绝对值的应用.优秀导学案

合集下载

绝对值 导学案

绝对值  导学案

绝对值导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN22.3绝对值【学习目标】知识目标:借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两负数的大小。

能力目标:会通过学习绝对值的概念,应用绝对值解决实际问题,体会绝对值的意义,并进一步明确数学知识在实际生活中的用途。

情感目标:通过学习,积极参与数学学习活动,学会与人合作,与人交流。

【学习重点、难点】重点:绝对值的概念和求一个数的绝对值。

难点:绝对值概念的理解以及绝对值的非负性。

【使用说明及学法指导】【预习案】一、 知识链接:1、具有 、 、 的 叫做数轴。

2、3到原点的距离是 ,—5到原点的距离是 ,到原点的距离是6的数有 ,到原点距离是1的数有 。

3、2的相反数是 ,—3的相反数是 ,a 的相反数是 ,a —b 的相反数是 。

二、 自学指导(请安静的阅读并理解书本绝对值的类容,完成下面类容) 1. 自主学习:问题1、两位同学在书店O 处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A 处,乙车向西行驶了10公里到达B 处。

若规定向东为正,则A处记做__________, B处记做__________。

(1) 请画出数轴,并在数轴上标出A 、B 的位置;(2) 这两辆出租车在行驶的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征 (3)(3)在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示- 34 和34 的点呢? 归纳:一般地,在数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作: 例如:4的绝对值记作 ,它表示在 上 到 的距离,所以| 4|= 。

同理:—6的绝对值记作 ,它表示在 上 到 的距离, 所以|—6|= 。

【探究案】2. 合作探究、展示点评1、请在小组内说出| 7|、∣—2.25∣、∣25-∣、∣0∣的意义及其值。

2、(1)|+2|= ,51= ,|+8.2|= ;(2)|0|= ;(3)|-3|= ,|-0.2|= ,|-8.2|= .归纳:把你所发现的规律写在下面,并在小组内验证是否正确。

初中数学最新版《绝对值》精品导学案(2022年版)

初中数学最新版《绝对值》精品导学案(2022年版)

2.4 绝对值学习目标:1.理解绝对值的概念及其几何意义;〔重点〕2.会求一个数的绝对值,会根据绝对值求对应的数;〔重点〕 3.了解绝对值的非负性,并能用其非负性解决相关问题.〔重点、难点〕自主学习一、知识链接1.a 的相反数表示为.2.在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示-34 和34 的点呢? 二、新知预习〔预习课本P22-24〕填空并完成练习:1.在数轴上,表示一个数的点到叫做这个数的绝对值,用“〞表示.2.一个正数的绝对值是_;一个负数的绝对值是它的__;0的绝对值是.3.任何一个有理数的绝对值总是正数和0〔通常也称〕,即对有理数a ,总有|a|0. 练习:1.写出以下各数的绝对值. +4,-21,0,-5.1. 2.计算:〔1〕|-1|+|+3|; 〔2〕|-1.2|+|-0.7|.合作探究一、要点探究探究点1:绝对值的意义及求法【概念提出】在数轴上,表示一个数的点到叫做这个数的绝对值,用“〞表示. 问题1 分别写出3,0,-6的绝对值和到原点的距离,你发现了什么? 【要点归纳】一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是. 问题2 分别计算5和-5,3和-3,和的绝对值,你发现了什么? 【要点归纳】互为相反数的两个数的绝对值. 【典例精析】12,-53,,0.〔1〕|﹣0.25|; 〔2〕+|﹣3.14|; 〔3〕﹣|2.3|.【针对训练】化简:〔1〕﹣|+2.5|; 〔2〕-|﹣4|; 〔3〕|﹣〔﹣3〕|. 探究点2:绝对值的性质及应用思考1:观察这些数的绝对值,它们有什么共同点? |5|=5;|-10|=10;;|-5000|=5000;|0|=0……思考2: 假设字母a 表示一个有理数,你知道a 的绝对值等于什么吗? (1)当a >0时,|a |=;(2)当a<0时,|a|=;(3)当a=0时,|a|=.【要点归纳】任何一个有理数的绝对值总是正数和0〔通常也称〕.【典例精析】(1)绝对值等于0的数是;(2)绝对值等于的正数是_;(3)绝对值等于的负数是;2的数是_.|a|+|b|=0,求a,b的值.提示:由绝对值的性质可得|a|≥0,|b|≥0.【方法总结】几个非负数的和为0,那么这几个数都为0.二、课堂小结1.数轴上表示数a的点与原点的距离叫做数a的绝对值.2.绝对值的性质:(1)|a|≥0;(2)(0)||(0)0(0)a aa a aa>⎧⎪=-<⎨⎪=⎩当堂检测6.﹣|﹣2|=;|﹣〔﹣〕|=;|﹣〔+〕|=;﹣|﹣1|=.7.计算:〔1〕56-++; 〔2〕5.02.1---; 〔3〕535-⨯-. 参考答案自主学习一、知识链接1.-a2.解:-5和5到原点的距离均为5,-34 和34 到原点的距离都是34 . 二、新知预习1.原点的距离 | |2.它本身 相反数 03.非负数 ≥ 练习:1.解:它们的绝对值分别是4,21,0,5.1. 2.解:〔1〕原式=1+3=4; 〔2〕原式=1.2+0.7=1.9. 合作探究 二、要点探究探究点1:绝对值的意义及求法【概念提出】原点的距离 | | 〞表示. 【要点归纳】它本身 相反数 0 【要点归纳】相等 【典例精析】〔1〕|12|=12;〔2〕|﹣53|=53;〔3〕|﹣7.5|=;〔4〕|0|=0.解:〔1〕|﹣0.25|=;〔2〕+|﹣3.14|=;〔3〕﹣|2.3|=﹣.【针对训练】解:〔1〕﹣|+2.5|=﹣;〔2〕-|﹣4|=-4;〔3〕|﹣〔﹣3〕|=|3|=3. 探究点2:绝对值的性质及应用思考1:解:它们的绝对值都是正数或0. 思考2: (1)a (2)-a (3)0 【要点归纳】非负数 【典例精析】(2)5.25 (3)-5.25 (4)±2|a|≥0,|b|≥0,|a|+|b|=0,所以|a|=0,|b|=0,所以a=0,b=0. 当堂检测6.﹣2 ﹣17.解:〔1〕115656=+=-++;〔2〕7.05.02.15.02.1=-=---;〔3〕3535535=⨯=-⨯-. 第1课时 单项式与单项式、多项式相乘1.探索并了解单项式与单项式、单项式与多项式相乘的法那么,并运用它们进行运算.(重点)2.熟练应用运算法那么进行计算.(难点) 一、情境导入1.教师引导学生回忆幂的运算公式.学生积极举手答复:同底数幂的乘法公式:a m ·a n =a m +n(m ,n 为正整数).幂的乘方公式:(a m )n =a mn(m ,n 为正整数).积的乘方公式:(ab )n =a n b n(n 为正整数).2.教师肯定学生的答复,并引入课题——单项式与单项式、多项式相乘. 二、合作探究探究点一:单项式乘以单项式【类型一】 直接利用单项式乘以单项式法那么进行计算计算:(1)(-23a 2b )·(56ac 2);(2)(-12x 2y )3·3xy 2·(2xy 2)2;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2.解析:运用幂的运算法那么和单项式乘以单项式的法那么计算即可. 解:(1)(-23a 2b )·(56ac 2)=-23×56a 3bc 2=-59a 3bc 2;(2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5.方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】 单项式乘以单项式与同类项的综合-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x3m +1y 2n与7x n -6y-3-m的积与x4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+n -6=4,2n -3-m =1,解得:⎩⎪⎨⎪⎧m =2,n =3,∴m 2+n =7.方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项,列出二元一次方程组.【类型三】 单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的矩形空地,现在要在这块地中规划一块长35x m ,宽34y m的矩形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出矩形绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,矩形空地绿化的面积是35x ×34y =920xy (m)2,那么剩下的面积是xy -920xy =1120xy (m 2).方法总结:掌握长方形的面积公式和单项式乘单项式法那么是解题的关键. 探究点二:单项式乘以多项式【类型一】 直接利用单项式乘以多项式法那么进行计算计算: (1)(23ab 2-2ab )·12ab ;(2)-2x ·(12x 2y +3y -1).解析:先去括号,然后计算乘法,再合并同类项即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2;(2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y -(-2x )·1=-x 3y +(-6xy )-(-2x )=-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法那么:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】 单项式乘以多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法那么计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab .故防洪堤坝的横断面积为(12a 2+12ab )平方米;(2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab .故这段防洪堤坝的体积是(50a2+50ab )立方米.方法总结:通过此题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法那么是解题的关键.【类型三】 化简求值先化简,再求值:3a (2a 2-4a +3)-2a 2(3a +4),其中a =-2.解析:首先根据单项式与多项式相乘的法那么去掉括号,然后合并同类项,最后代入的数值计算即可.解:3a (2a 2-4a +3)-2a 2(3a +4)=6a 3-12a 2+9a -6a 3-8a 2=-20a 2+9a ,当a =-2时,原式=-20×4-9×2=-98.方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.【类型四】 单项式乘多项式,利用展开式中不含某一项求未知系数的值如果(-3x )2(x 2-2nx +23)的展开式中不含x 3项,求n 的值.解析:原式先算乘方,再利用单项式乘多项式法那么计算,根据结果不含x 3项,求出n 的值即可.解:(-3x )2(x 2-2nx +23)=(9x 2)(x 2-2nx +23)=9x 4-18nx 3+6x 2,由展开式中不含x3项,得到n =0.方法总结:单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.三、板书设计单项式与单项式、多项式相乘1.单项式与单项式相乘法那么:单项式与单项式相乘就是它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.2.单项式与多项式相乘的法那么:单项式与多项式相乘,只要将单项式分别乘以多项式的每一项,再将所得的积相加.本节知识的重点是让学生理解单项式与单项式、多项式相乘的法那么,并能应用.这就必须要求学生对乘法的分配律以及幂的运算法那么有一定的根底,因此课前可以要求学生先复习该局部的知识,同时在上新课前也可以通过练习题让学生回忆知识.对于运算法那么的得出,教师通过“试一试〞逐步解题,通过计算演示法那么的内容,更有利于学生理解运算法那么.。

绝对值导学案

绝对值导学案
【使用说明与学法指导】
1、先用15分钟左右的时间,阅读探究课本P48-P49的基础知识,完成自主学习部分
2、结合课本的基础知识和自主学习部分,小组完成合作探究部分。
【自主学习】——建立自信,克服畏惧,尝试新知
1、复习问题:相反数6与-6在数轴上与原点的距离各是多少?互为相反数的两个数在数轴上所表示的点有什么特征?
策略与反思
纠错与归纳
【学习目标】
1、借助数轴,初步理解对值的概念,会求一个数的绝对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
3、领略到数学的奥妙,从而激起好奇心和求知欲望。
【重点难点】
重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
难点:绝对值非负性的理解,绝对值的几何意义,代数定义的导出。
1、下列说法中正确的有( )
1互为相反数的两个数的绝对值相等;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④一个数的绝对值的相反数一定是负数。
A、1个B、2个C、3个D、4个
2、下列判断正确的有( )
①|+2|=2②|-2|=2③-|-5|=5④|a|≥0
A、1个B、2个C、3个D、4个
A、正数B、负数C、非负数D、任何有理数
2、写出绝对值的概念;
3、一个数的绝对值与这个数有什么关系?
【合作探究】——升华学科能力,透析重难点
1、写出下列各数的绝对值
①4,-4,② , ,③ ,
以上各组数是什么关系?它们的绝对值又是什么关系?
2、①自己完成课本P49做一做(1)和(2),(3).
3、比较下列每组数的大小:
①-1和-4;② 和-2.7;③ 与 ;

绝对值导学案

绝对值导学案

2.4 绝对值【学习目标】:1、借助数轴,理解、掌握绝对值概念.体会绝对值的作用与意义;2、掌握求一个已知数的绝对值;3、利用绝对值比较两个负数的大小4.通过应用绝对值解决问题,体验运用直观知识解决数学问题的成功;【过程与方法目标】:1.通过实例理解绝对值的几何意义,渗透数形结合思想,2.通过绝对值与相反数及数轴的关系的理解,让学生感知数学知识的普遍联系性;【情感与态度目标】:1.感受数学知识在实际生活中的应用;;2.培养学生合作,交流的良好品质;3.通过学生自主探索,体验自主探索获得成功的喜悦;【学法引导】学生自主探索,合作讨论,教师引导总结归纳【教学重点】绝对值的意义【教学重点】利用绝对值比较两个负数的大小【导学指导】一、知识链接问题:如下图小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线(填相同或不相同),他们行走的距离(即路程远近)二、自主探究1、由上问题可以知道,10到原点的距离是,—10到原点的距离也是到原点的距离等于10的数有个,它们的关系是一对。

这时我们就说10的绝对值是10,—10的绝对值也是10;例如,—3.8的绝对值是3.8;17的绝对值是17;—613的绝对值是归纳:一般地,数轴上表示数a的点与________的距离叫做数a的绝对值,记作_____________;2、练习(1)、式子∣-5.7∣表示的意义是。

(2)、—2的绝对值表示它离开原点的距离是 个单位,记作 ;(3)、∣24∣= . ∣—3.1∣= ,∣—13∣= ,∣0∣= ; 3、由此可知:一个有理数由两部分组成,即____________和__________;4、思考、交流、归纳由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。

用式子表示就是:1)、当a 是正数(即a>0)时,∣a ∣= ;2)、当a 是负数(即a<0)时,∣a ∣= ;3)、当a=0时,∣a ∣= ;5、由此得出:任何一个有理数的绝对值总是___________________________;即对任意的有理数a,总 有______________;4、随堂练习 P12第1、2大题【课堂练习】:1、自学例题 P23例1 (教师指导)P24例2 (教师指导)2、P24 练习1,2,3【要点归纳】:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。

2023最新-《绝对值》教案(优秀7篇)

2023最新-《绝对值》教案(优秀7篇)

《绝对值》教案(优秀7篇)数学是人们对客观世界定性把握和定量刻画逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

这里给大家分享一些关于七年级数学《绝对值》教案,方便大家学习。

下面是小编精心为大家整理的《绝对值》教案(优秀7篇),希望能够给予您一些参考与帮助。

连减的简便计算教学设计篇一活动目标:1、引导幼儿学习按物体的特征分解画面,并能根据物体的不同特征学习编减法应用题,列减法算式。

2、培养幼儿的观察能力、语言表达能力及积极思维能力。

3、通过各种感官训练培养幼儿对计算的兴致及思维的准确性、敏捷性。

4、乐意参与活动,体验成功后的乐趣。

活动准备:实物图(一棵大树,树上有7只鸟,一只大的、六只小的;两只白色的、五只黄色的;三只停在树上、四只刚起飞);算式题卡、粉笔、人手一套1-7的数字卡片,运算符号若干、毛毛虫图片若干。

活动过程一、小鸟来做客出示图片,今天鸟妈妈带着小鸟飞到我们班来做客,小朋友们为它们表演一个节目吧!二、为鸟儿们表演节目1、教师出示算式题卡(如5+2),幼儿快速从1-7的数字卡片中找出正确答案并举起。

2、游戏进行若干次。

三、鸟妈妈出难题小朋友真能干,现在鸟妈妈出难题要考考你们。

1、引导幼儿仔细看图,分解画面。

问:图上有谁?有几只?它们一样吗?有什么地方不一样?(引导幼儿说出颜色、动态不一样)2、引导幼儿根据物体的不同特征编减法应用题。

⑴、幼儿相互讨论小朋友都看见了树上有1只大鸟、6只小鸟;有2只白色的鸟、5只黄色的鸟;有3只停在树上、4只刚起飞;你能根据这些特征编出减法应用题吗?(幼儿讨论)⑴、集中讨论。

①、教师根据鸟大小不同编减法应用题:树上有7只鸟,有1只是大的,几只是小的呢?然后请幼儿列式计算,并说说各数表示什么。

②、谁能根据鸟颜色不同编减法应用题呢?(请能力强的幼儿示范编应用题,幼儿编出应用题后,集体列出算式,然后一起说说算式中各数及各符号所表示的实际意义。

)③、用同样方法根据鸟的动态编减法应用题,为什么要问还剩下多少只?幼儿讲述,教师在黑板上写出算式。

绝对值导学案

绝对值导学案

绝对值导学案第6课时绝对值一、学习目标1.理解、掌握绝对值概念,根据绝对值的意义判断代数式的符号;2.掌握求一个已知数的绝对值的方法;3.体验绝对值非负性的应用.二、知识回顾小红和小明从同一处O出发,分别向东、西方向行走10米,他们行走的路线不相同(填相同或不相同),他们行走的距离相同0到原点的距离是10 ,—10到原点的距离也是10到原点的距离等于10的数有 2 个,它们的关系是一对相反数.三、新知讲解1.绝对值的概念一般地,数轴上表示a的点与原点的距离叫做数a 的绝对值,记作|a| .这里的数a可以是正数、负数和0 .例如5和-5,它们与原点的距离都是5个单位长度,所以5和-5的绝对值都是5.显然|0|=0.2.求一个数的绝对值一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0 .即(1)如果a0,那么|a|= a ;(2)如果a=0,那么|a|= 0 ;(3)如果a0,那么|a|= -a 绝对值的非负性应用绝对值表示距离,由于距离不可能是负数,所以任何数的绝对值总是正数或0,即对于任意有理数a,总有|a| ≥0.四、典例探究.绝对值的几何意义【例1】(1)式子∣-5.7∣表示的意义是与原点的距离是.(2)-2的绝对值表示它离开原点的距离是个单位,记作;总结:|a|表示点a与原点的距离,|-a|表示点-a与原点的距离.根据绝对值的几何意义,互为相反数的两个数的绝对值相等.练1(1)一个数的绝对值越大,表示它的点在数轴上越靠右.()(2)一个数的绝对值越大,表示它的点在数轴上离原点越远.()2.求一个数的绝对值【例2】求下列各数的绝对值-3,-5.2, , ,200,0总结:求一个数的绝对值,应先判断该数是正数、负数还是0,再根据绝对值的代数意义求解.当然也可以根据几何意义,借助数轴求解.练2判断下列各式是否正确(1)|7|=|-7|;(2)-7=|-7|;(3)-|7|=|-7|.3.绝对值的性质1(根据|a|=±a判断a的符号)【例3】绝对值等于其相反数的数一定是………………()A.负数 B.正数 C.负数或零 D.正数或零总结:若|a|=a,则a≥0;若|a|=-a,则a≤0;特别地,若|a|=0,则a=0.练3给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有…………………………………………………()A.0个B.1个C.2个D.3个练4判断题:当a≠0时,|a|总是大于0.()4.绝对值的性质2(绝对值非负性的应用)【例4】若实数a,b满足|3a-1|+|b-2|=0,求a+b的值.总结:任何数的绝对值总是非负数,即|a|≥0.进一步,我们还可以得到|a|≥±a,即|a|±a≥0.如果几个数的绝对值(或几个非负数)之和为0,那么这几个数都为0.练5若|x-2|+|y-3|=0,求x,y的值.五、课后小测一、选择题1.-4的绝对值是()A. B. C.4 D.-42.若|x|=5,则x的值是()A.5B.-5C.±5 D若a与1互为相反数,则等于(). A.2 B.-2 C.1 D.-下列说法错误的是().A.一个正数的绝对值一定是正数 B.一个负数的绝对值一定是正数C.任何数的绝对值一定是正数 D.任何数的绝对值都不是负数二、填空题5.-8的绝对值是,记作________.6.化简的结果为________.三、解答题7.写出下列各数的绝对值,并指出这些数中,哪个数的绝对值最大,哪个数的绝对值最小.-(-6.3),+(),-(+2.5),-(-10).8.若|x- |+|y-7|=0,求y-x的值.典例探究答案:【例1】(1)-5.7与原点的距离是5.7 ;(2)2 |-2| 练1.(1)× (2)√【例2】3,-3,-5.2, , ,200,0的绝对值分别是:3,3,5.2, , ,200,0.练2.(1)正确;(2)不正确;(3)不正确【例3】C练3.B练4.√【例4】解:由绝对值的非负性知|3a-1|≥0,|b-2|≥0,所以只有当|3a-1|和|b-2|都为0时,它们的和才为0,否则它们的和大于0.所以|3a-1|=0,且|b-2|=0时,|3a-1|+|b-2|=0才成立,解得a= ,b=2.所以a+b=2 .练5.解:根据绝对值的非负性,可得x-2=0,y-3=0,解得x=2,y=3课后小测答案:1.A.解析:根据一个负数的绝对值等于这个数的相反数,直接得出答案.2.C.解析:根据绝对值的几何意义可知绝对值等于5即表示到原点的距离为5,所以有是5或-解析:a与1互为相反数,所以a=-1,即解析:因为绝对值表示的一个数到原点的距离,所以任何数的绝对值都大于或等于0,由此可知C错|-8|.解析:根据一个负数的绝对值是它的相反数可知-8的绝对值是8,表示一个数的绝对值时用绝对值符号“| |”并把数写在里面-4.解析:绝对值里面不管有多少正负号,化简完之后一定不含有任何正负号根据绝对值的定义一一进行求解,各数的绝对值依次是:6.3,8 ,2.5,10.8.根据绝对值的非负性,可得x= ,y=7,所以y-x=。

《绝对值》导学案

《绝对值》导学案

《绝对值》导学案一、学习目标1、理解绝对值的概念,会求一个数的绝对值。

2、理解绝对值的几何意义和代数意义。

3、掌握绝对值的性质,并能运用绝对值的性质解决相关问题。

二、学习重点1、绝对值的概念和求法。

2、绝对值的性质及其应用。

三、学习难点1、绝对值的几何意义的理解。

2、绝对值性质的灵活运用。

四、知识回顾1、数轴的三要素:原点、正方向、单位长度。

2、在数轴上,表示互为相反数的两个点,位于原点的两侧,且到原点的距离相等。

五、新课导入在日常生活中,我们经常会遇到一些与距离有关的问题。

比如,小明家距离学校 5 千米,小李家距离学校 3 千米。

这里的“5 千米”和“3 千米”就是表示距离的量。

在数学中,我们也有一个类似的概念,叫做绝对值。

六、知识讲解1、绝对值的定义一般地,数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a|。

例如,数轴上表示-5 的点与原点的距离是 5,所以|-5| = 5;表示5 的点与原点的距离是 5,所以|5| = 5。

2、绝对值的几何意义一个数的绝对值就是数轴上表示这个数的点到原点的距离。

距离总是非负的,所以绝对值一定是非负的,即|a| ≥ 0。

例如,|-3|表示数轴上表示-3 的点到原点的距离,这个距离是3,所以|-3| = 3。

3、绝对值的代数意义(1)正数的绝对值是它本身;即若 a > 0,则|a| = a。

(2)0 的绝对值是 0;即|0| = 0。

(3)负数的绝对值是它的相反数;即若 a < 0,则|a| = a。

例如,|5| = 5,|0| = 0,|-8| =(-8) = 8。

4、绝对值的性质(1)互为相反数的两个数的绝对值相等。

例如,|-5| =|5| = 5。

(2)绝对值具有非负性,即|a| ≥ 0。

(3)若|a| =|b|,则 a = ±b。

七、例题讲解例 1:求下列各数的绝对值:(1)-7 (2)0 (3)35 (4)-25解:(1)|-7| = 7(2)|0| = 0(3)|35| = 35(4)|-25| = 25例 2:已知|x| = 4,求 x 的值。

七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】

七年级数学《绝对值》教案【优秀9篇】学习难点: 篇一绝对值的综合运用绝对值教案篇二绝对值教学目标:通过数轴,使学生理解绝对值的概念及表示方法1、理解绝对值的意义,会求一个数的绝对值及进行有关的简单计算2、通过绝对值概念、意义的探讨,渗透数形结合、分类讨论等数学思想方法3、通过学生合作交流、探索发现、自主学习的过程,提高分析、解决问题的能力教学重点:理解绝对值的概念、意义,会求一个数的绝对值教学难点:绝对值的概念、意义及应用教学方法:探索自主发现法,启发引导法设计理念:绝对值的意义,在初中阶段是一个难点,要理解绝对值这一抽象概念的途径就是把它具体化,从学生生活周围熟悉的事物入手,借助数轴,使学生理解绝对值的几何意义。

通过“想一想”,“议一议”,“做一做”,“试一试”,“练一练”等,让学生在观察、思考,合作交流中,经历和体验绝对值概念的形成过程,充分发挥学生在教学活动中的主体地位,从而逐步渗透数形结合、分类讨论等数学思想方法,提高学生分析、解决问题的能力。

教学过程:一、创设情境,复习导入。

今天我们来学习一个重要而很实际的数学概念,提高我们的数学本领,先请大家看屏幕,思考并解答题中的问题。

(用多媒体出示引例)星期天张老师从学校出发,开车去游玩,她先向东行千米,到了游乐园,下午她又向西行千米,回到家中(学校、游乐园、家在同一直线上),如果规定向东为正,①用有理数表示张老师两次所行的路程;②如果汽车每公里耗油升,计算这天汽车共耗油多少升?① 千米,千米;②()×升。

在学生讨论的基础上,教师指出:这个例子涉及两个问题,第一问中的向东和向西是相反意义的量,用正负数表示,第二问是计算汽车的耗油量,因为汽车的耗油量只与行驶的路程有关,而与行驶的方向没有关系,所以没有负数。

这说明在实际生活中,有些问题中的量,我们并不关注它们所代表的意义,只要知道具体数值就行了。

你还能举出其他类似的例子吗?。

小组讨论,有的同学在思考,有的在交流,有些例子被否定,有的得到同伴的赞许,气氛热烈。

最新北师大版七年级数学上册《绝对值》优质导学案

最新北师大版七年级数学上册《绝对值》优质导学案

2.3 绝对值【学习目标】1.认真阅读课本15—17页,想一想,有理数的绝对值在数轴上看有什么意义?正数、零、负数的绝对值分别有什么特征?2.你会求一个数的绝对值吗?任何一个数的绝对值是一个什么数?3.已知一个数的绝对值,怎样求这个数?4.请思考互为相反数的两个数的绝对值有什么关系?【重点,难点】重点:绝对值的概念 难点:绝对值的实际意义是什么?为什么它是整数或零?【自主学习】一、绝对值的概念 我们把一个数在 上对应的点到 的 叫做这个数的绝对值二.求一个数(不涉及字母)的绝对值;会求绝对值已知的数1. 求下列各数的绝对值:一般地,一个正数的绝对值是它 ;一个负数的绝对值是它的 ;零的绝对值是 ;互为相反数的两个数的绝对值 。

3,3,0,51,2+--+2. 求绝对值等于2的数三、计算:1.19++-2.810---四、绝对值与相反数完成书本P16课内练习第1题【合作探究】1.见书本P17作业题第1、2题2.见书本P17作业题第3、4题3.见书本P17作业题第5题4.见书本P 17作业题第6题5.写出绝对值小于4的所有整数巩固提高:6.已知031=-++b a ,求a 与b 的值7. 如图,M,N,P,R 分别是数轴上的四个整数所对应的点,其中有一点是原点,且MN=NP=PR=1。

数a 对应的点在M 与N 之间,数b 对应的在P 与R 之间,若|a|+|b|=3,则原点是( )A .M 或R B.N 或P C.M 或N D.P 或R【课后作业】 班级 姓名 学号1.-0.125的相反数是 ,绝对值是2.数轴上表示-6 和6的两点,它们到原点的距离都是3.=-21 ;=--41 ;=-3121 4.=÷-31432 ;=--831611 ;=-π14.35.符号是“+”号,绝对值是7的数是6.绝对值是5.1,符号是“-”号的数是7.若两个数相等,那么它的绝对值 ;若两个数的绝对值相等,那么这两个数的关系为8.绝对值最小的有理数是 ,绝对值等于它的相反数的数是 ,绝对值等于它本身的数是 .(填“零”、“非负数”、“正数”、“非正数”、“负数”)9.抽查4个零件的长度,超过规定长度的记为正,不足规定长度的记为负,下列是4个零件的抽查结果,则其中误差最大的是( )A.-0.3B.-0.2C.0.1D.0.0510.若a 是有理数,则下列说法正确的是( ) A.-a 是负有理数 B.a 是正数 C. a 是非负数 D.-a 是负数 11.已知数轴上A 点到原点的距离是2,那么数轴上到A 点的距离为3的点所表示的数有( )A.1个B.2个C.3个D.4个12.探索下列一组数的规律,然后填空: ⋅⋅⋅--+-+-,13,,9,8,5,4,1,0x(1)根绝你探索的规律,则x 的值为 ;(2)利用你找出的x ,可得x 的相反数与x 的绝对值的和是 ;(3)探索出第10个数是 .13.一辆出租车从O 站出发,先向东行驶12km ,接着向西行驶10km ,然后又向东行驶5km(1)画一条数轴,以O 站出发,向东为正方向,在数轴上表示出租车每次行驶的终点位置;(2)求各次路程的绝对值的和.这个数据的实际意义是什么?【当堂检测】1.-8的绝对值是 ,记作 = .2.-3.2的相反数是 ,绝对值是 .3.=212 ;=0 ;=-31 4.=-6.1 ;=--21 5.计算:=--5.25.2 ;=⨯326.绝对值是21的数是励志名言:1、学习从来无捷径,循序渐进登高峰。

1.2.4 绝对值(第一课时)(导学案)-【上好课】七年级数学上册同步备课系列(人教版)

1.2.4 绝对值(第一课时)(导学案)-【上好课】七年级数学上册同步备课系列(人教版)

1.2.4 绝对值(第一课时)导学案一、学习目标:1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(数形结合思想)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.重点:能够正确地写出一个有理数的绝对值,知道一个有理数的绝对值是非负数.难点:从数、形两个方面理解绝对值的意义.二、学习过程:自学导航结合情境,思考:(1)在数轴上表示出这一情景.(2)它们所要跑的路线相同吗?_______________(3)它们所要跑的路程(线段OA、OB的长度)一样吗?__________________________________________________________________________【归纳】一般地,数轴上表示数a的点与_______的_______叫做数a的________,用“____”表示.考点解析考点1:求一个数的绝对值★★例1.求下列各数的绝对值:-12,5,-56,+45,0,-5.8.【题后思考】一个正数的绝对值是什么?一个负数的绝对值是什么?0的绝对值是什么?一个正数的绝对值是_______,一个负数的绝对值是它的______,0的绝对值是_____.即(1)如果 a>0,那么|a|=___;(2)如果 a=0,那么|a|=___;(3)如果 a<0,那么|a|=___.【迁移应用】1.计算:(1)|−2|=_____,|−0.75| =_____,-|−54|=_____;(2)|−23|的绝对值等于______,|−12|的相反数等于______. 2.写出下列各数的绝对值: -21,49,-7.8,+3.考点2:绝对值的意义理解★★★ 例2.下列说法正确的是( ) A.绝对值等于它本身的数是正数 B.绝对值等于它的相反数的数是负数 C.不存在绝对值最小的数D.一个数的绝对值越小,表示它在数轴上对应的点离原点越近 【迁移应用】1.数a ,b ,c 在数轴上的对应点的位置如图所示,那么这三个数中绝对值最大的是( )A.aB.bC.cD.无法确定2.如果|a |=a ,那么有理数a 一定是( )A.正数B.负数C.非正数D.非负数3.如图,在数轴上每隔一个单位长度取一个点,若点A,B 表示的数的绝对值相等,则点A 表示的数是_____.自学导航思考:相反数、绝对值的联系是什么?考点解析考点3:绝对值的非负性★★ 例 3.对于任意有理数m ,当m 为何值时,5|3|m --有最大值?最大值为多少?【迁移应用】 1.当x=____时,|x |+5取最小值,这个最小值是_____;当a=____时,36-|a −2|取最大值,这个最大值是_____. 2.已知|a |=8,|a|>a ,则a 等于_____.3.|x|=152,则x=________; |-x|=______;若|-2.5|=|-a|,则a=_________.例4.若|x-4|+|y-6|=0,求x+y的值.【迁移应用】1.若|m−2|+|n−7|=0,则|m+n|等于( )A.2B.7C.8D.92.若|x−1|+|y−5|+|z−3|=0,求x+2y+3z的值.考点4:绝对值几何意义的应用★★★★例5.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看最接近标准质量的是哪个足球?请用你所学的知识进行解释.【迁移应用】已知某零件的标准直径是100mm,超过标准直径的毫米数记作正数,不足标准直径的毫米数记作负数,检验员某次抽查了5件样品,记录如下:(1)指出哪件样品的大小最符合要求;(2)如果规定误差的绝对值在0.18mm以内的是正品,误差的绝对值在0.18~0.22mm 的是次品,误差的绝对值超过0.22mm的是废品,那么这5件样品分别属于哪类产品?。

《绝对值》导学案

《绝对值》导学案

1.2.2 绝对值教学目标1.理解、掌握绝对值的概念,体会绝对值的作用与意义.2.掌握求一个已知数的绝对值的方法.3.体验运用直观知识解决数学问题的过程,渗透数形结合思想和分类讨论的思想,并注意培养学生的思维能力.教学重难点绝对值定义的得出、意义的理解及求一个负数的绝对值.教学过程导入新课提问:1.同学们,你们的家在学校的哪边?2.从你的家到学校有没有一定的距离?3.你的家到学校的距离与家在学校的哪个方向有关系吗?教师结合学生的回答引出新课.(板书课题:绝对值)推进新课1.绝对值的几何意义问题1:请同学们在练习本上画一条数轴,并观察表示3的点与原点之间有几个单位长度?教师对学生的回答,给予鼓励性评价后启发学生继续思考:哪一个数表示的点与原点也相距3个单位长度?教师正确评价学生的回答,若学生存在语言叙述不清之处,给予纠正后直接指出:+3和-3的绝对值相等,+5和-5的绝对值相等.自主探究:结合教师的叙述,猜一猜什么是绝对值?教师参与学生的讨论,鼓励学生大胆说出自己的见解,最后师生共同总结归纳出绝对值的概念及其表示方法.(板书:在数轴上,表示数a的点到原点的距离,叫做数a的绝对值,记作︱a︱)特别提醒:表示数0的点即原点,故︱0︱=0.问题2:(1)用数轴上的点表示下列各数:2,-4.5,35,-35,0;(2)观察上述各点在数轴上的位置,写出这些数的绝对值.教学策略:教师首先参与学生的讨论,评价学生的方法,在学生练习时巡视指导,最后在展示台上展示个别学生的解答,借以讲评和纠正.2.绝对值的代数意义问题3:填表:教学策略:通过让学生求出不同的数的绝对值,观察其结果,从而归纳出正数、负数和0的绝对值的情况,以表格的形式将绝对值、数本身及相反数进行比较,为归纳绝对值的特征做准备.学生独立完成后,再对所得的规律进行小组交流讨论.教师归纳总结:由绝对值的定义可知:(1)一个正数的绝对值是它本身;(2)一个负数的绝对值是它的相反数;(3)0的绝对值是0.3.例题分析 【例题】 求下列各数的绝对值: -38,+38,-2.5,2.5. 教学策略:学生独立完成,教师评价学生的答题情况即可.解:⎪⎪⎪⎪-38=38; ⎪⎪⎪⎪+38=38; |-2.5|=2.5;|2.5|=2.5.自主探究: (1)-38和+38,-2.5和2.5是什么关系? (2)它们的绝对值是否相等?(3)由此得出什么规律?教师加入讨论,最后师生共同总结,教师板书.(板书:互为相反数的两个数的绝对值相等,反之绝对值相等、符号相反的两个数互为相反数)4.巩固训练(1)课本练习.(2)判断题:①有理数的绝对值一定是正数.( )②绝对值最小的数是0.( )③如果两个数的绝对值相等,那么这两个数相等.( )④如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大.( )⑤绝对值等于它本身的数一定不是负数.( )⑥绝对值等于1的数有两个.( )本课小结谈谈本节课你的收获.教师简要点评:本节课从几何与代数两个方面,说明了绝对值的意义,由绝对值的意义可知,任何数的绝对值都是非负数,绝对值的代数意义可以作为求一个数的绝对值的方法.一、数轴的规范画法1.三要素:原点、正方向和单位长度.2.刻度要在直线上,且是细短线;数字在下,字母在上.数轴有原点、正方向和单位长度三个要素,缺一不可.这三个要素都是规定的,也就是说,可以根据情况,灵活选定原点的位置、正方向的朝向、单位长度的大小(但要注意,一经选定,就不能再随意更改了).二、数轴上的点与有理数用数轴上的点表示有理数(正数在数轴原点的右边,负数在原点的左边,0用原点表示);任意一个有理数,都可以用数轴上的一个点表示.但是反过来,数轴上的任意一点,却并不一定表示一个有理数.因为数轴上除了表示有理数的点以外,还有表示无理数(以后会学到)的点.因此,不能说数轴上的任意一个点,都可以用有理数表示,也不能说有理数与数轴上的点一一对应.只要求学生知道“所有的有理数,都可以用数轴上的点表示”就可以了.三、“相反意义的量”与“相反数”的区别认为相反意义的量是带“单位”的相反数是错误的.因为相反意义的量包含两层意思:一是它们意义相反,符号相反;二是它们都表示一定的数量(在数量上它们不一定相同).例如水库水位上升0.7米和下降0.4米就是两个具有相反意义的量.如果把上升0.7米记作+0.7米,那么下降0.4米就应记作-0.4米.而大小相等,符号相反的两个数是互为相反的数.例如-2和+2互为相反数.显然两个概念的区别不仅在于前者表示两个量,后者表示两个数,而且在于前者的绝对值可以不等,后者两个数的绝对值一定相等.四、求用字母表示的数的绝对值求一个数的绝对值,首先判断这个数是正数、零还是负数,再根据“正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0”,去掉绝对值符号“||”,从而求得这个数的绝对值.当这个数是用字母表示的数时,必须切记,去掉绝对值符号,要先看绝对值符号里面的数是什么性质的数,若绝对值符号里面的数是非负数,那么这个数的绝对值就是它本身,此时绝对值符号“||”就相当于小括号“()”的作用;若绝对值符号里面的数是负数,那么这个负数的绝对值就是这个负数的相反数,这时,去掉绝对值符号,就要把绝对值里面的数添上括号,再在括号前面加上“-”号.。

绝对值导学案

绝对值导学案

绝对值(1)一、学习目标1、借助数轴,初步理解绝对值的概念;能求一个数的绝对值。

2、通过应用绝对值解决实际问题,渗透数形结合的思想方法,并培养学生的概括能力。

3、帮助学生体会绝对值的意义,感受数学在生活中的价值。

教学重难点:绝对值的意义。

二、自学指导1、在数轴上3到原点的距离是___,-5到原点的距离是____,到原点的距离是6的点是__________,到原点的距离是1的点有___个。

2、两辆汽车从同一处出发,分别向东、西方向行驶10千米,到达A ,B 两处,它们的行驶路线相同吗?它们的行驶路程相等吗?3、数轴上表示数a 的点到原点的________叫做数a 的__________。

记作__________。

则问题中__10__,10=-=三、合作探究小组合作完成以下题目__0__,34__,75__,3.5__,2==-=+=-=+ 把你发现的规律写在下面,并在小组内验证。

正数的绝对值是________,负数的绝对值是________,0的绝对值是__ 即__,0__,0__,0=<===>a a a a a a 那么如果那么如果那么如果四、比比谁做又快又准1、写出下列各数的绝对值:0100112259.386,,,,,,--- 通过以上数据可以发现:一个数的绝对值越大,它表示的点在数轴上越靠_______(右或左),一个数的绝对值越大,表示它的点在数轴上离原点越_______(近或远)。

2、判断下列各式是否正确:5-5-35-5-25-51===),(),()(3、画出一个数轴,并把下列各数的绝对值表示的点在数轴标出来。

3-0213-2534.5-8,,,,,,++.0__00__总是时,当总是,于任意数通过本题可以发现,对a a a a ≠ 五、我的收获与疑惑。

小升初数学导学案-绝对值-人教新课标

小升初数学导学案-绝对值-人教新课标

小升初数学导学案-绝对值-人教新课标一、引言在小学阶段,学生已经接触到了一些基本的数学概念和运算方法,为进入初中阶段的学习打下了基础。

绝对值作为初中数学中的一个重要概念,对于学生后续学习不等式、函数等知识具有重要意义。

本导学案旨在帮助小升初学生理解绝对值的概念,掌握绝对值的性质和运算方法,为初中数学学习奠定基础。

二、绝对值的概念1. 定义:绝对值是一个数与零之间的距离。

在数轴上,一个数的绝对值表示这个数所对应的点到原点的距离。

2. 表示方法:绝对值用符号“| |”表示,例如,数a的绝对值表示为|a|。

3. 性质:(1)非负性:任何数的绝对值都是非负数,即|a|≥0。

(2)对称性:互为相反数的两个数的绝对值相等,即|-a|=|a|。

(3)等价性:绝对值相等的两个数相等或互为相反数,即|a|=|b|表示a=b或a=-b。

三、绝对值的运算1. 正数的绝对值:一个正数的绝对值等于它本身,即如果a>0,那么|a|=a。

2. 负数的绝对值:一个负数的绝对值等于它的相反数,即如果a<0,那么|a|=-a。

3. 零的绝对值:零的绝对值是零,即|0|=0。

4. 含绝对值的表达式运算:(1)如果a≥0,那么|a b|=a b;如果a<0,那么|a b|=-(a b)。

(2)如果a≥0,那么|a-b|=a-b;如果a<0,那么|a-b|=-(a-b)。

四、应用与拓展1. 在数轴上表示绝对值:绝对值可以帮助我们在数轴上表示一个数的范围。

例如,|x-3|≤2表示x在数轴上距离3的点的范围在[-1,5]之间。

2. 绝对值在实际问题中的应用:绝对值可以表示距离、温度变化等实际问题中的非负量。

例如,某地气温从早上8点到下午2点下降了5℃,可以表示为|-5|=5℃。

3. 绝对值不等式的解法:通过分析绝对值的性质,我们可以求解含绝对值的不等式。

例如,|x-2|<3可以分解为两个不等式:x-2<3和x-2>-3,进而求解得到x的范围。

《1.2.4 第1课时 绝对值》教案和导学案

《1.2.4 第1课时 绝对值》教案和导学案

1.2.4 绝对值 《第1课时 绝对值》教案【教学目标】1.理解绝对值的概念及其几何意义,通过从数、形两个方面理解绝对值的意义,初步了解数形结合的思想方法;(重点)2.会求一个数的绝对值,知道一个数的绝对值,会求这个数;(难点) 3.通过应用绝对值解决实际问题,培养学生的学习兴趣,提高学生对数学的好奇心和求知欲.【教学过程】 一、情境导入从一栋房子里,跑出有两只狗(一灰一黄),有人在房子的西边3米处以及房子的东边3米处各放了一根骨头,两狗发现后,灰狗跑向西3米处,黄狗跑向东3米处分别衔起了骨头.问题:1.在数轴上表示这一情景. 2.两只小狗它们所跑的路线相同吗? 3.两只小狗它们所跑的路程一样吗?在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,比如:在计算小狗所跑的路程时,与狗跑的方向无关,这时所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.二、合作探究探究点一:绝对值的意义及求法 【类型一】 求一个数的绝对值-3的绝对值是( ) A .3 B .-3 C .-13 D.13解析:根据一个负数的绝对值是它的相反数,所以-3的绝对值是3.故选A.方法总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【类型二】利用绝对值求有理数如果一个数的绝对值等于23,则这个数是__________.解析:∵23或-23的绝对值都等于23,∴绝对值等于23的数是23或-23.方法总结:解答此类问题容易漏解、考虑问题不全面,所以一定要记住:绝对值等于某一个数的值有两个,它们互为相反数,0除外.【类型三】化简绝对值化简:|-35|=______;-|-1.5|=______;|-(-2)|=______.解析:|-35|=35;-|-1.5|=-1.5;|-(-2)|=|2|=2.方法总结:根据绝对值的意义解答.即若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=-a.探究点二:绝对值的性质及应用【类型一】绝对值的非负性及应用若|a-3|+|b-2015|=0,求a,b的值.解析:由绝对值的性质可知|a-3|≥0,|b-2015|≥0,则有|a-3|=|b-2015|=0.解:由绝对值的性质得|a-3|≥0,|b-2015|≥0,又因为|a-3|+|b-2015|=0,所以|a-3|=0,|b-2015|=0,所以a=3,b=2015.方法总结:如果几个非负数的和为0,那么这几个非负数都等于0.【类型二】绝对值在实际问题中的应用第53届世乒赛于2015年4月26日至5月3日在苏州举办,此次比赛中用球的质量有严格的规定,下表是6个乒乓球质量检测的结果(单位:克,超过标准质量的克数记为正数,不足标准重量的克数记为负数).(1)请找出三个误差相对较小一些的乒乓球,并用绝对值的知识说明. (2)若规定与标准质量误差不超过0.1g 的为优等品,超过0.1g 但不超过0.3g 的为合格品,在这六个乒乓球中,优等品、合格品和不合格品分别是哪几个乒乓球?请说明理由.解析:由绝对值的几何定义可知,一个数的绝对值越小,离原点越近,将实际问题转化为距离标准质量越小,即绝对值越小,就越接近标准质量.解:(1)四号球,|0|=0正好等于标准的质量,五号球,|-0.08|=0.08,比标准球轻0.08克,二号球,|+0.1|=0.1,比标准球重0.1克.(2)一号球|-0.5|=0.5,不合格,二号球|+0.1|=0.1,优等品,三号球|0.2|=0.2,合格品,四号球|0|=0,优等品,五号球|-0.08|=0.08,优等品,六号球|-0.15|=0.15,合格品.方法总结:判断质量、零件尺寸等是否合格,关键是看偏差的绝对值的大小,而与正、负数无关.三、板书设计1.绝对值的几何定义:一般地,数轴上表示数a 的点与原点的距离叫作数a 的绝对值,记作|a |.2.绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.用符号表示为:|a |=⎩⎨⎧a (a >0)0(a =0)-a (a <0)或|a |=⎩⎨⎧a (a ≥0)-a (a <0)【教学反思】绝对值这个名词既陌生,又是一个不易理解的数学术语,是本章的重点内容,同时也是一个难点内容.教材从几何的角度给出绝对值的概念,也就是从数轴上表示数的点的位置出发,得出定义的.在数学教学过程中,要千方百计教给学生探索方法、使学生了解知识的形成过程,并掌握更多的数学思想、方法;教学过程中做到形数兼备、数形结合.《第1课时绝对值》导学案【学习目标】:1.理解绝对值的概念及性质.2.会求一个有理数的绝对值.【重点】:理解绝对值的概念及性质.【难点】:会求一个有理数的绝对值.【自主学习】一、知识链接1.a的相反数表示为 .2.在数轴上表示-5和5的点,它们到原点的距离分别是多少?表示-34和34的点呢?二、新知预习问题1:什么是绝对值?怎样表示一个有理数的绝对值?【自主归纳】在数轴上,表示一个数的点到叫做这个数的绝对值,用“”表示.问题2:(1)一个正数的绝对值是什么?(2)一个负数的绝对值是什么?(3)0的绝对值是什么?【自主归纳】一个正数的绝对值是__________;一个负数的绝对值是它的__________;0的绝对值是______.由于绝对值表示距离,猜想:一个数的绝对值是一个_______数(不小于_____的数).三、自学自测求下列各数的绝对值:215 ,101,-4.75,10.5.四、我的疑惑______________________________________________________________________________________________________________________________________________________【课堂探究】 要点探究探究点1:绝对值的意义及求法问题:(1)甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正.两辆出租车都从O 地出发,甲车向东行驶10km 到达A 处,记作 km ,乙车向西行驶10km 到达B 处,记做 km.(2)以O 为原点,取适当的单位长度画数轴,并在数轴上标出A 、B 的位置,则A 、B 两点与原点距离分别是多少?它们的实际意义是什么?要点归纳:我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值,用“| |”表示.-5到原点的距离是5,所以-5的绝对值是 ,记做 =5; 0到原点的距离是 ,所以0的绝对值是 ,记做|0|= ; 4到原点的距离是 ,所以4的绝对值是 ,记做|4|= .探究点2:绝对值的性质及应用观察与思考:观察这些数的绝对值,它们有什么共同点? |5|=5 |-10|=10 |3.5|= 3.5 |100|=100 |-3|=3 |50|=50 |-4.5|=4.5 |-5000|=5000 |0|=0 …思考1: 一个正数的绝对值是什么? 一个负数的绝对值是什么? 0的绝对值是什么?结论1:一个正数的绝对值是正数,一个负数的绝对值是正数,0的绝对值是0.任何一个有理数的绝对值都是非负数.结论2:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数. 思考2:若字母a 表示一个有理数,你知道a 的绝对值等于什么吗? (1)当a 是正数时,|a |=____; 正数的绝对值是它本身. (2)当a 是负数时,|a |=____; 负数的绝对值是它的相反数. (3)当a=0时,|a |=____. 0的绝对值是0.反思:相反数、绝对值的联系是什么? 互为相反数的两个数的绝对值相等.绝对值相等,符号相反的两个数互为相反数.例1 求下列各数的绝对值:12,-53, -7.5, 0.例2 填空(1)绝对值等于0的数是______, (2)绝对值等于5.25的正数是_____, (3)绝对值等于5.25的负数是______, (4)绝对值等于2的数是_______.例3:若|a|+|b|=0,求a,b 的值.提示:由绝对值的性质可得|a|≥0,|b|≥0.例4:已知|x-4|+|y-3|=0,求x+y 的值.归纳总结: 几个非负数的和为0,则这几个数都为0.1.判断下列说法是否正确.(1)一个数的绝对值是4,则这个数是-4. (2)|3|>0. (3)|-1.3|>0.(4)有理数的绝对值一定是正数. (5)若a =-b ,则|a|=|b|. (6)若|a|=|b|,则a =b. (7)若|a|=-a ,则a 必为负数. (8)互为相反数的两个数的绝对值相等.2.如果3>a ,则______3=-a ,______3=-a .3.已知|a-1|+|b+2|=0,求a,b的值.。

绝对值导学案

绝对值导学案

第二章有理数及其运算3.绝对值一、教学目标(1)借助数轴,理解绝对值和相反数的概念(2)知道|a|的含义以及互为相反数的两个数在数轴上的位置关系。

(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。

(4)通过应用绝对值解决实际问题,体会绝对值的意义和作用。

二.教学重点和难点教学重点:理解绝对值的概念;求一个数的绝对值;比较两个负数的大小。

教学难点:利用绝对值比较两个负数的大小。

3.三、教学过程第一环节创设情境,导入新课活动内容1: 3和-3有什么相同点与不同点?3/2与-3/2,5和-5呢?活动内容2:点将游戏一。

A同学任意说出一个有理数,再随意地点另一个同学B回答它的相反数。

B同学回答后,也任意说出一个有理数,再点另一个同学C回答它的相反数……以此类推,约有一半的学生参与后,游戏结束。

活动内容3:将上面三组数用数轴上的点表示出来,每组数所对应的点在数轴上的位置有什么关系?实际效果:通过数、游戏、形多个方面让学生认识相反数,学生很快理解相反数,全体学生都能顺利的说出一个数的相反数。

第二环节合作交流,探索新知活动内容:让学生观察图画,并回答问题,“两只狗分别距原点多远?”1.引入绝对值概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。

一个数a 的绝对值记作│a │.如│+3│=3,│-3│=3,│0│=0.2.例1 求下列各数的绝对值:- 7.8, 7.8, - 21, 21,-94,94, 0 (学生充分思考后,让学生回答,老师板书)3.议一议:(1)互为相反数的两个数的绝对值有什么关系?(2)一个数的绝对值与这个数有什么关系?(给学生充分的时间思考、探究,老师个别指导;然后小组交流)4.通过上面例子,引导学生归纳总结出:互为相反数的两个数的绝对值相等.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.)5.点将游戏二.A 同学任意说出一个有理数,再随意地点另一个同学B 回答它的绝对值。

2023最新-七年级数学《绝对值》教案(优秀4篇)

2023最新-七年级数学《绝对值》教案(优秀4篇)

七年级数学《绝对值》教案(优秀4篇)Excel中经常需要使用到函数计算绝对值,用函数具体该如何计算绝对值呢?下面是整理的4篇《七年级数学《绝对值》教案》,我们不妨阅读一下,看看是否能有一点抛砖引玉的作用。

七年级数学《绝对值》教案篇一教学目标1、知识与技能。

①能根据一个数的绝对值表示距离,初步理解绝对值的概念,能求一个数的绝对值。

②通过应用绝对值解决实际问题,体会绝对值的意义和作用。

2、过程与方法经历绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力。

3、情感、态度与价值观①通过解释绝对值的几何意义,渗透数形结合的思想。

②体验运用直观知识解决数学问题的成功。

教学重点难点重点:给出一个数,会求它的绝对值。

难点:绝对值的'几何意义、代数定义的导出。

教与学互动设计(一)创设情境,导入新课活动:请两同学到讲台前,分别向左、向右行3米。

交流:①他们所走的路线相同吗?②若向右为正,分别可怎样表示他们的位置?③他们所走的路程的远近是多少?(二)合作交流,解读探究观察出示一组数6与—6,3.5与—3.5,1和—1,它们是一对互为________, 它们的__________不同,__________相同。

总结:例如6和—6两个数在数轴上的两点虽然分布在原点的两边, 但它们到原点的距离相等,如果我们不考虑两点在原点的哪一边,只考虑它们离开原点的距离,这个距离都是6,我们就把这个距离叫做6和—6的绝对值。

绝对值:在数轴上表示数a的点与原点的距离叫做a的绝对值,记作│a│。

想一想—3的绝对值是什么?教学设计示例篇二一、重点、难点分析绝对值概念既是本节的教学重点又是教学难点。

关于绝对值的概念,需要明确的是无论是绝对值的几何定义,还是绝对值的代数定义,都揭示了绝对值的一个重要性质——非负性,也就是说,任何一个有理数的绝对值都是非负数,即无论a取任意有理数,都有。

教材上绝对值的定义是从几何角度给出的,也就是从数轴上表示数的点在数轴上的位置出发,得到的定义。

绝对值导学案

绝对值导学案

绝对值导学案绝对值是数学中的一个概念,用来表示一个数与0之间的距离。

在数学中,绝对值常常用符号“|x|”来表示,其中x可以是任意实数。

绝对值有许多有趣且实用的性质,我们将在本导学案中探索并学习这些性质。

一、绝对值的定义及性质1. 绝对值的定义绝对值是一个数与0之间的距离。

对于任意实数x,它的绝对值表示为|x|。

2. 绝对值的非负性质对于任意实数x,其绝对值永远为非负数,即|x| ≥ 0。

3. 绝对值的正数性质对于任意实数x,如果x > 0,则 |x| = x;如果x < 0,则 |x| = -x。

4. 绝对值的零性质对于任意实数x,如果x = 0,则 |x| = 0。

二、绝对值的计算与应用1. 计算绝对值对于给定的实数x,可以使用以下步骤计算其绝对值:a) 如果x > 0,则|x| = x;b) 如果x < 0,则|x| = -x;c) 如果x = 0,则 |x| = 0。

2. 用途1:表示距离绝对值的主要用途之一是表示距离。

例如,如果一个物体在数轴上的位置是x,则与该物体的距离是|x|。

3. 用途2:解决不等式问题绝对值经常用于解决不等式问题。

当我们遇到形如|f(x)| > a的不等式时,可以将问题转化为-f(x) > a 或 f(x) < -a的形式,并求解。

4. 用途3:确定数的范围绝对值还可以用来确定某个数的范围。

例如,如果|x - 3| ≤ 5,则x 的值在-2到8之间。

三、等式和不等式中的绝对值1. 绝对值的基本性质对于任意实数a和b,有以下两个基本性质:a) |a| = |-a|,即绝对值的值与正负号无关;b) |a * b| = |a| * |b|,即绝对值的积等于各因数的绝对值之积。

2. 绝对值的等式对于两个实数a和b,若|a| = b,则有以下两种情况:a) a = b 或 a = -b;b) 如果b = 0,则a = 0。

3. 绝对值的不等式对于两个实数a和b,若|a| < b (或|a| > b),则有以下两种情况:a) a < b 且 a > -b (或 a > b 或 a < -b);b) 如果b = 0,则a ≠ 0。

七年级数学上册《绝对值》导学案

七年级数学上册《绝对值》导学案

人教版七年级数学上册有理数1.2.4绝对值(1)导学案学校班级姓名一、教学目标:1、知识与技能:(1)借助数轴初步理解绝对值的概念,能求一个数的绝对值。

(2)理解绝对值的意义。

(3)掌握绝对值的性质。

2、过程与方法:(4)能初步解释数形结合和分类讨论的思想。

(5)发展初步的几何直观能力。

(6)学习“观察——归纳”的思想方法。

3、情感态度与价值目标:(7)初步感受从特殊到一般和从一般到特殊的思维方式。

(8)进一步养成认真、理论联系实际的科学态度,体验运用几何直观能力解决数学问题的成功感.4、教学重点:理解绝对值的概念,能求一个数的绝对值。

5、教学难点:理解绝对值的性质。

二、教学过程活动一:创设情景,导入新课把公路看成一条直线,家作为原点,规定向东为正,1公里记作一个单位长度,请建立一条数轴并标出小明可能所在的位置。

情景问题:1.我们的行驶路线相同吗? 2.我们行驶路程的远近相同吗?3.各自所付的车费一样吗?为什么?活动二:合作交流,概念探究思考:数轴上表示3的点到原点的距离是;数轴上表示-3的点到原点的距离是;数轴上表示0的点到原点的距离是;想一想:互为相反数的两个数到原点的距离有什么关系?你能给大家举几对吗?通过观察、比较、归纳能得出什么结论?1、绝对值的概念:2、绝对值的表示:3、做一做:(1)、写出下列各数的绝对值(课本P11练习1):(1) 6 (2) -8 (3) -3.9 (4)52(5)511(6) 100 (7)0(2)、写出下列各数的绝对值:(1)|+3|= |7|= |+8.2|=;(2)|-3|= |-7|= |-8.2|=;(3)|0|=。

议一议一个数的绝对值与这个数有什么关系?互为相反数的两个数的绝对值有什么关系?计算的结果有什么特点?3、绝对值的代数意义:一个正数的绝对值是它;一个负数的绝对值是它的.零的绝对值是;互为相反数的两个数的绝对值 . 表示活动三:应用迁移问题:把开头的问题改为“离家a公里”,a是什么数?(1)当a是正数时, a>0, |a|=____ (2) 当a是负数时, a<0, |a|=____(3) 当a=0时, a=0 |a|=____4、绝对值的性质:活动四:例题讲解:例2求绝对值等于4的数。

绝对值导学案

绝对值导学案

2.3绝对值执笔教师:使用教师:学习目标1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。

2、通过应用绝对值解决实际问题体会绝对值的意义和作用。

导学重点:正确理解绝对值的概念导学难点:负数大小比较学习过程自学过程:1、什么叫绝对值?在数轴上,一个数所对应的点与的叫做这个数的绝对值.例如+5的绝对值等于5,记作|+5|=5 ;-3的绝对值等于3,记作。

2、绝对值的特点有哪些?(1)一个正数的绝对值是;例如,|4|=, |+7.1| =。

(2)一个负数的绝对值是;例如,|-2|=,|-5.2|=。

(3)0的绝对值是.容易看出,两个互为相反数的数的绝对值.如|-5|=|+5|=5.合作学习:1.已知|a|=5,求a的值。

2、填空:(1)+3的符号是_____,绝对值是_ _____;(2)-3的符号是_____,绝对值是______;(3)- 的符号是____,绝对值是______;(4)10-5的符号是_____,绝对值是______3、填空:(1)符号是+号,绝对值是7的数是________;(2)符号是-号,绝对值是7的数是________;(3)符号是-号,绝对值是035的数是________;(4)符号是+号,绝对值是1 的数是________;4、(1)绝对值是4的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)有没有绝对值是-2的数?3.理解:若用a表示一个数,当a 是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:(1)如果a>0,那么|a|=a;(2)如果a<0,那么|a|=-a;(3)如果a=0,那么|a| =0。

4. 比较两个负数的大小由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小.拓展练习1.若|x -2|+|y+3|+|z-5|=0计算:(1)x,y,z的值.(2)求|x|+|y|+|z|的值课堂检测:一、选择题:1、下列说法中正确的有()①互为相反数的两个数的绝对值相等;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④一个数的绝对值相反数一定是负数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值的应用 导学案
学习内容:
01【知识再现】绝对值的基础知识:
(1)在数轴上,一个数所对应的点与____________的距离叫做该数的绝对值。

(2) 正数的绝对值是_____________________; 负数的绝对值是__________________; 0的绝对值是_____________________。

①两个负数比较大小,绝对值大的_________。

②互为相反数的两数的绝对值________。

(3)求下列各数的绝对值:)4
3
(43088
----,,,,
总结:① 解决思路:“先定号再去绝对值” ② 结果:非负数、唯一
课 题 课型 学生姓名
班级
专题:绝对值的应用
复习课
学习 目标
(1)熟悉绝对值相关的基础知识。

(2)会运用绝对值知识解决已知数求绝对值、已知绝对值求数的简单题型。

(3)会运用数形结合、整体的数学思想等解决绝对值化简问题。

※(4)感受绝对值的几何意义,了解数轴上的动点问题的解决思路。

重点 会运用绝对值知识解决已知数求绝对值、已知绝对值求数的简单题型。

会运用数形结合的数学思想解决绝对值化简问题。

难点
会运用数形结合的数学思想解决绝对值化简问题。

学前准备
结合教材提前复习导学案知识再现环节。

导学案、练习本。

=
a )
0(0=a )
>(0a a )
<(0a a -
【变式练习】已知数 求绝对值:
02【典例精析】已知绝对值 求数:
例一:(1)一个数的绝对值是6,这个数是_______;数轴上与原点的距离为9的数是_______.
(2).________,)3(=--=-x x 则若
【变式练习】已知绝对值 求数:
4.
5.
总结:
① 思路:整体思想、代数意义or 数形结合
② 结果:绝对值非零→解不唯一、绝对值为零→解唯一;
单项式绝对值→相反数、多项式绝对值→不等两解。

03【典例精析】绝对值化简:
例二:如图,已知数轴上的三点A 、B 、C 分别表示有理数a 、b 、c 。

化简:| a - b | - | a + c | + | b - c |.
解题步骤:①定号;②去绝对值(相反数or 它本身、加括号);③去括号 ;④合并化简
【变式练习】绝对值化简:
6. 如图,已知数轴上的三点A 、B 、C 分别表示有理数a 、b 、c 。

化简:| b - a | + 2 | c - a | + 2 | c - b |.
7. 若a <1,则 | 3 - a | - | a - 1 | 的化简结果为 _________________.
0 C
B A
B O
C A
【勇攀高峰】
8. 如图:已知数轴上点
A 表示的数为
8,B 是数轴上位于点A 左侧的一点,且AB=20. (1)写出数轴上点B 表示的数:_______.
(2) | 5 - 3 | 表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上对应点之间的距离,例如| x - 3 | 的几何意义是数轴上表示3的点与表示x 的点之间的距离.试探索: ① 若| x - 8 | = 2,则x = ________;
② 若| x - 8 | ≤ 2,则x 的取值范围是________________. ③ | x + 12 | + | x - 8 | 的最小值为____________.
【数轴上的动点问题】(思考)
如图:已知数轴上点B 表示的数为 -12.
动点P 、Q 分别从O 、B 两点同时出发,点P 以每秒5个单位长度沿数轴向右匀速运动,点Q 以每秒10个单位长度沿数轴向右匀速运动,设运动时间为t (t >0)秒,
则当 t =__________秒时,Q 点与P 点重合;当t =_____________秒时,PQ 两点的距离为4.
O
A
B
8
B
-12。

相关文档
最新文档