呼吸链生物化学

呼吸链生物化学
呼吸链生物化学

第七章生物氧化

1、生物氧化(biological oxidation):物质在体内进行氧化称生物氧化。

主要指营养物质在体内分解时逐步释放能量,最终生成CO2和水的过程。

生物氧化又称组织呼吸或细胞呼吸。

生物氧化释放的能量:主要(40%以上)用于ADP的磷酸化生成ATP,供生命活动之需。

其余以热能形式散发用于维持体温。

2、生物氧化内容

(1)生物体内代谢物的氧化作用、代谢物脱下的氢与氧结合成水的过程。

(2)生物体内二氧化碳的生成。

(3)能量的释放、储存、利用(ATP的代谢——ATP的生成与利用)。

3、生物氧化的方式——遵循一般氧化还原规律。

(1)失电子:代谢物的原子或离子在代谢中失去电子,其原子正价升高、负价降低都是氧化。(2)脱氢:代谢物脱氢原子(H=H++e)的同时失去电子。

(3)加氧:向底物分子直接加入氧原子或氧分子的反应使代谢物价位升高,属于氧化反应。向底物分子加水、脱氢反应的结果是向底物分子加入氧原子,也属于氧化反应。

4、生物氧化的特点

(1)在温和条件下进行(37℃,中性pH等);

(2)在一系列酶催化下完成;

(3)能量逐步释放,部分储存在ATP分子中;

(4)广泛以加水脱氢方式使物质间接获得氧;

(5)水的生成由脱下的氢与氧结合产生;

(6)反应在有水环境进行;

(7)CO2由有机酸脱羧方式产生。

5、物质体外氧化(燃烧)与生物氧化的比较

(1)物质体内、体外氧化的相同点:

物质在体内外氧化所消耗的氧量、最终产物、和释放的能量均相同。

(2)物质体内、体外氧化的区别:

体外氧化(燃烧)产生的二氧化碳、水由物质中的碳和氢直接与氧结合生成;

能量的释放是瞬间突然释放。

5、营养物氧化的共同规律

糖类、脂类和蛋白质这三大营养物的氧化分解都经历三阶段:

分解成各自的构件分子(组成单位)、降解为乙酰CoA、三羧酸循环。

第一节 ATP生成的体系

一、呼吸链( respiratory chain):

代谢物脱下的氢原子(2H)通过多种酶和辅酶所催化的连锁反应逐步传递,最终与氧结合生成水。这一传递链称呼吸链。又称电子传递链(electron transport chain )。

呼吸链由按一定顺序排列在线粒体内膜上的递氢体、递电子体组成。

(一)呼吸链的组成

用胆酸或脱氧胆酸处理线粒体内膜,可将呼吸链分离为:

四种具有递电子功能的酶复合体:

复合体Ⅰ——称NADH一泛醌还原酶(NADH脱氢酶):

复合体Ⅱ——称琥珀酸-泛醌还原酶(琥珀酸脱氢酶):

复合体Ⅲ——称泛醌-细胞色素C还原酶:

复合体Ⅳ——称细胞色素氧化酶(细胞色素aa3):

二种游离成分:

辅酶Q和细胞色素C不包含在复合体中。

1、复合体Ⅰ——将电子从NADH传给CoQ。

NAD+中的烟酰胺氮为5价,能接受电子成3价,而其对侧碳原子能进行加氢反应(仅1个氢原子)。

(1)NAD+(尼克酰胺腺嘌呤二核苷酸)和NADP+(尼克酰胺腺嘌呤二核苷酸磷酸)

(2)FMN的氧化与还原

黄素单核苷酸(FMN )含有核黄素(维生素B2),FMN中发挥作用的是异咯嗪环。

核黄素与酶的辅基的形成:

核黄素氧化还原机制:

(3)铁硫蛋白与铁硫中心(Fe-S)

Fe-S含有等量(各4)的铁原子与硫原子;通过铁原子与铁硫蛋白中的半胱氨酸残基的硫相连。

其铁原子可以进行氧化还原反应传递电子。

(4)复合体Ⅰ的功能

(4)泛醌(CoQ)

辅酶Q是一种脂溶性醌类化合物;含有一个较长的侧链(R),疏水性强。

其侧链由多个异戊间二烯组成,人的CoQ由10个异戊间二烯组成(Q10)。

泛醌可以接受或脱去1个电子和1个质子参与氧化还原。

泛醌参与氧化还原机制:

2、复合体Ⅱ——将电子从琥珀酸传递给CoQ。含如下成分:

含黄素蛋白(以FAD为辅基)、铁硫蛋白(Fe-S)、细胞色素b560。

细胞色素是一类催化电子传递的酶,以铁卟啉为辅基,均有特殊的吸收光谱而呈颜色。

根据吸收光谱的不同,参与呼吸链的Cyt有3类:Cyt a、Cyt b、Cyt c;根据最大吸收峰的差别分为若干亚类。

3、复合体Ⅲ——将电子从泛醌传递给细胞色素C。

2种细胞色素b(Cyt b562、 Cyt b566)、细胞色素c1、铁硫蛋白。

细胞色素c呈水溶性,与线粒体内膜外表面结合不紧密而极易于分离,不属于任何复合体成分。

4、复合体Ⅳ——将电子从细胞色素C传递给氧。

含如下成分:细胞色素a、a3和2个铁卟啉辅基及与之相连的Cu。Cyta和Cyta3很难分开,合称为Cytaa3。其中2个铜原子分别连接2个铁卟啉辅基,铜原子可以进行氧化还原反应传递电子。

呼吸链各复合体位置示意图

(二)呼吸链成分的排列顺序——确定呼吸链排列顺序的方法:

1、根据各组分的EO′从低到高排列——电位低容易失去电子(见下表)。

2、在体外将呼吸链拆开重组——鉴定4种复合体的组成与排列顺序。

3、利用呼吸链特异阻断剂阻断电子传递——阻断部位以前的处于还原状态,后面的组分处于氧化状态,根据吸收光谱的改变检测。

4、以离体线粒体的还原态(无氧)对照——缓慢给氧,通过光谱观察各组分的氧化顺序。(1)氧化-还原对——参加氧化还原反应的每种物质都有氧化型和还原型两种形式:

如:AH2十B←→A十BH2;式中AH2/或BH2是还原型(剂),A和B是氧化型(剂)。

一物质的氧化型/还原型(如A/AH2或B/BH2等)构成氧化还原对(简称氧-还对),氧化还原对是共扼的。氧-还对供出电子趋势的大小,可用标准氧化还原电位Eo′表示。

(2)标准氧化还原电位(E o′)——成对的氧化型/还原型物质的浓度为1摩尔,在,25℃时组成半电池,以(生物化学)规定的标准氢电极做参比测得的电位(伏特/摩尔)。

E o′值表示的是同H+/H2相比,某氧-还对氧化还原能力的大小:

1)E o′是负值,表示此氧-还对易供出电子而被氧化,是还原剂;

2)E o′是正值,表示此氧-还对易获得电子而被还原,是氧化剂。

(3)标准氢电极与生物化学规定的标准氢电极

1)标准氢电极:白金电极放入氢离子浓度为1摩尔/升的溶液,与1大气压的氢气平衡,此电极电位定为0伏特,作为参比电极E o。

2)生物化学上规定:加入pH=的条件,将氢电极浓度定为10-7mol/L,测得的电位是E o′。

(4)电位测定装置

2、两条氧化呼吸链及其排列顺序

3、呼吸链电子传递过程

4、重要代谢物进入呼吸链的途径

二、氧化磷酸化

ATP是机体主要供能物质。

ATP形成的主要方式是氧化磷酸化:呼吸链电子传递过程中偶联ADP磷酸化生成ATP。

ATP的另外形成方式是底物水平磷酸化:直接将代谢物分子中的能量转移到ADP(GDP)生成ATP(GTP)。(一)氧化磷酸化的偶联部位——ATP生成的部位

偶联部位的确定方法如下:

1、P/O比值:物质氧化过程中每消耗1摩尔氧原子所消耗的无机磷或ADP的摩尔数。

此数值代表ATP的生成数。P/O的测定方法:

将底物、ADP、H3PO4、Mg2+和分离较为完整的线粒体在模拟细胞内液的环境中相互作用;测定O2和H3PO4(或ADP)的消耗量,可以计算P/O,确定偶联部位。

2、自由能变化

ΔG o′=- nFΔE o′>可合成ATP,ΔG o′表示pH7时的标准自由能变化, n=2个氧还对反应时传递电子的数目(2),F是法拉第常数(mol?V),ΔE o′为电位变化。

自由能变化的计算举例——NADH(H+)的氧化反应:

从电位差(ΔE o′)计算ΔG o′,如果ΔG o′足以达到合成ATP(释放的自由能>mol)则存在偶联部位。是合成1molATP所需的能量(标准状态),体内条件ΔG o′=mol

(二)氧化磷酸化偶联机制——化学渗透学说

化学渗透学说要点:

1、呼吸链中递氢体与递电子体交替排列,并在膜中有固定位置,催化的反应是定向的,取决于电子走向。

2、电子经呼吸链传递时可将质子从线粒体内膜的基质泵到内膜外侧,产生膜内外质子电化学梯度(氢离子浓度梯度和跨膜电位差),以此储存能量。

3、当质子顺浓度梯度回流时驱动ATP合酶,利用ADP和Pi合成ATP。

说明:

电子传递链在线粒体内膜中共构成3个回路,即形成3个氧化还原袢,每个回路均有质子泵。

呼吸链模式

(三)ATP合酶(复合体Ⅴ)

ATP合酶(ATP synthase)——三联体:

F1:亲水部分,位于线粒体内膜的基质侧,含有5种肽链、9个甲基(α3β3γδε)。

功能是催化ATP的生成。催化部位在β亚基,但必须与α亚基结合才有活性。

F0:疏水部分,镶嵌在线粒体内膜中的H+通道。

当H+顺浓度梯度经F0回流时,F1催化ADP和Pi合成并释放ATP。

F0和F1之间有寡霉素敏感蛋白(OSCP),OSCP使ATP合酶在寡霉素存在时无作用。

线粒体结构

1、ATP合酶的结构模式

2、ATP的作用机制——诱导契合-结合变化(β亚基有O、R、T三种构型)

三、影响氧化磷酸化的因素

氧化磷酸化的影响因素有:

呼吸链抑制剂、解偶联剂、氧化磷酸化抑制剂;ADP的调节作用、甲状腺素的作用、线粒体DNA突变。(一)呼吸链抑制剂,阻断电子传递。此抑制剂可以停止细胞内呼吸,引起死亡。

(1)鱼藤酮、粉蝶霉素A、异戊巴比妥——与复合体Ⅰ的铁硫蛋白结合而阻断电子传递。

(2)抗霉素A、二巯基丙醇(BAL)——抑制复合体Ⅲ中Cytb与Cytc1间的电子传递。

(3)CO、CN-、N3-、H2S——抑制复合体Ⅳ(细胞色素氧化酶),使电子不能传递给氧。

呼吸链抑制剂及部位

(二)解偶联剂(多属于能通过膜的阳离子载体),使氧化与磷酸化过程脱离。

作用机制:使呼吸链电子传递过程泵出的氢离子不经过ATP合酶的F0质子通道回流,而经其他途径返回线粒体基质。破坏膜两侧的电化学梯度,电化学梯度储存的能量以热能形式散发。

1、解偶联蛋白质子通道(释放热能)存在于动物棕色脂肪组织;

2、 FFA促进质子经解偶联蛋白反流至基质。

3、二硝基苯酚(DNP)结合质子在膜内移动。

4、其他:游离脂肪酸、水杨酸盐、双香豆素。

(三)氧化磷酸化抑制剂——对电子传递与ADP的磷酸化均抑制。

如寡霉素可与ATP合酶F1、F0之间柄部的寡霉素敏感蛋白(OSCP)结合,阻止质子从F0通道内流合成ATP。质子不能内流导致膜两侧电化学梯度增高,影响质子泵的功能,进而抑制电子传递。

如苍术苷(酸):特异抑制ATP/ADP载体(腺苷酸转位酶)。

各种抑制剂对线粒体耗氧量的影响——实验过程:

(二)ADP的调节作用

正常机体氧化磷酸化的速率主要受ADP的调节:

机体利用ATP ↑ →ADP ↑ →ADP进入线粒体↑ →氧化磷酸化↑。

反之ADP不足→氧化磷酸化↑。

这种调节可使ATP的生成适应生理需要。

用极谱法氧电极系统测量游离线粒体的呼吸过程

(三)甲状腺素

甲状腺素的作用有两个方面:

1、促进氧化磷酸化:甲状腺素诱导膜上Na+-K+-ATP酶的合成,促进ATP分解为ADP,而促进氧化磷酸化。

2、甲状腺素(T3)可以增加解偶联蛋白的表达,引起耗氧合产热均增加,即基础代谢率增加。

(四)线粒体DNA突变

mtDNA是裸露的环状双螺旋,缺乏蛋白质的保护和损伤修复系统,容易受本身氧化磷酸化过程产生的氧自由基的损伤而发生突变。突变率是核内DNA的10~20倍。

mtDNA编码的基因:呼吸链中13条肽链、线粒体蛋白合成所需要的22个tRNA、蛋白合成所需要的2个rRNA。mtDNA突变可以降低线粒体的功能。mtDNA病的主要问题是ATP 生成减少引起的症状,耗能较多的器官先受累,且随年龄的增长而严重。

四、ATP——能量的储存的形式

生物氧化过程释放的能量有约40%以化学能的形式储存于特殊的有机磷酸化合物中,形成磷酸酯(磷酸酐)。磷酸酯键水解放能较多大于21kJ/mol,称为“高能磷酸键”,用“~P”表示。

在所有高能磷酸化合物中,以ATP分子末端的γ磷酸键最为重要。

(一)常见的高能磷酸化合物

(二)各种核苷酸之间的转变

(三)磷酸肌酸

1、ATP可以将~P转移给肌酸生成磷酸肌酸。反应可逆。过程如下:

2、磷酸肌酸是肌肉和脑组织能量的一种储存形式。

(四)ATP的生成和利用——生物体能量的生成和利用都是以ATP为中心。

体外、25℃条件下,1摩尔ATP水解为ADP+Pi时释放的能量为,体内生理条件下为50kJ/mol。人体每日经ADP/ATP相互转变的量(ATP转换率)非常可观。

静卧24小时消耗ATP40kg,运动时min。

1、ATP的利用——ATP循环(细胞能量循环)

(1)末端磷酸基的分裂与转移,生成ADP和新的磷酸化物。

如激酶催化的反应。此时ATP的磷酸基和部分能量同时转给新的磷酸化物。

(2)ATP水解为ADP+Pi,能量供机体利用。

离子转运、肌肉收缩、羧化反应。

(3)利用ATP的另一个高能磷酸键。

生成焦磷酸。如脂酸活化反应。

2、ATP生成、储存和利用

五、通过线粒体内膜的物质转运

线粒体基质与细胞液之间有线粒体内外膜相隔。

线粒体外膜通透性好,允许分子量在1000以内的物质自由通过(普通生物膜)。

线粒体内膜对各种物质的通过有严格选择性。

几乎所有的离子、不带电荷的小分子有机化合物都不能自由通过,必须依赖内膜上特殊的蛋白。

此蛋白少数是酶,多数是载体(也称为转位酶)。载体对物质具有严格的选择性。

内膜载体对物质的转运规律:一种离子或带电荷的化合物顺浓度梯度向内膜一侧转运时,必须伴有对应离子或带电物质逆浓度梯度反向转运。通常是“一对一交换”(A-入B-出或A-出B-入)。

线粒体内膜的运载体(重要的线粒体转位酶)

四种转位酶的协同作用

(一)胞液中NADH的氧化——如何进入线粒体

胞液脱氢产生的还原当量(H++e)必须进入线粒体氧化,但NADH不能自由透过线粒体内膜。必须借助于其他转运机制完成。有两种机制可以使NADH进入线粒体:α-磷酸甘油穿梭和苹果酸-天冬氨酸穿梭。

1、α-磷酸甘油穿梭——存在于脑和骨骼肌

2、苹果酸-天冬氨酸穿梭——存在于肝脏和心肌

(二)腺苷酸载体——又称ATP-ADP载体或ATP-ADP转位酶。

2个亚基组成的二聚体,每个亚基。ATP与ADP经此载体反向交换;同时胞液中的H2PO4-经磷酸盐载体与H+同向转运入线粒体。

ATP、ADP、Pi的转运

(三)线粒体蛋白质的跨膜转运

线粒体蛋白90%是由核DNA编码的,在线粒体外合成。

1、基质内蛋白质:

蛋白质前体肽链在外膜表面由解折叠酶使其空间结构松散;并被外膜上的受体识别后转移到总插入蛋白;总插入蛋白使蛋白前体从氨基端开始进入基质;基质中的加工肽酶切除蛋白前体中的导向信息肽段;形成成熟的基质蛋白质。

2、线粒体内膜或膜间隙的蛋白质:

基质中加工肽酶作用后暴露新的氨基端疏水肽段;疏水肽段引导肽连重新穿过内膜;间隙中的酶切除疏水肽段生成成熟蛋白质。

第二节其他氧化体系

一、需氧脱氢酶和氧化酶:直接以氧为受氢体。

(一)需氧脱氢酶(辅基是FMN或FAD),产物是过氧化氢。

(二)氧化酶(辅基含有铜离子),产物中有水。氧化过程如下:

二、过氧化物酶体中的氧化酶

(一)过氧化氢酶(触酶):辅基含4个血红素

反应如下: 2H2O2→ 2H2O + O2

在粒细胞和吞噬细胞中H2O2可以杀死入侵的细菌;

甲状腺细胞中H2O2可使2I-氧化为I2,使酪氨酸碘化成甲状腺素(T3、4)。

(二)过氧化物酶:也含有血红素辅基。

催化H2O2直接氧化酚类和胺类。反应如下:

R + H2O2→ RO + H2O 或者 RH2 + H2O2→R + 2H2O

三、超氧化物歧化酶(SOD)

呼吸链电子传递过程可以产生超氧离子;其他物质(如黄嘌呤)氧化也可以产生超氧离子。

超氧离子可进一步生成H2O2和羟自由基(?OH),统称为反应氧族。

反应氧族化学性质活泼,可以使磷脂中的不饱和脂肪酸氧化成过氧化脂质,损伤生物膜;过氧化脂质与蛋白质结合成的复合物积累成的棕褐色色素颗粒即脂褐素,与组织老化有关。

超氧化物歧化酶(SOD)可以消除超氧离子:

四、微粒体中的氧化酶

(一)加单氧酶(羟化酶、混合功能氧化酶)

反应如下:

R+NADPH+H++O2 → ROH+NADP++ H2O

反应需要细胞色素P450(与CO结合后在450nm有最大吸收峰,故名)参加。

(二)加双氧酶

催化O2的2个氧原子加到带双键的两个碳原子上。

生理生化

《思想道德修养与法律基础》教学大纲 I 前言 “思想道德修养与法律基础”课,是高校思想政治理论课的必修课程。它是适应大学生成长成才需要,帮助大学生科学认识人生,加强道德修养,树立应有的法治观念,成为社会主义事业的建设者和接班人的课程。作为德育的主渠道和思想政治教育的主阵地,“思想道德修养与法律基础”是一门对学生进行马克思主义理论教育和思想品德的课程。 本门课程教学的主要目的:从当代大学生面临和关心的实际问题出发,以正确的人生观、价值观、道德观和法制观教育为主线,通过理论学习和实践体验,帮助大学生形成崇高的理想信念,弘扬伟大的爱国主义精神,确立正确的人生观和价值观,牢固树立社会主义荣辱观,培养良好的思想道德素质和法律素质,进一步提高分辨是非、善恶、美丑和加强自我修养的能力,为逐渐成为德智体美全面发展的社会主义事业的合格建设者和可靠接班人,打下扎实的思想道德和法律基础。 课程内容主要涉及人生观、价值观、道德观和法制观四个大的方面,具体教学内容包括理想信念教育、爱国主义与民族精神教育、人生观与价值观教育、社会主义与共产主义教育、社会公共生活中的道德与法律规范教育、职业生活中的道德与法律规范教育、恋爱婚姻中的道德与法律规范教育、社会主义法律精神与法治观念教育、我国基本法律制度与规范知识教育等。 一为了使教师和学生更好地掌握教材,大纲每一章节均由教学目的、教学要求和教学内容三部分组成。教学目的部分注明教学目的,教学要求分掌握、理解和了解三个级别,教学内容与教学要求级对应,并统一标示(核心内容即知识点以下划实线,重点内容以下划虚线,一般内容不标示)便于学生重点学习。 二教师在保证大纲核心内容的前提下,可根据不同教学手段,讲授重点内容和介绍一般内容。 三本课程总教学时数为54学时。 四教材:《思想道德修养与法律基础》,高等教育出版社,马克思主义理论研究和建设工程重点教材《思想道德修养与法律基础》教材编写组,2007年8月第2版 II 正文 绪论珍惜大学生活开拓新的境界 一教学目的 绪论部分着重围绕时代发展和个人成长的要求,帮助大学生认识大学生活特点,促使其认识到其肩负的历史使命。通过学习和实践社会主义核心价值体系,提高大学生的思想道德素质和法律素质。本部分是本教材的前提和切入点。 二教学要求 (一)了解大学生的身心发展和大学生活的特点,尽快适应大学生活,把握人生的关键时期,全面提高自身素质,把自己锻炼成为合格的社会主义现代化建设人才。 (二)掌握当代大学生的历史使命,做好承担历史使命的准备。 (三)认识树立社会主义荣辱观的重要意义,把握社会主义荣辱观的科学内涵,努力践行社会主义荣辱观 三教学内容 (一)适应人生新阶段 1 认识大学生活特点 2 提高独立生活能力

植物生理生化指标测定

小黑豆相关生理指标测定 1.表型变化:鲜重、株高、主根长和叶面积 鲜重:取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测6个重复。 株高:取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。 主根长:取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。 叶面积:取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长,测叶片最窄处长度作为叶的宽,叶片长和宽的乘积即为叶表面积。每个测6个重复。 2.总蛋白、可溶性糖、丙二醛(MDA)和H2O2含量测定 样品处理:取0.5g样品(叶片要去除叶脉、根要先用清水清洗干净),速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入1.5ml的Tris-HCl(pH7.4)抽提,将抽提液转移到2ml的EP管中,于4℃,12000rpm离心15min,取上清,保存在-20℃下,上清液可用于总蛋白、丙二醛(MDA)、可溶性糖和H2O2含量测定。 总蛋白测定(Bradford法):样品反应体系(800ul H2O+200ul Bradford+5ul 样品),空白对照为(800ul H2O+200ul Bradford)。测定后带入标准曲线Y=32.549X-0.224(Y代表蛋白含量,X代表OD595),计算得出蛋白含量。 可溶性糖测定:样品反应体系(1ml蒽酮+180ul ddH2O+20ul样品提取液);空白对照(1ml蒽酮+180ul ddH2O),测定OD625后带入标准曲线:Y=0.0345X+0.0204(Y代表OD625,X代表可溶性糖含量(ug)) 蒽酮配方:称取100mg蒽酮溶于100ml稀硫酸(76ml浓硫酸+30mlH2O).注意:浓硫酸加入水中时,一点一点递加,小心溅出受伤。 丙二醛(MDA)测定:在酸性和高温条件下,丙二醛可与硫代巴比妥(TBA)反应生成红棕色的3,5,5-三甲基恶唑2,4-二酮,在532nm处有最大吸收波长,但该反应受可溶性糖的极大干扰,糖与TBA的反应产物在532nm处也有吸收,但其最大吸收波长在450nm处。采用双组分分光光度法,可计算出MDA含量。MDA的计算公式为:MDA(umol/L)=6.45OD532-0.56OD450. 反应体系为:400ul 0.6%TBA+350ul H2O+50ul样品,80℃水浴10min后,测OD532和OD450。对照用Tris-HCl. 0.6%TBA配方:称取硫代巴比妥0.6g,溶于少量1M NaOH中,待其完全溶解后用10%TCA(称取10gTCA三氯乙酸,溶于100ml蒸馏水中,待其溶解即可)定容至100ml。 H2O2测定(二甲酚橙法):样品反应体系(82ul溶液A+820ul溶液B (A:B=1:10)+150ul样品提取液),30℃水浴30min,测OD560。标准曲线为:Y=0.01734X-0.0555(Y代表OD560,X代表H2O2含量)

实验十二细菌常用生理生化反应实验结果观察

实验十二细菌常用生理生化反应实验结果观察 一结果观察 1葡萄糖发酵实验 直接观察试管, 试管变黄者为葡萄糖发酵阳性菌,不变者为阴性菌. 左边为恶臭假单胞菌,有气泡并变为黄色;右边为大肠杆菌, 2V. P. 反应和甲基红试验: 将培养好的液体培养基分装于两个干净的小试管中,在一管中滴入2-3滴甲基红试剂, 溶液变红的为甲基红阳性菌,不变的为甲基红阴性菌. 在另一管中加入V. P. 试剂,在37℃保温15分钟, 变红者为阳性菌,不变者为阴性菌. VP,图为右边为大肠杆菌,溶液变红,为阳性菌。 3吲哚实验 在培养好的液体培养基中加入1厘米高的乙醚,振荡,静置分层,加入2-4滴吲哚试剂,在掖面交界出现红色者为吲哚反应阳性菌,不变者为阴性菌.

左边为大肠杆菌,出现红色阳性菌;右边为产气杆菌,颜色不变,阴 性菌。 4硝酸盐还原实验 在点滴板上滴入革里斯试剂A液和B液,如过溶液变红说明有亚硝酸盐,为硝酸盐还原阳性菌,如果不变色需要再倒出部分培养基在另外的小孔中再滴如耳苯胺试剂,如果变蓝,说明此菌为阴性菌;如果不变色,说明此菌为硝酸盐还原强阳性菌. 右下方恶臭假单胞菌,加入革里斯试剂A、B后不变色,再加入二苯 胺试剂后变蓝,为阴性菌;左上方大肠杆菌为红色。 5柠檬酸盐实验 直接观察斜面,斜面变兰色者为柠檬酸盐利用阳性菌,不变者为阴性菌.

左边产生蓝色,产气杆菌阳性;右边为大肠杆菌,阴性。 6明胶水解 向培养好的明胶培养基中加入酸性氯化汞或三氯乙酸溶液,并铺满平板,菌落周围出现透明圈的菌为明胶水解阳性菌,没有透明圈的菌为阴性菌. 左边为大肠杆菌,出现透明圈,阳性;右边为枯草杆菌,阴性菌。 7 淀粉水解实验 向培养好的淀粉培养基平板上加入碘液,并铺满平板,菌落周围出现透明圈的菌为淀粉水解阳性菌,没有透明圈的菌为阴性菌.

高中生物细胞呼吸教案

细胞呼吸教案 【教学目标】 一、知识目标 (1)学生能说出细胞呼吸的概念 (2)学生理解有氧呼吸和无氧呼吸的原理和过程 (3)学生说明有氧呼吸和无氧呼吸的异同。 (4)学生掌握呼吸作用的生理童义。 二、能力目标 (1)学生通过分析有氧呼吸的过程,学会分析问题的能力。 (2)学生通过与同学和老师的讨论活动,学会与人交流,逐步提高自己的语言表达能力。 三、情感目标 (1)学生在课堂中,通过分析有氧呼吸和无氧呼吸的关系,渗透生命活动不断发展变化以及适应的特性,逐步学会自觉地用发展变化的观点,认识生命。(2)学生通过联系生产、生活等实际,激发学习生物学的兴趣,养成关心科学技术的发展,关心社会生活的意识和生命科学价值观。 【教学重点和难点】 一、教学重点 有氧呼吸的过程 二、教学难点 细胞呼吸的原理及本质 【教学内容】 第一课时有氧呼吸 一、导入 之前我们学习过能量,那么主要能源物质是什么?直接提供能量的物质是什么?ATP的合成需要哪些条件(酶、原料、能量)?其中能量的来源有哪些?(光合作用和细胞呼吸,硝化细菌的化学合成作用),细胞呼吸在哪里发生,又是怎

样进行的呢?那么接下来我们就一起来学习细胞呼吸。通过提出问题,引起学生的思考,激发学生的探究的欲望。 二、教学过程 教师:我们通常所说的呼吸是什么,指的是人体从周围环境吸入空气,利用其中的氧气,同时呼出二氧化碳的,这是一个气体交换的过程。细胞呼吸指的是什么,它与呼吸有什么关系呢?请学生根据初中所学知识回答问题。 学生:细胞呼吸就是细胞内进行将糖类等有机物分解成无机物或者小分子有机物,并释放能量的过程。 教师:对学生回答进行点评,并介绍细胞呼吸其实就是糖的氧化。Ppt展示光能—光合作用---储存在有机物中的化学能—细胞呼吸--将能量释放供机体利用,根据有无氧气的参与分为有氧呼吸和无氧呼吸,说明有氧呼吸是细胞呼吸的主要方式。通常我们所说的呼吸作用就是指有氧呼吸,这是高等动物和植物进行呼吸作用主要形式。 教师:结合木头的燃烧的过程,它是一个较剧烈的化学变化,在高温下发生产生光和热,细胞呼吸是在常温下进行的,所产生的能量有相当一部分是储存在ATP 中,其余的则变成热能释放出去。比较细胞呼吸的过程,总结两者的共同点都是糖的的氧化过程, 教师:提问细胞呼吸的主要场所? 学生:线粒体 教师:PPT展示线粒体结构模型,带领学生一起回顾线粒体各部分结构,细胞呼吸主要是在线粒体中发生的,所以称其是动力车间。 教师:细胞呼吸是一系列有控制的氧化还原反应,,大致可以分为三个阶段。让学生阅读书本P73-74,然后请同学回答哪三个阶段及相应的场所。 学生:阅读并回答三个阶段及场所。 教师:解释细胞呼吸的三个阶段过程,并书写每个过程的方程式,和同学一起来配平方程式,对[H]进行解释,它是一种脱氢酶的辅酶,其实就是脱氢酶脱下的氢然后给它拿着,待会给第三个环节利用,NADH是还原型的,NAD+ 第一阶段:葡萄糖的降解阶段。(糖酵解) a. 发生部位:细胞质基质。

抗冷水稻的生理生化特性

?综述? 抗冷水稻的生理生化特性 周介雄1 蒋向辉2 余显权2 (1.贵州省种子总站 贵阳 550001;2.贵州大学农学院水稻研究所 贵阳花溪 550025) 摘要:根据杂交水稻抗冷性育种的需要,本文主要从细胞结构、细 胞内主要物质、酶的适应性变化、激素的调节、Ca 2+ 的调控等方面,综述了抗冷水稻和冷敏感水稻在耐冷特性方面的差异: 低温下耐冷性强的品种能保持较好的细胞膜完整性,保持更高的CA T 、SOD 和POD 等保护酶活性和更低的MDA 含量,并诱导产生更多的脯氨酸,同时ABA 水平增高。从多方面揭示了抗冷水稻的抗冷原因,并初步提出了今后抗冷水稻品种选育的努力方向。 关键词 抗冷水稻 生理生化特性 细胞膜 保护酶系统 激素 水稻作为重要的粮食作物,持续的高产、优质、抗逆一直是科学工作者的理想与追求。目前水稻从南纬34°的南美洲大西洋沿岸至北纬53°27′的黑龙江漠河、从平原到海拔2700m 范围内广泛栽培,而水稻生长所需的适宜温度为15~18℃至30~ 33℃[5] ,因此低温冷害发生比较普遍。我国每年因低温冷害使稻谷减产30~50亿kg [18]。尤其是贵州省从1999年以来,在中低海拔地区几乎年年都遭受低温危害,造成水稻不同程度的减产,个别地方甚至颗粒无收,特别是2002年全省遭受严重的低温阴雨危害,致使全省水稻减产21%,全省粮食减产6%。因此,培育抗冷性水稻品种应用于生产,保持水稻持续高产稳产,是当今贵州省水稻育种和水稻生产迫切需要解决的问题。 低温冷害是指零度以上低温对植物造成的伤害或死亡的现象[2]。水稻的冷害一般分为障害型和延迟型。障害型冷害中危害最大的是孕穗期的冷害引起的不结实,其次是开花期的低温引起的不结实。延迟型冷害,大致可区别为:因抽穗前各时期生育延迟而造成抽穗延迟,以致结实不良;以及成熟期本身的低温引起的不结实。延迟型换而言之,也可说是成熟不良型[1]。 低温对植物的危害是一个复杂的生理过程,而植物抵抗低温胁迫的能力又是一个多系统的综合生理反应,它受物种本身的遗传基因控制,也受环境的制约[15]。当水稻受到冷胁迫后,会表现一系列的不良症状,本文就水稻受低温胁迫后所表现的生理障碍和生理生化变化综述前人的研究结果,为选育和鉴定抗冷性水稻品种提供参考。 1 水稻在低温胁迫下的不良症状 水稻从种子发芽到成熟的整个生长发育期间都有可能遭受 低温冷害:(1)苗期:水稻苗期受低温冷害,主要导致出芽不良,分蘖少,苗弱,易感立枯病,从而影响后期丰产群体的建立,严重的还会发生烂秧死苗。(2)大田生长期:在这一时期低温对水稻的影响,主要表现在对叶片和根系的生长方面。遇低温时叶片极度凋萎至枯死,其原因是根系损伤无法恢复吸水能力。主要导致成活不良,分蘖少,幼穗形成晚等。(3)孕穗期:水稻属高温短日植物,需高温诱导才能由营养生长转入生殖生长期。此时遭受低 温,导致出穗延迟,且器官发生各种异常,尤其穗长变短,原因是枝梗及颖花的分化受到抑制并退化,颖花产生畸变。进而在低温下使性器官畸变,如雌雄蕊、鳞片等小穗器官的数目增加、生殖器官缺损等。(4)抽穗开花期:这个时期低温冷害主要导致抽穗延迟。水稻的雌雄性器官对温度反应敏感,且一般又以为雄性器官比雌性器官更敏感。同时,水稻开花期遇到低温,不仅影响正常开花受精,而且也能使初生胚受精后的合子早期停止发育而成秕粒,产量降低。(5)成熟期:主要导致成熟不良,子粒不饱满,米质差等。灌浆初期遇低温危害时米粒发育停止,米粒长度减少,甚至形成死米。灌浆中期遇低温危害时会产生乳白米和曝腰米。在同一穗内,下部的谷粒较上部的、出穗迟的谷粒较出穗早的、第二次枝梗上的谷粒较第一次枝梗上的灌浆能力弱,低温对它们的影响亦大。因此在所有的颖花中如果弱势颖花比例高的品种则易受到冷害。和抽穗开花期一样,灌浆期的稻株遇到低温时叶绿素会受到破坏,叶片变黄,叶片发黄时由基部老叶→顶部新叶、由叶尖→叶基顺次进行[7]。因此,叶片光合强度也受低温抑制而显著降低。 2 抗冷水稻的生理生化特性 抗冷水稻与冷敏感水稻相比具有对低温冷害的忍受和适应的优良特性,即水稻的抗冷性[2]。当它遭遇冷害时,细胞的结构和细胞内各物质将发生一系列形态及生理生化方面的适应性变化,以维持其稳定地生长。2.1 细胞结构的特性2.1.1 细胞膜 细胞膜的流动性和稳定性是细胞乃至整个植物体赖以生存的基础,它不仅调控一切营养物质的进出,而且是细胞反应外界不利因子的最先的重要屏障[3]。1973年,Lyons 根据细胞膜结构功能与抗冷性的关系,提出著名的“膜脂相变冷害”假说。认为温带植物遭受零上低温时,只要降到一定的温度,生物膜首先发生膜脂的物相变化,这时膜脂从液晶相变为凝胶相,膜脂的脂肪酸链由无序排列变为有序,膜的外形和厚度也发生变化,可能使膜发生收缩,出现孔道或龟裂,因而膜的透性增大,膜内可溶性物质、电解质大量向膜外渗漏,破坏了细胞内外的离子平衡,同时膜上结合酶的活力降低,酶促反应失调,表现出呼吸作用下降,能量供应减少,植物体内积累了有毒物质[4]。 膜脂相变转换温度与膜脂脂肪酸的不饱和程度密切相关。一般抗冷水稻膜脂脂肪酸的不饱和度较高,膜脂相变温度相应较低,使膜在低温下保持流动性和柔韧性,以利低温下正常功能的执行和避免膜脂固化造成膜伤害。苏维埃等用差示扫描量热计法(DSC )和荧光偏振法,杨福愉等用顺磁共振法,都证明水稻的抗冷品种膜脂流动性大[16];王洪春等[14]对206个水稻品种种子干胚膜脂脂肪酸组成所做的分析指出:抗冷品种含有较多的亚油酸(18∶2)和较少的油酸(18∶1)。致使其脂肪酸的不饱和指数高

植物生理生化作业题参考答案

植物生理生化作业题参 考答案

东北农业大学网络教育学院 植物生理生化网上作业题参考答案 第一章参考答案 一、名词解释 1.蛋白质一级结构:多肽链中氨基酸种类和排列顺序。 2.简单蛋白:水解时只有氨基酸的蛋白质。 3.结合蛋白:水解时不仅产生氨基酸还产生其他化合物,即结合蛋白质由蛋白质和非蛋白质部分组成,非蛋白质部分成为附因子。 4.盐析:在蛋白质溶液中加大量中性盐使蛋白质沉淀析出的现象。 5.天然蛋白质受到某些物理或化学因素影响,使其分子内部原有的空间结构发生变化时,生物理化性质改变,生物活性丧失,但并未导致蛋白质一级结构的变化,该过程称为蛋白质变性。 二、填空题 1.零负正 2.两条或两条以上三级 3.α-螺旋、β-折叠、β-转角 4.碱基磷酸戊糖 5.超螺旋 三、单项选择题 3. B 四、多项选择题 1.ABCD 2.AD 五、简答题 1.简述RNA的种类及功能。 答: RNA: 包括mRNA:信使RNA,蛋白质合成的模版。 tRNA:转运RNA,蛋白质合成过程中运转氨基酸的。 rRNA: 核糖体RNA,合成蛋白质的场所。 2.简述蛋白质的二级结构及其类型。

答:蛋白质的二级结构是指蛋白质多肽链本身折叠、盘绕而形成的局部空间结构或结构单元。如α-螺旋、β-折叠、β-转角、自由回转等。 3.比较DNA 和RNA化学组成和结构的主要区别。 (1)构成DNA 的碱基为A、T、G、C;而RNA 的碱基为A、U、C、G; (2)构成DNA 的戊糖是β-D-2-脱氧核糖;而构成RNA 的戊糖为β-D-核糖。 (3)DNA 的结构是由两条反向平行的多聚核苷酸链形成的双螺旋结构;而RNA 的结构以单链为主,只是在单链中局部可形成双链结构。 第二章参考答案 一、名词解释 1.达到最大反应速度一半时的底物浓度,叫米氏常数。 2.只有一条多肽链的酶叫单体酶。 3.由几个或多个亚基组成的酶。 4.与酶蛋白结合较松驰的辅因子。 5.与酶蛋白结合牢固的辅因子。 二、填空题 1.绝对专一性、相对专一性立体专一性 2.酶蛋白辅因子 三、单项选择题 1.B 2.C 3.D 四、多项选择题 1.A B C 2.D EK 五、简答题 1.酶不同于其他催化剂的特点有哪些? 答:酶所催化的反应条件都很温和(常温、常压下); 酶催化据有高效性; 酶催化具有专一性; 酶的催化活性可控制。 六、论述题 1.论述影响酶促反应速度的因素。 答:底物浓度;酶浓度;温度;pH影响;抑制剂影响(竞争性抑制,非竞争性抑制;不可逆抑制);激活剂影响。 第三章参考答案

植物生理生化指标测定(精)

小黑豆相关生理指标测定 1. 表型变化:鲜重、株高、主根长和叶面积 鲜重 :取处理好的植株,擦干根和叶表面水分,测量整株植物的重量,每个测 6个重复。 株高 :取处理好的植株,测量从根和茎分隔处到植株最高点的高度,记录,每个测6个重复。 主根长 :取处理好的植株,测量从根和茎分隔处到主根最远点长度,记录,每个测6个重复。 叶面积 :取处理好的植株,选择第二节段的叶片,测量叶面积,叶面积测量方法是测每个叶片最宽处长度作为叶的长, 测叶片最窄处长度作为叶的宽, 叶片长和宽的乘积即为叶表面积。每个测 6个重复。 2. 总蛋白、可溶性糖、丙二醛(MDA 和 H2O2含量测定 样品处理:取 0.5g 样品(叶片要去除叶脉、根要先用清水清洗干净 ,速在液氮中冻存,在遇冷的研钵中加液氮研磨,然后加入 1.5ml 的 Tris-HCl (pH7.4 抽提, 将抽提液转移到 2ml 的 EP 管中, 于 4℃, 12000rpm 离心 15min , 取上清, 保存在 -20℃下,上清液可用于总蛋白、丙二醛(MDA 、可溶性糖和 H2O2含量测定。 总蛋白测定(Bradford 法 :样品反应体系(800ul H2O+200ul Bradford+5ul样品 , 空白对照为(800ul H2O+200ul Bradford 。测定后带入标准曲线 Y=32.549X-0.224(Y代表蛋白含量, X 代表 OD595 ,计算得出蛋白含量。 可溶性糖测定:样品反应体系(1ml 蒽酮 +180ul ddH2O+20ul样品提取液 ; 空白对照 (1ml 蒽酮 +180ul ddH2O , 测定 OD625后带入标准曲线 : Y=0.0345X+0.0204(Y代表 OD625, X 代表可溶性糖含量(ug

植物生理生化实验

《植物生理生化实验》复习习题 一、名词解释: 标准曲线:用标准溶液制成的曲线。 先配制一系列不同浓度的标准溶液, 在溶液最大吸收波长下,逐一测定吸光度, 然后用坐标纸以溶液浓度为横坐标,吸光度为纵坐标作图,若被测物质对光的吸收符合光的吸收定律,必然得到一条通过原点的直线,即标准曲线。 斐林(Folin)-酚试剂法:又称lowry法,它结合了双缩脲试剂和酚试剂与蛋白质的反应,是双缩脲方法的进一步发展,可利用其在650nm波长下的特定吸收进行比色测定。 茚三酮显色法: 游离氨基酸与茚三酮共热时,能定量生成紫色的二酮茚-二酮茚胺。其吸收峰在570nm,而且在一不定期范围内吸光度与游离氨基酸浓度成正比,因此可用分光光度法测定其含量。 茚三酮溶液与氨基酸共热,生成氨。 氨、茚三酮与还原性茚三酮发生反应,生成紫色化合物。 该化合物颜色的深浅与氨基酸的含量成正比,通过测定570nm 处的光密度,可测定氨基酸的含量。 氮素代谢:氮素及含氮的活体物质的同化、异化、排泄,总称为氮素代谢。 淀粉酶:水解淀粉和糖原的酶类总称 真空渗入: 指将叶片打孔放入注射器中,加水浸没,排出空气后用手指堵住前端小孔,同时把活塞向外抽拉,即可造成减压而排出组织中的空气,轻放活塞,水液即进入组织的方法。 离心技术: 根据物质颗粒在一个实用的离心场中的行为而发展起来的 是1.分离细胞器和生物大分子物质的必备的手段之一, 也是2.测定某些纯品物质的部分性质的一种方法。 差速离心法基于待测物质颗粒大小、密度、沉降速度的不同而得到分离。 电泳:各种生物大分子在一定pH条件下,可以解离成带电荷的颗粒, 这种带电颗粒在电场作用下,向着与其电性相反的电极移动 利用带电粒子在电场中移动速度不同而达到分离的技术称为电泳技术。 同工酶: 指催化同一种化学反应,但其酶本身分子结构和带电性质却有所不同的一组酶。 迁移率: 指带电颗粒在单位电场强度下的泳动速度。 溶液中带电粒子在电场中向着与它电性相反的电极移动,它的移动速度是电场和粒子的有效迁移率(m)的乘积,即:V=mE。

重金属对植物生理生化的影响

重金属对植物生理生化特性的影响(综述) 摘要 随着工农业的迅速发展,环境污染日益严重,特别是重金属在环境中的释放严重污染了土壤、水体和大气,并且可通过食物链进人生物体,危害人类健康,因此,重金属污染已成为世界性的重大环境问题。重金属的来源有多种途径,除采矿区的尾矿、矿渣、冶炼、有毒气体的排放之外,还有城市垃圾、金属电镀、汽车尾气排放、工业企业向环境排放的“三废”、化工产品在农业中的不合理使用、农田的污水灌溉等等,这些途径都将导致环境的重金属污染。通常植物在受到重金属污染时都会出现生长迟缓、植株矮小、根系伸长受抑制直至停止、叶片褪绿、出现褐斑等症状,严重时甚至导致作物产量降低和植物死亡[1,2]。多年来,人们就重金属对植物的毒害作用做了大量的研究工作,特别是近年来有关重金属对植物毒害的分子机理也有较多报道,本文就重金属对植物生理生化的影响的研究现状作一综述。 关键字:重金属,植物,生理生化。 1.影响植物根系对土壤营养元素的吸收 重金属污染能影响植物根系对土壤中营养元素的吸收,其主要原因是影响了土壤微生物的活性,影响了酶活性。重金属与某些元素之间有拮抗作用,也可能会影响植物对某些元素的吸收。沈阳农业大学张宁、唐咏[3]的研究表明,Cr能明显降低水生植物凤眼莲的根系活力,影响植株生长。 2.引起植物细胞超微结构的改变 当植物受到重金属毒害未出现可见症状之前,实际上在细胞内部已有

亚细胞结构的变化,从而导致这些细胞器参与的生理生化功能抑制或丧失。据彭鸣、王焕校等人[2]的研究表明,当重金属污染较轻时,细胞核、线粒体、叶绿体等细胞器没有明显变化,这时植株外部形态也不会表现出很明显的受害症状。而污染严重时,细胞核、线粒体、叶绿体等细胞器的结构均被破坏,此时植株外部形态会表现出叶片褪绿、萎蔫,根生长受抑制,乃至植株死亡。 3.影响细胞膜透性 重金属能影响植物细胞膜透性。王正秋[4]等对Pb2+,Cr3+,Zn2+对芦苇幼苗质膜的影响进行了研究,结果表明Pb2+,Cr3+,Zn2+对芦苇幼苗根系和叶片的电解质渗漏影响显著,且随处理浓度的增加和处理时间的延长而加剧,其中Cr3+和Zn2+的作用更明显。张宁、唐咏[3]的研究表明,Cr3+污染可增加凤眼莲膜脂过氧化,并使其细胞膜透性增加,且伤害程度与Cr3+浓度呈正相关,而且膜脂过氧化的发生要早于膜透性的改变。目前,细胞膜透性被广泛地用作评定植物对重金属反应的方法之一。 4.影响植物光合作用和呼吸作用 对于重金属对植物光合作用的影响研究比较广泛,结果表明,对光合作用的影响是植物受害的主要原因。许多研究[3]说明,重金属Cr3+可使高等植物的叶绿素含量明显降低,原因是重金属离子直接干扰了叶绿素的生物合成。在大麦幼苗中,Cr3+通过影响原叶绿素酸酯还原酶的活性抑制叶绿素的合成。据王泽港[5]等报道,重金属离子对叶绿素的影响不是由于取代叶绿素卟啉环中的Mg,而是通过影响叶绿素合成酶以及抑制一些参与光合作用的酶的活性等其他途径而产生的。张宁、唐咏[3]就Cr3+对凤眼莲光合作用的影响进行了研究,结果表明,较低浓度Cr3+时(Cr≤0.025mmol/L),凤眼莲叶绿素含量有所增加,而较高浓度Cr3+时

植物生理生化(生化部分)教学大纲

植物生理生化课程(生化部分)教学大纲 一、课程基本概况 1.课程名称:植物生理生化(生化部分) 2.课程名称(英文):physiology and Biochemistry of plant 3.课程编号:B16034 4.课程总学时:40学时(均为理论教学) 5.课程学分:2学分 6.课程分类:必修课 7.开设学期:第3学期 8.适用专业:农学教育(S)、植保教育(S)本科。 9.先行课:《物理学》、《化学》、《分析化学》、《植物学》等。 二、课程性质、目的和任务 植物生物化学是农学类各专业必修的一门专业基础课,是各专业的主干课之一,其先行课为物理学、化学、植物学。本课程的作用是为后续植物生理学及专业课的学习打下理论基础。其任务是掌握植物生物化学的基本概念,认识和掌握植物细胞的基本组成物质及其结构、性质和功能,了解和掌握有机物代谢的途径和基本条件,了解代谢调控的方式、过程及意义。从而为更好地认识植物、利用植物、影响和改造植物奠定必要的理论基础,能运用基本理论指导相关的实践过程。 三、主要内容、重点及难点 绪论 (一)目的要求:掌握植物生物化学的定义、内容和任务;了解植物生化的发展和现状;了解植物生化与其它学科的关系。 (二)主要内容:植物生化的定义;植物生化的内容;植物生化的任务;植物生理生化的发展及现状;植物生化与其它学科的关系;学习生物化学的方法。 (三)重点:植物生化的定义、内容及其在生物科学中的重要地位。 (四)难点:植物生化与其它学科的关系。 第一章蛋白质的化学 (一)目的要求:掌握蛋白质的基本组成单位——氨基酸的结构特点、性质;了解蛋白质的结构、性质和功能,理解蛋白质的结构与功能的关系。 (二)主要内容: 第一节氨基酸:氨基酸的化学结构与分类;氨基酸的重要理化性质。 第二节蛋白质的结构:一级结构;空间结构;蛋白质分子中的重要化学键;蛋白质结构和功能的关系 第三节蛋白质的性质:蛋白质的分子量;蛋白质的胶体性质;两性性质及等电点;蛋白质的沉淀;蛋白质的变性;蛋白质的颜色反应。 (三)重点:氨基酸的结构特点和性质;蛋白质的结构和性质。 (四)难点:蛋白质的结构;蛋白质结构与功能的关系。 第二章核酸 (一)目的要求:了解核酸的种类、存在位置及其在生物界的地位与作用;掌握核酸的组成、结

血常规生化指标与临床意义

血常规 1.红细胞(RBC或BLC)参考值:3.8~5.1*10^12 生理功能:(附1) 1、运输氧、二氧化碳、电解质、葡萄糖以及人体排出来的废物新陈代谢所必须的物 质;酸碱平衡功能(血红蛋白Fe2+) 2、吞噬细胞样的功能,在其细胞膜表面具有过氧化物酶,该酶是典型的溶酶体酶, 它可起着巨噬细胞样的杀伤作用。 3、免疫粘附功能:抗原-抗体复合物与补体C3b结合后,可粘附于灵长目或非灵长 目的红细胞与血小板上(C3b受体);清除免疫复合物的特性是白细胞和淋巴细胞 所不及的。 4、防御感染:细胞与细菌、病毒等微生物免疫粘附后,不仅可以通过过氧化物酶对 它们产生直接的杀伤作用,而且还可以促进吞噬细胞对它们的吞噬作用。因此,红细胞的免疫功能可以看作是机体抗感染免疫的因素之一。 5、免疫功能:识别携带抗原;清除循环中免疫复合物;增强T细胞依赖反应;效应 细胞(B/T)样作用 增多:分为相对增多(呕吐、腹泻、多汗、多尿、大面积灼伤等所致绝对增多(真性红细胞增多症等),继发性:代偿性增多(缺氧等),非代偿性增多(肝细胞癌、卵巢癌、子宫肌瘤等肿瘤相关及肾盂积水、多囊肾、肾癌等肾脏相关)。 减少:生理性:≤15岁儿童、部分老年人、妊娠中晚期等;病理性:常见于缺铁性、溶血性、再生障碍性贫血及急、慢性失血等(生成过多、破坏过多、丢失过多)。 2.血红蛋白(HB或HGB)参考值:115~150g/L 生理功能:运输氧、二氧化碳、电解质、葡萄糖以及人体排出来的废物新陈代谢所必须的物质;酸碱平衡功能(血红蛋白Fe2+) 增多:

相对增多(呕吐、腹泻、多汗、多尿、大面积灼伤等所致);绝对增多(真性红细胞增多症等):生理性增多:见于高原居民、胎儿和新生儿、剧烈劳动、恐惧等;病理性增多:由于促红细胞生成素代偿性增多所致,见于严重的先天性及后天性心肺疾病和血管畸形,如法洛四联症、紫绀型先天性心脏病、阻塞性肺气肿、肺源性心脏病、肺动-静脉瘘以及携氧能力低的异常血红蛋白病等;某些肿瘤或肾脏疾病,如肾癌、肝细胞癌、肾胚胎瘤以及肾盂积水、多囊肾等 减少:轻度:血红蛋白<90g/L、中度:血红蛋白90~60g/L、重度:血红蛋白 60~30g/L、极重度:血红蛋白<30g/L 生理性:≤15岁儿童、部分老年人、妊娠中晚期等;病理性:常见于缺铁性、溶血性、再生障碍性贫血及急、慢性失血等(生成过多、破坏过多、丢失过多) (1)红细胞压积(HCT):参考值:0.35~0.45L/L一定量的抗凝全血经离心沉淀后,测得下沉的红细胞占全血的容积比。 增多:血液浓缩;其他同红细胞 降低:同红细胞 (2)平均红细胞体积(MCV):参考值:82~100fL (3)平均红细胞血红蛋白量(MCH)参考值:27~34pg (4)平均红细胞血红蛋白浓度(MCHC)参考值:316~354g/L 平均红细胞血红蛋白浓度除了使用血红蛋白这个指标判断贫血外,还要参考红细胞数量,如二者比例失调,则需进一步参考平均红细胞体积,平均红细胞血红蛋白量及平均红细胞血红蛋白浓度及红细胞体积分布宽度,因不同病因引起的贫血,可使红细胞产生形态的变化,检查红细胞形态特点可协助临床寻找病因。 贫血形态学类型MCV(fl) MCH(pg) MCHC 病因举例 正常细胞性贫血82~95 27~31 320~360 急性失血,溶血,造血功能低下,白血病

生理生化实验报告

微生物实验报告 微生物的生理生化实验 侯汶青201300140031 组别:周四下午五组 同组者:李璇、李倩茜实验完成时间:2014年12月6号 一、实验目的 1、证明不同微生物对各种有机大分子物质的水解能力不同,从而说明不同微生物有着不同的酶系统。 2、掌握进行微生物大分子物质水解试验的原理和方法。 3、了解糖发酵的原理,掌握通过糖发酵鉴别不同微生物的方法。 4、了解吲哚和甲基红试验的原理以及其在肠道细菌鉴定中的意义和方法。 5、熟习生理生化反应培养基的配制原理和一般方法步骤。 6、巩固无菌实验操作。 二、实验器材 1、菌种: 枯草芽孢杆菌、大肠杆菌、变形杆菌、铜绿假单胞菌(大分子水解实验); 大肠杆菌、变形杆菌(糖发酵实验); 大肠杆菌、产气杆菌(吲哚实验); 大肠杆菌、产气杆菌(甲基红实验); 2、培养基: (1)固体淀粉培养基,固体油脂培养基(淀粉和油脂的大分子水解实验);(2)葡萄糖发酵培养基、乳糖发酵培养基试管每组共5支,而且内装有倒置的德汉氏小管(糖发酵实验); (3)蛋白胨水培养基(吲哚实验) (4)葡萄糖蛋白胨水培养基(甲基红实验) 3、溶液和试剂: 卢戈氏碘液,乙醚,吲哚试剂,甲基红试剂,蒸馏水,去离子水、氢氧化钠溶液、中性红试剂、溴甲酚紫乙醇溶液等 4、仪器或其他用具: 成套培养皿,试管,玻璃棒、酒精灯,烧杯,德汉氏小管,接种环、吸管、滴管、洗耳球、无菌操作台、量筒、试管架等 三、实验原理 1、微生物的生理生化反应原理:在所有生活细胞中存在的全部生物化学反应称之为代谢。代谢过程主要是酶促反应过程。许多细菌产生胞外酶,这些酶从细胞中释放出来,以催化细胞外的化学反应。各种细菌由于具有不同的酶系统,致使它们能利用不同的底物,或虽然可以利用相同的底物,却产生不同的代谢产物,因此可以利用各种生理生化反应来鉴别细菌。 微生物代谢重要特征之一,就是代谢类型的多样性,因此使得微生物在自然

人教版高中生物《细胞呼吸》教案

细胞呼吸 一、教学目标 1.知识目标:了解细胞呼吸的概念,理解无氧呼吸和有氧呼吸的过程及其相互关系,理解细胞呼吸的重要意义,知道生物从无氧呼吸到有氧呼吸的进化关系。 2.能力目标:通过学习无氧呼吸与有氧呼吸的过程和概念,让学生综合、归纳两个总反应式,分析比较二者的区别和联系,培养学生综合、归纳、分析、比较能力。 3.情感态度和价值观目标:通过对细胞呼吸过程的学习,了解物质变化过程中伴随有能量变化,细胞呼吸与外界环境相联系,很多生物具有相同的细胞呼吸过程,从而树立事物普遍联系、个性与共性辩证统一和进化发展的观点。 二、教学重点、难点 1.教学重点 (1)有氧呼吸和无氧呼吸的知识。 (2)呼吸作用的意义。 2.教学难点 有氧呼吸和无氧呼吸的知识。 三、教学时数 本节内容需要约2课时完成。第一节为探究活动,探究酵母菌细胞呼吸的方式,第二节学习有氧呼吸和无氧呼吸的概念及细胞呼吸原理应用于生活和生产实践的实例。本节讲述第二课时。 四、教学用具 要求学生合上课本,通过师生互动对话和学生合作讨论、共同探究有关细胞呼吸的知识为主,以有关PPT课件为辅完成教学目标。让学生参与完成有氧呼吸与光合作用、有氧呼吸与无氧呼吸过程的比较表格,进行教学反馈与调整。 五、教学方法 结合PPT课件讲述法与谈话法相结合。 六、学法指导

根据物质不灭定律和热力学第一、第二定律来理解细胞呼吸过程的物质变化和能量的释放与转移。注意细胞呼吸过程的两个或三个阶段的反应物、生成物、释放能量的多少及条件,注意整个过程的物质变化和能量的释放与转移,以及无氧呼吸和有氧呼吸过程中在这些方面的异同之处。 七、教学过程 导入,展示生活中的食物图片,提出问题:回顾旧知识 1:生物体生命活动的能源物质,主要能源物质是什么? 2:生物体生命活动中最常利用的能源物质是什么? 3:生物新陈代谢所需能量的直接来源是什么? 大家知道,有机物在体外燃烧可以释放出其中的能量。那么,有机物中的能量在体内怎样才能释放出来呢? (回答:有机物必需分解才能释放其中的能量。) 如同我们生活的环境一样,细胞要生活在常温常压下,这就意味着在细胞内葡萄糖不可能通过燃烧释放出能量。在细胞中应该有一个类似葡萄糖燃烧的过程,可以将葡萄糖分子中的能量释放出来,但又不伤及细胞。又由于生命活动是持续不断的,需要葡萄糖将储存的能量逐步地、缓慢地释放,随时被细胞利用。这就是细胞的呼吸作用。也叫做细胞呼吸。 (一)细胞呼吸的概念 指有机物在细胞内经过一系列的氧化分解,生成二氧化碳或其他产物,释放出能量并生成ATP的过程。 (二)细胞呼吸的类型 1:有氧呼吸 (1)主要场所:线粒体 (2)过程 请观察,第一阶段的变化 提问:这个阶段的物质变化是什么?(回答:一分子的葡萄糖分解成两分子的丙酮酸,在分解过程中产生少量的还原型[H]和少量ATP。)提问:这个阶段的能量变化是什么?(回答:释放出少量的能量。)提问:这个阶段在哪儿进行?(回答:细胞质基质。)

乳酸菌的生理生化特性

1.形态和培养特征观察 采用牛肉膏蛋白胨培养基,将已纯化后的甘油菌种活化后于37℃下培养20~24h ,并进行革兰氏染色及菌体形态和菌落特征的观察。染色方法参照微生物鉴定实验指导 2.生长条件试验 (1)耐盐性试验(NaCl 浓度:0. 85 、1. 20 和1. 71) (mol/ L) ; (2)耐酸碱试验(p H :4. 3 、5. 7 、6. 8 、8. 4 、8. 6 和8. 7) ; (3)温度梯度试验(温度: 10℃、30℃、40℃、50℃、55℃、60℃和65℃) 。 分别将参试菌接种于以上处理的液体培养基中培养48 h ,记录生长状况。 3.生理生化试验 ⑴过氧化氢酶测定 将实验菌接种于PGY培养基斜面上,37℃培养20h—24h,取一环接种的培养物,涂于干净的载玻片上,然后在其上滴加3%-—15%的过氧化氢,有气泡则为阳性反应,无气泡为阴性反应。 ⑵葡萄糖产酸产气实验 在PY基础培养基内加入30g葡萄糖和5%吐温-80,1.6g/100mL的溴甲酚紫1.4mL作指示剂, 在培养基内放置一小倒管,分装试管置37℃培养24h, 经培养后,指示剂变黄表示产酸,倒管内出现气泡,表示产气。 ⑶淀粉水解实验 接种新鲜的菌种于含有0.5g可溶性淀粉的PY基础培养基中,取少许培养液于比色盘内,同时取未接种的培养液作对照,分别在其中加入卢哥氏碘液.不显色表示淀粉水解,显蓝黑色或蓝紫色时,表示淀粉未水解或水解不完全。 ⑷明胶液化实验 将实验菌接种于明胶基础培养基中,置37℃培养,以一支未接种的试管作为对照。将接种的和未接种的对照管置于冰箱或冷水中,等待对照管凝固后记录实验结果,反复观察对比多次。如对照管凝固时,接种管液化为阳性反应,凝固为阴性反应 ⑸甲基红(M.R)试验 接种实验细菌于PYG培养基,于37℃培养2天后,于培养物中加入几滴甲基红酒精溶液,如呈红色,表示阳性。 ⑹乙酰甲基甲醇V-P实验 接种新鲜的实验菌种于培养基中, 37℃培养2天后,取培养液1mL在其中 加入1ml 10%的NaOH,混匀,再加入3-4滴2%氯化铁溶液。数小时后,培养基表面的下层出现红色者,为阳性 ⑺柠檬酸盐 取幼龄菌种接种于柠檬酸盐斜面培养基上,适温培养3-7天,培养基呈碱性(蓝色)者为阳性反应,不变者则为阴性 ⑻酪素水解试验 牛奶平板的制备:取5g脱脂奶粉加入50mL蒸馏水中(或用50mL脱脂牛奶),另称1.5g琼脂溶于50mL蒸馏水中,将两液分开灭菌。待冷至45-50℃时,将两液混匀倒平板,即成牛奶平板。将平板倒置过夜,使表面水分干燥,然后将菌种点接在平板上,每皿可点接3-5株菌。适温培养1、3、5天,记录菌落周围和下面酪素是否已被分解而呈透明。配制该培养基时,切勿将牛奶和琼脂混合灭菌,以防牛奶凝固 ⑼厌氧生长测定 将菌种接入营养肉汤平板后,用密封带包好放入CO2培养箱37℃培养2天后,观察生长情况,生长则为阳性(10)厌氧硝酸盐产气 接种封油:以斜面菌种用接种环接种后,用凡士林油(凡士林和液体石蜡为1:1)封管,封油的高度约1厘米。必须同时接种不含有硝酸钾的肉汁胨培养液作对照。 观察结果:培养2-7d,观察在含有硝酸钾的培养基中有否生长和产生气泡。如有气泡产生,表示反硝化作用产生氮气,为阳性反应。但如不含硝酸钾的对照培养基也可产生气泡,则只能按可疑或阴性处理。 (11)石蕊牛奶的反应

植物生理生化作业题参考答案

东北农业大学网络教育学院 植物生理生化网上作业题参考答案 第一章参考答案 一、名词解释 1.蛋白质一级结构:多肽链中氨基酸种类和排列顺序。 2.简单蛋白:水解时只有氨基酸的蛋白质。 3.结合蛋白:水解时不仅产生氨基酸还产生其他化合物,即结合蛋白质由蛋白质和非蛋白质部分组成,非蛋白质部分成为附因子。 4.盐析:在蛋白质溶液中加大量中性盐使蛋白质沉淀析出的现象。 5.天然蛋白质受到某些物理或化学因素影响,使其分子内部原有的空间结构发生变化时,生物理化性质改变,生物活性丧失,但并未导致蛋白质一级结构的变化,该过程称为蛋白质变性。 二、填空题 1.零负正 2.两条或两条以上三级 3. a -螺旋、B -折叠、B -转角 4 .碱基磷酸戊糖 5.超螺旋 三、单项选择题 1. D 2.D 3. B 4.C 四、多项选择题 1 .ABCD 2 .AD 五、简答题 1. 简述RNA的种类及功能。 答:RNA:包括mRNA信使RNA蛋白质合成的模版。 tRNA:转运RNA蛋白质合成过程中运转氨基酸的。 rRNA:核糖体RNA合成蛋白质的场所。 2. 简述蛋白质的二级结构及其类型。 答:蛋白质的二级结构是指蛋白质多肽链本身折叠、盘绕而形成的局部空间结构或结构单元。如a 螺旋、B -折叠、B -转角、自由回转等。 3 .比较DNA和RNAE学组成和结构的主要区别。 (1)构成DNA的碱基为A T、G C;而RNA的碱基为A U、C、G;

(2)构成DNA的戊糖是B -D-2-脱氧核糖;而构成RNA的戊糖为B -D-核糖。 (3)DNA 的结构是由两条反向平行的多聚核苷酸链形成的双螺旋结构;而RNA 的结构以单链为主,只 是在单链中局部可形成双链结构。 第二章参考答案 一、名词解释1.达到最大反应速度一半时的底物浓度,叫米氏常数。 2.只有一条多肽链的酶叫单体酶。3.由几个或多个亚基组成的酶。 4.与酶蛋白结合较松驰的辅因子。5.与酶蛋白结合牢固的辅因子。 二、填空题 1.绝对专一性、相对专一性立体专一性2 .酶蛋白辅因子 三、单项选择题 1.B 2 .C 3 .D 四、多项选择题 1.A B C 2 .D EK 五、简答题1.酶不同于其他催化剂的特点有哪些?答:酶所催化的反应条件都很温和(常温、常压下); 酶催化据有高效性; 酶催化具有专一性;酶的催化活性可控制。 六、论述题1.论述影响酶促反应速度的因素。 答:底物浓度;酶浓度;温度;pH影响;抑制剂影响(竞争性抑制,非竞争性抑制;不可逆抑制); 激活剂影响。 第三章参考答案 一、名词解释:1.相邻活细胞的原生质借助胞间连丝联成的一个整体,也叫内部空间。2.胞间层、细胞壁、细胞间隙 也连成一体,也叫外部空间(自由空间或无阻空间)。 3.指由核膜、内质网、高尔基体及质膜所组成连续的膜系统。 4.指由单层膜包裹的小颗粒,内含有几十种酸性水解酶类。根据是否含有底物可分为初级溶酶体和次级溶酶体。 5.细胞质中存在的纤维状无膜结构的微管、微丝和中间纤维,它们都由蛋白质组成,并相互联结成 主体的网络,对细胞起支持作用,所以叫细胞骨架,也叫微粱系统。 、填空题 1 胞间层初生壁次生壁 2 .粗面内质网滑面内质网 3 .运输囊泡扁平囊泡分泌囊泡 4 .初级溶酶体次级溶酶体 5 .蛋白质 6 .微管微丝中间纤维 7 .液泡叶绿体细胞壁 8 .不饱合脂肪酸 9 .水膜电荷 三、单项选择题 1.C 2 .D 四、多项选择题 1.ABD 2 .ABCD 3.ABC 4.BD 五、论述题

相关文档
最新文档