原位杂交技术的操作详解及小贴士

合集下载

原位杂交技术的操作详解及小贴士

原位杂交技术的操作详解及小贴士

原位杂交技术的操作详解及小贴士原位杂交技术是一种基因组分析方法,用于确定一些特定DNA序列在细胞或组织中的位置。

该技术可以帮助研究人员了解基因组的结构和功能,以及基因在不同细胞类型中的表达模式。

下面将详细介绍原位杂交技术的操作步骤及一些建议。

操作步骤:1.准备DNA探针:首先需要选择合适的DNA探针,用于与目标DNA序列杂交。

DNA探针可以是标记有荧光分子或放射性同位素的DNA序列,用于在杂交后的图像检测或放射计数。

2.制备标本:从目标细胞或组织中提取DNA,并进行适当的处理步骤以便于杂交反应。

其中的处理步骤包括固定、裂解、脱氧核酸酶处理等。

3.杂交反应:在杂交缓冲液中,加入DNA探针和标本DNA,并进行杂交反应。

杂交条件(包括温度、时间和盐浓度等)会根据探针和目标序列的碱基配对特性进行选择。

对于不同的实验目的,例如检测靶基因在组织中的表达模式,杂交条件需要根据实验要求确定。

4.洗涤:在杂交反应结束后,需要进行洗涤步骤以去除非特异杂交的DNA。

通过在高温、高盐浓度或低温条件下进行洗涤,可以选择性地去除未与目标DNA序列配对的DNA。

5.可视化和成像:根据DNA探针的标记方式,采用不同的方法进行可视化和成像。

对于荧光标记的探针,可以使用荧光显微镜观察,并通过分析图像来确定特定DNA序列的位置。

对于放射性标记的探针,可以使用辐射自显像片、液闪仪或放射计数仪等设备进行检测和计数。

小贴士:1.选择合适的探针:为了获得准确的结果,选择合适的探针非常重要。

探针的特异性和亲和力会直接影响到杂交的特异性和效率。

因此,在设计和合成探针时,需要考虑目标DNA序列的长度、特异性和亲和力等因素。

2.优化杂交条件:杂交条件的优化对于获得准确的结果非常重要。

温度、盐浓度和杂交时间是影响杂交反应的重要因素。

通过调整这些条件,可以增强目标DNA和探针的碱基配对能力,提高杂交特异性和效率。

3.正确选择洗涤条件:洗涤步骤的正确选择可以帮助去除非特异杂交的DNA。

原位杂交实验操作步骤

原位杂交实验操作步骤

原位杂交实验操作步骤原位杂交实验操作步骤撰写人:范为民实验原理原位杂交是指借助于核酸分子杂交的方法,在显微镜水平检测和定位特异的核苷酸片段。

现在原位杂交已经成为在分子水平研究肿瘤和遗传性疾病的发生,发展和调控等根本性问题的有力工具。

试剂盒本实验室常用的原位杂交试剂盒是博士德公司生产的敏感加强型原位杂交检测试剂盒,此试剂盒分为两种,一种为过氧化物酶(POD)检测(MK1030型),一种为碱性磷酸酶(AP)检测系统(MK1032型),用于mRNA的杂交。

过氧化物酶(POD)检测的最终信号为棕黄色,而碱性磷酸酶(AP)检测的信号为紫色,因后者信号比较突出,所以一般采用后一种检测方法。

两种检测方法的实验步骤相差不多,所用洗脱缓冲液也大同小异。

用于杂交的探针也可以分为两种,一种是DNA探针,即是用DNA与组织中的mRNA杂交,另一种是RNA 探针,即用RNA与组织中的mRNA杂交。

DNA探针处理操作简单,但杂交信号一般不如RNA探针强烈,所以条件允许的话一般采用RNA探针。

下面先介绍碱性磷酸酶(AP)检测试剂盒,采用RNA作为探针的操作步骤。

实验步骤原位杂交实验主要包括三大部分,即组织冰冻切片、RNA探针标记、原位杂交三部分。

(一)组织冰冻切片1. 实验准备(1)原位杂交专用载玻片:用多聚赖氨酸处理后的载玻片,使切片紧密粘附在玻片上,可以用于后面的洗脱。

一般一张载玻片上可以贴至多十张切片(可以是不同组织的切片),所以需要玻片的数目需要根据实验的要求而定。

这种专用载玻片可以从中杉金桥公司购买,目前价格是每片2.2元,玻片有一面的一端是毛玻璃,用于标记组织名称等, 切片应该贴在此面,切勿贴到反面。

(2)缓冲液配备1.1器具准备剪刀、镊子各三把,开壳钳一把,100ml量筒一个,磁力搅拌子一个;100ml试剂瓶一个,250ml试剂瓶三个。

以上器具均洗净后置于180摄氏度以上烘烤6小时以上。

铅笔、显微镜、冰、吸水纸、一次性塑料手套等。

原位杂交步骤自己整理的精讲

原位杂交步骤自己整理的精讲

原位杂交步骤自己整理的精讲原位杂交是一种常用的实验方法,可以用来检测DNA或RNA序列在细胞或组织中的分布情况。

这种方法可以帮助研究人员确定基因在染色体上的位置,并研究基因的表达和调控。

下面是原位杂交的详细步骤:1.样品处理:首先,需要提取并处理样品中的细胞或组织。

这一步骤通常包括细胞固定、组织切片和蛋白酶处理等。

细胞固定能够保持细胞的形态和结构,而组织切片则能够使得样品更容易进行观察和分析。

蛋白酶处理的目的是通过消化蛋白质来提高核酸的可达性。

2.探针设计:在进行原位杂交之前,需要准备一个能够与目标DNA或RNA序列互补配对的探针。

这个探针通常是由DNA或RNA序列构建而成的,可以通过人工合成或PCR扩增获得。

在设计探针时,一般要考虑到探针的长度、碱基组成和互补性等因素。

3.标记探针:为了便于后续的检测,需要将探针标记上报告标记物。

常用的报告标记物有荧光染料、放射性同位素和酶等。

标记探针的方法通常包括非放射性标记和放射性标记两种方式,具体选择哪一种方法取决于实验的需求和要求。

4.杂交反应:将标记好的探针与样品中的DNA或RNA序列进行杂交反应。

这种反应通常在固定样本上进行,样品和探针会在适当的杂交缓冲液中反应一段时间。

杂交反应的温度和时间会根据探针的长度和互补性等因素进行调节。

反应结束后,通常需要进行洗涤以去除未结合的探针和杂交缓冲液。

5.可视化和分析:经过洗涤之后,探针与目标DNA或RNA序列杂交形成的杂交体可以通过其中一种方法进行可视化和分析。

常用的方法包括荧光显微镜观察、放射性测量和酶活性检测等。

通过这些方法,可以确定目标序列在样品中的分布情况和数量。

除了上述的基本步骤,还可以根据实验的具体要求进行一些改进和优化。

例如,可以采用双标记法来同时检测不同序列的分布情况;可以使用探针混合标记法来提高检测的灵敏度和特异性;可以用信号扩增技术来增加检测的信号强度等。

总体来说,原位杂交是一种常用的实验方法,可以用于研究基因的定位和表达。

原位杂交技术的操作详解及小贴士

原位杂交技术的操作详解及小贴士

原位杂交技术的操作详解及小贴士原位杂交技术是一种重要的遗传学技术,用于研究基因组的结构、组织和表达。

它可以帮助科学家确定特定基因在染色体上的位置,探索基因在细胞和组织中的活性等信息。

本文将详细介绍原位杂交技术的操作步骤,并分享一些实验中常见的小贴士。

原位杂交的基本原理是将一段与所研究基因序列互补的DNA探针标记上荧光分子等信号物质,然后与待测细胞或组织样品进行杂交反应。

通过观察探针与靶DNA的结合情况,可以确定所研究基因在染色体的位置和组织中的表达情况。

下面是一般的原位杂交实验步骤:1.样品处理:首先,需要准备待测细胞或组织样品。

可以选择直接从动植物或细菌中提取DNA,或采用组织切片的方式。

样品处理的目的是提高探针与靶DNA的结合效率。

2.探针的制备:制备一段与所研究基因互补的DNA探针。

可以通过PCR扩增、化学合成或转录反应等方法制备探针。

为了方便后续观察,可以将探针标记上荧光物质如荧光染料、辣椒素或金纳米颗粒等。

3.免疫组化:为了提高探针与样品中的靶DNA的杂交效率,可以进行免疫组化步骤。

这一步主要是使用特定抗体识别并结合待测物质,如甲醛固定、蛋白酶K处理等。

4.模板DNA的制备:将样品中的DNA固定在载玻片上,通常使用甲基化醛或戊二醛确定DNA在载玻片上的位置。

5.杂交反应:将制备好的探针与固定在载玻片上的DNA进行杂交反应。

这一步通常需要对探针和靶DNA进行变性和再结合等步骤。

6.信号检测:通过显微镜观察杂交产物,在适当的波长下观察荧光信号。

可以使用荧光显微镜或共聚焦显微镜等设备。

接下来,我们来分享一些原位杂交技术的小贴士:1.设计合适的探针:选择合适的探针非常重要。

探针的长度应该足够长,以确保与靶DNA的特异性结合。

此外,为了提高信号强度,可以选择多个标记物如荧光染料标记在同一个探针上。

2.优化杂交条件:杂交时间和温度是影响杂交效率的重要因素。

可以通过调整这些条件来提高杂交效果。

此外,添加高浓度的盐类和保护剂可以提高杂交的特异性和效率。

原位杂交技术及其在肿瘤学中的应用

原位杂交技术及其在肿瘤学中的应用

原位杂交技术及其在肿瘤学中的应用随着生物技术的不断进步和发展,人们对各种疾病的研究也越来越深入。

在肿瘤学领域中,原位杂交技术是一项重要的分子生物学技术,广泛应用于肿瘤的诊断、预后评估和治疗方案的制定等方面。

本文介绍原位杂交技术的原理、方法和在肿瘤学中的应用。

一、原位杂交技术的原理原位杂交技术是一种利用特定核酸探针标记的技术,能够在组织切片中定位和检测含有相应序列的核酸。

其中探针可以是DNA 或RNA,它们可以与被检测样本中互补的核酸序列结合,形成双链的杂交复合物。

在特定条件下,可以用放射性标记、荧光标记等物质标记探针,在显微镜下直接观察到杂交物的存在。

探针的标记能够直接观察,从而可以检测到被检测样本中特定核酸序列的分布情况和含量。

二、原位杂交技术的方法原位杂交技术主要有两类方法:放射性原位杂交(radioactive in situ hybridization,RISH)和非放射性原位杂交(non-radioactive in situ hybridization,NISH)。

RISH的探针使用放射性标记,可以通过显微放射自显影探测到探针的存在。

NISH使用非放射性标记,如荧光标记、酶标记等,可以通过显微镜下荧光显色、色素显色或发光检测等方法观察探针的存在。

原位杂交技术的步骤主要包括以下几个方面:(1)样品制备。

将组织样品固定在载玻片上,割成薄片,不同的组织要采用不同的制片方法。

(2)探针标记。

以目的核酸序列为模板,使用DNA或RNA 合成技术制备标记探针。

(3)杂交反应。

将标记探针加入组织切片上,结合后进行洗脱,使未结合的探针清除掉。

(4)染色。

对杂交反应结果进行染色处理,观察探针的标记情况。

三、原位杂交技术在肿瘤学中的应用原位杂交技术在肿瘤学中已经广泛应用。

例如,原位杂交技术可用于识别某些致癌基因的表达情况,以及在肿瘤细胞中表达特异性蛋白质的情况。

近年来,原位杂交技术也用于检测肿瘤标志物,例如乳腺癌的HER2/neu标志物、前列腺癌的PSA标志物、鳞状细胞癌的p16INK4标志物等。

原位杂交原理及具体操作

原位杂交原理及具体操作

原位杂交原理及具体操作原位杂交的具体操作包括以下几个步骤:1.样本准备:收集需要研究的细胞或组织样品,并进行固定和处理。

具体处理方法根据研究对象的特点和需求而定,可以涉及蛋白酶消化、脱脂、固定等步骤。

2.产生标记探针:首先要选择合适的探针来检测目标序列。

探针可以是DNA或RNA序列,根据研究对象选择相应的方法进行标记,常见的标记方法有荧光标记、放射性标记和酶标记等。

标记后的探针需要经过纯化和检测,确保标记效果良好。

3.杂交反应:将标记的探针与样本中的DNA或RNA进行杂交反应。

首先需要将样本脱水,并在适当温度下使用探针溶液进行孵育反应,使探针与目标序列发生特异性结合。

杂交温度根据探针和目标序列的互补性来确定,一般在适当的温度下进行持续反应。

4.洗涤:杂交反应结束后,需要进行严格的洗涤步骤,以去除未结合的探针和非特异性结合。

洗涤的条件也根据研究需要而定,可以使用高盐溶液、低盐溶液或有机溶剂等来去除非特异性结合。

5.信号检测:根据具体标记方法的不同,可以使用荧光显微镜、射线计数器或底物染色等方法来检测标记的探针。

通过观察探针的位置和强度,可以得到目标序列在细胞或组织中的分布和表达情况。

6.分析与图像处理:根据实验结果,可以对图像进行定量分析和处理。

现代技术已经能够通过图像软件进行分析和定量,得到原位杂交的定量数据。

原位杂交技术的优点在于可以在细胞或组织水平上观察和定位目标序列的存在和表达情况,为研究基因表达、基因功能以及病理学等提供了强有力的工具。

但是在操作过程中需要注意探针的选择和合成、杂交条件的优化以及样品处理的标准化等问题,以确保实验结果的准确性和可重复性。

分子生物学研究中的原位杂交技术

分子生物学研究中的原位杂交技术

分子生物学研究中的原位杂交技术1. 引言原位杂交技术(In Situ Hybridization,ISH)是一种分子生物学研究中常用的重要技术方法,它在研究基因功能、表达、定位和疾病等方面具有广泛的应用。

通过掌握ISH技术的基础知识和基本操作,可以为分子生物学的深入研究提供强有力的工具。

2. 背景知识ISH技术是通过将DNA或RNA探针与待检测物品(如细胞、组织、染色体等)发生靶向杂交反应,从而探究DNA和RNA序列在待检测物品内的分布、表达及功能等。

利用双链DNA分子中序列互补的特性,ISH技术可以检测同源性的DNA或RNA序列,并确定它们在待检测物品内的位置。

ISH技术有多种类型,其中包括原位DNA杂交(In Situ DNA Hybridization,ISDH)、细胞核流式原位杂交(Fluorescence InSitu Hybridization of Interphase Nuclei,FISH)、原位RNA杂交(In Situ RNA Hybridization,ISR)等。

FISH是目前应用最广泛的一种ISH技术,它能够在细胞核级别上进行检测,解决了ISDH只能检测染色体水平的限制。

3. 原位DNA杂交 (ISDH)ISDH技术是通过从待检测物品中提取DNA标记探针,利用其与待检测物品DNA发生互补杂交来实现。

它能够检测到DNA分子的位置和数量,并确定待检测物品中特定DNA序列的分布。

ISDH的操作步骤主要包括:(1)待检测物品的准备和固定;(2)DNA探针的制备和标记;(3)探针与待检测物品DNA的杂交;(4)洗涤和显色。

4. 细胞核流式原位杂交 (FISH)FISH技术是通过使用荧光探针,将荧光标记的DNA探针与待检测物品的染色体DNA或RNA发生互补杂交反应,直接在细胞核水平上检测DNA序列的位置和数量。

FISH技术不仅能够在正常染色体结构和分布的情况下对基因进行检测,还能够检测基因突变、重排等变异情况。

rna原位杂交技术

rna原位杂交技术

rna原位杂交技术RNA原位杂交技术(RNA in situ hybridization)是一种用于研究细胞和组织中特定RNA分子表达的重要实验方法。

它通过特异性杂交的原理,能够对细胞和组织中特定的mRNA或非编码RNA进行定位和可视化,从而揭示基因表达的时空分布情况,为研究基因功能和疾病发生机制提供了有力的工具。

RNA原位杂交技术的基本原理是利用互补的核酸序列进行杂交。

在实验中,首先需要制备一段具有特异性的标记RNA探针,该探针的序列与目标RNA的互补部分相匹配。

标记通常使用放射性同位素或荧光染料进行,以便在细胞或组织中可视化。

在进行RNA原位杂交实验时,首先需要固定样本,以保持细胞和组织的形态结构。

然后,通过脱水和透明化等处理,将样本与RNA 探针进行杂交。

杂交后,通过洗涤去除未结合的探针,然后进行探针的检测。

对于放射性标记的探针,可以使用放射自显影的方法进行可视化;对于荧光标记的探针,可以使用荧光显微镜观察。

RNA原位杂交技术在生命科学研究中具有广泛的应用。

它可以用于研究胚胎发育过程中基因表达的时空分布,揭示基因在不同发育阶段和不同组织中的表达模式。

此外,RNA原位杂交技术还可以用于研究肿瘤的发生和发展机制,通过检测癌细胞中特定基因的表达情况,揭示肿瘤细胞的分化状态和侵袭能力。

近年来,随着高通量测序技术的发展,RNA测序已经成为研究基因表达的主流方法。

然而,与RNA测序相比,RNA原位杂交技术具有直接观察细胞和组织中RNA表达的优势。

它可以提供细胞和组织层面的信息,揭示基因在空间上的分布和相互作用。

因此,RNA 原位杂交技术与RNA测序技术相辅相成,共同推动了基因表达研究的深入发展。

尽管RNA原位杂交技术在研究中具有重要意义,但也存在一些局限性。

首先,由于RNA原位杂交实验需要杂交探针与目标RNA的互补配对,因此对探针的设计和合成具有一定的挑战性。

其次,在实验过程中,样本的固定和处理等步骤可能会对RNA的结构和表达产生一定的影响,因此需要进行严格的实验控制。

原位杂交操作流程

原位杂交操作流程

原位杂交操作流程1、使用地高辛标记的核酸探针进行石蜡切片的RNA原位杂交第一天1)二甲苯于37°C脱蜡2次,每次15分钟;2)无水乙醇浸泡2次,每次3分钟;3)95%乙醇浸泡2次,每次3分钟;4)PBS清洗3分钟;5)2%焦碳酸二乙酯室温下浸泡10分钟;6)PBS清洗10分钟;7)加入胃蛋白酶25ul/ml,37°C孵育15分钟;8)PBS清洗2次,每次3分钟;9)0.2N的HCl孵育30分钟;10)PBS清洗2次,每次3分钟;11)0.25%无水乙酸和0.1M三乙醇胺孵育10分钟;12)PBS清洗2次,每次5分钟;13)预杂交缓冲液孵育30分钟;14)准备核酸探针混合物:使用预杂交缓冲液稀释探针,85°C加热5分钟,置于冰块中10分钟;15)杂交;第二天16)将玻片置于SSC中2次,每次5分钟以去除封片;17)PBS清洗3分钟;18)RNA酶A溶液中(或0.1-1ng/mlPBS中),37°C孵育30分钟;19)PBS清洗5分钟;20)室温,2XSSC清洗10分钟;21)37°C,1XSSC清洗10分钟;22)37°C,0.5XSSC清洗10分钟;23)缓冲液A孵育10分钟;24)缓冲液A(1%正常绵羊血清和0.03%三重氢核X-100)孵育30分钟;25)加入抗地高辛抗体(1/200的上述缓冲液,来自BoehringerMannheim),37°C孵育3小时;26)缓冲液A清洗2次,每次10分钟;27)缓冲液B清洗2次,每次5分钟;28)制成NBT/BCIP暗处保存30-60分钟,显微镜下进行观察,如果背景尚佳,显色时间可延长到16小时;29)停止缓冲液B的反应,用水进行简单的清洗;30)固红,脱水以及封片进行核的复染。

2、使用地高辛标记的寡核苷酸探针进行石蜡切片的原位DNA杂交第一天1)二甲苯于37C脱蜡2次,每次15分钟;2)无水乙醇浸泡2次,每次5分钟;3)95%乙醇浸泡2次,每次5分钟;4)PBS清洗5分钟;5)2%焦碳酸二乙酯室温下浸泡10分钟;6)PBS清洗5分钟;7)加入胃蛋白酶25ul/ml,37C孵育10分钟;8)PBS清洗2次,每次5分钟;9)0.2N的HCl孵育30分钟;10)PBS清洗2次,每次5分钟;11)0.25%无水乙酸和0.1M三乙醇胺孵育10分钟;12)PBS清洗5分钟;13)预杂交缓冲液孵育30分钟;14)准备寡核苷酸探针混合物:使用预杂交缓冲液稀释探针;15)杂交;第二天16)将玻片置于SSC中以去除封片;17)室温,2XSSC清洗10分钟;18)37°C,1XSSC清洗10分钟;19)37°C,0.5XSSC清洗10分钟;20)缓冲液A孵育10分钟;21)缓冲液A孵育30分钟;22)加入抗地高辛抗体37C孵育3小时;23)缓冲液A清洗2次,每次5分钟;24)缓冲液B清洗2次,每次5分钟;25)制成NBT/BCIP暗处保存30-60分钟,显微镜下进行观察,如果背景尚佳,显色时间可长到16小时;26)停止缓冲液B的反应,用水进行简单的清洗;27)固红,脱水以及封片进行核的复染。

原位杂交技术的具体步骤

原位杂交技术的具体步骤

原位杂交(In situ hybridization)是一种用于检测核酸序列在细胞或组织中的位置和表
达水平的技术。

下面是原位杂交技术的一般步骤:
1.样品固定:首先,准备需要检测的细胞或组织样品,并将其进行固定。

常用的固定方法包括使用乙醛、乙酸、甲醛等。

2.使DNA或RNA标记:选择适当的探针,它可以是DNA或RNA序列,用于与目标
核酸序列杂交。

标记的方法通常使用荧光染料、酶或同位素等。

3.制备与标记探针配对的杂交缓冲溶液:制备含有探针的杂交缓冲溶液,其中包含适当的盐和添加剂,以提供最佳的杂交条件。

4.杂交:将标记的探针加入样品中,让其与目标序列进行杂交。

这一步可以在高温条件下进行,以增加探针与目标序列的特异性结合。

5.洗涤:进行一系列洗涤步骤,以去除未结合的探针和非特异结合物,提高信号的特异性。

6.反应可视化:根据所使用的标记方式,进行合适的染色或检测步骤,以显示杂交信号。

这可以是荧光显微镜观察、酶反应染色或同位素探测等。

7.结果分析:通过显微镜观察或其他适当的图像分析方法来解读和分析杂交结果。

评估信号的位置、强度和特异性。

这些步骤仅为一般原位杂交的基本流程,具体的实验条件和步骤可能会根据研究目的
和样本类型的不同而有所调整。

原位杂交技术在生物医学研究等领域广泛应用,可以
帮助研究者了解基因表达和变化的空间定位和时序关系。

免疫荧光原位杂交技术

免疫荧光原位杂交技术

免疫荧光原位杂交技术免疫荧光原位杂交(immunofluorescence in situhybridization,简称FISH)技术是一种目前被广泛应用于细胞和组织中的分子生物学技术。

它的应用范围涵盖了人类健康、疾病诊断、基因表达和细胞遗传等诸多领域。

本文将介绍FISH技术的原理、操作步骤及其在各个领域的应用,希望能对你有所启发。

首先,我们来了解一下FISH技术的基本原理。

FISH技术结合了免疫荧光和原位杂交两种方法,可以同时检测细胞或组织中的特定DNA序列与特定蛋白质的共定位。

通过标记特定的DNA探针和特定的抗体,可以在细胞或组织中检测到目标分子的位置和表达水平。

使用FISH技术的步骤如下:首先,应选择合适的标记方法和荧光探针。

标记方法常用的有直接标记和间接标记两种。

接着,将标记过的DNA探针与样本(细胞或组织)接触,使其与目标DNA序列杂交。

经过洗涤、固定和照相,可以观察到目标DNA序列的位置及其与蛋白质的共定位情况。

FISH技术在各个领域都有广泛应用。

在人类健康方面,FISH技术可用于遗传疾病的诊断、肿瘤基因分析和染色体异常的检测。

通过检测染色体畸变和基因突变,可以帮助医生准确判断疾病的种类和程度,为疾病的预防和治疗提供指导。

在基因表达研究中,FISH技术可用于检测特定基因的表达水平、研究基因组中的微小区域以及非编码RNA的研究。

通过观察目标基因在细胞中的表达情况,可以深入了解基因在生理和病理过程中的功能及其调控机制。

此外,在细胞遗传学中,FISH技术可用于研究染色体结构、染色体的分离和重组事件的发生机制。

通过观察染色体在细胞分裂过程中的运动轨迹,可以揭示染色体复制、分离和重组等关键生物学过程的机制。

综上所述,免疫荧光原位杂交技术是一种生物学研究中重要的分子生物学技术。

它可以帮助我们更全面地了解细胞和组织中的分子表达及其调控机制。

未来,随着技术的不断发展和创新,FISH技术将在医学诊断、基础科学研究和药物开发等领域发挥更加重要的作用。

分子生物学实验中的原位杂交技术使用方法介绍

分子生物学实验中的原位杂交技术使用方法介绍

分子生物学实验中的原位杂交技术使用方法介绍分子生物学是一门研究生物分子结构、功能和相互作用的科学。

原位杂交技术是其中一种常用的实验方法,用于研究DNA或RNA在细胞或组织中的位置和表达情况。

本文将介绍原位杂交技术的使用方法,包括样品准备、探针设计、杂交条件和信号检测等方面。

一、样品准备在进行原位杂交实验前,首先需要准备样品。

样品可以是细胞、组织或整个生物体。

对于细胞和组织样品,需要进行固定和切片处理。

固定可以使用甲醛或乙醛等化学试剂,切片则需要使用显微刀或切片机。

对于整个生物体样品,需要进行组织切片或冰冻切片处理。

二、探针设计探针是原位杂交实验中的重要部分,用于与目标DNA或RNA序列特异性结合。

探针可以是DNA或RNA,通常标记有荧光染料或放射性同位素。

在设计探针时,需要考虑目标序列的长度、GC含量、互补性和特异性等因素。

同时,还需要选择适当的标记方法和标记物,以便在实验中检测到探针的信号。

三、杂交条件杂交条件是决定原位杂交实验结果的关键因素之一。

杂交温度、盐浓度和杂交时间等参数需要根据目标序列的特性进行优化。

通常情况下,较高的杂交温度和适当的盐浓度有助于提高探针与目标序列的互补性结合。

杂交时间一般在数小时到数天之间,具体根据实验需要进行调整。

四、信号检测信号检测是原位杂交实验中的最后一步,用于观察和记录探针与目标序列的结合情况。

常用的信号检测方法包括荧光显微镜观察、放射性计数和原位杂交染色等。

荧光显微镜观察是最常见的信号检测方法,可以通过荧光染料的发射和目标序列的位置来确定探针的结合情况。

放射性计数则是使用放射性同位素标记的探针进行测量,通过探针的放射性衰减来判断探针与目标序列的结合情况。

原位杂交染色是一种较为传统的信号检测方法,通过染色剂与探针结合来观察目标序列的位置和表达情况。

原位杂交技术在分子生物学研究中具有广泛的应用。

它可以用于研究基因表达、基因定位、基因组结构和染色体变异等方面。

通过合理设计实验方案和优化实验条件,原位杂交技术可以提供有关生物分子在细胞和组织中的空间分布和功能调控的重要信息。

荧光原位杂交实验具体步骤及详细说明

荧光原位杂交实验具体步骤及详细说明

荧光原位杂交实验具体步骤及详细说明荧光原位杂交(fluorescence in situ hybridization,FISH)是一种用于确定DNA或RNA序列在细胞或组织中的位置的技术。

下面将详细介绍荧光原位杂交的具体步骤和相应的详细说明。

1.细胞准备首先,需要准备细胞样本。

可以选择使用原代细胞,细胞悬液或切片等。

2.固定将细胞固定在载玻片或载玻片上面。

固定通常使用的试剂是乙酸乙酯和甲醇的混合物,通常比例为1:33.水合将载玻片中的组织或细胞水合处理。

这一步可以通过将载玻片浸泡在去离子水或缓冲液中进行。

4.处理将载玻片进行预处理,以使DNA或RNA序列更易于杂交。

常用的预处理方法有:-煮沸:将载玻片浸泡在2×SSC(1×SSC:0.15MNaCl,0.015MNa3C6H5O7·2H2O,pH7.0)中,然后置于热盖板上加热至100°C,持续约10-20分钟。

-碱性水解:将载玻片浸泡在10%NaOH中,进行碱性水解,然后在盐溶液中冲洗。

5.杂交探针准备荧光探针或荧光标记的引物。

探针的选择取决于要检测的DNA或RNA序列。

探针的设计通常基于目标序列的序列信息,并且通过化学修饰和荧光标记以增加其杂交效率和检测灵敏度。

6.杂交将探针加到载玻片上的样本上,并与目标序列进行杂交。

杂交过程中,探针与目标序列进行互补配对,形成探针-目标复合物。

杂交的温度取决于探针的碱基组成和目标序列的GC含量。

7.洗涤将载玻片在洗涤缓冲液中进行洗涤,以去除未与目标序列杂交的探针。

8.检测使用荧光显微镜观察载玻片上的标记。

荧光标记的探针将通过荧光显微镜检测获得荧光信号。

根据荧光信号的数量和强度,可以确定目标序列的位置和数量。

9.成像和分析通过拍摄荧光显微镜图像来记录荧光信号。

使用图像处理软件进行图像分析,包括亮度分析和定量信号分析。

总结:荧光原位杂交是一种用于确定DNA或RNA序列在细胞或组织中位置的强大技术。

原位杂交技术的具体步骤

原位杂交技术的具体步骤

原位杂交技术的具体步骤原位杂交技术是一种用于研究基因组结构和功能的重要方法。

它可以帮助我们了解基因在细胞中的定位和表达情况,进而揭示基因调控的机制。

本文将详细介绍原位杂交技术的具体步骤。

一、制备探针在进行原位杂交实验之前,首先需要制备合适的DNA或RNA探针。

探针是一段标记有荧光染料或放射性同位素的DNA或RNA序列,用于与待检测样品中的靶标DNA或RNA进行互补配对。

制备探针的方法有多种,常见的包括随机引物标记法、PCR标记法和转录标记法等。

二、取样和固定在进行原位杂交实验时,需要采集待检测样品,并将其固定在载玻片上。

固定的目的是保持样品的形态结构和细胞核的完整性,以便后续的杂交反应能够准确地进行。

常用的固定方法有冷冻固定、乙醛固定和细胞固定等。

三、脱水和处理在固定完样品后,需要对其进行脱水处理。

脱水的目的是去除样品中的水分,使探针能够更好地与靶标DNA或RNA结合。

脱水处理通常采用浓度递增的乙醇溶液进行,如70%、85%和95%乙醇溶液。

四、杂交反应杂交反应是原位杂交技术的核心步骤。

在杂交反应中,将制备好的探针与待检测样品中的靶标DNA或RNA进行互补配对。

杂交反应的条件包括温度、时间和缓冲液的选择等。

一般来说,杂交温度较高可以提高探针与靶标的互补配对效率,但也可能导致非特异性杂交的发生。

五、洗涤和检测在杂交反应完成后,需要对样品进行洗涤,以去除非特异性杂交的探针。

洗涤的条件通常是选择适当的盐溶液和洗涤时间,以确保只有与靶标DNA或RNA互补配对的探针能够保留在样品中。

洗涤完成后,可以使用适当的检测方法来检测样品中的探针信号,如荧光显微镜、放射自显影等。

六、结果分析根据样品中的探针信号,可以进行结果的分析和解读。

通过观察探针的分布和强度,可以确定靶标DNA或RNA在细胞中的定位和表达情况。

此外,还可以通过对多个样品的比较分析,揭示基因的差异表达和调控机制。

原位杂交技术是一种重要的分子生物学方法,可以帮助我们研究基因组的结构和功能。

原位杂交实验注意事项

原位杂交实验注意事项

原位杂交实验注意事项原位杂交是一种常用的分子生物学实验技术,可以用于检测DNA序列在细胞或组织中的位置和数量。

在进行原位杂交实验时,需要注意以下事项:1. 实验前准备在进行原位杂交实验前,需要准备好所需的试剂和设备。

首先要制备探针,探针可以是DNA或RNA序列,必须与待检测序列有特异性结合。

同时还需要制备标记探针的荧光素或辐射性同位素等标记物质。

此外还需要准备组织切片、蛋白酶、去离子水等试剂。

2. 样品处理在进行原位杂交实验前,需要对样品进行处理。

对于组织切片样品,需要将其固定在载玻片上,并进行脱水和脱脂等处理步骤;对于细胞样品,需要将其接种到载玻片上并进行固定和透明化等处理步骤。

3. 探针标记探针标记是原位杂交实验中非常重要的一步。

标记探针可以使用荧光素或辐射性同位素等方法。

荧光素标记通常使用荧光素同工异构体,而辐射性同位素标记则需要使用放射性同位素。

在进行探针标记时,需要注意避免污染和误差。

4. 杂交反应在进行原位杂交实验时,需要进行杂交反应。

杂交反应通常在高温下进行,可以通过热板或烤箱等设备来实现。

在进行杂交反应时,需要注意控制温度和时间,并保持样品湿润。

5. 洗涤和检测完成杂交反应后,需要对样品进行洗涤和检测。

洗涤可以使用盐水、缓冲液等溶液来去除非特异性结合的探针。

检测则可以使用荧光显微镜或放射计等设备来观察样品中标记的探针。

6. 实验安全在进行原位杂交实验时,需要注意实验安全。

荧光素标记的探针具有一定的毒性,需要避免接触皮肤和吸入气溶胶;辐射性同位素标记的探针则需遵守相关放射防护规定,并严格控制实验室内辐射水平。

综上所述,在进行原位杂交实验时,需要注意以上事项,并严格按照实验步骤进行操作,以获得准确的实验结果。

荧光原位杂交实验具体步骤及详细说明

荧光原位杂交实验具体步骤及详细说明

荧光原位杂交实验具体步骤及详细说明用已知的标记单链核酸为探针,按照碱基互补的原则,与待检材料中未知的单链核酸进行异性结合,形成可被检测的杂交双链核酸。

由于DNA分子在染色体上是沿着染色体纵轴呈线性排列,因而可以探针直接与染色体进行杂交从而将特定的基因在染色体上定位。

1. 探针变性将探针在75℃恒温水浴中温育5 min,立即置0℃,5~10 min,使双链DNA探针变性。

2. 标本变性(1)将制备好的染色体玻片标本于50℃培养箱中烤片2~3 h。

(经Giemsa 染色的标本需预先在固定液中退色后再烤片)。

(2)取出玻片标本,将其浸在70~75℃的体积分数70% 甲酰胺/2x SSC的变性液中变性2~3 min。

(3)立即按顺序将标本经体积分数70%、体积分数90%和体积分数100%冰乙醇系列脱水,每次5 min,然后空气干燥。

3. 杂交将已变性或预退火的DNA探针10 uL 滴于已变性并脱水的玻片标本上,盖上18x18盖玻片,用Parafilm封片,置于潮湿暗盒中37℃杂交过夜(约15~17 h)。

由于杂交液较少,而且杂交温度较高,持续时间又长,因此为了保持标本的湿润状态,此过程在湿盒中进行。

4. 洗脱此步骤有助于除去非特异性结合的探针,从而降低本底。

(1)杂交次日,将标本从37℃温箱中取出,用刀片轻轻将盖玻片揭掉。

(2)将已杂交的玻片标本放置于已预热42~50℃的体积分数50%甲酰胺/2xSSC中洗涤3次,每次5 min。

(3)在已预热42~50℃的1xSSC中洗涤3次,每次5 min。

(4)在室温下,将玻片标本于2xSSC中轻洗一下。

(5)取出玻片,自然干燥。

(6)取200 uL复染溶液(PI/antifade或DAPI/antifade染液)滴加在玻片标本上,盖上盖玻片。

5. 杂交信号的放大(适用于使用生物素标记的探针)(1)在玻片的杂交部位加150 uL封闭液I,用保鲜膜覆盖,37℃温育20min。

原位杂交技术的操作详解及小贴士

原位杂交技术的操作详解及小贴士

原位杂交技术的操作详解及小贴士原位杂交技术应用于染色体、细胞和组织切片等样品中进行核酸特异性检测,与免疫组化技术的结合应用,能将DNA、mRNA和蛋白水平上的基因活性与样品的显微拓扑信息结合起来.1969年Pardue和Gall将放射性标记的探针直接应用于纯化核酸的杂交,此后得益于分子克隆技术的发展,及不同探针标记系统和检测系统的应用,大大增加了原位杂交检测的应用灵活性和检测灵敏度。

多种探针标记检测系统基于地高辛、生物素和荧光标记分子的标记和检测系统是常见的原位杂交检测方法.荧光标记检测常为直接探针标记方法,如在dUTP/UTP/ddUTP上连接Fluorescein后进行核酸标记。

由于标记在核酸上的荧光分子必须经受杂交和洗脱过程中的考验,以及荧光分子易于衰减,其检测灵敏度受到一定的影响。

但对荧光分子的直接检测呈现的背景较低。

间接标记的方法中应用了报告分子标记的探针,报告分子通过亲和酶促的方法进行显色。

常用的报告分子如地高辛,生物素。

结合地高辛抗体或链霉亲和素上耦联的酶系统进行间接的底物反应检测。

地高辛标记核酸的历史可追溯到1987年,由于地高辛是洋地黄的花和叶中特有的成分,检测时使用的地高辛抗体不会结合于其他的生物分子。

这是相较于生物素标记系统的优势。

地高辛抗体上可耦联碱性磷酸酶、过氧化酶,及荧光分子和胶体金等,根据不同的应用需求,呈现高信噪比的核酸检测结果.但需注意,由于引入了免疫检测反应,在放大检测灵敏度的同时,应注意样品内源性酶的灭活,以降低检测背景.通过不同标记方法的联合应用,还可在同一样本中实现染色体不同区域或细胞样本中不同RNA序列的多重检测.原位杂交中探针的选择DNA探针、RNA探针和寡核苷酸探针均能通过不同的酶促分子反应进行标记。

寡核苷酸探针的长度较短,因此避免了探针内部退火的问题,在杂交时的渗透能力也更好,探针与靶标的接触这是影响原位杂交是否成功的重要因素之一。

DNA 探针、RNA探针在合成时需要控制探针片段长度,通常300-1000bp左右,能覆盖到较长片段的靶核酸序列,增加检测的灵敏度。

rna原位杂交的主要实验过程及应用

rna原位杂交的主要实验过程及应用

rna原位杂交的主要实验过程及应用RNA原位杂交(in situ hybridization)是一种用于检测细胞或组织中特定RNA序列的方法。

它主要包括以下实验过程:1. RNA样本固定:细胞或组织样本通常需要被固定在载玻片上,常用的固定剂包括乙醛、乙酰丙酮、PFA等。

2. 去除脂质:在固定的样本中,脂质会干扰RNA与探针的结合,因此需要用脱脂剂去除脂质。

3. 探针制备:选择目标RNA序列的互补序列作为探针,并进行标记,通常标记方式有放射性同位素标记(例如32P、35S)和非放射性标记(例如荧光标记、酶标记)。

4. 杂交:将探针与样本进行杂交,杂交通常在高温下进行,以促进RNA与探针的结合。

5. 洗脱:为了去除非特异性结合的探针,通常进行一系列的洗脱步骤,洗脱条件可以根据具体的实验目的进行调整。

6. 可视化与检测:如果探针采用放射性标记,可以将载玻片放置于感光胶片上,在放射性衰变的辐射下使胶片曝光,然后显影胶片以检测探针的信号;如果探针采用非放射性标记,可以直接通过荧光显微镜观察探针的发光信号。

RNA原位杂交主要应用于以下领域:1. 研究基因表达:可以确定细胞或组织中特定基因的表达模式,帮助揭示基因的功能和调控机制。

2. 分析细胞类型和结构:可以确定细胞或组织中特定RNA序列的分布情况,帮助研究细胞类型和组织结构。

3. 病理学研究:可以检测病理变化相关基因的表达水平,帮助了解疾病的发生机制和进展过程。

4. 发育生物学研究:可以追踪特定RNA序列在发育过程中的表达变化,帮助研究胚胎发育和器官形成的分子机制。

综上所述,RNA原位杂交是一种重要的实验技术,可以用于研究细胞和组织中特定RNA序列的表达模式及其在生物学和医学领域的应用。

RNA原位杂交是一种研究基因表达的常用技术,通过将标记有特定探针的RNA与细胞内目标RNA进行杂交反应,用于确定RNA在组织或细胞中的位置和表达水平。

其主要实验过程如下:1. 制备RNA探针:根据研究对象的RNA序列设计合适的探针,可以使用放射性标记,如32P或35S,或非放射性标记,如荧光标记(如FITC,Cy3等)。

原位杂交实验注意事项

原位杂交实验注意事项

原位杂交实验注意事项引言原位杂交实验是一种常用的实验方法,用于研究基因组的结构和功能,以及基因的表达和调控。

在进行原位杂交实验时,需要注意一些关键事项,以确保实验结果的可靠性和准确性。

实验前的准备工作在进行原位杂交实验之前,需要做一些准备工作,包括选择适当的探针、准备样本和探针的标记。

选择适当的探针选择适当的探针是进行原位杂交实验的关键步骤之一。

探针可以是DNA、RNA或其他一些特定的生物分子,用于检测目标基因或特定序列的存在及其在样本中的表达或定位情况。

样本准备样本的准备是进行原位杂交实验的重要步骤。

样本可以是细胞、组织或整个生物体的部分。

样本的准备需要根据实验要求进行,包括固定、切片和染色等处理。

探针标记探针的标记是实验过程中的关键步骤之一。

标记可以使用放射性同位素、荧光染料或酶等方法进行。

在选择标记方法时,需要考虑到探针的稳定性、灵敏度和特异性等因素。

实验步骤和注意事项样本预处理在进行原位杂交实验之前,需要对样本进行一些预处理,以提高实验结果的质量和可靠性。

预处理步骤包括:1.样本的固定:使用适当的固定剂固定样本,以保持样本的形态和结构,并防止RNA降解。

2.样本的脱水和重组:将固定的样本进行脱水和重组处理,以去除固定剂和改变样本的透明度,以便于后续的染色和探针的穿透。

3.样本的切片:将重组的样本切割成适当的厚度,以便于探针的穿透和信号的检测。

探针的制备和标记在进行原位杂交实验之前,需要对探针进行制备和标记。

探针的制备需要从合适的来源获取目标序列,并进行纯化和扩增。

然后,通过标记方法将探针标记,使其具有辨识的特性。

杂交反应杂交反应是原位杂交实验的核心步骤之一。

杂交反应的条件和步骤会对实验结果产生影响,因此需要注意以下事项:1.温度和时间的控制:根据探针和样本的特性,选择适当的温度和时间进行杂交反应。

温度和时间的不同会影响到杂交效率和信号强度。

2.杂交液的制备:准备杂交液时,需要确保探针的浓度和纯度,以及杂交液的配比和质量。

原位杂交1

原位杂交1

原位杂交流程第一天(全程DEPC水,注意不要污染)1配制4%PFA固定液,pH调至9.0-10.0;2用酒精棉擦干净展片台,升温到50 ℃;3从-80 ℃冰箱中取出冰冻切片,在50 ℃烤片台上烘片2-3 min(目的避免形成液滴);4染缸中,4% PFA固定1 h;51×PBS洗涤2次,每次5 min;6氯仿去脂肪,5 min;71×PBS洗2次,每次5min;81% Triton-X100透膜20 min;此期间配预杂交液,杂交液及湿盒底部等渗液。

9染缸中,1×PBS洗涤3次,每次5 min;10预杂交:在切片上滴加预杂交液(20-100 μl/片,视组织大小而定),要均匀的覆盖在组织上,室温下载湿盒中静置15 min。

11探针在85 ℃ PCR仪中变性3 min后,立即放回冰上静置2 min(因此需要在实验开始时制冰;或是将铝盒盛装一些水敞口放在-20 ℃,1 h左右即可结冰,并可一直保存)。

探针变性后,按1 μl/100μl杂交液(浓度控制在1—2 ng/μl之间)加入杂交液,混匀,每张片子上滴加20-50 μl/片杂交液,加盖玻片后,湿盒中55 ℃杂交过夜。

第二天1开启水浴锅,设定为55 ℃,预热。

配制5×SSC(50% 甲酰胺)2份,2×SSC(50% 甲酰胺)1份,0.2×SSC(50% 甲酰胺)2份,0.2×SSC(H2O)1份。

前5个染缸用PE手套套上,放入水浴锅预热洗涤液15 min;最后一个在室温放置。

2将切片从湿盒取出倾倒掉杂交液,洗涤:5×SSC(50% 甲酰胺),55 ℃,5 min;5×SSC(50% 甲酰胺),55 ℃,15 min;2×SSC(50% 甲酰胺),55 ℃,30 min;0.2×SSC(50% 甲酰胺),55 ℃,30 min;0.2×SSC(50% 甲酰胺),55 ℃,30 min。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原位杂交技术的操作详解及小贴士原位杂交技术应用于染色体、细胞和组织切片等样品中进行核酸特异性检测,与免疫组化技术的结合应用,能将DNA、mRNA和蛋白水平上的基因活性与样品的显微拓扑信息结合起来。

1969年Pardue和Gall将放射性标记的探针直接应用于纯化核酸的杂交,此后得益于分子克隆技术的发展,及不同探针标记系统和检测系统的应用,大大增加了原位杂交检测的应用灵活性和检测灵敏度。

多种探针标记检测系统基于地高辛、生物素和荧光标记分子的标记和检测系统是常见的原位杂交检测方法。

荧光标记检测常为直接探针标记方法,如在dUTP/UTP/ddUTP上连接Fluorescein后进行核酸标记。

由于标记在核酸上的荧光分子必须经受杂交和洗脱过程中的考验,以及荧光分子易于衰减,其检测灵敏度受到一定的影响。

但对荧光分子的直接检测呈现的背景较低。

间接标记的方法中应用了报告分子标记的探针,报告分子通过亲和酶促的方法进行显色。

常用的报告分子如地高辛,生物素。

结合地高辛抗体或链霉亲和素上耦联的酶系统进行间接的底物反应检测。

地高辛标记核酸的历史可追溯到1987年,由于地高辛是洋地黄的花和叶中特有的成分,检测时使用的地高辛抗体不会结合于其他的生物分子。

这是相较于生物素标记系统的优势。

地高辛抗体上可耦联碱性磷酸酶、过氧化酶,及荧光分子和胶体金等,根据不同的应用需求,呈现高信噪比的核酸检测结果。

但需注意,由于引入了免疫检测反应,在放大检测灵敏度的同时,应注意样品内源性酶的灭活,以降低检测背景。

通过不同标记方法的联合应用,还可在同一样本中实现染色体不同区域或细胞样本中不同RNA序列的多重检测。

原位杂交中探针的选择DNA探针、RNA探针和寡核苷酸探针均能通过不同的酶促分子反应进行标记。

寡核苷酸探针的长度较短,因此避免了探针内部退火的问题,在杂交时的渗透能力也更好,探针与靶标的接触这是影响原位杂交是否成功的重要因素之一。

DNA 探针、RNA探针在合成时需要控制探针片段长度,通常300-1000bp左右,能覆盖到较长片段的靶核酸序列,增加检测的灵敏度。

就DNA探针和RNA探针的比较,DNA探针在杂交过程中会出现探针双链之间退火的可能,也更倾向于在溶液中形成大分子的探针聚合体,从而影响其渗透能力。

而RNA 探针的应用,将提高DNA-RNA杂交子的热稳定性。

Tips:RNA探针因其单链、高分子结合力、可适应高温杂交的特性,其检测特异性和灵敏度均优于DNA探针。

常用的RNA探针标记方法为构建质粒后进行转率合成。

通过PCR扩增的方法,可以更方便地进行RNA探针的制备;RNA探针合成后,还需验证其对目标片段检测的灵敏度和特异性。

具体实验流程和注意事项可参考技术文章:A Method for High Quality Digoxigenin-Labeled RNA Probes for In Situ Hybridization原位杂交检测步骤原位杂交涉及的步骤:玻片的准备和样品固定,细胞或组织的预渗透处理,靶DNA变性(DNA原位杂交),探针制备,原位杂交过程,杂交后洗涤,探针(显色)检测。

1. 玻片的准备和样品固定对于染色体涂片,1:1的乙醇/醚处理的载玻片已能符合要求。

对于组织切片的原位杂交,为了在实验过程中不丢失组织样品,可使用多聚赖氨酸或铬矾明胶包被的载玻片。

样品的固定步骤是为了保持样品的原有形态学。

样品固定是原位杂交中必不可少的步骤,从化学反应角度来看,固定剂的使用和选择对后续杂交的影响不会太大,因为核酸杂交的功能分子基团被安全地包裹在DNA双螺旋结构中,而交联剂的使用对RNA基本没有影响。

对于染色体涂片,常使用甲醇/醋酸溶液固定;石蜡包埋的组织切片用福尔马林固定。

冷冻切片可通过在4%的甲醛溶液中固定30min,或使用Bouin固定剂。

2. 样品预处理在待测样品中,DNA或RNA通常都是被蛋白包裹缠绕,根据不同的细胞和组织样品的应用,可选择合适的预处理方法将靶核酸暴露:内源性酶灭活:如果探针的检测是通过酶促法进行的,则样品内相应的内源性酶必须被灭活。

如内源性的POD可通过含1% H2O2的甲醛溶液处理30min。

如果检测酶为AP,可在底物溶液中加入左旋咪唑,AP检测的内源性背景一般来说比POD检测的低得多,因为在杂交过程中,样品中内源性AP酶的活性基本都丧失了。

RNase处理:在DNA-DNA杂交实验中,RNase的处理可去除内源性RNA,增加实验的信噪比。

在进行mRNA为靶标的检测时,RNase处理的样品也可作为质控对照。

通常的处理方式是将DNase-free的RNase溶解于2×SSC (100μg/ml),样品在溶液中37℃处理60min。

SSC=150mM NaCl, 15mM 柠檬酸钠溶液(pH7.4)HCl处理:对样本进行20-30min的200mM HCl处理,可将蛋白抽提,并将核酸序列进行一定程度的水解,增加杂交检测的信噪比。

去垢剂处理:如果对样品的固定、脱水、包埋等预处理过程不足以将脂膜成分破坏暴露核酸,可对样品进行额外的蛋白去垢剂处理(如Triton X-100和SDS)。

蛋白酶处理:样品中待杂交的核酸序列常与蛋白缠绕交联在一起,样品的固定步骤更是加剧了蛋白的交联程度,因此预渗透是核酸杂交前的常规步骤,通常通过蛋白酶K的消化作用来完成。

根据不同的文献来源,蛋白酶K的工作浓度通常设为10-500μg/ml(溶解于20 mM Tris-HCl, 2 mM CaCl2, pH 7.4, 酶浓度可根据具体样品进一步优化),对样品进行37°C 7.5 –30 min的处理。

染色体涂片或核片的蛋白酶K处理浓度可降至1μg/ml消化7.5 min。

也有文献指出,福尔马林固定石蜡包埋的组织切片样品,使用胃蛋白酶(500μg/ml,溶于200mM HCl)将得到较好的蛋白消化结果。

对于结缔组织,肝组织等样品,还可进行Collagenase和Dispase的组织消化处理,以降低背景。

3. 探针制备在进行研究前,确定应用的探针类型。

不同探针类型的优劣势请见上文描述。

DNA探针的制备包括了前期的DNA片段分离纯化(或cDNA的克隆)和酶促探针标记,可选随机引物标记法和缺口平移法等。

RNA探针的制备包括了转录载体克隆和转录法探针标记。

寡核苷酸探针的制备要求先获得合成的寡核苷酸片段,再进行末端标记或加尾法探针标记。

但无论采用何种标记探针及标记方法,对探针标记效果需进行最终的评估,并准确计算探针浓度。

4. 原位杂交过程杂交前可进行预杂交,以防止较高的背景染色。

预杂交条件与杂交条件相同,只是预杂交液中不含探针和硫酸葡聚糖(见下)。

靶DNA的变性(对mRNA的原位杂交无需此步)样品DNA的变性在DNA-DNA杂交检测中是必须的步骤,但同时可能会造成样品形态学的部分破坏,此步是实验中需要优化的一个步骤。

常用的变性方法为碱变性和热变性,实验时可以摸索变性时间、变性温度等参数以获得最佳条件。

如使用热变性方法,可在杂交时将探针的变性和样品DNA变性同步进行:将样品和探针溶液加盖盖玻片,置于烘箱80℃变性,染色体DNA样品处理2min,后冷却至37℃进行杂交。

组织样品DNA的变性时间可增加至80℃10min。

杂交流程杂交液的成分主要影响了核酸杂交的复性动力学和热稳定性。

杂交液的基础成分为:Denhardt’s溶液(Ficoll,BSA,PVP),异源核酸(如鲱精子DNA/tRNA/竞争DNA),磷酸钠,EDTA,SDS,盐离子,甲酰胺和硫酸葡聚糖,以及杂交探针。

不同的应用中进行杂交温度、pH、盐离子、甲酰胺、探针浓度等条件的优化。

常用的pH范围为6.5~7.5,较高的pH值有助于提高杂交的严谨性。

杂交液中的阳离子浓度通过静电排斥作用影响了杂交体之间的链稳定性,较高的盐浓度将增加杂交体的稳定性。

大于0.4M的Na离子浓度,对Tm值、双链复性速率的影响不大,但随着Na离子浓度的降低,将显著影响Tm值和双链复性速率。

有机溶剂(甲酰胺)的作用是降低DNA-DNA和DNA-RNA等双链体的解链温度。

通常DNA需要在0.1~0.2M Na+ 90~100℃的条件下变性,那么应用于原位杂交,样品必须在65~75℃的条件下进行长时间变性,这将导致样品形态学的破坏。

50%甲酰胺的应用能将杂交温度降至30~45℃。

硫酸葡聚糖具有很强的水合性,高浓度的硫酸葡聚糖会使得核酸分子无法获得周边亲水环境,增加了探针浓度,加快杂交反应速率。

杂交常用条件:50% 去离子甲酰胺、2x SSC、50 mM NaH2PO4 / NaH2PO4 buffer; pH 7.01 mM EDTA、载体DNA/RNA (1 mg/ml)、探针(20 - 200 ng/ml)、1x Denhardt’s、5 - 10%硫酸葡聚糖、+37 to +42°C下杂交5 min - 16 hours对于短链的寡核苷酸探针,具有特殊的杂交动力学和杂交体稳定性,可尝试从以下杂交条件开始优化:25% 去离子甲酰胺、4x SSC、50 mM NaH2PO4 / NaH2PO4 buffer; pH 7.0、1 mM EDTA、载体DNA/RNA (1 mg/ml)、探针(20 - 200 ng/ml)、5x Denhardt’s、+15 to +25°C下杂交2 - 16 hours杂交后的洗涤杂交后进行非特异结合探针的洗脱,同时也可进行单链核酸链的酶消化。

洗脱的严谨性可通过调节洗脱液中的甲酰胺浓度、盐浓度和洗脱温度。

常规洗涤条件为含50%甲酰胺的2×SSC。

但在实际的实验中发现,对于提高杂交检测的特异性,严谨的杂交条件比严谨洗涤更为有效。

5. 免疫细胞化学反应(报告分子标记的探针)如果使用间接检测的方法,通常需引入免疫细胞化学反应进行酶免反应和底物检测。

免疫检测前进行样品的封闭能防止检测时的高背景。

如进行生物素标记的探针杂交和检测,在含Tween 20 和BSA的PBS中进行封闭。

如进行DIG标记的探针杂交和检测,在含Blocking Reagent的Tris-HCl缓冲液中进行封闭。

如果抗原抗体的结合能不受高盐条件影响,检测时加入0.4 M NaCl 将有助于防止背景染色。

封闭后再进行抗体孵育反应,通常是在保湿容器中进行37°C 30 min孵育(或室温2h孵育)。

抗体结合后在含Tween 20的缓冲液中进行3次5–10 min的洗涤。

酶反应显色:使用POD和底物DAB/咪唑构成的显色系统、AP和底物BCIP/NBT 构成的显色系统;酶免反应的检测灵敏度提高,成色后色原性物质的稳定性和定位功能更好。

另外,AP还有一种用于荧光检测的底物HNPP/Fast Red TR, 用于提高荧光检测的灵敏度。

相关文档
最新文档