14- 5 20 学年第一学期《复变函数与积分变换 》期终考试 …

合集下载

复变函数积分变换复习题

复变函数积分变换复习题

复变函数及拉普拉斯变换复习题一、选择题 1.复数z=1625825-i 的辐角为( )02-4 A.arctan 12B.-arctan12 C.π-arctan 12D. π+arctan122.方程Rez 2=1所表示的平面曲线为( ) A.圆 B.直线C.椭圆D.双曲线3.复数z=--355(cossin )ππi 的三角表示式为( ) A.-+34545(cos sin )ππiB.34545(cos sin )ππ-iC. 34545(cos sin )ππ+iD.--34545(cos sin )ππi4.设z=cosi ,则( )A.Imz=0B.Rez=πC.|z|=0D.argz=π 5.复数e 3+i 所对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限6.设w=Ln(1-i),则Imw 等于( ) A.-π4B.2401k k ππ-=±⋅⋅⋅,,, C.π4D.2401k k ππ+=±⋅⋅⋅,,, 7.函数w=z 2把Z 平面上的扇形区域:0<argz<π3,0<|z|<2映射成W 平面上的区域( ) A.0<argw<23π,0<|w|<4 B.0<argw<π3,0<|w|<4 C.0<argw<23π,0<|w|<2D.0<argw<π3,0<|w|<2 8.若函数f(z)在正向简单闭曲线C 所包围的区域D 内解析,在C 上连续,且z=a 为D 内任一点,n 为正整数,则积分f z z a dz n C ()()-+⎰1等于( )A.211πin f a n ()!()()++B.2πi n f a !()C.2πif a n ()()D.2πi n f a n !()()9.设C 为正向圆周|z+1|=2,n 为正整数,则积分dz z i n C()-+⎰1等于( )A.1B.2πiC.0D.12πi10.设C 为正向圆周|z|=1,则积分dzz C ||⎰等于( ) A.0 B.2πi C.2πD.-2π11.设函数f z e d z()=⎰ξξξ0,则f(z)等于( )A.ze z +e z +1B.ze z +e z -1C.-ze z +e z -1D.ze z -e z +112.设积分路线C 是由点z=-1到z=1的上半单位圆周,则z z dz C +⎰12等于( )A.2+πiB.2-πiC.--2πiD.-+2πi13.下列积分中,积分值不为零的是( ) A.()z z dz C323++⎰,其中C 为正向圆周|z -1|=2B.e dz z C ⎰,其中C 为正向圆周|z|=5C.zzdz C sin ⎰,其中C 为正向圆周|z|=1 D.cos zz dz C -⎰1,其中C 为正向圆周|z|=2 14.复数方程z=2+θi e (θ为实参数,0≤θ<2π)所表示的曲线为( )04-4 A .直线 B .圆周 C .椭圆D .抛物线15.已知4z arg 2π=,则argz=( ) A .8πB .4π C .2πD .π16.Re(cosi)= ( ) A .2e e 1-+B .2e e 1--C .2e e 1+--D .2e e 1--17.设f(z)=(1-z)e -z ,则)z (f '=( )A .(1-z)e -zB .(z -1)e -zC .(2-z)e -zD .(z -2)e -z18.设e z =i 31+,则Imz 为( )A .ln2B .32π C .2k π,k=1,0±…D .3π+2k π,k=0, 1±… 19.设C 为正向圆周|z|=1,则⎰=C dz z zcos ( ) A .i πB .2i πC .0D .120.设C 为正向圆周|z -1|=1,则积分dz )1z (2z 3z 5C32⎰-+-等于( )A .5i πB .7i πC .10i πD .20i π21.设C 为正向圆周|ξ|=1.则当|z|>1时,f(z)==-ξ-ξξπ⎰C3)z )(2(d i21( )A .0B .1C .3)2z (2-D .3)2z (2--22.设z=3+4i,,则Re z 2=( )05-4 A .-7B .9C .16D .2523.下列复数中,使等式z1=-z 成立的是( ) A .z=e 2πiB .z=e πiC .z=i2e π-D .z=i 43e π24.设0<t ≤2π,则下列方程中表示圆周的是( ) A .z=(1+i)tB .z=e it +2iC .z=t+tiD .z=2cost+i3sint25.下列区域为有界单连通区域的是( ) A .0<|z-i|<1B .0<Imz<πC .|z-3|+|z+3|<12D .0<argz<43π26.若f(z)=u+iv 是复平面上的解析函数,则f '(z)=( )A .y u i x u ∂∂+∂∂B .x v i y v ∂∂+∂∂C .xv i x u ∂∂-∂∂ D .xvi y v ∂∂-∂∂ 27.设f(z)=⎪⎩⎪⎨⎧≠=-0z ,ze 0z ,A 1z 在整个复平面上解析,则常数A=( )A .0B .e -1C .1D .e28.设f(z)=ax+y+i(bx+y)是解析函数,则实常数a,b 为( ) A .a=-1,b=1 B .a=1, b=1 C .a=-1,b=-1D .a=1,b=-129.设z 为复数,则e -iz =( ) A .cosz+isinzB .sinz+icoszC .cosz-isinzD .sinz-icosz 30.设f(z)和g(z)在有向光滑曲线C 上连续,则下列式子错误..的是( ) A .⎰⎰=zCdz )z (f )z (g dz )z (f )z (gB .⎰⎰--=CC ,dz )z (f dz )z (f 其中C -为C 的反向曲线C .⎰⎰⎰±=±CCCdz )z (g dz )z (f dz ))z (g )z (f (D .⎰⎰=CCdz )z (f 3dz )z (f 331.设C 为从-I 到I 的左半单位圆周,则⎰=Cdz |z |( )A .iB .2iC .-iD .-2i 32. 设C 为正向圆周|z|=2, 则下列积分值不为..0的是( ) A .⎰-C dz 1z zB .⎰C 3zdz cos zC .⎰C dz zz sinD .⎰-C zdz 3z e 33.设D 是单连通区域,C 是D 内的正向简单闭曲线,则对D 内的任意解析函数f(z)恒有( )A .f(z)=⎰ζ-ζζπC d z )(f i 21, z 在C 的外部 B .f (n)(z)=⎰ζ-ζζπ+C 1n d )z ()(f i 21,z 在C 的内部,n ≥2 C .f (n)(z)=⎰ζ-ζζπC n d )z ()(f i 2!n ,z 在C 的内部,n ≥2 D .f (n)(z)=⎰ζ-ζζπ+C 1n d )z ()(f i 2!n ,z 在C 的内部,n ≥2 34.设z 为非零复数,a ,b 为实数,若ib a zz+=_,则a 2+b 2的值( )08-4 A .等于0 B .等于1 C .小于1D .大于135.设2,3z w i z =+=,则( ) A .3arg π=w B .6arg π=wC .6arg π-=wD .3arg π-=w36.=i 2ln ( ) A .2ln B .i 22ln π+C .i 22ln π-D .i i 2Arg 2ln +37.设C 为正向圆周|z |=1,则dz z C⎰=( )A .i π6B .i π4C .i π2D .038.设C 为正向圆周|z -1|=2,则dz z e zC2-⎰=( ) A .e 2 B .i e 22π C .i e 2πD .i e 22π-39.设C 为正向圆周|z |=2,则dz z e z zC4)1(++⎰=( ) A .i e3π B .e6πC .ei π2D .i e 3π 40.设z =1-i ,则Im(21z)=( )09-4 A .-1 B .-21 C .21 D .141.复数z =ii-+23的幅角主值是( ) A .0 B .4π C .2π D .43π 42.设n 为整数,则Ln (-ie )=( )A .1-2πiB .)22(πn π-iC .1+)i π(n π22-D .1+i π(n π)22+43.设z =x +iy .若f (z )=my 3+nx 2y +i (x 3-3xy 2)为解析函数,则( ) A .m =-3,n =-3 B .m =-3,n =1 C .m =1,n =-3 D .m =1,n =144.积分⎰=2i iπz dz e ( )A .)1(1i +πB .1+iC .πi2D .π245.设C 是正向圆周,11=-z 则⎰-C dz z z 1)3/sin(2π=( ) A .i π23- B .i π3- C .i π43 D .i π2346.设C 是正向圆周3=z ,则⎰-Cdz z z 3)2(sin π=( ) A .i π2- B .i π- C .i πD .2i π47.拉普拉斯变换()[]()dt e t f t f L st ⎰=+∞-0中的f(t)的自变量的范围是 ( )(A )()+∞,0 (B )[)+∞,0 (C )()+∞∞-, (D )()0,∞-48.拉普拉斯变换()()dt e t f s F st ⎰=+∞-0中的参数s 是 ( )(A ) 实变数 (B )虚变数 (C )复变数 (D )有理数49.若()[]()s F t f L =,那么()[]=-t f e L at ( )(A )()a s F - (B)()a s F + (C)()e s F as - (D)()a s F s+150.若t ≥0时函数f(t)有拉氏变换()[]1=t f L ,则 ( )(A )()()t u t f = (B )()t t f = (C )()()t t f δ= (D )()1=t f 51.若()[]()s F t f L =,那么()[]=+a t f L ( )(A )()s F e as - (B )()s F e as (C )()a s F e as -- (D )()a s F e as +52.若()[]()s F t f L =,那么()=⎥⎦⎤⎢⎣⎡t f t L 1( )(A )()s F '- (B )()s F s 1(C )()ds s F s ⎰+∞ (D )()ds s F s ⎰053.若()[]()s F t f L =,那么()[]='t f L ( )(A )()s F ' (B )()s sF (C )()s F s ' (D )()()0f s sF -54.若()[]()s F t f L =,那么()=⎥⎦⎤⎢⎣⎡⎰dt t f L t 0 ( ) (A )()s F s 1(B )()ds s F s ⎰+∞ (C )()ds s F s ⎰0(D )()s F s e -55.若()[]()s F t f L =,当0>a 时,那么()[]=at f L ( )(A )()s F a 1 (B )⎪⎭⎫ ⎝⎛a s F a 1 (C )⎪⎭⎫⎝⎛a s aF (D )()a s F - 56.若()[]()s F t f L =,且()()000='=f f ,那么()[]=''t f L ( )(A )()s F s ' (B )()s F '' (C )()s F s 2 (D )()s F s '2 二、填空题1.复数z=4+48i 的模|z|= .2.设z=(1+i)100,则Imz= .3.设z=e 2+i ,则argz= .4.f(z)=z 2的可导处为 . 5.方程lnz=π3i 的解为 . 6.设C 为正向圆周|z|=1,则()1zz dz C +=⎰. 7.设C 为正向圆周|z -i|=12,则积分e z z i dz z Cπ()-=⎰2.8.设C 为正向圆周|ξ|=2,f(z)=sinπζζζ3-⎰zd C,其中|z|<2,则'=f ()1 . 9.设i z 101103+-=,则=_z ____________.10.方程i z 31ln π+=的解为____________.11.设C 为从i 到1+i 的直线段,则=⎰zdz CRe ____________.12.设C 为正向单位圆周在第一象限的部分,则积分=⎰dz z z C 3_)(____________.13.设C 为正向圆周|z |=2,则⎰=-Cdz z z 32)2(cos π____________.14.复数1i --的指数形式为__________.15.设z =x +iy 满足x -1+i (y +2)=(1+i )(1-i ),则z =__________. 16.区域0<arg z<4π在映射w =z 3下的像为__________.17.设C 为正向圆周,2=z 则⎰=-C zdz z e 12__________. 18.若z 1=e 1+i π,z 2=3+i ,则z 1·z 2=________.19.若cosz=0,则z=________.20.设f ′(z)=⎰==ζ<-ζζζL )z (f L )|z (|,则|:|, 55d ζz)( cos e 2________. 21.在复数域内,方程cosz=0的全部解为 。

复变函数与积分变换期中考试题()附答案

复变函数与积分变换期中考试题()附答案

得分得分«复变函数与积分变换»期中考试题电子信息专业2015年11月题号 一 二 三 四 五 六 总分 得分一.填空题(每小题3分,共计15分)1.231i -的幅角是 ; 2,1,0,23±±=+-k k ππ2.)1(i Ln +-的主值是 ;i 432ln 21π+ 3.211)(zz f +=,=)0()5(f ;0 4.以原点为中心,焦点在实轴上,长半轴短半轴分别为a ,b 的椭圆曲线方程是 (用复数形式表示!!!);z=acost+ibsint t ∈[0,2π]5.=⎰+i11z)dz z(e^ ;ie^(1+i)=ie(cos1+isin1)二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );B(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f ; D(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z .3.若c 为不经过1与-1的正向曲线,则⎰+-cdz 1)^2)(z 1(zz 为();D(A )πi/2; (B )-πi/2; (C )0; (D)以上的都可能.4.下列结论正确的是( );B(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f ;(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.函数)(z f 在z 点可导是)(z f 在点z 解析的().B (A) 充分不必要条件;(B) 必要不充分条件; (C) 充分必要条件;(D) 即不充分也不必要条件.三.按要求完成下列各题(共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求dc b a ,,,;解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xvy u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

复变函数积分变换复习卷及答案

复变函数积分变换复习卷及答案

复变函数复习卷及参考答案一、填空题1、复数1z i =+的三角表示式=2(cossin )44i pp+;复指数表示式=42ie p 。

2、复数()13z i =+的z =2;23Argz k pp =+;arg 3z p=;13z i =-。

3、62111i i i -æö==-ç÷+èø。

10125212131i i i i i +-=+-=-。

4、()()31123513253x y i x i y i x y +=ì++-=-Þí-=-î,求解方程组可得,45,1111x y -==。

5、()()231,f z z z =-+则()61f i i ¢-=--。

6、()n3L i -ln 226i k i pp =-+;ln()ie 12i p=+。

7、()(2)1321,(13)2ik i iiee i p p p -++==+。

8、32282(cossin)33k k i p pp p++-=+;0,1,2k =。

1224(4)2i i -==±。

9、1sin 2e e i i --=;221cos ()22i e e pp p -=+;10 、21024z dzz z ==++ò ;1212z dz i z p ==-ò 。

11、设31cos ()zf z z -=,则0z =是(一级极点);31cos 1Re [,0]2z s z -=。

1()s i n f z z=,0z =是本性奇点。

二、判断下列函数在何处可导?何处解析?在可导处求出导数。

(1)()22f z x iy=+;解:22,,2,0,0,2u u v v u x v y x y xyxy¶¶¶¶======¶¶¶¶,一阶偏导连续,因此当,x y y x u v u v ==-时,即x y =时可导,在z 平面处处不解析。

复变函数与积分变换测验题2参考答案

复变函数与积分变换测验题2参考答案

第二章 解析函数一、选择题:1.B 可参照填空题第四小题的处理方法。

2.B 注: 函数)(z f 在点z 可导,)(z f 在点z 不一定解析;反之,)(z f 在点z 不解析,则函数)(z f 在点z 可导;函数)(z f 在一 区域内处处可导等价于处处解析3.D 注: A 三角函数的模可能大于1或无界;B 若0z 是函数)(z f 的奇点,则)(z f 在点0z 不一定不可导C 解析的条件; v u ,在区域D 内可微,v u ,在区域D 内满足柯西-黎曼方程,4. C 由柯西黎曼方程可得。

5.B 第二节例2.3的结论: 解析函数若)(z f '在某一区域内处处为零,则函数在此区域内为常数。

6.C 注:选项A ,B ,D 中函数)(z f 只是有定义,并为要求解析。

反例:x i x z f sin cos )(+= 选项C 设解析函数),(),()(y x iv y x u z f += 则 解析函数 ),(),()(y x iv y x u z f -=两式相加得到解析函数),()(y x u z g 2= 满足柯西黎曼方程 ,因此0=∂∂xu 两式相减得到解析函数),()(y x v z h 2= 满足柯西黎曼方程 ,因此 0=∂∂xv 所以,函数),(),()(y x iv y x u z f +=的导数0=∂∂+∂∂=x v i x u z f )(' 根据:第二节例2.3的结论: 解析函数若)(z f '在某一区域内处处为零,则函数在此区域内为常数。

7.A 导数公式 xv i x u z f y x iv y x u z f ∂∂+∂∂=+=)('),(),()(,则导数若 8.A 注: 本题 函数是 z e ,不是 ze 。

))sin()(cos(y i y e e e x iy x z -+-==-判定时,按照判定复变函数可导解析的方法进行处理。

《复变函数与积分变换》课程考试模拟试卷A及答案

《复变函数与积分变换》课程考试模拟试卷A及答案

机 密★启用前大连理工大学网络教育学院2014年3月份《复变函数与积分变换》课程考试模 拟 试 卷考试形式:闭卷 试卷类型:(A )☆ 注意事项:本考卷满分共:100分;考试时间:90分钟。

学习中心______________ 姓名____________ 学号____________一、单项选择题(本大题共10小题,每小题2分,共20分)1、已知iii z +--=131,则=z Re ( )A 、0B 、21-C 、23-D 、无法确定2、下列函数中,为解析函数的是( ) A 、xyi y x 222--B 、xyi x +2C 、)2()1(222x x y i y x +-+-D 、33iy x +3、设2,3z i z =+=ω,则=ωarg ( )A 、3π B 、6π C 、6π-D 、3π-4、2)1()1()31(-+--=i i i z 的模为( )A 、0B 、1C 、2D 、25、=-⎰=-dz z e z z1|2|2( ) A 、e 2B 、e π2C 、22e πD 、i e 22π6、C 为正向圆周:2||=z ,则=-⎰dz z z e C z2)1(( )A 、i πB 、i π2C 、i π-D 、i π47、将点1,,1-=i z 分别映射为点0,1,-∞=ω的分式线性变换为( ) A 、11-+=z z ω B 、zz -+=11ω C 、zz e i-+=112πωD 、112-+=z z eiπω 8、0=z 是3sin zz的极点,其阶数为( ) A 、1B 、2C 、3D 、49、以0=z 为本性奇点的函数是( ) A 、zzsin B 、2)1(1-z zC 、ze 1D 、11-z e 10、设)(z f 的罗朗展开式为 +-++-+-+----nz n z z z z )1()1(2)1(11)1(222,则 =]1),([Re z f s ( )A 、-2B 、-1C 、1D 、2二、填空题(本大题共10小题,每小题3分,共30分)1、=-i33____________________________________2、设C 为正向单位圆周在第一象限的部分,则积分=⎰zdz z C3)(_________。

复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5

复变函数与积分变换试题及答案5复变函数与积分变换试题与答案 1.若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。

() 2.因为|sin |1z ≤,所以在复平⾯上sin z 有界。

()3.若()f z 在0z 解析,则()()n f z 也在0z 解析。

() 4.对任意的z ,2Ln 2Ln z z =()⼆填空(每题3分)1.i 22i =-- , ia r g 22i =-- 。

2.ln(3i)-= , i i = 。

3.在映照2()24f z z z =+下,曲线C在iz =处的伸缩率是,旋转⾓是。

4.0z =是241e zz -的阶极点,241Re [,0]ze s z -=。

三解答题(每题7分)设2222()i()f z x axy by cx dxy y =++-++。

问常数,,,a b c d为何值时()f z 在复平⾯上处处解析?并求这时的导数。

求(1)-的所有三次⽅根。

3.2d Cz z其中C 是0z=到34i z =+的直线段。

4.||2e cos d z z z z=?。

(积分曲线指正向)5.||2d (1)(3)z zz z z =+-?。

(积分曲线指正向)6 将1()(1)(2)f z z z =--在1||2z <<上展开成罗朗级数。

7.求将单位圆内||1z <保形映照到单位圆内||1w <且满⾜1()02f =,1πarg ()22f '=的分式线性映照。

四解答题(1,2,3题各6分, 4题各9分)1.求0 0()e 0ktt f t t -设22()e e sin 6()t t f t t t t t δ-=+++, 求()f t 的拉⽒变换。

设221()(1)F s s s =+,求()F s 的逆变换。

4. 应⽤拉⽒变换求解微分⽅程23e (0)0, (0)1t'==? 复变函数与积分变换试题答案 1若(,)u x y 与(,)v x y 都是调和函数,则()(,)i (,)f z u x y v x y =+是解析函数。

复变函数与积分变换五套试题及答案

复变函数与积分变换五套试题及答案

复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。

)31ln(i --2.-8i 的三个单根分别为: ,,。

3.Ln z 在 的区域内连续。

4.的解极域为:。

z z f =)(5.的导数。

xyi y x z f 2)(22+-==')(z f 6.。

=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。

8.幂函数的映照特点是:。

9.若=F [f (t )],则= F 。

)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。

二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。

三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。

⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。

)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。

)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。

⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。

复变函数期中考试试题

复变函数期中考试试题

曲 靖 师 范 学 院2011─2012学年度上学期信息与计算科学专业 20091121班 《复变函数》期中考试试卷 任课教师: 负责人: (签字)注意:1.本试卷共8页,请考生注意检查,有错、漏、破烂请及时报告监考教师更换。

2.考生班级、学号和姓名必须写在指定地点。

3.考试形式:闭卷;考试时间:120分钟。

一、单项选择题(共8小题,每小题3分,满分24分) 1. 已知i z 2531+=,i z 4332-=,求z z 3231-的值为( B ). A. 182-186i B. 182+186i C. 224-362i D. 224+362i 2. ()i Arg 43+-的值为( A ). A. ()34arctan 12-+πK B. ()34arctan 12++πK C. ()43arctan 12-+πK D. ()43arctan 12++πK 3. 复数有多种表示形式,i z 3-=的指数形式为( A\D ). A .e i 23π- B. e i 23π C. -e i 23π D. e i 23π- 4. 关于聚点的说法 ①0z 为E 的聚点或极限点②0z 的任一邻域内含有E 的无穷多个点③0z 的任一邻域内含有异于0z 而属于E 的一个点④可从E 中取出点列12,,,,n z z z ,以0z 为极限以上说法中等价的是( D ).A.①②B. ①②③C. ②③④D. ①②③④5. 下列函数处处连续,又处处不可微的是( B ).A .z e B. zC. sin zD. 21z +6. 计算()dz i z ⎰++--2222的值为( D ). A. 32i - B. 32i C. 3i D. 3i - 7. 设函数()f z 在z 平面上的单连通区域D 内解析,则( C ).A. 若C 为D 内任一周线时,有()0Cf z dz =⎰,而若C 为D 内任一闭曲线时,不一定有()0Cf z dz =⎰. B. ()f z 在D 内积分与路径有关.C. 则函数 ()()0z z F z f d ζζ=⎰ ()0,z D z D ∈∈在D 内解析,且()()'F z f z =. D. 则函数 ()()02z z F z f d ζζ=⎰ ()0,z D z D ∈∈在D 内解析,且()()'F z f z =. 8. 下列论断正确的是( D ).A. 复数都能比较大小.B. 复数都有辐角.C. sin 1z ≤,z 是任意的复数.D. 区域必为开集.二、填空题(共8小题,每小题3分,满分24分) 1. =3i2. 131i z i i=--的共轭复数为 . 3.设1Z =,则z = 2 , arg z = _________, z = __________ .4. 函数sin z 的周期为__2π__.5. 若函数()z f 在整个平面上处处解析,则称它是 整函数 .6.()i x yi z f y y x x 322333--+=,则()f z '= .7. 积分3z Cz e dz +⎰ (C 为单位圆)的值为 . 8. 命C 表示连接点a 及b 的任一曲线,则=⎰dz z C .三、解答题(共4小题,每小题8分,满分32分)1. 求复数11+-z z 的实部和虚部2. 将复数ααsin cos 1i +- ()πα≤<0 化为指数形式.3. 判断下列函数的可微性和解析性:(1)、()i z f y x 22+=; (2)、()i z f y x 2232+=4. 计算积分:⎰Czdz Re ,这里的C 表示连接原点到的i +1直线段. 解:连接O 及1+i 的直线段的参数方程为: z=(1+i )t (0≤t ≤1),故 21)1]}()1{R e [(Re 1i dt i t i zdz C +++=⎰⎰ =(1+i )⎰10tdt =21i +四、证明题(共2小题,每小题10分,满分20分)1.证明方程t t i z 22+=是什么曲线.证明:2.试证明22≤⎰C z dz .积分路径C 是连接i 和i +2的直线段.。

(完整版)《复变函数与积分变换》习题册(2)

(完整版)《复变函数与积分变换》习题册(2)

第一章 复数与复变函数本章知识点和基本要求掌握复数的概念和它的各种表示方法及运算; 熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式; 了解区域的概念;理解复变函数的概念; 理解复变函数的极限和连续的概念。

一、填空题1、若等式))(()75(i y i x i i -+=-成立,则=x ______, =y _______.2、设(12)(35)13i x i y i ++-=-,则x = ,y =3、若1231izi i,则z4、若(3)(25)2i i zi,则Re z5、若421iz i i+=-+,则z = 6、设(2)(2)z i i =+-+,则arg z =7复数1z i =-的三角表示式为 ,指数表示式为 .8、复数i z 212--=的三角表示式为 _________________,指数表示式为_________________. 9、设i z 21=,i z -=12,则)(21z z Arg = _ _____。

10、设4i e 2z π=,则Rez=____________. Im()z = 。

z11、。

方程0273=+z 的根为_________________________________。

12、一曲线的复数方程是2z i -=,则此曲线的直角坐标方程为 . 13、方程3)Im(=-z i 表示的曲线是__________________________.14、复变函数12+-=z z w 的实部=),(y x u _________,虚部=),(y x v _________。

15、不等式114z z -++<所表示的区域是曲线 的内部.16二、判断题(正确打√,错误打⨯)1、复数7613i i +>+. ( )2、若z 为纯虚数,则z z ≠. ( )3、若 a 为实常数,则a a = ( )4、复数0的辐角为0.5、()f z u iv =+在000iy x z +=点连续的充分必要条件是(,),(,)u x y v x y 在00(,)x y 点连续。

复变函数试卷(含答案)

复变函数试卷(含答案)

e 1 z
z
z
2
z
2
z
3
z
3
z
n
,
n
2. (本题 8 分)解:
e
e e
z z
2!
z
3!

n! ( 1) n! z ,
n
----------------------------- 3
二、计算下列积分(3 小题,共 15 分):
1.(本题 5 分)分别小圆 C 1 , C 2 包围点 z1 1, z 2 2 i , 使得 C 1 , C 2 互不相交,且在 C 内,----- 1

1 ( z 1)
2
( 1)
n0

n
( z 1)
n
--------------- 2

3 页

2 页
*

*
*
*
* 课 程 考 试 试 卷


( 1) ( z 1)
n
n2

n0
n 2


( 1) ( z 1) 。
n n
---------------------- 2
沿圆周c的正向积分选择题每题3分共15a扇形b直线a复平面上处处解析b仅在直线上解析c复平面上处处不解析d复平面上处处可导4
*
----------------------------装--------------------------订----------------------线-------------------------------------------------------------装----------------------------------订---------------------------------线--------------------------专业: 电学类各专业

复变函数与积分变换试题及答案4

复变函数与积分变换试题及答案4

复变函数与积分变换试题及答案4一、填空题(每空2分,共20分) 1、复数i 31+的主幅角为3π。

2、复数i +3与复数i 32+乘积的主幅角为 23arctan 31arctan +。

3、复数i 31+-的三角表示为:)32sin 32(cos 2ππ+4、函数122+z z的解析区域为:i z ±≠。

5、=+)31(i e πe -6、自原点到i +1的直线上,积分?+=i iydz 10i --17、级数∑∞=+-121])[(n nn i 的收敛性为发散。

8、幂级数∑∞=13n n n z 的收敛半径为319、函数)1(sin 2ze z z-的全部奇点为∞=,2,0i k z π(答对一个给1分)。

10、函数1 +z e z在1-=z 处的留数为 1-e二、计算或证明(每小题10分,共80分)1、证明函数iy x z f +=2)(处处不解析证明:因为y v x u ==,2(3分);1,0,0,2=??=??=??=??y v x v y u x x u (3分);当21=x 时,C —R 条件满足,函数只在直线21=x 可导(3分);于是)(z f 在复平面处处不解析。

(2分) 2、证明 1s i n s i n22=+z z 证明:)(21s i n iz iz e e i z--=(2分);)(21cos iz iz e e z -+=(2分);)2(41)2(41cos sin 222222+++-+-=+--z i z i z i z i e e e e z z (4分)=1(2 分);3、计算积分dz e iz ?+20)2(解:函数2+z ze 的一个原函数为z e z 2+(4分);原式=i z z e 20|)2(+(4分)=)142-+i e i(2分)。

4、在+∞<<="" p="">)1(12-+z z z 成洛朗级数解:)1(1112)1(123-+-=-+z z z z z z =)11(11)11(122zz z z-+-=∑∑∞=∞=+0201112n nn n zz z z (6分) 5.求函数12+z z在有限奇点处的留数解:1)(2+=z zz f 有两个有限远奇点:i z i z =-=21,;且均为一阶极点;)(lim]),([Re i z z i z f s i z -=--→=21;同样可求21]),([Re =i z f s (2 分)。

《复变函数与积分变换》试卷及答案

《复变函数与积分变换》试卷及答案

得分得分«复变函数与积分变换»期末试题(A )题号 一 二 三 四 五 六 总分 得分一.填空题(每小题3分,共计15分)1.231i -的幅角是( ); 2.)1(i Ln +-的主值是( );3.211)(z z f +=,=)0()5(f ( );4.0=z 是 4sin z zz -的( )极点;5. zz f 1)(=,=∞]),([Re z f s ( );二.选择题(每小题3分,共计15分)1.解析函数),(),()(y x iv y x u z f +=的导函数为( );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a得分(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数323 2)(sin)3 ()2)(1()(z zzzzzfπ-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1得分五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos得分得分«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ ); 3.211)(z z f +=,=)0()5(f ( 0 ),4.0=z 是 4sin z zz -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题4分,共24分)1.解析函数),(),()(y x iv y x u z f +=的导函数为(B );(A ) y x iu u z f +=')(; (B )y x iu u z f -=')(;(C )y x iv u z f +=')(; (D )x y iv u z f +=')(.2.C 是正向圆周3=z ,如果函数=)(z f ( D ),则0d )(=⎰Cz z f .(A )23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2)2(3-z . 3.如果级数∑∞=1n nnz c 在2=z 点收敛,则级数在(C )(A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;(C )i z+=1点绝对收敛; (D )i z 21+=点一定发散.4.下列结论正确的是( B )(A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( D ).的可去奇点;为、zA 1sin )(∞的本性奇点;为、z B sin )(∞.sin )(的孤立奇点为、zC 11∞的孤立奇点;为、z D sin )(1∞ 三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。

复变函数与积分变换试题和答案

复变函数与积分变换试题和答案

复变函数与积分变换试题(一)1.一、填空(3 分×10)1.ln(-1- 3 i ) 的模 .幅角 。

2.-8i 的三个单根分别为: . . 。

3.Ln z 在的区域内连续。

4. f ( z ) = z 的解极域为: 。

5. f (z ) = x 2 - y 2 + 2xyi 的导数 f (z ) =。

7.指数函数的映照特点是: 。

8.幂函数的映照特点是: 。

9.若F () =F [f (t )].则 f (t )= F -1 f [()] 。

10.若f (t )满足拉氏积分存在条件.则 L [f (t )]=二、(10 分)-1x 2+ 1 y 2.求函数u (x ,y )使函数f (z )=u (x ,y )+iv (x ,y )为解析函数.且 f (0)=0。

、(10 分)应用留数的相关定理计算dz|z |=2 z 6(z -1)(z -3)四、计算积分(5 分×2)dz |z |=2 z ( z - 1)6. Re ssin 3z ,0 z 3已知v (x , y ) =2.c(z co-s i z)3 C:绕点i一周正向任意简单闭曲线。

五、(10 分)求函数f ( z) =z(z1-i)在以下各圆环内的罗朗展式。

1.0 | z - i | 12.1 | z - i | +六、证明以下命题:(5 分×2)(1)(t - t )与e-iwt o构成一对傅氏变换对。

+(2)+e-i t dt=2()-x + y + z = 1七、(10分)应用拉氏变换求方程组x + y+z = 0满足x(0)=y(0)=z(0)=0的解y + 4z = 0y(t)。

八、(10 分)就书中内容.函数在某区域内解析的具体判别方法有哪几种。

复变函数与积分变换试题答案(一)= 2i [-1+1] =02 分)一、1. 3. 8.二、解: 2 4 - ln 2 2 + 2. arctg 3 + 2k9 ln 2Z 不取原点和负实轴 角形域映为角形域 v u = - x = - x y 2. 2i 3 -i 、解: 四、 4. 空集 5. 2z 6. 1 +9. 1 +F ()e i d 2 -v =y =y f (z )=i - x + y +xy +c 7.将常形域映为角形域 10. 0+f (t )e -st dt ∵f (0)=0 c =0 ∴ f (z ) = xy - ( x - y ) = - ( x 2原式=(2 分) 2i Re s k =1 42 分)= -2i Re s k =3 Re sRe s,3z 6(z -1)(z -3),z 6(z -1)(z -3)u ∴ u = xy + c x 3 分) - y + 2xyi ) = z 6(z -1)(z -3) kz 6(z -1)(z -3) k(2分)3612= (2分)Re s 5 分) -2i z 2 2 分)z 3 z 1 = 0 z 2 =3 z 4 =1 = 1∴原式=(2分) 2i3 62=-36 i21.解:原式 = 2i Re s k =11 z (z -1),zk16(1-1)(1-3)z 2,0 z6 z z3 分) z 1=0z 2=1=0八、解:①定义; ②C-R 充要条件 Th ; ③v 为 u 的共扼函数 10 分1 +2)解:∵ 1+2()e -i t dw =e -i t2 -S (2)-(1):∴Y (t )=1-12e t -12e -t =1-cht2.解: 原式 = cos z 2! z =i = i (- cos z ) = -i cos i = -ich 1 五、1.解:f ( z ) (1分)( z - i ) z - i + i 1分)(z 1-i ) 11 i 1+ z-iin =01分)z1- i1in - 1n = i (z -i )n -1 = i (z -i )n2 分)n =0 n =-12. 解: f (z )1分)=(z 1- i )i + ( z - i )1分)11+1 分)1 (z - i )2n =01 1=1n (z -1i )n +2n =0 i n -i n (z -i )n -2 (2 分) n =0六、1.+ +(t -t )e -i tdt = e--i t t =t =e -it3 分) ∴结论成立++e -i t dt = 2() -(2 分)sX (s )+Y (s )+sZ (s )= 1S (1)X (s )+sY (s )+Z (s ) = 0 (2) (3 分) Y (s )+4sZ (s ) = 0(3)∴ 2( w ) 与 1 构成傅氏对七、解:∵∴Y (s )=s21-1s 2 -1= s - 2s -1+ s +13 分)=1=02 分)复变函数与积分变换试题(二)一、填空(3 分×10)7.若 z 0为 f (z )的 m 级极点.则Re s [ f (z ),z ]=( )。

复变函数与积分变换复习题汇总(答案)

复变函数与积分变换复习题汇总(答案)

复变函数与积分变换复习题汇总(答案) 复变函数与积分变换复习题汇总(答案)一、填空2(cosisin)2ei41、33,2、(2k12)i3、1212i,1212i4、6xyi(3x23y2)5、z0,二级极点6、437、x[(2)(2)]8、1ss,Re(ss0)009、110、011、tan1bax12、z1,本性,z,可去13、mn14、nzn1,1015、2ki16、(t)12[(t2)(t2)]二、证明题1、ux2vxyyx2xuy0vxyvyx当xy0时,f(z)才可导,即f(z)仅在z0可导f(z)处处不解析2、|sin2i||ei(2i)ei(2i)2i||e2e22|1|cos2i|同理可证。

三、判断正误1、×2、×3、×4、√5、×6、√7、√√10、×11、×四、计算题1、由Cauclcy-Rieman方法易知,f(z)在复平面上处处解析且f"(z)(3x23y2)i6xy或f(z)(xiy)3z3f"(z)3z22、左式11dz2i[231dz24)zi]0C(z4)ziC(z或:左式Res[f(z),zi]Res[f(z),zi]03、a在c处解析,左式=0a在c处解析,za是三级极点左式2i2!(sinz)""zaisina4、f(z)2i(3271)"z2i[6z7]f"(z)12if"(1i)12i15、f(z)z12(1nz1n11z1)()022、×9、121122n36、左式22z(z1)zz0z2z3(111)21|1zz2z31zz|12jt2jtF(2sincost)F(sin2t)F(ee)7、2jtj[(2)(2)]t1a8、L(1ate)L(1)aL(te)S(s1)219、f(t)21||jwteedwecostd01jt1jte(ee)d220t扩展阅读:复变函数与积分变换复习题+答案复变函数与积分变换复习题汇总一、填空题1、1i3的三角函数表示为_____________________;2i的指数函数表示为______________________;1i2、ln(1)___________________;3、i有两个根,他们分别是_________________和_______________;4、f(z)y3xyi(x3xy),则3232f(z)___________________;5、ez1的孤立奇点为Z=______________,其类型为_________________;3z1e2z,0]________________;6、Res[4z7、g[1]2(),则g[cos2t]__________________;s0t[e]____________________;8、3nnz9、的收敛半径是_______________;n13ndz_____________,其中C:10、2z2z4c11、Zabi,a与b是实数,且a12、sin|z正向;0,b0,则argZ________;1有两个奇点,一个是Z=_______,是_________奇点;另一个是Z=________,是_________1z奇点;13、Z0是14、f(z)15、exp f1(z)与f2(z)的m级和n级极点,则Z0是f1(z)f2(z)的___________级极点;1展为Z的幂级数后的结果为________,其收敛半径为_____________;(1z)2z的周期是________________;216、2cos的Fourier逆变换为________________;二、证明题1、函数f(z)x2ixy在平面上处处不解析2、对于z2i,|sinz|1和|cosz|1均不成立三、判断正误(请在括号内划“√”或“×”)1、i2i;()2、z是任意复数,则z2|z|2;()3、f"(z0)存在,那么f(z)在z0处解析;()4、u和v都是调和函数,v是u的共轭调和函数,则-u是v的共扼调和函数;(5、u、v都是调和函数,则u+iv必为解析函数;()6、f(z)uiv解析,则uvuxy,yvx;()7、f(z)解析,则下面的导数公式全部正确。

复变函数及积分变换试题及答案

复变函数及积分变换试题及答案

第一套第一套一、选择题(每小题3分,共21分)1. 若( ),则复函数()(,)(,)f z u x y iv x y =+是区域D 内的连续函数。

A. (,)u x y 、(,)v x y 在区域D 内连续; B. (,)u x y 在区域D 内连续; C. (,)u x y 、(,)v x y 至少有一个在区域D 内连续; D. 以上都不对。

2. 解析函数()f z 的实部为sin x u e y =,根据柯西-黎曼方程求出其虚部为( )。

A.cos x e y C -+; B cos x e y C -+; C sin x e y C -+; D cos x e y C +3.2|2|1(2)z dzz -==-⎰( )。

A. i π2; B. 0; C. i π4; D. 以上都不对. 4. 函数()f z 以0z 为中心的洛朗展开系数公式为( )。

A. 101()2()n n f d c iz ξξπξ+=-⎰ B. 0()!n n f z c n =C. 201()2n k f d c iz ξξπξ=-⎰D. 210!()2()n n k n f d c iz ξξπξ+=-⎰5. z=0是函数zz sin 2的( )。

A.本性奇点B.极点C. 连续点D.可去奇点6. 将点∞,0,1分别映射成点0,1,∞的分式线性映射是( )。

A.1z zw -=B. z 1z w -=C. zz 1w -= D. z11w -=7. sin kt =()L ( ),(()Re 0s >)。

A.22k s k +; B.22k s s +; C. k s -1; D. ks 1.二、填空题(每小题3分,共18分)1.23(1)i += [1] ;----------------------------------------装--------------------------------------订-------------------------------------线----------------------------------------------------2. 幂级数∑∞=1n nn z !收敛于 [2] ;3. 设0Z 为复函数)(z f 的可去奇点,则)(z f 在该点处的留数为 [3] . ;4. 通过分式线性映射z kz λωλ-=-(k 为待定复常数)可将 [4] 映射成单位圆内部1ω<;5. 一个一般形式的分式线性映射可由z b ω=+、az ω=、1zω=三种特殊形式的映射复合而成,分别将ω平面看成z 平面的平移映射、旋转与伸缩映射、 [5] ; 6. 求积分()i x e x dx ωδ∞--∞=⎰[6] ;三、判断题 (每小题2分,共10分)1. 平面点集D 称为一个区域,如果D 中任何两点都可以用完全属于D 的一条折线连接起来,这样的集合称为连通集。

复变函数积分变换试卷B卷

复变函数积分变换试卷B卷

复变函数积分变换试卷B卷浙江科技学院2013-2014学年第⼀学期考试试卷B 卷考试科⽬复变函数与积分变换考试⽅式闭卷完成时限 2⼩时拟题⼈⼯程数学组审核⼈批准⼈ 2014年 1 ⽉⽇⼀、填空题(每⼩题3分,共18分)1.设2z i =+,则它的幅⾓主值arg z 为 12arctan2.设z i =5(2)63(0,1,2)k i k π+=3.设函数()()i z f z e z x yi -==+,则它的的实部与虚部为cos(1)sin(1)x x e y e y ----4.设函数()ln(1)f z i =--,则它的值为 3,4i π5.设原点在光滑闭曲线c 的外部,则积分2d csin zz z=?0 6.设函数sin 2()zf t z=,它在孤⽴奇点的留数为 0 ⼆、选择题(每⼩题3分,共12分)1. 设1,1iz i+=- 则765z z z ++的值等于( d )A i ;B -i ;D -1 2. 级数11()k kk k k z xiy ∞∞===+∑∑收敛的充分必要条件是( b )学院专业班学姓名 ………………………………………………………………………装订线……………………………………………………………………………………A. 级数1kk x∞=∑收敛; B 级数1kk x∞=∑和1kk y∞=∑都收敛;C 级数1kk y∞=∑收敛; D 级数1kk x∞=∑和1kk y=∑只要有⼀个收敛3.对数函数(1)Ln z -的各分⽀在( c )解析 A 全平⾯ B 在实轴上 C 除去1和1左⽅的实轴的平⾯内 D 在上半平⾯内4.设)(z f 的拉⽒变换为()F S ,则(32)()t f t -的拉⽒变换为( a ) A 3()2()F S F S '+; B 3()2()F S F S '-; C 5()F S ; D 2()F S '-。

三、计算题(每⼩题7分,共56分) 1. 求()1ii +的值.()()11iiLn i i e++= -------3分24i i k i e ππ??++ ?= -------6分2244i i k i k l eee ππππ++-- ?== -------7分2. 已知函数__()f z z =, 讨论函数f (z) 在整个复平⾯上的可导性与解析性.,,z x iy u x v y =-==-,1,0x y u u ==, 0,1x y v v ==-, ------------3分由C-R ⽅程得:x y u v ≠,0y x u v =-=,―――――6分因此函数()f z z =在复平⾯上不可导和处处不解析的.――――7分3. 求函数21()(1)f z z z =-在圆环域0|1|1z <-<的罗朗级数展开式. 在0|1|1z <-<内,由于|1|1z -<,得21(1)z z =-211(1)1(1)z z -+------------------- 3分1(1)(1)(1)n n n z z +∞==---∑ - ---------------5分 20(1)(1)n n n z +∞-==--∑ 0|1|1z <-<---------------7分4.计算积分?Czdz Re ,其中C 是从0到1的直线段1C 与从1到1+i 的直线段2C 所连成的折线。

复变函数与积分变换期末试题 同济大学

复变函数与积分变换期末试题 同济大学

同济大学课程考核试卷(A 卷)2013 — 2014 学年第 一 学期命题教师签名:审核教师签名:课号:122144课名:复变函数与积分变换 考试考查:考查此卷选为:期中考试( )、期终考试( √)、重考( )试卷年级专业 学号 姓名 任课教师 ___ _ 题号一二三四五六七总分得分(注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟。

要求写出解题过程,否则不予计分)1. (10%)已知,求一切使得成立的自变量的值。

f (z )=z -4z ‒1f (z )=z 2. (1)(4%) 已知:,证明:为调和函数。

u (x,y )=e x cos y +e ‒x cosy u (x,y )(2)(6%) 求的共轭调和函数。

u (x,y )v(x,y)(3)(6%)记,若,求。

f (z )=u (x,y )+i v(x,y)f''(z )=f(z)v(0,0)(4)(4%) 对上述f(z),求其沿曲线的积分,这里。

(cos t ,t 2+1)0≤t ≤13. (1) (8%)求在0点邻域上的Taylor 级数(至少写出前4个非零项)。

e ‒zz ‒1(2) (12%)求出在复平面上的一切孤立奇点,并指出其类型。

z e z ‒e ‒z4. (1) (10%)求积分∫|z |=4dz z sin z(2) (10%)求函数的Fourier 变换。

f (x )=e ‒|x +1|5. (10%) 求解微分方程初值问题x''(t)‒2x'(t)+x(t)=1, x(0)=0, x'(0)=‒1.6.(10%) 求将复平面的第一象限变为单位圆盘的共形映照。

7.若分式线性变换中,系数a,b,c,d均为整数,且,则称为模变换。

f(z)=a z+bcz+d ad‒bc=1f(z)(1) (5%)证明:若是模变换,则其逆变换也是模变换。

f(z)f‒1(z)(2) (5%)证明:若都是模变换,则也是模变换。

复变函数与积分变换试题及答案20

复变函数与积分变换试题及答案20

复变函数与积分变换试题与答案1.(5)复数z与点(,)x y对应,请依次写出z的代数、几何、三角、指数表达式和z的3次方根。

2.(6)请指出指数函数z ew=、对数函数zw ln=、正切函数=的解析域,并说明它们的解析域是哪类点集。

zw tan3.(9)讨论函数22i=的可导性,并求出函数)(zzf+)(yxf在可导点的导数。

另外,函数)f在可导点解析吗?是或否请说明(z理由。

4.(7)已知解析函数v u z f i )(+=的实部y x y u 233-=,求函数v u z f i )(+=的表达式,并使0)0(=f 。

5.(6×2)计算积分:(1)⎰+-Cn z z z10)(d ,其中C 为以0z 为圆心,r 为半径的正向圆周, n 为正整数;(2)⎰=+-3||2d )2()1(e z zz z z 。

6.(5×2)分别在圆环 (1)1||0<<z ,(2) 1|1|0<-<z 内将函数2)1(1)(z z z f -=展为罗朗级数。

7.(12)求下列各函数在其孤立奇点的留数。

(1) 3sin )(zzz z f -=; (2) z z z f sin 1)(2=; (3) 11e )(-=z z zf .8.(7)分式线性函数、指数函数、幂函数的映照特点各是什么。

9.(6分)求将上半平面 0)Im( z 保形映照成单位圆 1|| w 的分式线性函数。

10.(5×2)(1)己知 F )()]([ωF t f =,求函数)52(-t f 的傅里叶变换;(2)求函数)i 5)(i 3(2)(ωωω++=F 的傅里叶逆变换。

11.(5×2)(1)求函数)2(e )(2-=t u t f t 的拉普拉斯变换; (2)求拉普拉斯逆变换L -1]54[2++s s s。

12.(6分)解微积分方程:0)0( ,1d )()('0==+⎰y y t y tττ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012-2013 学年第二学期《复变函数与积分变换》期终考试试卷--1
同济大学课程考核试卷(A 卷)
2. (1)(4%) 设u(x, y) = x3 + ������������������2,求实数 k,使得 u(x,y)为调和函数。 (2)(4%)求函数 v(x,y),使得 f(z) = ������(������, ������) + ������������(������, ������)解析,且 f(0)=0。
2014-2015 学年第一学期《复变函数与积分变换》期终考试试卷--1
同济大学课程考核试卷(A 卷)
2. 设u(x, y) = x3 − 3xy2,v(x, y)为u(x, y)的共轭调和函数。 (1)(6%) 若v(0,0) = 0,求v(x, y).
2014 — 2015 学年第 一 学期
(2)(9%) 设f(z) = (u(x, y) + iv(x, y))2,证明 f(z)是解析函数且 uv 是调和函数。.
2013-2014 学年第二学期《复变函数与积分变换》期终考试试卷--1
同济大学课程考核试卷(A 卷)
2.(16%)设 f(z)为解析函数。 (1)(4%) 以下哪个函数可能是 f(z)的实部?
2013 — 2014 学年第 二 学期
A. x2 + y2
B. x2y2
C.
1 x2+y2+1
D. x2 − y2
2013-2014 学年第一学期《复变函数与积分变换》期终考试试卷--1
同济大学课程考核试卷(A 卷)
2. (1)(4%) 已知: u(x, y) = ex cos ������ + ������−������������������������������,证明:u(x, y)为调和函数。 (2)(6%) 求u(x, y)的共轭调和函数������(������, ������)。
4. (1) (10%)求积分
(2) (12%)求出ez−ze−z在复平面上的一切孤立奇点,并指出其类型。
������������ ∫ ������ sin ������
|������|=4
(2) (10%)求函数f(x) = e−|x+1|的 Fourier 变换。
5. (10%) 求解微分方程初值问题 x′′(t) − 2x′(t) + x(t) = 1, x(0) = 0, x′(0) = −1.
|������+1|+|������|=3
5. (1) (8%)求函数 的 Fourier 变换。
1 0 < ������ < 1 f(x) = {0 x 为其他值
(2)(10%) 求解微分方程初值问题 x′′(t) − 4x(t) = et, x(0) = 1, x′(0) = 0.
2012-2013 学年第二学期《复变函数与积分变换》期终考试试卷--3
6.(10%) 写出一个将区域D = {z: |z| < 2, Im z > 0}映为上半平面,且将 i 仍映为 i 的共形映照。
2012-2013 学年第一学期《复变函数与积分变换》期终考试试卷--1
命题教师签名:
审核教师签名:
(2)(6%) 在第(1)题基础上,进一步要求f(1) = 1,求f(z)。 (3)(6%) 求积分
课号:122144
课名:复变函数与积分变换
此卷选为:期中考试( )、期终考试( √)、重考( )试卷
考试考查:考试
年级 专业
题号

学号二Leabharlann 三姓名 四任课教师


___ _ 总分
2
2
(1) (8%)计算它们的导数(要求仍用双曲函数表示)。
(2) (8%)这两个函数是否有零点?说明理由。
(3)
(8%)求出csoinshh
������在扩充复平面上一切孤立奇点的类型
������
3.
(24%)设f(z)
=
sin ������ 1−������
(1) (8%) 求 f(z)在 0 点的 Taylor 展开式中前三个非零项。 (2) (8%) 求 f(z)在 1 点的 Laurent 展开式中前三个非零项。 (3) (8%)求积分
lim ������(������)
������→∞
2014-2015 学年第一学期《复变函数与积分变换》期终考试试卷--2
4.(1) (10%)求积分
������������ ∫ z2sin ������
|������|=4
(2) (10%)求以下函数的 Fourier 变换 1
f(x) = x2 + 4������ + 5
2013 — 2014 学年第 一 学期
(3)(6%)记f(z) = u(x, y) + ������ ������(������, ������),若f′′(z) = f(z),求������(0,0)。 (4)(4%) 对上述 f(z),求其沿曲线(cos ������ , ������2 + 1)的积分,这里0 ≤ t ≤ 1。
命题教师签名:
审核教师签名:
(3)(5%) 设 C 是以(1 − cos ������ , sin 2������) , (0 ≤ ������ ≤ ������)为参数方程的有向曲线,求积分∫������ ������(������)������������.
课号:122144
课名:复变函数与积分变换
2013-2014 学年第一学期《复变函数与积分变换》期终考试试卷--3
7.若分式线性变换������(������)
=
������������+b中,系数
������������+������
a,b,c,d
均为整数,且������������

������������
=
1,则������(������)称为模变换。
年级 题号
专业 一
学号


姓名


任课教师


___ _ 总分
得分
(注意:本试卷共七大题,三大张,满分 100 分.考试时间为 120 分钟。要求写出解题过程,否则不予计分)
1. (10%) 关于 z 的方程sin ������ = ������,是否对一切复数 c 都有解?说明理由。
3. (1) (8%)求 ez 在 0 点的 Taylor 展开,展开至三次方项。
命题教师签名:
审核教师签名:
课号:122144
课名:复变函数与积分变换
此卷选为:期中考试( )、期终考试( √)、重考( )试卷
考试考查:考查
年级 题号
专业 一
学号


姓名


任课教师


___ _ 总分
得分
(注意:本试卷共七大题,三大张,满分 100 分.考试时间为 120 分钟。要求写出解题过程,否则不予计分)
此卷选为:期中考试( )、期终考试( √)、重考( )试卷
考试考查:考试
年级 专业
题号

学号


姓名 四
任课教师


___ _ 总分
得分
(注意:本试卷共六大题,三大张,满分 100 分.考试时间为 120 分钟。要求写出解题过程,否则不予计分)
1.
(10%)证明:若|z|
=
1(z

1),则Re
[1]
7. 设 y(x)在原点解析,且满足微分方程 (1 − x2)������′′(������) − 2������������′(������) + ������(������ + 1)������(������) = 0,
这里 n 为正整数。 (1) (5%) 若 y(0)=1,y’(0)=0,求 y(x)在原点的 Taylor 展开式(展至 2 次项)。 (2) (5%) 若 y(0)=0,y’(0)=1,求 y(x)在原点的 Taylor 展开式(展至 3 次项)。 (3) (5%) 证明:对(1)(2)中的 y(x),有且仅有一个是多项式。
2012 — 2013 学年第 二 学期
(3)(7%) 求积分
命题教师签名: 课号:122144
审核教师签名: 课名:复变函数与积分变换
考试考查:考试
∫ ������(������)������������
������
这里 C 为连接(0,0)和(π, 0)的正弦曲线 y=sin x.
此卷选为:期中考试( )、期终考试( √)、重考( )试卷
(2) (5%)
证明:T0(z)
=
a0 z+a0+ib0
将半平面{Re
z
>
0}映射为圆盘{|w

1|
2
<
12},这里a0为正数,
b0为实数。
(3)
(5%)
证明:Tk(z)
=
ak z+zk+ibk
(������

1)将半平面{Re
z
>
0}映射为包含于{Re
z
>
0}中的区域,
这里ak是正数,bk为实数,且Re z������ ≥ 0. (4) (5%) 证明:若有理函数f(z)可以写为复合函数������0 ∘ ������1 ∘ ⋯ ∘ ������������(������), 这里������0, ������1, … , ������������如(2)(3)中 所定义,则f(z)的一切极点的实部均为负数。
相关文档
最新文档