5éù---+ëû问:①当5+前面有2012个负号,化简后结果是多少?②当5-前面有2013个负号,化简后结果是多少?你能总结出什么规律?(3)()44éù---=-ëû;(4)()3.5 3.5éù--+=ëû;(5)(){}55éù----=ëû;(6)(){}55éù---+=-ëû;①当5+前面有2012个负号,化简后结果是5+;②当5-前面有2013个负号,化简后结果5-,总结规律:一个数的前面有奇数个负号,化简的结果等于它的相反数,有偶数个负号,化简的结果等于它本身.40.(2024七年级上·全国·专题练习)阅读理解:数轴上线段的长度可以用线段端点表示的数进行减法运算得到,例如图,线段()101AB ==--;线段220BC ==-;线段()321AC ==--问题:(1)数轴上点M N 、代表的数分别为9-和1,则线段MN =___________;(2)数轴上点E F 、代表的数分别为6-和3-,则线段EF =___________;(2)解:∵点E F 、代表的数分别为6-和3-,∴线段()363EF =---=;故答案为:3;(3)解:由题可得|2|5m -=,则25m -=或25m -=-,解得7m =或3m =-,∴m 值为7或3-.41.(2024七年级上·江苏·专题练习)同学们都知道,()42--表示4与2-的差的绝对值,实际上也可理解为4与2-两数在数轴上所对应的两点之间的距离;同理3x -也可理解为x 与3两数在数轴上所对应的两点之间的距离.试探索:(1)求()42--= ;(2)若25x -=,则x = ;(3)请你找出所有符合条件的整数x ,使得123x x -++=.。

化简数轴绝对值同类题

化简数轴绝对值同类题

化简数轴绝对值同类题首先,让我们定义数轴上的一个点为x,那么绝对值运算可以表示为| x |。

绝对值的定义是,如果x是一个非负数,则| x | = x;如果x是一个负数,则| x | = -x。

因此,我们可以根据x的正负情况来进行化简。

1. 当x是非负数时,| x | = x。

这意味着,如果题目给出的数是非负数,那么绝对值就等于该数本身。

例如,| 3 | = 3,| 5 | = 5。

2. 当x是负数时,| x | = -x。

这意味着,如果题目给出的数是负数,那么绝对值就等于该数的相反数。

例如,| -2 | = -(-2) = 2,| -7 | = -(-7) = 7。

除了单个数的绝对值化简,还有一些同类题目涉及到数轴上的区间,并要求对区间中的所有数进行绝对值运算。

在这种情况下,我们需要考虑区间中各个数的正负情况。

1. 当区间中的数都是非负数时,对区间中的每个数进行绝对值运算后,区间不变。

例如,对于区间[0, 4],绝对值运算后仍为[0,4]。

2. 当区间中的数都是负数时,对区间中的每个数进行绝对值运算后,区间中的数的正负情况发生改变,并且区间的顺序也会颠倒。

例如,对于区间[-3, -1],绝对值运算后变为[1, 3]。

3. 当区间中的数既有非负数又有负数时,对区间中的每个数进行绝对值运算后,区间中的数的正负情况发生改变,但区间的顺序不变。

例如,对于区间[-2, 3],绝对值运算后变为[2, 3]。

综上所述,化简数轴绝对值同类题需要根据数的正负情况进行分类讨论,并根据绝对值的定义进行化简。

在处理区间时,还需要考虑区间中各个数的正负情况以及区间的顺序。

希望以上解答能够满足你的要求。

利用数轴化简绝对值

利用数轴化简绝对值

利用数轴化简绝对值知识点1.绝对值的代数意义:(1)一个正数的绝对值等于它本身;(2)一个负数的绝对值等于它的相反数;(3)0的绝对值是0。

2.去绝对值的法则:|a |={a (a ≥0)−a (a ≤0) *去含有字母的代数绝对值时,需先判断字母表示数的正负性,再套用法则。

例:如图,有理数a ,b ,c ,d 所表示的数如图所示:(1)化简|a |,|b |,|c |,|d |解:∵a <b <0,d >c >0∴|a |=—a ,|b |=—b ,|c |=c ,|d |=d(2)化简|a +c |解:由图得a <c <—a∴a +c <0|a +c |=—(a +c )=—a —c(3)化简|b -d |解:由图得:b <0<d∴b —d <0|b —d |=—(b —d )=—b +d =d —b绝对值的化简演练1.有理数a ,b 在数轴的位置如图,a <-b ,化简|a |+|a +2b |+|b -a |2.实数a,b.c在数轴的位置如图所示,化简|a+3|+|1-b|+|c-4|3.有理数a,b,c,d在数轴的位置如图所示,b+c=0,化简|a+2b|+|b+d|+|d-c|4. 如图,在数轴上A、B、C、D上的四点分别对应数a,b,c,d,且满足相邻两点的距离相等。

(1)化简|b-c|-|d-b|+|c-a|-|a-d|(2)已知d-2a=4,c-b=2,求a,b,c,d的值。

5.有理数a,b,c,d在数轴上的位置如图所示,求 a|a|+ b|b|+ c|c|+ d|d|+ab|ab|+cd|cd|+bd|bd|的值。

6.有理数a,b,c,d在数轴的位置如图,a+c=0,化简:|a|+|2b|-|3c|-|d|7.有理数a,b,c在数轴的位置如图所示,化简:|a-c|-|c-d|-|2d-a|-|c-2a|。

2020秋七年级数学上册培优专项《数轴上的绝对值化简》

2020秋七年级数学上册培优专项《数轴上的绝对值化简》

期中复习专题:数轴上的绝对值化简知识点:一、例题讲解1.(本题7分)已知a、b、c 在数轴上的位置如图所示,且|b|>|a|,化简|2b+3c|+|a-2c|-3|b+c-a|。

2.(本题10分)已知a 、b、c 在数轴上的位置如图所示,且|b|>|c|,(1)化简:|c-b|-|a -2c|+|b+c|(2)若c 比绝对值最小的数大1,多项式5x 2-4xy 2-4的常数项是a ,次数是-b,请你求出第(1)问的化简结果的值.3.(本题7分)a cbc b a b a 2-----+-4.(本题满分8分)已知有理数a ,b ,c 在数轴上的位置如图所示,并且a b =.(第21题图)(1)用“<”或“=”或“>”填空:a0;a b +0;2a c -0;(2)化简:2a a b a c ++--.第2题图-101ab c二、课堂练习1.已知ab <0,a c >0,且|c |>|b |>|c |,数轴上a 、b 、c 对应的点是A 、B 、C (1)若|a |=-a 时,请在数轴上标出A 、B 、C 的大致位置(2)在(1)的条件下,化简:|a -b |-|b +c |+|c +a |2.有理数a 、b 、c 在数轴上的位置如图,则c a a b b c --++-的值为A.0B.222a c b -+C.2c -D.2a3.如图所示,数轴上A 、B 、C 分别表示有理数a 、b 、c ,化简b c b a a c +----4.有理数a 、b 、c 在数轴上的位置如图,则|b -a |+|c +b |-|c -a |的值为_________5.已知数a 、b 、c 在数轴上的位置如图所示,化简:|a +b |-|c -b |+2|c -a |的结果是__________6.已知a 、b 、c 在数轴上对应的点的位置如图所示,化简|b +c |+|a +c |-|b -a |-2|a +b +c |的结果是____________7.如图,化简ba c abc c ++-+--两点之间的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结合数轴化简绝对值
数轴右边的点比左边的点大,有理数大减小一定是为正
绝对值化简三步走:1、判断正负2、去绝对值3、去括号化简
1、数a在数轴上的位置如图所示,则|a-2|=______.
2、有理数a、b、c在数轴上的位置如图:
(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.
3、若用A、B、C分别表示有理数a,b,c,O为原点,如图所示:
化简2c+|a+b|+|c﹣b|﹣|c﹣a|.
4、已知a,b,c的位置如图,化简:|a-b|+|b-c|+|c-a|=______________
结合数轴化简绝对值解析
1、数a在数轴上的位置如图所示,则|a-2|=______.
解:由图可知,a>0,
所以,a﹣2>0;
故答案为:a﹣2;
2、有理数a、b、c在数轴上的位置如图:
(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.
解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,
所以,b﹣c<0,a+b<0,c﹣a>0;
故答案为:<,<,>;
(2)|b﹣c|+|a+b|﹣|c﹣a|
=(c﹣b)+(﹣a﹣b)﹣(c﹣a)
=c﹣b﹣a﹣b﹣c+a
=﹣2b.
3、若用A、B、C分别表示有理数a,b,c,O为原点,如图所示:
化简2c+|a+b|+|c﹣b|﹣|c﹣a|.
解:由数轴上点的位置得:a<c<0<b,|a|>|b|,
∴a+b<0,c﹣b<0,c﹣a>0,
则2c+|a+b|+|c﹣b|﹣|c﹣a|=2c﹣a﹣b﹣c+b﹣c+a=0.
4、已知a,b,c的位置如图,化简:|a-b|+|b-c|+|c-a|=______________
解:由数轴上点的位置得:a<c<0<b,
∴a﹣b<0,b﹣c>0,c﹣a>0,
则|a-b|+|b-c|+|c-a|==﹣(a﹣b)+b﹣c + c﹣a=2b﹣2a.。

相关文档
最新文档