函数的概念及其表示方法练习题
函数的概念及表示(习题及答案)
![函数的概念及表示(习题及答案)](https://img.taocdn.com/s3/m/f253cd1302768e9951e738bb.png)
函数的概念及表示(习题) 1.若函数(3)f x +的定义域为[52]--,,则()(1)(1)F x f x f x =++-的定义域为______________.2.求下列函数的值域.(1)()12f x x x =-++____________________(2)()23f x x x =+-_____________________(3)223()1x x f x x x -+=-+_____________________3.函数228()21kx f x kx kx -=++的定义域为R ,则k 的取值范围是___________.4.已知函数2()68f x mx mx m =-++的定义域为R ,则m 的取值范围是____________.5.设2()1ax b f x x +=+(0a >)的值域为[-1,4],则a ,b 的值为_________.6.已知2121()1 11x x f x x x ⎧--⎪=⎨>⎪+⎩≤()(),则1(())2f f =()A .12B .413C .95-D .25417.已知3 10()((5))10x x f x f f x x -⎧=⎨+<⎩≥()(),则(6)f =________.8.设2()()[)x x a f x x x a ∈-∞⎧=⎨∈+∞⎩,,,,,若(2)4f =,则a 的取值范围是_______________.9.已知函数342()2 21x x f x x x ⎧-⎪=⎨>⎪-⎩≤()(),则当()1f x ≥时,自变量x 的取值范围是()A .5[1]3,B .5[3]3,C .5(1)[)3-∞+∞ ,,D .5(1][3]3-∞ ,,10.若函数2()2g x x =-,()4()()()()g x x x g x f x g x x x g x <++⎧=⎨-⎩≥,,,则()f x 的值域是()A .9[0](2)4-+∞ ,,B .[0,+∞)C .9[0]4-,D .9[0](1)4-+∞ ,,11.若函数110()101x x f x x x ---<⎧=⎨-+<⎩≤≤()(),则()()1f x f x -->-的解集为___________________.12.已知函数2(1) 1()411x x f x x x ⎧+<⎪=⎨--⎪⎩≥()(),则使得()1f x ≥的自变量x 的取值范围是_____________________.13.已知1 0()10x f x x ⎧=⎨-<⎩≥()(),则不等式(2)(2)5x x f x +++≤的解集是________________.14.(1)已知(1)2f x x x +=+,则()f x =__________.(2)定义域为R 的函数)(x f 满足()2()21f x f x x +-=+,则()f x =_________.(3)已知21()2()345f x f x x x+=++,则()f x =_______________.15.已知函数()f x ,()g x 满足:()()()()()g x y g x g y f x f y -=+,(1)1f -=-,(0)0f =,(1)1f =,求g (0),g (1),g (2)的值.16.设()f=,且对于任意的f x是定义在R上的函数,满足(1)0x,y,等式()()(21)f x的解+-=++恒成立,求()f x y f y x x y析式.【参考答案】1.[10]-,2.(1)()[3)f x ∈+∞,;(2)3()[)2f x ∈+∞,;(3)11()(1]3f x ∈,3.[01),4.[01],5.a =4,b =36.B 7.78.(2]-∞,9.D10.A 11.1[1)(01]2-- ,,12.(2][010]-∞- ,,13.3(]2-∞,14.(1)2()1f x x =-(2)1()23f x x =-+(3)222845()333f x x x x x =+--+15.(0)1(1)0(2)1g g g ===-,,;16.2()2f x x x =+-。
高考数学专题《函数的概念及其表示》习题含答案解析
![高考数学专题《函数的概念及其表示》习题含答案解析](https://img.taocdn.com/s3/m/78c8f43dfbd6195f312b3169a45177232f60e431.png)
专题3.1 函数的概念及其表示1.(2021·四川达州市·高三二模(文))已知定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,则(1)f =( )A .1-B .1C .13-D .13【答案】B 【解析】当0x =时,f (1)2(0)1f +=①;当1x =时,(0)2f f +(1)2=②,由此进行计算能求出f (1)的值.【详解】定义在R 上的函数()f x 满足,2(1)2()1f x f x x -+=+,∴当0x =时,f (1)2(0)1f +=,①当1x =时,(0)2f f +(1)2=,②②2⨯-①,得3f (1)3=,解得f (1)1=.故选:B2.(2021·浙江高一期末)已知231,1,()3,1,x x f x x x +⎧=⎨+>⎩…则(3)f =( )A .7B .2C .10D .12【答案】D 【解析】根据分段函数的定义计算.【详解】由题意2(3)3312f =+=.故选:D .3.(2021·全国高一课时练习)设3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,则(5)f 的值为( )A .16B .18C .21D .24练基础【解析】根据分段函数解析式直接求解.【详解】因为3,10()(5),10x x f x f x x +>⎧=⎨+≤⎩,所以(5)(10)(15)15318f f f ===+=.故选:B.4.(2021·浙江湖州市·湖州中学高一开学考试)若函数213()22f x x x =-+的定义域和值域都是[1,]b ,则b =( )A .1B .3C .3-D .1或3【答案】B 【解析】根据函数213()22f x x x =-+在[1,]b 上为增函数,求出其值域,结合已知值域可求出结果.【详解】因为函数213()22f x x x =-+21(1)12x =-+在[1,]b 上为增函数,且定义域和值域都是[1,]b ,所以min ()(1)f x f =1=,2max 13()()22f x f b b b b ==-+=,解得3b =或1b =(舍),故选:B5.(上海高考真题)若是的最小值,则的取值范围为( ).A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]【答案】D 【详解】由于当0x >时,1()f x x a x=++在1x =时取得最小值2a +,由题意当0x ≤时,2()()f x x a =-应该是递减的,则0a ≥,此时最小值为2(0)f a =,因此22a a ≤+,解得02a ≤≤,选D .6.(广东高考真题)函数()f x =的定义域是______.【答案】[)()1,00,∞-⋃+由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案.【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()f x =的定义域为:[)()1,00,-⋃+∞;故答案为[)()1,00,-⋃+∞.7.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.【答案】3【解析】利用数形结合分别求出集合A 与集合B ,再利用交集运算法则即可求出结果.【详解】若()()0f g x =,则()0g x =或1-或1,∴{}1,0,1,2A =-,若()()0g f x =,则()0f x =或2,∴{}1,0,1B =-,∴{}1,0,1=- A B .故答案为:3.8.(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是[)1,+∞,则函数()y f x =的定义域是_______.【答案】(]1,2【解析】令()()222111x x g x x x x +-=≥+-,根据函数值域的求解方法可求得()g x 的值域即为所求的()f x 的定义域.【详解】令()()222111x x g x x x x +-=≥+-,则()()222111111111x x x x g x x x x x x x x+-+==+=+≥+-+--+,1y x x =- 在[)1,+∞上单调递增,10x x∴-≥,10111x x∴<≤-+,()12g x ∴<≤,()f x ∴的定义域为(]1,2.故答案为:(]1,2.9.(2021·黑龙江哈尔滨市第六中学校高三二模(文))已知函数()221,01,0x x f x x x⎧+≥⎪=⎨<⎪⎩,若()2f a =,则实数a =___________.【答案】1或【解析】分别令212a +=,212a=,解方程,求出方程的根即a 的值即可.【详解】当0a ≥,令212a +=,解得:1a =,当0a <,令212a =,解得:a =故1a =或,故答案为:1或.10.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.【答案】171,12⎤-⎥⎦【解析】用n 表示出m ,结合二次函数的性质求得t n m =-的取值范围.【详解】画出()f x 图象如下图所示,3114⨯+=,令()2140x x -=>,解得x =由()(),n m f n f m >=得2311m n +=-,223n m -=,且1n <≤所以(222121333n t n m n n n n -=-=-=-++<≤,结合二次函数的性质可知,当131223n =-=⎛⎫⨯- ⎪⎝⎭时,t 取得最大值为2133217322312⎛⎫-⨯++= ⎪⎝⎭,当n =时,t取得最小值为212133-⨯=-.所以t的取值范围是171,12⎤⎥⎦.故答案为:171,12⎤⎥⎦1.(2021·云南高三二模(文))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则( )A .t 没有最小值B .t1-C .t 的最小值为43D .t 的最小值为1712【答案】B 【解析】先作出分段函数图象,再结合图象由()()f n f m =,得到m 与n 的关系,消元得关于n 的函数,最后求最值.【详解】如图,作出函数()f x 的图象,()()f n f m = 且n m >,则1m £,且1n >,练提升2311m n ∴+=-,即223n m -=.由21014n n >⎧⎨<-≤⎩,解得1n <≤.222211317(32)(333212n n m n n n n -⎡⎤∴-=-=---=--+⎢⎥⎣⎦,又1n <≤ ∴当n =时,()min 1n m -=-.故选:B.2.(2020·全国高一单元测试)已知函数21,0,()2,0,x x f x x x ⎧+≤=⎨->⎩,若()05f x =,则0x 的取值集合是( )A .{2}-B .5,22⎧⎫-⎨⎬⎩⎭C .{2,2}-D .52,2,2⎧⎫--⎨⎬⎩⎭【答案】A 【解析】根据分段函数值的求解方法,对00x ≤与00x >两种情况求解,可得答案.【详解】若00x ≤,可得2015x +=,解得02x =-,(02x =舍去);若00x >,可得02x -=5,可得052x =-,与00x >相矛盾,故舍去,综上可得:02x =-.故选:A.3.【多选题】(2021·全国高一课时练习)(多选题)下列函数中,定义域是其值域子集的有( )A .865y x =+B .225y x x =--+C .y =D .11y x=-【答案】AC 【解析】分别求得函数的定义域和值域,利用子集的定义判断.【详解】A 函数的定义域和值域都是R ,符合题意;B.定义域为R ,因为2225(1)66y x x x =--+=-++≤,所以函数值域为(,6]-∞,值域是定义域的真子集不符合题意;C.易得定义域为[1,)+∞,值域为[0,)+∞,定义域是值域的真子集;D.定义域为{|0}x x ≠,值域为{|1}x x ≠-,两个集合只有交集;故选:AC4.【多选题】(2021·全国高一课时练习)已知f (x )=2211x x+-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x -C .1f x ⎛⎫⎪⎝⎭=f (x )D .1(()f f x x-=-【答案】BD 【解析】根据函数()f x 的解析式,对四个选项逐个分析可得答案.【详解】因为f (x )= 2211x x+-,所以()f x -=221()1()x x +---=2211x x+-()f x =,即不满足A 选项;1f x ⎛⎫ ⎪⎝⎭=221111x x ⎛⎫+ ⎪⎝⎭⎛⎫- ⎪⎝⎭=2211x x +-,1f x ⎛⎫⎪⎝⎭=()f x -,即满足B 选项,不满足C 选项,1(f x -=221111x x ⎛⎫+- ⎪⎝⎭⎛⎫-- ⎪⎝⎭=2211x x +-,1()()f f x x -=-,即满足D 选项.故选:BD5.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f xg x ≤【答案】ACD 【解析】由题意知()10f -=可得()10g -=;令()f x u =,因为方程()2f u =没有实根,即()2g x =没有实根;令()u f x =,则方程()2g x =-,即()2f u =-,通过化简与计算即可判断C ;当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,即可判断D .【详解】对于A 选项,由题意知()10f -=,则()()()()1100g f f f -=-==,所以A 选项正确;对于B 选项,令()f x u =,则求()()()2g x f f x ==的根,即求()2f u =的根,因为方程()2f u =没有实根,所以()2g x =没有实根,所以选项B 错误;对于C 选项,令()u f x =,则方程()2g x =-,即()2f u =-,得112,03u u u +=-<⇒=-,2222,01u u u u -+=-≥⇒=+,由方程1()f x u =得13(0)x x +=-<或223(0)x x x -+=-≥,解得4x =-或3x =,易知方程2()f x u =,没有实数根,所以方程()2g x =-的所有根之和为-1,选项C 正确;对于D 选项,当0x <时,()(1)g x f x =+,则将函数()f x 在(,1)-∞的图象向左平移1个单位长度可得函数()g x 的图象,当0x <时,函数()g x 的图象不在()f x 的图象的下方,所以D 选项正确,故选:ACD .6.【多选题】(2021·全国高三专题练习)已知函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,则( )A .()f x 的图象过点()1,0和()1,0-B .()f x 在定义域上为奇函数C .若当1x >时,有()0f x >,则当10x -<<时,()0f x <D .若当01x <<时,有()0f x <,则()0f x >的解集为()1,+∞【答案】AC 【解析】根据抽象函数的性质,利用特殊值法一一判断即可;【详解】解:因为函数()f x ,(,0)(0,)x ∈-∞⋃+∞,对于任意的,(,0)(0,)x y ∈-∞+∞ ,()()()f xy f x f y =+,令1x y ==,则()()()111f f f =+,则()10f =,令1x y ==-,则()()()111f f f =-+-,则()10f -=,所以()f x 过点()1,0和()1,0-,故A 正确;令1y =-,则()()()1f x f x f -=+-,即()()f x f x -=,所以()f x 为偶函数,故B 错误;令1y x =-,则()()110f f x f x ⎛⎫-=+-= ⎪⎝⎭,则()1f f x x ⎛⎫-=- ⎪⎝⎭当1x >时,所以()11,0x -∈-,又()0f x >,则10f x ⎛⎫-< ⎪⎝⎭,即当10x -<<时,()0f x <,故C 正确;令1y x =,则()()110f f x f x ⎛⎫=+= ⎪⎝⎭,则()1f f x x ⎛⎫=- ⎪⎝⎭,当01x <<时,所以()11,x ∈+∞,又()0f x <,则10f x ⎛⎫>⎪⎝⎭,即当1x >时,()0f x >,因为()f x 是偶函数,所以1x <-时,()0f x >,所以()0f x >的解集为()(),11,-∞-+∞U ,故D 错误;故选:AC7.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈【答案】ABD 【解析】根据函数解析式,代入数据可判断A 、B 的正误,做出()f x 的图象,可判断C 、D 的正误,即可得答案.【详解】对于A :由题意得:2(1)(1)2(1)3f -=--⨯-=,所以()(3)23331f f f -==-⨯+=-⎡⎤⎣⎦,故A 正确;对于B :当0a <时,2()21f a a a =-=-,解得a =1,不符合题意,舍去当0a ≥时,()231f a a =-+=-,解得2a =,符合题意,故B 正确;对于C :做出()f x 的图象,如下图所示:所以()f x 在R 上不是减函数,故C 错误;对于D :方程()f x a =有两解,则()y f x =图象与y a =图象有两个公共点,如下图所示所以(]0,3a ∈,故D 正确.故选:ABD8.(2021·浙江高三月考)已知0a >,设函数2(22),(02)(),(2)x a x x a f x ax x a ⎧-++<<+=⎨≥+⎩,存在0x 满足()()00f f x x =,且()00f x x ≠,则a 的取值范围是______.1a ≤<【解析】求得()2x ax a y =≥+关于y x =对称所得函数的解析式,通过构造函数,结合零点存在性列不等式,由此求得a 的取值范围.【详解】由于()f x 存在0x 满足()()0f f x x=,且()00f x x ≠,所以()f x 图象上存在关于y x =对称的两个不同的点.对于()()2,2y ax x a y a a =≥+≥+,交换,x y 得x ay =,即()()12,2y x x a a y a a=≥+≥+,构造函数()()22111222222g x x a x x x a x x x a a a a ⎛⎫⎛⎫=-++-=-++-=-++- ⎪ ⎪⎝⎭⎝⎭(()22a a x a +≤<+),所以()g x 的零点122a a +-满足()12222a a a a a+≤+-<+,由1222a a a +-<+得()()21111001a a a a a a a a+---==<⇒<<,由()1222a a a a+≤+-得3210a a -+≤,即()()()()31111a a a a a a a --+=+---()()()21110a a a a a a ⎛=+--=--≤ ⎝,由于01a <<1a ≤<.1a ≤<9. (2021·浙江高一期末)已知函数()1f x x =-+,()()21g x x =-,x ∈R .(1)在图1中画出函数()f x ,()g x 的图象;(2)定义:x R ∀∈,用()m x 表示()f x ,()g x 中的较小者,记为()()(){}min ,m x f x g x =,请分别用图象法和解析式法表示函数()m x .(注:图象法请在图2中表示,本题中的单位长度请自己定义且标明)【答案】(1)图象见解析;(2)()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩;图象见解析.【解析】(1)由一次函数和二次函数图象特征可得结果;(2)根据()m x 定义可分段讨论得到解析式;由解析式可得图象.【详解】(1)()f x ,()g x 的图象如下图所示:(2)当0x ≤时,()211x x -≥-+,则()()1m x f x x ==-+;当01x <<时,()211x x -<-+,则()()()21m x g x x ==-;当1≥x 时,()211x x -≥-+,则()()1m x f x x ==-+;综上所述:()(][)()()21,,01,1,0,1x x m x x x ⎧-+∈-∞⋃+∞⎪=⎨-∈⎪⎩.()m x图象如下图所示:10. (2021·全国高一课时练习)已知函数()12f x x x =++-,()3g x x =-.(1)在平面直角坐标系里作出()f x 、()g x 的图象.(2)x R ∀∈,用()min x 表示()f x 、()g x 中的较小者,记作()()(){}min ,x f x g x =,请用图象法和解析法表示()min x ;(3)求满足()()f x g x >的x 的取值范围.【答案】(1)答案见解析;(2)答案见解析;(3)()(),20,-∞-+∞ .【解析】(1)化简函数()f x 、()g x 的解析式,由此可作出这两个函数的图象;(2)根据函数()min x 的意义可作出该函数的图象,并结合图象可求出函数()min x 的解析式;(3)根据图象可得出不等式()()f x g x >的解集.【详解】(1)()21,2123,1212,1x x f x x x x x x -≥⎧⎪=++-=-<<⎨⎪-≤-⎩,()3,333,3x x g x x x x -≥⎧=-=⎨-<⎩.则对应的图象如图:(2)函数()min x的图象如图:解析式为()3,20312,21min 3,103,3x x x x x x x x x -<-≤<⎧⎪--≤≤-⎪=⎨-<<⎪⎪-≥⎩或;(3)若()()f x g x >,则由图象知在A 点左侧,B 点右侧满足条件,此时对应的x 满足0x >或2x <-,即不等式()()f x g x >的解集为()(),20,-∞-+∞ .1.(山东高考真题)设f (x )=<x <1―1),x ≥1,若f (a )=f (a +1),则=( )A .2B .4C .6D .8【答案】C【解析】由x ≥1时f (x )=2(x ―1)是增函数可知,若a ≥1,则f (a )≠f (a +1),所以0<a <1,由f (a )=f (a+1)得a =2(a +1―1),解得a =14,则=f (4)=2(4―1)=6,故选C.2.(2018上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A .3B .32 C .33 D .0【答案】B 【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当练真题x=32,此时旋转π6,此时满足一个x 只会对应一个y ,故选:B .3. (2018年新课标I 卷文)设函数f (x )=2―x , x ≤01 , x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A. (―∞ , ―1]B. (0 , +∞)C. (―1 , 0)D. (―∞ , 0)【答案】D【解析】将函数f (x )的图象画出来,观察图象可知会有2x <02x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(―∞ , 0),故选D.4.(浙江高考真题(文))已知函数()2,1{66,1x x f x x x x≤=+->,则()2f f ⎡⎤-=⎣⎦,()f x 的最小值是.【答案】162-【解析】如图根据所给函数解析式结合其单调性作出其图像如图所示,易知()()min 12,62f f f x f ⎡⎤-=-==⎣⎦.5. (2018·天津高考真题(文))已知a R ∈,函数()22220220x x a x f x x x a x ⎧++-≤=⎨-+->⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】由题意分类讨论0x >和0x ≤两种情况,结合恒成立的条件整理计算即可求得最终结果.【详解】分类讨论:①当0x >时,()f x x ≤即:222x x a x -+-≤,整理可得:21122a x x ≥-+,由恒成立的条件可知:()2max 11022a x x x ⎛⎫≥-+> ⎪⎝⎭,结合二次函数的性质可知:当12x =时,2max 1111122848x x ⎛⎫-+=-+= ⎪⎝⎭,则18a ≥;②当30x -≤≤时,()f x x ≤即:222x x a x ++-≤-,整理可得:232a x x ≤--+,由恒成立的条件可知:()()2min3230a x x x ≤--+-≤≤,结合二次函数的性质可知:当3x =-或0x =时,()2min322x x --+=,则2a ≤;综合①②可得a 的取值范围是1,28⎡⎤⎢⎥⎣⎦,故答案为1,28⎡⎤⎢⎥⎣⎦.6.(2018·浙江高考真题)已知λ∈R,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞ 【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.。
第08讲 函数的概念及其表示方法(原卷版)
![第08讲 函数的概念及其表示方法(原卷版)](https://img.taocdn.com/s3/m/649fe5712bf90242a8956bec0975f46527d3a7bf.png)
第08讲 函数的概念及其表示方法1.函数的概念一般地,设A ,B 是非空的 ,如果对于集合A 中的 一个数x ,按照某种确定的对应关系f ,在集合B 中都有 定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素: 、 、 .(2)如果两个函数的 相同,并且 完全一致,则这两个函数相等. 3.函数的表示法4若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.5.常见函数的定义域:(1)分式函数中分母 . (2)偶次根式函数被开方式 . (3)一次函数、二次函数的定义域为 .(4)y =a x (a >0且a ≠1),y =sin x ,y =cosx,定义域均为 . (5)y =tan x 的定义域为(6)函数f (x )=x α的定义域为 .【2018年新课标1卷文科】已知函数()()22log f x x a =+,若()31f =,则=a ________.1、下列图形中可以表示以M ={x |0≤x ≤1}为定义域,N ={y |0≤y ≤1}为值域的函数的图象是( )2、下列各组函数中,表示同一函数的是( )A .f (x )=e ln x ,g (x )=xB .f (x )=x 2-4x +2,g (x )=x -2C .f (x )=sin 2x2cos x ,g (x )=sin x D .f (x )=|x |,g (x )=x 23、函数的定义域是( ) A .B .C .D .4、 (多选)(2022·雅礼中学高三月考)下列说法中,正确的有( )A. 式子y =x -1+-x -1可表示自变量为x ,因变量为y 的函数B. 函数y =f (x )的图象与直线x =1的交点最多有1个C. 若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=1 D. f (x )=x 2-2x 与g (t )=t 2-2t 是同一函数考向一 函数的概念例1、(1)下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )()()2lg 31f x x =++1,3⎛⎫-+∞ ⎪⎝⎭1,13⎛⎫- ⎪⎝⎭11,33⎛⎫- ⎪⎝⎭1,3⎛⎫-∞- ⎪⎝⎭(2)(多选)下列各组函数是同一函数的为( ) A.f (x )=x 2-2x -1,g (s )=s 2-2s -1 B.f (x )=x -1,g (x )=x 2-1x +1C.f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D.f (x )=-x 3,g (x )=x -x变式1、下列各对函数中是同一函数的是( ) .A .f (x )=2x -1与g (x )=2x -x 0B .f (x )=(2x +1)2与g (x )=|2x +1|;C .f (n )=2n +2(n ∈Z )与g (n )=2n (n ∈Z );D .f (x )=3x +2与g (t )=3t +2.变式2、已知集合P ={x |0≤x ≤4},Q ={y |0≤y ≤2},下列从P 到Q 的各对应关系f 不是函数的是________.(填序号)①f :x →y =12x ;②f :x →y =13x ;③f :x →y =23x ;④f :x →y =x .方法总结:(1)定义是解题的重要依据,它有双重功能:一是判定;二是性质.要判定一个对应是不是从定义域A 到值域B 的一个函数,就要看其是否满足函数的定义,反之亦然;(2)函数的值域可由定义域和对应法则唯一确定,当且仅当定义域和对应法则都相同的函数才是同一函数,而定义域、值域和对应法则中有一个不同就不是同一函数.考向二 函数的定义域例1、 求下列函数的定义域: (1) f (x )=lg (5-x 2); (2) f (x )=1ln (x -1).变式1、(1)函数f (x )=ln(4x -x 2)+1x -2的定义域为( )A.(0,4)B.[0,2)∪(2,4]C.(0,2)∪(2,4)D.(-∞,0)∪(4,+∞) (2).函数f (x )=ln x ·lg ⎝ ⎛⎭⎪⎫x +22-x 的定义域是( )A.[1,2]B.[2,+∞)C.[1,2)D.(1,2]变式3、.已知函数f (x )的定义域是[-1,1],则函数g (x )=f (2x -1)ln (1-x )的定义域是( )A.[0,1]B.(0,1)C.[0,1)D.(0,1]方法总结:1.求给定解析式的函数定义域的方法求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义. 2.求抽象函数定义域的方法(1)若已知函数f(x)的定义域为[a ,b],则复合函数f[g(x)]的定义域可由不等式a ≤g(x)≤b 求出. (2)若已知函数f[g(x)]的定义域为[a ,b],则f(x)的定义域为g(x)在x ∈[a ,b]上的值域.考向三 函数的解析式例2、 (1) 已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求函数f (x )的解析式;(2) 已知函数f (x )的定义域为R ,且满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),求当-1≤x ≤0时,函数f (x )的解析式;(3) 已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,求函数f (x )的解析式.变式1、(1)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(2)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x )的解析式; (3)已知函数f (x )满足f (-x )+2f (x )=2x ,求f (x )的解析式.变式2、求下列函数的解析式:(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫x +1x =x 2+1x2,求f (x )的解析式; (3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式; (4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.方法总结:函数解析式的常见求法函数解析式的求法主要有以下几种:(1)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围;(2)配凑法:由已知条件f(g(x))=f(x),可将f(x)改写成关于g(x)的表达式,然后以x 替代g(x),便得f(x)的解析式;(3)待定系数法:已知函数的类型(如一次函数、二次函数)可用待定系数法,比如二次函数f(x)可设为f(x)=ax2+bx +c(a≠0),其中a ,b ,c 是待定系数,根据题设条件,列出方程组,解出a ,b ,c 即可.(4)解方程组法:已知f(x)满足某个等式,这个等式除f(x)是未知量外,还有其他未知量,如f ⎝⎛⎭⎫1x (或f(-x))等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出f(x).考向四 分段函数例3、(1)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.(2)、已知()()()()3,94,9x x f x f f x x -≥⎧⎪=⎨+<⎡⎤⎪⎣⎦⎩则f (7) =______.(3)已知函数f(x)=⎩⎪⎨⎪⎧log 2(3-x ),x ≤0,2x -1,x>0,若f(a -1)=12,则实数a =________.(4)、已知函数f (x )=⎩⎪⎨⎪⎧12x +1, x ≤0,-(x -1)2, x >0,则不等式f (x )≥-1的解集是________.变式1、设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___. 方法总结:(1)求分段函数的函数值,首先要确定自变量的范围,再通过分类讨论求解;(2)当给出函数值或函数值的取值范围求自变量的值或自变量的取值范围时,应根据每一段解析式分别求解,但要注意检验所求自变量的值或取值范围是否符合相应段的自变量的值或取值范围.1、设函数211log (2),1,()2,1,x x x f x x -+-<⎧=⎨≥⎩,2(2)(log 12)f f -+=( )A .3B .6C .9D .122、设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.3、(2022·泰州中学期初考试)下列关于x ,y 的关系中为函数的是( ) A.43y x x =-+-B.24y x =C.,112,1x x y x x ≥⎧=⎨-≤⎩D.4、(2022·湖南省雅礼中学开学考试)已知函数f (x )=⎩⎨⎧(x -1)2,x ≤1,log 12x ,x >1,f (x 0)=-2,则x 0= .5、(2022·湖北省新高考联考协作体高三起点考试)已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()()22101x x f x g x a a a a -+=-+>≠,,则()1f =( )A. 1-B. 0C. 1D. 26、(2022·沭阳如东中学期初考试)(多选题)设函数y =f (x )定义域为D ,若存在x ,y ∈D ,且x ≠y ,使得2f (x +y 2)=f (x )+f (y ),则称函数y =f (x )是D 上的“S 函数”,下列函数是“S 函数”的是A .y =2xB .y =x -sin x +1C .y =ln xD .y =⎩⎪⎨⎪⎧1x ,x >01,x ≤07、已知f ⎝⎛⎭⎫x 2+1x 2=x 4+1x4,则f (x )=__________.。
高中试卷-3.1 函数的概念及其表示方法(含答案)
![高中试卷-3.1 函数的概念及其表示方法(含答案)](https://img.taocdn.com/s3/m/3fccb095a0c7aa00b52acfc789eb172dec63995f.png)
3.1 函数的概念及其表示方法1. 函数概念的理解;2. 求函数的定义域;3. 求函数值(值域);4. 函数的三种表示方法;5. 求函数解析式;6. 分段函数的概念;7.分段函数的求值;8.函数的图象及应用;9. 分段函数与方程、不等式综合问题一、单选题1.(2021·全国高一课时练习)设()1,01,01,0x x f x x x +>ìï==íï-<î,则()()0f f 等于( )A .1B .0C .2D .-1【答案】C 【解析】1,0()1,01,0x x f x x x +>ìï==íï-<îQ\ (0)1f =,((0))(1)112f f f ==+=.故选: C.2.(2021·浙江南湖嘉兴一中高一月考)下列函数中,与函数y =有相同定义域的是( )A.()f x =B .1()f x x=C .()||f x x =D.()f x =【答案】A 【解析】函数y =的定义域为{}0x x >;函数()f x ={}0x x >;函数1()f x x=的定义域为{}0,x x x ¹ÎR ;函数()f x x =的定义域为R ;函数()f x =定义域为{}1x x ….所以与函数y =有相同定义域的是()f x =.故选:A.3.(2021·浙江高一期中)函数1()f x x=的定义域是( )A .R B .[1,)-+¥C .(,0)(0,)-¥+¥U D .[1,0)(0,)-+¥U 【答案】D 【解析】由题意可得:10x +³,且0x ¹,得到1x ³-,且0x ¹,故选:D4.(2021·全国高一课时练习)已知函数f(x -1)=x 2-3,则f(2)的值为( )A .-2B .6C .1D .0【答案】B 【解析】令1x t -=,则1x t =+,()()213f t t \=+-,()()213f x x \=+-()()222136f \=+-=,故选B.5.(2021·全国高一课时练习)如果1f x æöç÷èø=1x x-,则当x≠0,1时,f(x)等于( )A .1xB .11x -C .11x-D .11x-【答案】B 【解析】令1x=t ,则x =1t ()1t ¹,代入1f x æöç÷èø=1x x -,则有f(t)=111t t-=11t -()1t ¹.即()()111f x x x =¹-.故选:B.6.(2021·全国高一课时练习)已知函数y =21,02,0x x x x ì+£í->î,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52-【答案】C 【解析】当0x £时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-.故选:C.7.(2021·全国高一课时练习)设函数若f (a )=4,则实数a =( )A .-4或-2B .-4或2C .-2或4D .-2或2【答案】B 【解析】当0a £时,()4f a a =-=,解得4a =-;当0a >时,24()f a a ==,解得2a =±,因为0a >,所以2a =,综上,4a =-或2,故答案选B 8.(2021·全国高一)函数()f x x =+的值域是( )A .1,2éö+¥÷êëøB .1,2æù-¥çúèûC .(0,)+¥D .[1,)+¥【答案】A【解析】t =,且0t ³,则212t x +=,函数转化为2211(1)22t y t t +=+=+由0t ³,则12y ≥,即值域为1,2éö+¥÷êëø故选:A.9.(2021·浙江高一课时练习)下列函数中,不满足:(2)2()f x f x =的是( )A .()f x x =B .()f x x x=-C .()1f x x =+D .()f x x=-【答案】C 【解析】A 中()()2222f x x x f x ===,B 中()()2222f x x x f x =-=,C 中()()2212f x x f x =+¹,D 中()()222f x x f x =-=10.(2021·浙江高一课时练习)设函数()f x 的定义域是[0,1],则函数()(2)(01)f x a f x a a +++<<的定义域为( )A .1,22a a -éù-êúëûB .,12a a éù--êúëûC .[,1]a a --D .1,2a a -éù-êúëû【答案】A 【解析】由1011021220101a x ax a a a x a x a a --ì+ìï-ïï+Þ-ííïï<<î<<ïî……………………得122a a x --……故选:A 二、多选题11.(2021·广东禅城 佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )A .B .C .D .【答案】AD 【解析】在A ,D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满足函数关系,在B ,C 中,存在一个x 有两个y 与x 对应,不满足函数对应的唯一性,故选AD.12.(2021·历下 山东师范大学附中高一学业考试)已知()221f x x +=,则下列结论正确的是( )A .()34f -=B .()2214x x f x -+=C .()2f x x=D .()39f =【答案】AB 【解析】由()221f x x +=,令21x t +=,可得12t x -=,可得:()222(1)2124t t t f t --+==,即:()2214x x f x -+=,故C 不正确,B 正确;可得:()2(31)344f ---==,故A 正确;()2(31)314f -==故D 不正确;故选:AB.13.(2021·江苏姑苏 苏州中学高一期中)下列各组函数中,两个函数是同一函数的有( )A .()||f x x =与()g x =B .()1f x x =+与21()1x g x x -=-C .||()x f x x =与1,0()1,0x g x x >ì=í-<îD .()f x =()g x =【答案】AC 【解析】对A, ()g x x ==,故A 正确.对B, ()1f x x =+定义域为R ,21()1x g x x -=-定义域为{}|1x x ¹,故B 错误.对C, 1,0()1,0x xf x x x >ì==í-<î,故C 正确.对D, ()f x =210x -³,解得1x £-或1x ³.()g x =定义域为1010x x +³ìí-³î即1x ³.故D 错误.故选:AC14.(2021·全国高一课时练习)已知函数()22,1,12x x f x x x +£-ì=í-<<î,关于函数()f x 的结论正确的是( )A .()f x 的定义域为RB .()f x 的值域为(),4-¥C .()13f =D .若()3f x =,则x E.()1f x <的解集为()1,1-【答案】BD 【解析】由题意知函数()f x 的定义域为(),2-¥,故A 错误;当1x £-时,()f x 的取值范围是(],1-¥,当12x -<<时,()f x 的取值范围是[)0,4,因此()f x 的值域为(),4-¥,故B 正确;当1x =时,()2111f ==,故C 错误;当1x £-时,23x +=,解得1x =(舍去),当12x -<<时,23x =,解得x =或x =,故D 正确;当1x £-时,21x +<,解得1x <-,当12x -<<时,21x <,解得11x -<<,因此()1f x <的解集为()(),11,1-¥--U ;故E 错误.故选:BD.三、填空题15.(2021·全国高一课时练习)下列对应或关系式中是A 到B 的函数的序号为________.①,ÎÎA R B R ,221x y +=;②A ={1,2,3,4},B ={0,1},对应关系如图:③,==A R B R ,1:2®=-f x y x ;④,==A Z B Z ,:®=f x y .【答案】②【解析】①,ÎÎA R B R ,221x y +=,存在x 对应两个y 的情况,所以不是A 到B 的函数;②符合函数的定义,是A 到B 的函数;③,==A R B R ,1:2®=-f x y x ,对于集合A 中的2x =没有对应y ,所以不是A 到B 的函数;④,==A Z B Z ,:®=f x y ,对于集合A 中的{|0,}x x x z £Î没有对应y ,所以不是A 到B的函数.故答案为:②16.(2021·浙江南湖 嘉兴一中高一月考)已知,若()()10f f a =,则a =______________.【答案】32【解析】0x >时,()20f x x =-<,∴由()10f x =知0x £,∴2110x +=,3x =-,而2()11f x x =+³,因此由()3f a =-知0a >,即23a -=-,32a =.故答案为:32.17.(2021·全国高一课时练习)已知()1,00,0x f x x ³ì=í<î则不等式()2xf x x +£的解集是________.【答案】{}|1x x £【解析】当0x ³时,()1f x =,代入()2xf x x +£,解得1x £,∴01x ££;当0x <时,()0f x =,代入()2xf x x +£,解得2x £,∴0x <;综上可知{}|1x x £.故答案为:{}|1x x £.四、双空题18.(2021·全国高一课时练习)已知f(x)=11x+ (x≠-1),g(x)=x 2+2,则f (2)=________,f(g (2))=________.【答案】13 17【解析】因为()11f x x =+,故可得()123f =;又()22g x x =+,故可得()22226g =+=;故()()()1267f g f ==.故答案为:13;17.19.(2021·安达市第七中学高一月考)设[]x 表示不超过x 的最大整数,已知函数[]()f x x x =-,则(0.5)f -=________ ;其值域为_________.【答案】0.5 [)0,1 【解析】作出函数[]()f x x x =-的图像,如图所示,由图可知(0.5)0.5(1)0.5f -=---=,其值域为[)0,1,故答案为(1). 0.5 (2). [)0,120.(2021·浙江高一期中)设函数()(2141x f x x ì<ï=í³ïî,则((0))f f =____,使得()4f a a ³的实数a 的取值范围是_____.【答案】4 1a £ 【解析】因为()(2141x f x x ì<ï=í³ïî,所以()01f =,因此((0))(1)4f f f ==;当1a <时,()4f a a ³可化为2(1)4+³a a ,即2(1)0a -³显然恒成立,所以1a <;当1a ³时,()44f a a =³,解得1a =;综上,1a £.故答案为4;1a £21.(2021·首都师范大学附属中学高一期中)已知函数22,(),x x x af x x x a ì-+£=í>î.(1)当a =1时,函数()f x 的值域是___________;(2)若函数()f x 的图像与直线y a =只有一个公共点,则实数a 的取值范围是_______________.【答案】R []0,1【解析】(1)当a =1时,22,1(),1x x x f x x x ì-+£=í>î当1x >时,()1f x x =>当1x £时,22()2(1)11f x x x x =-+=--+£所以函数()f x 的值域是(1,)(,1]R+¥-¥=U (2)因为当x a >时,()f x x a =>,所以只需函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+³,即01x ££时,所以当01a ££时,函数2()2,()f x x x x a =-+£的图像与直线y a =只有一个公共点,当22x x x -+<,即1x >或0x <时,所以当1a >或0a <,即2a x x >-+,从而函数2()2,()f x x x x a =-+£的图像与直线y a =无公共点,因此实数a 的取值范围是[]0,1故答案为:(1). R (2). []0,1五、解答题22.(2021·全国高一课时练习)求下列函数的定义域.(1)y =3-12x ;(2)y =(3)y(4)y 1x.【答案】(1)R ;(2)10,7éùêúëû;(3)()()2,11,---+¥U ;(4)()3,00,22éö-÷êëøU .【解析】(1)因为函数y =3-12x 为一次函数,所以该函数的定义域为全体实数R ;(2)由题意可得0170x x ³ìí-³î,解得107x ££,所以该函数的定义域为10,7éùêúëû;(3)由题意得1020x x +¹ìí+>î,解得2x >-且1x ¹-,所以该函数的定义域为()()2,11,---+¥U ;(4)由题意得230200x x x +³ìï->íï¹î,解得322x -£<且0x ¹,所以该函数的定义域为()3,00,22éö-÷êëøU .23.(2021·全国高一课时练习)已知2,11()1,11,1x x f x x x ì-££ï=>íï<-î(1)画出f(x)的图象;(2)若1()4f x =,求x 的值;(3)若1()4f x ³,求x 的取值范围.【答案】(1)作图见解析;(2)12x =±;(3)11,,22æùéö-¥-È+¥ç÷úêèûëø【解析】(1)函数2y x =的对称轴0x =,当0x =时,0y =;当1x =-时,1y =;当1x =时,1y =,则f(x)的图象如图所示.(2)1()4f x=等价于21114xx-££ìïí=ïî①或1114x>ìïí=ïî②或1114x<-ìïí=ïî③解①得12x=±,②③的解集都为Æ∴当1()4f x=时,12x=±.(3)由于1124fæö±=ç÷èø,结合此函数图象可知,使1()4f x³的x的取值范围是11,,22æùéö-¥-È+¥ç÷úêèûëø24.(2021·全国高一课时练习)根据下列条件,求f(x)的解析式.(1)f(x)是一次函数,且满足3f(x+1)-f(x)=2x+9;(2)f(x+1)=x2+4x+1;(3)12()(0) f f x x xxæö+=¹ç÷èø.【答案】(1)f(x)=x+3;(2)f(x)=x2+2x-2;(3)2()(0)33xf x xx=-¹【解析】(1)解由题意,设f(x)=ax+b(a≠0)∵3f(x+1)-f(x)=2x+9∴3a(x+1)+3b-ax-b=2x+9,即2ax+3a+2b=2x+9,由恒等式性质,得22 329 aa b=ìí+=î∴a=1,b=3∴所求函数解析式为f(x)=x+3.(2)设x+1=t,则x=t-1f(t)=(t-1)2+4(t-1)+1即f(t)=t2+2t-2.∴所求函数解析式为f(x)=x2+2x-2.(3)解1 ()2f x f xxæö+=ç÷èøQ,将原式中的x与1x互换,得112()f f xx xæö+=ç÷èø.于是得关于f(x)的方程组()()12112f x f x x f f x x x ìæö+=ç÷ïïèøíæöï+=ç÷ïèøî解得2()(0)33x f x x x =-¹.25.(2021·全国高一课时练习)已知函数22,2()2,2x x f x x x £ì=í+>î(1)若0)(8f x =,求0x 的值;(2)解不等式()8f x >.【答案】(1)0x =;(2){|>x x .【解析】(1)当02x £时,由02=8x ,得04x =,不符合题意;当02x >时,由2028+=x,得0x =0x =舍去),故0x =(2)()8f x >等价于228x x £ìí>î ——①或2228x x >ìí+>î——②解①得x f Î,解②得>x ,综合①②知()8f x >的解集为{|>x x .26.(2021·全国高一)已知(1)f x +的定义域为(2,4),(1)求()f x 的定义域;(2)求(2)f x 的定义域【答案】(1)(3,5);(2)35,22æöç÷èø.【解析】(1))1(f x +Q 的定义域为(2,4),24x \<<,则315x <+<,即()f x 的定义域为(3,5);(2)()f x Q 的定义域为(3,5);\由325x <<得3522x <<,即(2)f x 的定义域为35,22æöç÷èø.27.(2021·全国高一)若函数()f x =的定义域为R ,则m 的取值范围为多少?【答案】112mm ìü>íýîþ∣.【解析】Q 函数()f x =的定义域为R ,230mx x \++¹,若0m =,则3x ¹-,不满足条件.,若0m ¹,则判别式1120m D =-<,解得112m >,即1|12m m ìü>íýîþ。
专题3.1 函数的概念及其表示(练)(解析版)
![专题3.1 函数的概念及其表示(练)(解析版)](https://img.taocdn.com/s3/m/5f37579931b765ce04081403.png)
专题3.1 函数的概念及其表示1.(2020·安徽省高三三模(理))已知集合{}2|2P x y x ==-,{}2|Q y y x ==,则P Q =( )A .2,2⎡⎤-⎣⎦B .0,2⎡⎤⎣⎦C .{}1D .{}1,1-【答案】B 【解析】{}2202,2P x x ⎡⎤=-≥=-⎣⎦,{}[)20,Q y y x ===+∞,0,2P Q ⎡⎤∴=⎣⎦. 故选:B .2.(2020·广西壮族自治区北流市实验中学高二期中(文))已知函数()()3,10{5,10n n f n f f n n -≥=⎡⎤+<⎣⎦,其中n N ∈,则()8f =( )A .6B .7C .2D .4 【答案】B 【解析】()()()()()813133101037.f ff f f ==-==-=故选B3.(山东省2018年普通高校招生(春季))函数的定义域是( )A. B. C. D.【答案】D 【解析】因为,所以所以定义域为,选D.4.(2017山东卷)设函数24y x =- 的定义域A ,函数y=ln(1-x)的定义域为B ,则A B=⋂( )A .(1,2)B .(1,2]C .(-2,1)D .[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <, 故A B={|22}{|1}{|21}x x x x x x ⋂-≤≤⋂<=-≤<,选D.5.(2020·辽宁省高三二模(理))设函数21log (2),1(),1xx x f x e x +-<⎧=⎨≥⎩,则(2)(ln 6)f f -+=( ) A .3 B .6C .9D .12【答案】C 【解析】由题意,函数21log (2),1(),1xx x f x e x +-<⎧=⎨≥⎩, 则ln 62(2)(ln 6)1log [2(2)]1269f f e -+=+--+=++=.故选:C.6.(2020·北京高三月考)已知函数()y f x =满足(1)2()f x f x +=,且(5)3(3)4f f =+,则(4)f =( ) A .16 B .8C .4D .2【答案】B 【解析】因为(1)2()f x f x +=,且(5)3(3)4f f =+,故()()324442f f =+,解得()48f =. 故选:B7.(2020·嫩江市高级中学高一月考)已知函数f (x )R ,则实数m 取值范围为( ) A .{m |–1≤m ≤0} B .{m |–1<m <0} C .{m |m ≤0} D .{m |m <–1或m >0}【答案】A 【解析】∵函数f (x )R ,∴函数y =–mx 2+6mx –m +8的函数值非负,(1)当m =0时,y =8,函数值非负,符合题意;(2)当m ≠0时,要–mx 2+6mx –m +8恒为非负值,则–m >0,且关于x 的方程–mx 2+6mx –m +8=0根的判别式Δ≤0,即–m >0,且(6m )2–4(–m )(–m +8)≤0,即m <0,且m 2+m ≤0,解得–1≤m <0.综上,–1≤m ≤0. 故选A .8.(2020·辽宁省沈阳二中高三其他(理))已知函数13log ,02,0x x x f x x ()>⎧⎪=⎨⎪≤⎩,则[]9f f ()的值是______.【答案】14【解析】因为9>0,所以()13992f log ==-,又-2<0,所以[]219224f f f -=-==()(). 故答案为14. 9.(安徽省江淮十校2019届5月)已知函数22,0()21,0x x f x x x x ⎧>=⎨--+≤⎩,若(())4f f a =,则a =________.【答案】1或1- 【解析】 令()m f a =,则()4f m =,当0m >时,由24m =,解得2m =;当0m ≤时,由2213m m --+=,无解.故()2f a =,当0a >时,由22a =,解得1a =;当0a ≤时,由2212a a --=+,解得1a =-.综上:1a =或1a =-.故答案为1或1-10.(北京市房山区2019届一模)已知函数则______;求满足的的取值范围______. 【答案】【解析】 根据题意,函数,则对于,分种情况讨论:当时,,有,则无解;当时,若,即,解可得,此时不等式的解集为综合可得:的取值范围为本题正确结果:;1.(2019·河北省辛集中学高三开学考试(理))若()y f x =的定义域是[0,2],则函数(1)(21)f x f x ++-的定义域是( ). A .[1,1]- B .1,12⎡⎤⎢⎥⎣⎦C .13,22⎡⎤⎢⎥⎣⎦D .10,2⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数()f x 的定义域为[0,2]得0120212x x ≤+≤⎧⎨≤-≤⎩,解得112x ≤≤, 所以函数()()121f x f x ++-的定义域为1,12⎡⎤⎢⎥⎣⎦. 故选B .2.(2020·广东省高三其他(文))如图,OAB 是边长为2的正三角形,记OAB 位于直线(02)x t t =<左侧的图形的面积为()f t ,则()y f t =的大致图象为( )A .B .C .D .【答案】B 【解析】OAB 是边长为2的正三角形,当01t <≤时,21()2f t t =⨯=; 当12t <≤时,()))211()2222222f t t t t =⨯⨯--=--+.)22,01()22t f t t t <≤∴=⎨⎪-<≤⎪⎩.只有选项B 中图象符合 故选:B .3.(2018·湖北省高三期中(理))为更好实施乡村振兴战略,加强村民对本村事务的参与和监督,根据《村委会组织法》,某乡镇准备在各村推选村民代表.规定各村每15户推选1人,当全村户数除以15所得的余数大于10时再增加1人.那么,各村可推选的人数y 与该村户数x 之间的函数关系用取整函数[]y x =([]x 表示不大于x 的最大整数)可以表示为( ) A .1115x y +⎡⎤=⎢⎥⎣⎦B .415x y +⎡⎤=⎢⎥⎣⎦C .1015x y +⎡⎤=⎢⎥⎣⎦D .515x y +⎡⎤=⎢⎥⎣⎦【答案】B 【解析】当全村户数为25x =户时,应该选1人,即1y =. 对于A 选项中的函数112511211515x y ++⎡⎤⎡⎤===≠⎢⎥⎢⎥⎣⎦⎣⎦,A 选项错误; 对于B 选项中的函数425411515x y ++⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦,B 选项正确; 对于C 选项中的函数102510211515x y ++⎡⎤⎡⎤===≠⎢⎥⎢⎥⎣⎦⎣⎦,C 选项错误; 对于D 选项中的函数5255211515x y ++⎡⎤⎡⎤===≠⎢⎥⎢⎥⎣⎦⎣⎦,D 选项错误,故选B. 4.(2019·全国高三专题练习(文))函数223,0,(),0,x x f x x x --<⎧=⎨≥⎩若0a b >>,且()()f a f b =,则()f a b +的取值范围是( ) A .[1,)-+∞ B .[0,)+∞ C .[7,)-+∞ D .(,0]-∞【答案】A 【解析】设()()t f a f b ==, 作出()f x 的图象, 由图象知,0t ,由()2f a a t ==,得a t =,由()23f b b t =--=,得32tb --=, 则313222t a b t t t --+=+=-+- 21(1)12t =---,0t ,∴0t ,则21(1)112m t =----,即1m a b =+-,此时()()23231f a b f m m +==---=-, 即()f a b +的取值范围是[1-,)+∞, 故选:A .5.(2020·辽宁省高三一模(理))定义在()1,+∞上的函数()f x 满足下列两个条件(1)对任意的()1,x ∈+∞恒有()()22f x f x =成立;(2)当(]1,2x ∈时,()2f x x =-.则()6f 的值是__________.【答案】2 【解析】因为对任意的()1,x ∈+∞恒有()()22f x f x =成立, 所以有:()()()336232322422f f f f f ⎛⎫⎛⎫=⨯==⨯= ⎪ ⎪⎝⎭⎝⎭, 又因为当(]1,2x ∈时,()2f x x =-, 所以3312222f ⎛⎫=-=⎪⎝⎭, 所以()36422f f ⎛⎫== ⎪⎝⎭故答案为:26.(2020·上海高三专题练习)设函数122,1,()1log ,1,x x f x x x -⎧≤=⎨->⎩则满足()2f x ≤的x 的取值范围是_______________. 【答案】[0,)+∞ 【解析】1x ≤时,1()22x f x -=≤,11x -≤,0x ≥,∴01x ≤≤, 1x >时,2()1log 2f x x =-≤,2log 1x ≥-,12x ≥,所以1x >, 综上,原不等式的解集为[0,)+∞. 故答案为:[0,)+∞.7.(2020·上海高三专题练习)设函数,则满足31,1()2,1xx x f x x -<⎧=⎨≥⎩的()(())2f a f f a =的a 取值范围是__________. 【答案】2[,)3+∞ 【解析】令()f a t =,则()2t f t =当1t <时,312t t -=令1231,2ty t y =-=,1t <其图象如下图所示∴1t <时,312t t -=无解当1t ≥时,22t t =成立,由()1f a ≥,得 当1a <时,有311a -,解得213a < 当1a 时,有21a ,解得1a 综上,a 取值范围是2[,)3+∞ 故答案为2[,)3+∞8.(2018·全国高三专题练习(文))已知函数()(12)3,1ln ,1a x a x f x x x -+<⎧⎨⎩=的值域为R ,则实数a 的取值范围是________. 【答案】11,2⎡⎫-⎪⎢⎣⎭【解析】由题意知() 1y ln x x ≥=的值域为[0,+∞),故要使()f x 的值域为R ,则必有23(1)y a x a =-+为增函数,且1230a a ≥-+,所以120a ->且1a ≥-,解得112a ≤-<,实数a 的取值范围是11,2⎡⎫-⎪⎢⎣⎭. 9.(2019·江西省上高二中高三月考(理))已知函数2()2(,)f x ax x c a c N *=++∈满足:①(1)5f =;②6(2)11f <<.(1)求函数f(x)的解析式;(2)若对任意的实数13[,]22x ∈,都有()21f x mx -≤成立,求实数m 的取值范围. 【答案】(1)1,2a c ==;(2)94m ≥ 【解析】 (1)()125,3f a c c a =++=∴=- ……………①又∵()6211f <<,即64411a c <++<……② 将①式代入②式得1433a -<<,又*,a c N ∈,1,2a c ∴==. 2()22f x x x ∴=++ (2)由(1)得()222f x x x =++ 设()()()22212g x f x mx x m x =-=+-+①当()2112m --≤,即2m ≤时,()max 329324g x g m ⎛⎫==- ⎪⎝⎭,故只需29314m -≤, 解得2512m ≥,与2m ≤不合,舍去 ②当()2112m -->,即2m >时,()max 11324g x g m ⎛⎫==- ⎪⎝⎭,故只需1314m -≤,解得94m ≥,又2m >,故94m ≥ 综上,m 的取值范围为94m ≥10.(2018·北京高三期中(理))已知二次函数满足2()(0)f x ax bx c a =++≠,(1)()2,f x f x x +-= 且(0) 1.f =(1)求函数()f x 的解析式(2)求函数()f x 在区间[1,1]-上的值域;【答案】(1)2()1f x x x =-+;(2)3[,3]4【解析】(1)因为()01f =,所以1c =,所以()()210f x ax bx a =++≠;又因为()()12f x f x x +-=,所以()()()2211112a x b x ax bx x ⎡⎤++++-++=⎣⎦,所以22ax a b x ++=,所以220a a b =⎧⎨+=⎩,所以11a b =⎧⎨=-⎩,即()21f x x x =-+;(2)因为()21f x x x =-+,所以()f x 对称轴为12x =且开口向上, 所以()f x 在11,2⎡⎫-⎪⎢⎣⎭递减,在1,12⎡⎤⎢⎥⎣⎦递增,所以()min 111312424f x f ⎛⎫==-+= ⎪⎝⎭, 又()()211113f -=-++=,()211111f =-+=,所以()max 3f x =, 所以()f x 在[]1,1-上的值域为:3,34⎡⎤⎢⎥⎣⎦.1. (2017·浙江高考真题)若函数()2f x =x ax b ++在区间[0,1]上的最大值是M,最小值是m,则M m -的值( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .2.(2017山东文)设,若,则( )A .2B .4C .6D .8 【答案】C 【解析】由时是增函数可知,若,则,所以,由得,解得,则,故选C.3.(2018上海卷)设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是( )A .B .C .D .【答案】B【解析】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合. 我们可以通过代入和赋值的方法当f (1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x=,此时旋转,此时满足一个x 只会对应一个y ,故选:B .4.(2018年江苏卷)函数的定义域为________.【答案】[2,+∞) 【解析】要使函数有意义,则,解得,即函数的定义域为. 5.(2018·浙江高考真题)已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.【答案】(1,4) (1,3](4,)⋃+∞【解析】分析:根据分段函数,转化为两个不等式组,分别求解,最后求并集.先讨论一次函数零点的取法,再对应确定二次函数零点的取法,即得参数λ的取值范围.详解:由题意得240x x ≥⎧⎨-<⎩或22430x x x <⎧⎨-+<⎩,所以24x ≤<或12x <<,即14x <<,不等式f (x )<0的解集是(1,4),当4λ>时,()40f x x =->,此时2()430,1,3f x x x x =-+==,即在(,)λ-∞上有两个零点;当4λ≤时,()40,4f x x x =-==,由2()43f x x x =-+在(,)λ-∞上只能有一个零点得13λ<≤.综上,λ的取值范围为(1,3](4,)⋃+∞.6.(2017新课标全国Ⅲ理)设函数则满足的x 的取值范围是____________. 【答案】【解析】由题意得:当时,恒成立,即;当时,恒成立,即;当时,,即.综上,x的取值范围是.。
高三一轮复习 函数全章 练习(11套)+易错题+答案
![高三一轮复习 函数全章 练习(11套)+易错题+答案](https://img.taocdn.com/s3/m/727739143968011ca3009168.png)
第二章函数第1节函数概念及其表示方法一、选择题1.下列集合A到集合B的对应f是函数的是( A )(A)A={-1,0,1},B={0,1},f:A中的数平方(B)A={0,1},B={-1,0,1},f:A中的数开方(C)A=Z,B=Q,f:A中的数取倒数(D)A=R,B={正实数},f:A中的数取绝对值解析:按照函数定义,选项B中集合A中的元素1对应集合B中的元素±1,不符合函数定义中一个自变量的值对应唯一的函数值的条件;选项C中的元素0取倒数没有意义,也不符合函数定义中集合A中任意元素都对应唯一函数值的要求;选项D中,集合A中的元素0在集合B 中没有元素与其对应,也不符合函数定义,只有选项A符合函数定义.2.已知f(x-1)=2x-5,且f(a)=6,则a等于( B )(A)- (B) (C) (D)-解析:令t=x-1,则x=2t+2,f(t)=2(2t+2)-5=4t-1,又由f(a)=6,则4a-1=6,解得a=.3.若f(1-2x)=(x≠0),那么f()等于( C )(A)1 (B)3 (C)15 (D)30解析:法一令1-2x=t,则x=(t≠1),则f(t)=-1,则f()=16-1=15.法二令1-2x=,得x=,则f()=16-1=15.4.已知f(x)=的值域为R,那么a的取值范围是( C )(A)(-∞,-1] (B)(-1,)(C)[-1,) (D)(0,)解析:要使函数f(x)的值域为R,需使则则-1≤a<.即a的取值范围是[-1,).5.已知函数f(x)=且f(a)=-1,则f(6-a)等于( A )(A)1 (B)2 (C)3 (D)4解析:由题意,知a>0,则由-log2(a+1)+2=-1,解得a=7,所以f(6-a)= f(-1)=2-1+1=1,故选A.6.设函数y=f(x)在R上有定义,对于任一给定的正数p,定义函数f p(x)=则称函数f p(x)为f(x)的“p界函数”,若给定函数f(x)=x2-2x-1,p=2,则下列结论不成立的是( B )(A)f p[f(0)]=f[f p(0)] (B)f p[f(1)]=f[f p(1)](C)f p[f p(2)]=f[f(2)] (D)f p[f p(3)]=f[f(3)]解析:给定函数f(x)=x2-2x-1,p=2,则f(1)=-2,f p(1)=-2,所以f[f p(1)]=f(-2)=7,f p[f(1)]=f p(-2)=2,所以f p[f(1)]≠f[f p(1)],故选B.二、填空题7.函数y=的定义域是.解析:要使函数有意义,需满足即x<且x≠-1.答案:(-∞,-1)∪(-1,)8.已知函数f(x)=且f(a)=-3,则f(5-a)= . 解析:若a≤1,则2a-2=-3,即2a=-1,不合题设;故a>1,即-log2(a+1)=-3,解之得a=7,代入f(5-a)=f(-2)=-2=-.答案:-9.已知f(2x-2)的定义域是[1,2],则f(2x+1)的定义域为.解析:由题知f(2x-2)中1≤x≤2,则0≤2x-2≤2,即f(x)的定义域为[0,2],所以0≤2x+1≤2,得-≤x≤,故f(2x+1)的定义域为[-,].答案:[-,]10.定义在R上的函数f(x)满足f(x-1)=2f(x),若当0≤x≤1时,f(x)=x(1-x),则当1≤x≤2时,f(x)= .解析:由f(x-1)=2f(x),则f(x)=f(x-1).由1≤x≤2,则0≤x-1≤1.又当0≤x≤1时,f(x)=x(1-x),则f(x-1)=(x-1)[1-(x-1)]=(x-1)(2-x),则f(x)=f(x-1)=(x-1)(2-x).答案:(x-1)(2-x)11.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R), f(1)=2,则f(-3)= .解析:令x=1,y=1,则f(2)=f(1)+f(1)+2=6,令x=2,y=1,则f(3)=f(2)+f(1)+4=12,令x=0,y=0,则f(0)=0,令y=-x,则f(0)=f(x)+f(-x)-2x2,则f(-x)=f(0)-f(x)+2x2,则f(-3)=f(0)-f(3)+2×32=0-12+18=6.答案:612.设函数f(x)=则满足f(f(a))=2f(a)的a的取值范围为.解析:由f(f(a))=2f(a)得,f(a)≥1.当a<1时,有3a-1≥1,则a≥,则≤a<1;当a≥1时,有2a≥1,则a≥0,则a≥1.综上,a≥.答案:[,+∞)三、解答题13.设函数f(x)满足2f()+f()=1+x,其中x≠0,x∈R,求f(x). 解:令x=t,则2f()+f()=1+t,①令x=-t,则2f()+f()=1-t,②由①②得f()=t+,令=x可得f(x)=+,x≠1.14.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0,若f()=0,求f(π)及f(2π)的值.解:令x=y=0,则f(0)+f(0)=2[f(0)]2,则f(0)[f(0)-1]=0,由f(0)≠0,则f(0)=1,令x=y=,则f(π)+f(0)=2[f()]2=0,则f(π)=-1;令x=y=π,则f(2π)+f(0)=2[f(π)]2=2,则f(2π)=1.第2节二次函数一、选择题1.函数f(x)=2x2-mx+3,当x∈[-2,+∞)时,f(x)是增函数,当x∈(-∞,-2]时,f(x)是减函数,则f(1)的值为( B )(A)-3 (B)13 (C)7 (D)5解析:函数f(x)=2x2-mx+3图象的对称轴为直线x=,由函数f(x)的增减区间可知=-2,所以m=-8,即f(x)=2x2+8x+3,所以f(1)=2+8+3=13.2.已知二次函数f(x)满足f(2+x)=f(2-x),且f(x)在[0,2]上是增函数,若f(a)≥f(0),则实数a的取值范围是( C )(A)[0,+∞) (B)(-∞,0](C)[0,4] (D)(-∞,0]∪[4,+∞)解析:由f(2+x)=f(2-x)可知,函数f(x)图象的对称轴为x==2,又函数f(x)在[0,2]上单调递增,所以由f(a)≥f(0)可得0≤a≤4.3.若函数f(x)=(1-x2)(x2+ax-5)的图象关于直线x=0对称,则f(x)的最大值是( B )(A)-4 (B)4 (C)4或-4 (D)不存在解析:依题意,函数f(x)是偶函数,则y=x2+ax-5是偶函数,故a=0,则f(x)=(1-x2)(x2-5)=-x4+6x2-5=-(x2-3)2+4,当x2=3时,f(x)取最大值为4.4.设函数f(x)=x2-23x+60,g(x)=f(x)+|f(x)|,则g(1)+g(2)+…+g(20)等于( B )(A)56 (B)112 (C)0 (D)38解析:由二次函数图象的性质得,当3≤x≤20时,f(x)+|f(x)|=0,所以g(1)+g(2)+…+g(20)=g(1)+g(2)=f(1)+|f(1)|+f(2)+|f(2)|=112.5.已知函数f(x)(x∈R)满足f(x)=f(2-x),若函数y=|x2-2x-3|与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则x1+x2+…+x m等于( B )(A)0 (B)m (C)2m (D)4m解析:由f(x)=f(2-x)知函数f(x)的图象关于直线x=1对称,又y=|x2-2x-3|的图象也关于直线x=1对称,所以这两函数的交点也关于直线x=1对称.不妨设x1<x2<…<x m,则=1,即x1+x m=2,同理x2+x m-1=2,x3+x m-2=2,…,设S m=x1+x2+…+x m,则S m=x m+x m-1+ (x1)所以2S m=(x1+x m)+(x2+x m-1)+…+(x m+x1)=2m,所以S m=m.6.设函数f(x)=,g(x)=ax2+bx(a,b∈R,a≠0),若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是( D )(A)当a<0时,x1+x2<0,y1+y2<0(B)当a<0时,x1+x2>0,y1+y2>0(C)当a>0时,x1+x2>0,y1+y2<0(D)当a>0时,x1+x2<0,y1+y2>0解析:当a<0时,作出两个函数的图象,如图,因为函数f(x)是奇函数,所以A与A′关于原点对称,显然x2>-x1>0,即x1+x2>0,-y1>y2,即y1+y2<0;当a>0时,作出两个函数的图象,同理有x1+x2<0,y1+y2>0.二、填空题7.二次函数的图象与x轴只有一个交点,对称轴为x=3,与y轴交于点(0,3).则它的解析式为 .解析:由题意知,可设二次函数的解析式为y=a(x-3)2,又图象与y轴交于点(0,3),所以3=9a,即a=,所以y=(x-3)2=x2-2x+3.答案:y=x2-2x+38.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .解析:由f(x)是偶函数知f(x)图象关于y轴对称,所以b=-2,所以f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],所以2a2=4,故f(x)=-2x2+4.答案:-2x2+49.若关于x的不等式x2-4x≥m对任意x∈(0,1]恒成立,则m的取值范围为.解析:只需要在x∈(0,1]时,(x2-4x)min≥m即可.因为函数f(x)=x2-4x在(0,1]上为减函数,所以当x=1时,(x2-4x)min=1-4=-3,所以m≤-3.答案:(-∞,-3]10.若函数f(x)=x2-x+a的定义域和值域均为[1,b](b>1),则a= ,b= .解析:因为f(x)=(x-1)2+a-,所以其对称轴为x=1,即[1,b]为f(x)的单调递增区间.所以f(x)min=f(1)=a-=1,①f(x)max=f(b)=b2-b+a=b,②由①②解得答案: 311.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零点,则称f(x)和g(x)在[a,b]上是“关联函数”,区间[a,b]称为“关联区间”.若f(x)=x2-3x+4与g(x)=2x+m在[0,3]上是“关联函数”,则m的取值范围为.解析:由题意知,y=f(x)-g(x)=x2-5x+4-m在[0,3]上有两个不同的零点.在同一直角坐标系下作出函数y=m与y=x2-5x+4(x∈[0,3])的图象如图所示,结合图象可知,当x∈[2,3]时,y=x2-5x+4∈[-,-2],故当m∈(-,-2]时,函数y=m与y=x2-5x+4(x∈[0,3])的图象有两个交点.答案:(-,-2]12.若函数f(x)=cos 2x+asin x在区间(,)上是减函数,则a的取值范围是.解析:f(x)=cos 2x+asin x=-2sin2x+asin x+1,令sin x=t,则f(x)=-2t2+at+1,因为x∈(,),所以t∈(,1).因为f(x)在x∈(,)上是减函数,所以y=-2t2+at+1在t∈(,1)上是减函数,又对称轴是t=,所以≤,所以a≤2.答案:(-∞,2]三、解答题13.已知二次函数f(x)的二次项系数为a,且f(x)>-2x的解集为{x|1<x<3},方程f(x)+6a=0有两个相等的实根,求f(x)的解析式. 解:设f(x)+2x=a(x-1)(x-3)(a<0),则f(x)=ax2-4ax+3a-2x,因为f(x)+6a=ax2-(4a+2)x+9a=0有两个相等的实根,所以Δ=(4a+2)2-36a2=0,解得a=-,或a=1(舍去).因此f(x)的解析式为f(x)=-x2-x-.14.已知函数f(x)=x2-2ax+5(a>1).若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求实数a的取值范围.解:因为f(x)的对称轴方程为x=a,且f(x)在区间(-∞,2]上是减函数,所以a≥2.又x∈[1,a+1],且(a+1)-a≤a-1,所以f(x)max=f(1)=6-2a,f(x)min=f(a)=5-a2.因为对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,所以f(x)max-f(x)min≤4,得-1≤a≤3.又a≥2,所以2≤a≤3.所以a的取值范围是[2,3].15.已知函数f(x)= (k∈Z)满足f(2)<f(3).(1)求k的值并求出相应的f(x)的解析式;(2)对于(1)中得到的函数f(x),试判断是否存在q>0,使函数g(x)=1-qf(x)+(2q-1)x在区间[-1,2]上的值域为[-4,]?若存在,求出q;若不存在,请说明理由.解:(1)由已知,f(x)在第一象限是增函数.故-k2+k+2>0,解得-1<k<2.又因为k∈Z,所以k=0或k=1.当k=0或k=1时,-k2+k+2=2,所以f(x)=x2.(2)假设存在q>0满足题设,由(1)知g(x)=-qx2+(2q-1)x+1,x∈[-1,2].因为g(2)=-1,所以两个最值点只能在端点(-1,g(-1))和顶点(,)处取得.所以-1<<2,q>0,g(x)max==,g(x)min=g(-1)=2-3q=-4.解得q=2,所以存在q=2满足题意.第3节二次函数与不等式一、选择题1.已知不等式2x≤x2的解集为P,不等式(x-1)(x+2)<0的解集为Q,则集合P∩Q等于( B )(A){x|-2<x≤2} (B){x|-2<x≤0}(C){x|0≤x<1} (D){x|-1<x≤2}解析:P={x|x2-2x≥0}={x|x≤0或x≥2},Q={x|-2<x<1},所以P∩Q={x|-2<x≤0}.2.使不等式2x2-5x-3≥0成立的一个充分不必要条件是( C )(A)x≥0 (B)x<0或x>2(C)x∈{-1,3,5} (D)x≤-或x≥3解析:不等式2x2-5x-3≥0的解集是{x|x≥3或x≤-}.由题意,选项中x的范围应该是上述解集的真子集,只有C满足. 3.已知函数f(x)=-x2-mx+1,若对于任意x∈[m,m+1],都有f(x)>0成立,则实数m的取值范围是( B )(A)[-,0] (B)(-,0)(C)[0,] (D)(0,)解析:函数f(x)=-x2-mx+1的图象开口向下,且过点(0,1),所以为使对于任意x∈[m,m+1],都有f(x)>0,须即所以-<m<0.4.若关于x的不等式ax-b>0的解集是(-∞,-2),则关于x的不等式>0的解集为( B )(A)(-2,0)∪(1,+∞)(B)(-∞,0)∪(1,2)(C)(-∞,-2)∪(0,1)(D)(-∞,1)∪(2,+∞)解析:关于x的不等式ax-b>0的解集是(-∞,-2),所以a<0,=-2,所以b=-2a,所以=>0,因为a<0,所以<0,解得x<0或1<x<2.5.若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是( A )(A)(-,+∞) (B)[-,1](C)(1,+∞) (D)(-∞,-]解析:由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解的充要条件是f(5)>0,解得a>-,故a的取值范围为(-,+∞).6.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是( A )(A)(-∞,-2) (B)(-∞,0)(C)(0,2) (D)(-2,0)解析:f(x)为R上的减函数,故f(x+a)>f(2a-x)⇔x+a<2a-x,即2x<a在[a,a+1]上恒成立,所以(2x)max=2(a+1)<a,得a<-2.二、填空题7.不等式<4的解集为.解析:由题意得x2-x<2⇒-1<x<2,解集为(-1,2).答案:(-1,2)8. 若“x∈{a,3}”是“不等式2x2-5x-3≥0成立”的一个充分不必要条件,则实数a的取值范围是.解析:由题设2a2-5a-3≥0,解得a≥3或a≤-,由集合中元素的互异性可得a≠3.答案:(-∞,-]∪(3,+∞)9.设f(x)是定义在R上的以3为周期的奇函数,若f(1)>1,f(2)=,则实数a的取值范围是.解析:因为f(x+3)=f(x),所以f(2)=f(-1+3)=f(-1)=-f(1)<-1. 所以<-1⇔<0⇔(3a-2)(a+1)<0,所以-1<a<.答案:(-1,)10.在R 上定义运算:( a b c d )=ad-bc,若不等式(121 x a a x --+ )≥1对任意实数x 恒成立,则实数a 的最大值为 .解析:由定义知,不等式(121 x a a x --+ )≥1等价于x 2-x-(a 2-a-2)≥1, 所以x 2-x+1≥a 2-a 对任意实数x 恒成立.因为x 2-x+1=(x-)2+≥,所以a 2-a ≤,解得-≤a ≤,则实数a 的最大值为.答案:11.对于实数x,规定[x]表示不大于x 的最大整数,那么不等式4[x]2-36[x]+45<0的解集为 .解析:由题意解得<[x]<,所以[x]的取值为2,3,4,5,6,7,又[x]表示不大于x 的最大整数,故2≤x<8.答案:[2,8)12.已知f(x)=m(x-2m)(x+m+3),g(x)=2x -2.若同时满足条件: ①对任意x ∈R,f(x)<0或g(x)<0;②存在x∈(-∞,-4),f(x)g(x)<0.则m的取值范围是.解析:当x<1时,g(x)<0,当x>1时,g(x)>0,当x=1时,g(x)=0,m=0不符合要求;当m>0时,根据函数f(x)和函数g(x)的单调性,一定存在区间[a,+∞)使f(x)≥0且g(x)≥0,故m>0时不符合第①条的要求;当m<0时,如图所示,如果符合①的要求,则函数f(x)的两个零点都得小于1,如果符合第②条要求,则函数f(x)至少有一个零点小于-4,问题等价于函数f(x)有两个不相等的零点,其中较大的零点小于1,较小的零点小于-4,函数f(x)的两个零点是2m,-(m+3),故m满足或解第一个不等式组得-4<m<-2,第二个不等式组无解,故所求m的取值范围是(-4,-2).答案:(-4,-2)三、解答题13.已知函数f(x)=x2-(a+1)x+b.(1)若f(x)<0的解集为(-1,3),求a,b的值;(2)当a=1时,若对任意x∈R,f(x)≥0恒成立,求实数b的取值范围;(3)当b=a时,解关于x的不等式f(x)<0(结果用a表示).解:(1)由已知,x2-(a+1)x+b=0的两个根为-1和3,所以解得a=1,b=-3.(2)当a=1时,f(x)=x2-2x+b,因为对任意x∈R,f(x)≥0恒成立,所以Δ=(-2)2-4b≤0,解得b≥1,所以实数b的取值范围是[1,+∞).(3)当b=a时,f(x)<0,即x2-(a+1)x+a<0,所以(x-1)(x-a)<0,所以当a<1时,不等式f(x)<0的解集为{x|a<x<1};当a=1时,不等式f(x)<0的解集为 ;当a>1时,不等式f(x)<0的解集为{x|1<x<a}.14.已知a是实数,函数f(x)=2ax2+2x-3在[-1,1]上恒小于零,求实数a的取值范围.解:由题可知2ax2+2x-3<0在[-1,1]上恒成立.当x=0时,有-3<0恒成立;当x≠0时,a<(-)2-,因为∈(-∞,-1]∪[1,+∞),当=1,即x=1时,不等式右边取最小值,所以a<.实数a的取值范围是(-∞,).15.已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.解:(1)由已知c=1,a-b+c=0,且-=-1,解得a=1,b=2.所以f(x)=(x+1)2.所以F(x)=所以F(2)+F(-2)=(2+1)2-(-2+1)2=8.(2)由题可知,f(x)=x2+bx,原命题等价于-1≤x2+bx≤1在(0,1]上恒成立,即b≤-x且b≥--x在(0,1]上恒成立.又-x的最小值为0,--x的最大值为-2,所以-2≤b≤0.故b的取值范围是[-2,0].第4节函数的单调性与最值一、选择题1.给定函数①y=,②y=lo(x+1),③y=,④y=2x+1.其中在区间(0,1)上单调递减的函数序号是( B )(A)①②(B)②③(C)③④(D)①④解析:①y=在(0,1)上递增;②因为t=x+1在(0,1)上递增,且0<<1,故y=lo(x+1)在(0,1)上递减;③结合图象可知y=|x-1|在(0,1)上递减;④因为u=x+1在(0,1)上递增,且2>1,故y=2x+1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.定义在R上的函数f(x)的图象关于直线x=2对称,且f(x)在(-∞,2)上是增函数,则( A )(A)f(-1)<f(3) (B)f(0)>f(3)(C)f(-1)=f(3) (D)f(0)=f(3)解析:依题意得f(3)=f(1),且-1<1<2,于是由函数f(x)在(-∞,2)上是增函数得f(-1)<f(1)=f(3).同理f(0)<f(3).3.函数y=()的单调递增区间为( B )(A)(1,+∞) (B)(-∞,](C)(,+∞) (D)[,+∞)解析:令u=2x2-3x+1=2(x-)2-.因为u=2(x-)2-在(-∞,]上单调递减,函数y=()u在R上单调递减.所以y=()在(-∞,]上单调递增,即该函数的单调递增区间为(-∞,].4.已知f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是( C )(A)(0,1) (B)(0,)(C)[,) (D)[,1)解析:当x=1时,log a1=0,若f(x)为R上的减函数,则(3a-1)x+4a>0在x<1时恒成立,令g(x)=(3a-1)x+4a,则必有即解得≤a<.此时,log a x是减函数,符合题意.5.已知a>0,设函数f(x)=(x∈[-a,a])的最大值为M,最小值为N,那么M+N等于( D )(A)2 016 (B)2 018(C)4 032 (D)4 034解析:由题意得f(x)==2018-.因为y=2 018x+1在[-a,a]上是单调递增的,所以f(x)=2018-在[-a,a]上是单调递增的,所以M=f(a),N=f(-a),所以M+N=f(a)+f(-a)=4 036--=4 034.6.已知函数f(x)的图象关于(1,0)对称,当x>1时,f(x)=log a(x-1),且f(3)=-1,若x1+x2<2,(x1-1)(x2-1)<0,则( B )(A)f(x1)+f(x2)<0 (B)f(x1)+f(x2)>0(C)f(x1)+f(x2)可能为0 (D)f(x1)+f(x2)可正可负解析:因为当x>1时,f(x)=log a(x-1),f(3)=log a2=-1,所以a=,故函数f(x)在(1,+∞)上为减函数,若x1+x2<2,则x2<2-x1,又(x1-1)(x2-1)<0,不妨令x1<1,x2>1,所以f(x2)>f(2-x1),又因为函数f(x)的图象关于(1,0)对称,所以f(x1)=-f(2-x1),此时f(x1)+f(x2)=-f(2-x1)+f(x2)>0.二、填空题7.函数y=-(x-3)|x|的递增区间是.解析:y=画图象如图所示,可知递增区间为[0,].答案:[0,]8.已知函数f(x)为(0,+∞)上的增函数,若f(a2-a)>f(a+3),则实数a 的取值范围为.解析:由已知可得解得-3<a<-1或a>3.答案:(-3,-1)∪(3,+∞)9.函数f(x)=lg(9-x2)的定义域为;其单调递增区间为.解析:对于函数f(x)=lg(9-x2),令9-x2>0,解得-3<x<3,即函数的定义域为(-3,3).令g(x)=9-x2,则函数f(x)=lg(g(x)),又函数g(x)在定义域内的增区间为(-3,0].所以函数f(x)=lg(9-x2)在定义域内的单调递增区间为(-3,0].答案:(-3,3) (-3,0]10.已知函数f(x)=则f(x)的最小值是.解析:当x≥1时,x+-3≥2-3=2-3,当且仅当x=,即x=时等号成立,此时f(x)min=2-3<0;当x<1时,lg(x2+1)≥lg(02+1)=0,此时f(x)min=0.所以f(x)的最小值为2-3.答案:2-311.设0<x<1,则函数y=+的最小值是.解析:y=+=,当0<x<1时,0<x(1-x)=-(x-)2+≤.所以y≥4.答案:412.已知f(x)=不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立,则实数a的取值范围是.解析:作出函数f(x)图象的草图如图,易知函数f(x)在R上为减函数,所以不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立等价于x+a<2a-x,即x<在[a,a+1]上恒成立,所以只需a+1<,即a<-2.答案:(-∞,-2)三、解答题13.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.解:f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.(2)当0≤a<1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.(3)当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.(4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.综上,当a<0时,f(x)min=-1,f(x)max=3-4a;当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;当1<a≤2时,f(x)min=-1-a2,f(x)max=-1;当a>2时,f(x)min=3-4a,f(x)max=-1.14.已知f(x)=(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.(1)证明:任取x1<x2<-2,则f(x1)-f(x2)=-=.因为(x1+2)(x2+2)>0,x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在(-∞,-2)上单调递增.(2)解:任取1<x1<x2,则f(x1)-f(x2)=-=.因为a>0,x2-x1>0,所以要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,所以a≤1.综上所述,a的取值范围是(0,1].15.函数y=f(x)的定义域为R,若存在常数M>0,使得|f(x)|≥M|x|对一切实数x均成立,则称f(x)为“圆锥托底型”函数.(1)判断函数f(x)=2x,g(x)=x3是否为“圆锥托底型”函数?并说明理由.(2)若f(x)=x2+1是“圆锥托底型”函数,求出M的最大值.解:(1)对于函数f(x)=2x,因为|2x|=2|x|≥2|x|,即对于一切实数x使得|f(x)|≥2|x|成立,所以函数f(x)=2x是“圆锥托底型”函数.对于g(x)=x3,如果存在M>0满足|x3|≥M|x|,而当x=时,由||3≥M||,所以≥M,得M≤0,矛盾,所以g(x)=x3不是“圆锥托底型”函数.(2)因为f(x)=x2+1是“圆锥托底型”函数,故存在M>0,使得|f(x)|=|x2+1|≥M|x|对于任意实数恒成立.所以x≠0时,M≤|x+|=|x|+,此时当x=±1时,|x|+取得最小值2,所以M≤2.而当x=0时,也成立.所以M的最大值等于2.第5节函数的奇偶性与周期性一、选择题1.在函数y=xcos x,y=e x+x2,y=lg,y=xsin x中,偶函数的个数是( B )(A)3 (B)2 (C)1 (D)0解析:y=xcos x是奇函数,y=lg和y=xsin x是偶函数,y=e x+x2是非奇非偶函数,所以偶函数的个数是2.2.下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( B )(A)y=cos 2x,x∈R(B)y=log2|x|,x∈R且x≠0(C)y=,x∈R(D)y=x3+1,x∈R解析:选项A中函数y=cos 2x在区间(0,)上单调递减,不满足题意;选项C中的函数为奇函数;选项D中的函数为非奇非偶函数.3.设f(x)=x+sin x(x∈R),则下列说法错误的是( D )(A)f(x)是奇函数(B)f(x)在R上单调递增(C)f(x)的值域为R(D)f(x)是周期函数解析:因为f(-x)=-x+sin(-x)=-(x+sin x)=-f(x),所以f(x)为奇函数,故A正确;因为f′(x)=1+cos x≥0,所以函数f(x)在R上单调递增,故B正确;f(x)的值域为R,故C正确;f(x)不是周期函数,D错误. 4.已知定义域为{x|x≠0}的函数f(x)为偶函数,且f(x)在区间(-∞,0)上是增函数,若f(-3)=0,则<0的解集为( D )(A)(-3,0)∪(0,3) (B)(-∞,-3)∪(0,3)(C)(-∞,-3)∪(3,+∞) (D)(-3,0)∪(3,+∞)解析:由已知条件,可得函数f(x)的图象大致如图,故<0的解集为(-3,0)∪(3,+∞).5.设函数f(x)(x∈R)满足f(x+π)=f(x)+sin x.当0≤x<π时,f(x)=0,则f()等于( A )(A) (B) (C)0 (D)-解析:因为f(x+2π)=f(x+π)+sin(x+π)=f(x)+sin x-sin x=f(x),所以f(x)的周期T=2π,又因为当0≤x<π时,f(x)=0,所以f()=f(-+π)=f(-)+sin(-)=0,所以f(-)=,所以f()=f(4π-)=f(-)=.6.已知定义在R上的奇函数f(x)在x>0时满足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]时恒成立,则实数t的最大值是( A )(A)-1 (B)16(-1)(C)+1 (D)16(+1)解析:因为f(x)在x>0时满足f(x)=x4,所以f(x)在(0,+∞)上单调递增,又f(x)在R上为奇函数,所以f(x)在R上单调递增,而f(x+t)≤4f(x)(x∈[1,16])等价于f(x+t)≤f(x)(x∈[1,16]),即当x∈[1,16]时,x+t≤x恒成立,即t≤(-1)x,x∈[1,16],所以只需t≤-1,故t的最大值为-1.二、填空题7.设函数f(x)=x(e x+a)(x∈R)是偶函数,则实数a的值为.解析:因为f(x)是偶函数,所以恒有f(-x)=f(x),即-x(e-x+ae x)=x(e x+ae-x),化简得x(e-x+e x)(a+1)=0.因为上式对任意实数x都成立,所以a=-1.答案:-18.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)= .解析:因为f(x)是定义在R上的奇函数,因此f(-x)+f(x)=0.当x=0时,可得f(0)=0,可得b=-1,此时f(x)=2x+2x-1,因此f(1)=3.又f(-1)=-f(1),所以f(-1)=-3.答案:-39.奇函数f(x)的周期为4,且x∈[0,2],f(x)=2x-x2,则f(2 018)+f(2 019)+f(2 020)的值为.解析:函数f(x)是奇函数,则f(0)=0,由f(x)=2x-x2,x∈[0,2]知f(1)=1,f(2)=0,又f(x)的周期为4,所以f(2 018)+f(2 019)+f(2 020)=f(2)+f(3)+f(0)=f(3)=f(-1)=-f(1)=-1.答案:-110.设函数f(x)是定义在R上的奇函数,若f(x)满足f(x+3)=f(x),且f(1)≥1,f(2)=,则m的取值范围是.解析:因为f(x+3)=f(x),所以f(2)=f(-1+3)=f(-1).因为f(x)为奇函数,且f(1)≥1,所以f(-1)=-f(1)≤-1,所以≤-1.解得-1<m≤.答案:(-1,]11.已知函数f(x)满足:f(1)=,4f(x)f(y)=f(x+y)+f(x-y)(x,y∈R),则f(2 018)= .解析:法一令x=1,y=0时,4f(1)·f(0)=f(1)+f(1),解得f(0)=,令x=1,y=1时,4f(1)·f(1)=f(2)+f(0),解得f(2)=-,令x=2,y=1时,4f(2)·f(1)=f(3)+f(1),解得f(3)=-,依次求得f(4)=-,f(5)=,f(6)=,f(7)=,f(8)=-,f(9)=-,…可知f(x)是以6为周期的函数,所以f(2 018)=f(336×6+2)=f(2)=-.法二因为f(1)=,4f(x)·f(y)=f(x+y)+f(x-y),所以构造符合题意的函数f(x)=cos x,所以f(2 018)=cos(×2 018)=-.答案:-12.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为.解析:易知f(x)在R上为单调递增函数,且f(x)为奇函数,由f(mx-2)+ f(x)<0,得f(mx-2)<-f(x)=f(-x),所以mx-2<-x,即mx+x-2<0对所有m∈[-2,2]恒成立,令h(m)=mx+x-2,此时,只需解得x∈(-2,).答案:(-2,)三、解答题13.已知函数f(x)=是奇函数.(1)求实数m的值;(2)若函数f(x)在区间[-1,a-2]上单调递增,求实数a的取值范围. 解:(1)设x<0,则-x>0,所以f(-x)=-(-x)2+2(-x)=-x2-2x.又f(x)为奇函数,所以f(-x)=-f(x),于是x<0时,f(x)=x2+2x=x2+mx,所以m=2.(2)由(1)及已知,f(x)在(-∞,-1]上是减函数,在[-1,1]上是增函数,在[1,+∞)上是减函数,要使f(x)在[-1,a-2]上单调递增,必需且只需所以1<a≤3,故实数a的取值范围是(1,3].14.已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满足f(1-m)+f(1-m2)<0的实数m的取值范围.解:因为f(x)的定义域为[-2,2],所以解得-1≤m≤. ①又f(x)为奇函数,且在[-2,0]上递减,所以f(x)在[-2,2]上递减,所以f(1-m)<-f(1-m2)=f(m2-1),即1-m>m2-1,解得-2<m<1. ②综合①②可知,-1≤m<1.即实数m的取值范围是[-1,1).第6节函数单调性、奇偶性与周期性综合运用一、选择题1.已知f(x)是定义在R上的偶函数,且满足f(x+2)=-,当1≤x≤2时,f(x)=x-2,则f(6.5)等于( D )(A)4.5 (B)-4.5 (C)0.5 (D)-0.5解析:由f(x+2)=-,得f(x+4)=-=f(x),所以f(x)的周期是4,得f(6.5)=f(2.5).因为f(x)是偶函数,则f(2.5)=f(-2.5)=f(1.5).而1≤x≤2时,f(x)=x-2,所以f(1.5)=-0.5.由上知f(6.5)=-0.5.2.设函数f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数,则f(-1)与f(2)的大小关系是( A )(A)f(-1)>f(2) (B)f(-1)<f(2)(C)f(-1)=f(2) (D)无法确定解析:由y=f(x+1)是偶函数,得到y=f(x)的图象关于直线x=1对称,所以f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,所以f(3)>f(2),即f(-1)>f(2).3.已知函数f(x)的定义域为R,当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>时,f(x+)=f(x-).则f(6)等于( D ) (A)-2 (B)-1 (C)0 (D)2解析:因为当x>时,f(x+)=f(x-),所以x>1时,f(x)=f(x-1),即f(6)=f(1).因为当-1≤x≤1时,f(-x)=-f(x),所以f(1)=-f(-1).因为当x<0时,f(x)=x3-1,所以f(6)=f(1)=-f(-1)=-[(-1)3-1]=2.4.定义在R上的函数f(x)既是奇函数,又是周期函数,T是它的一个正周期.若将方程f(x)=0在闭区间[-T,T]上的根的个数记为n,则n可能为( D )(A)0 (B)1 (C)3 (D)5解析:因为f(x)是R上的奇函数,所以f(0)=0.又因为T是函数f(x)的一个正周期,所以f(T)=f(-T)=f(0)=0,又f(-)=f(T-)=f(),且f(-)=-f(),所以f()=0,于是可得f(-)=f()=0.所以方程f(x)=0在闭区间[-T,T]上的根的个数可能为5.5.已知f(x)是奇函数并且是R上的单调函数,若函数y=f(2x2+1)+ f(λ-x)只有一个零点,则实数λ的值是( C )(A)(B)(C)- (D)-解析:令y=f(2x2+1)+f(λ-x)=0,且f(x)是奇函数,则f(2x2+1)=-f(λ-x)=f(x-λ),又因为f(x)是R上的单调函数,所以2x2+1=x-λ只有一个根,即2x2-x+1+λ=0只有一个根,则Δ=1-8(1+λ)=0,解得λ=-.6.记max{x,y}=若f(x),g(x)均是定义在实数集R上的函数,定义函数h(x)=max{f(x),g(x)},则下列命题正确的是( C )(A)若f(x),g(x)都是单调函数,则h(x)也是单调函数(B)若f(x),g(x)都是奇函数,则h(x)也是奇函数(C)若f(x),g(x)都是偶函数,则h(x)也是偶函数(D)若f(x)是奇函数,g(x)是偶函数,则h(x)既不是奇函数,也不是偶函数解析:对于A,如f(x)=x,g(x)=-2x都是R上的单调函数,而h(x)=不是定义域R上的单调函数,故A错误;对于B,如f(x)=x,g(x)=-2x都是R上的奇函数,而h(x)=不是定义域R上的奇函数,故B错误;对于C,当f(x),g(x)都是定义域R上的偶函数时,h(x)=max{f(x),g(x)}也是定义域R上的偶函数,故C正确;对于D,如f(x)=sin x是定义域R上的奇函数,g(x)=x2+2是定义域R 上的偶函数,而h(x)=g(x)=x2+2是定义域R上的偶函数,故D错误.二、填空题7.定义在R上的函数f(x)满足f(x)=f(-x),且f(x)=f(x+6),当x∈[0,3]时,f(x)单调递增,则f(x)在[4,5]上单调.(递增,递减)解析:由已知,f(x)在[-3,0]上单调递减,又周期为6,所以f(x)在[3,6]上单调递减,在[4,5]上单调递减.答案:递减8.已知函数f(x)是R上的偶函数,g(x)是R上的奇函数,且g(x)=f(x-1),若f(2)=2,则f(2 018)的值为.解析:由g(x)=f(x-1),得g(-x)=f(-x-1),又g(x)为R上的奇函数,所以g(-x)=-g(x),所以f(-x-1)=-f(x-1),即f(x-1)=-f(-x-1),用x+1替换x,得f(x)=-f(-x-2).又f(x)是R上的偶函数,所以f(x)=-f(x+2).所以f(x)=f(x+4),即f(x)的周期为4.所以f(2 018)=f(4×504+2)=f(2)=2.答案:29.若函数f(x)是定义在R上的周期为2的奇函数,当0<x<1时,f(x)= 4x,则f(-)+f(2)= .解析:因为f(x)是周期为2的函数,所以f(x)=f(x+2).又f(x)是奇函数,所以f(x)=-f(-x),f(0)=0.所以f(-)=f(-)=-f()=-4×=-2,f(2)=f(0)=0,所以f(-)+f(2)=-2.答案:-210.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,若方程f(x)=m(m>0),在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= .解析:因为定义在R上的奇函数f(x)满足f(x-4)=-f(x),所以f(4-x)=f(x).因此,函数图象关于直线x=2对称且f(0)=0,由f(x-4)=-f(x)知f(x-8)=f(x),所以函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,所以f(x)在区间[-2,0]上也是增函数,如图所示,方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x4=-4,x2+x3=-4.所以x1+x2+x3+x4=-8.答案:-811.设函数f(x)是定义在R上的偶函数,且对任意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=(),则①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=()x-3.其中所有正确命题的序号是.解析:由已知条件:f(x+1)=f(x-1)得f(x+2)=f(x),则y=f(x)是以2为周期的周期函数,①正确;当-1≤x≤0时0≤-x≤1,f(x)=f(-x)=()1+x,函数y=f(x)的图象如图所示,当3<x<4时,-1<x-4<0,f(x)=f(x-4)=()x-3,因此②④正确.③不正确. 答案:①②④三、解答题12.已知函数f(x)=x2+(x≠0).(1)判断f(x)的奇偶性,并说明理由;(2)若f(1)=2,试判断f(x)在[2,+∞)上的单调性.解:(1)当a=0时,f(x)=x2,f(-x)=f(x),函数是偶函数.当a≠0时,f(x)=x2+(x≠0),取x=±1,得f(-1)+f(1)=2≠0;f(-1)-f(1)=-2a≠0,所以f(-1)≠-f(1),f(-1)≠f(1).所以函数f(x)既不是奇函数也不是偶函数.(2)若f(1)=2,即1+a=2,解得a=1,此时f(x)=x2+.任取x1,x2∈[2,+∞),且x1<x2,则f(x1)-f(x2)=(+)-(+)=(x1+x2)(x1-x2)+=(x1-x2)(x1+x2-).由于x1≥2,x2≥2,且x1<x2,所以x1-x2<0,x1+x2>,所以f(x1)<f(x2),故f(x)在[2,+∞)上是增函数.13.函数f(x)的定义域为D={x|x≠0},且满足对任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)因为对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),所以令x1=x2=1,得f(1)=2f(1),所以f(1)=0.(2)f(x)为偶函数.证明如下:令x1=x2=-1,有f(1)=f(-1)+f(-1),所以f(-1)=f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),所以f(-x)=f(x),所以f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,所以f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.所以0<|x-1|<16,解得-15<x<17且x≠1.所以x的取值范围是(-15,1)∪(1,17).14.已知函数f(x)在R上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.(1)试判断函数y=f(x)的奇偶性;(2)试求方程f(x)=0在闭区间[-2 018,2 018]上根的个数,并证明你的结论.解:(1)若y=f(x)为偶函数,则f(-x)=f[2-(x+2)]=f[2+(x+2)]=f(4+x)=f(x),所以f(7)=f(3)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0 矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=f(-0)=-f(0),所以f(0)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.(2)因为f(x)=f[2+(x-2)]=f[2-(x-2)]=f(4-x),f(x)=f[7+(x-7)]=f[7-(x-7)]=f(14-x),所以f(14-x)=f(4-x),即f[10+(4-x)]=f(4-x),所以f(x+10)=f(x),即函数f(x)的周期为10.对于区间[7,10],令7+x∈[7,10],则x∈[0,3],7-x∈[4,7],又f(7-x)=f(7+x),f(x)在[4,7]内无零点,所以f(x)在[7,10]内无零点.又因为f(1)=f(3)=0,所以f(1)=f(1+10n)=0(n∈Z),f(3)=f(3+10n)=0(n∈Z),即只有x=1+10n和x=3+10n(n∈Z)是方程f(x)=0的根.由-2 018≤1+10n≤2 018及n∈Z可得n=0,±1,±2,±3,…,±201,共403个;由-2 018≤3+10n≤2 018及n∈Z可得n=0,±1,±2,±3,…,±201,-202,共404个;所以方程f(x)=0在闭区间[-2 018,2 018]上的根共有807个.第7节函数的图象一、选择题1.函数f(x)=的图象大致为( A )解析:因为f(x)=,所以f(0)=0,排除选项C,D;当0<x<π时,sin x>0,所以当0<x<π时,f(x)>0,排除选项B.2.(2016·浙江卷)函数y=sin x2的图象是( D )解析:因为y=sin x2为偶函数,所以它的图象关于y轴对称,排除A,C 选项;当x=时,y=sin ≠1,排除B选项,故选D.3.函数y=的图象大致是( C )解析:由题意得,x≠0,排除A;当x<0时,x3<0,3x-1<0,所以>0,排除B;又因为x→+∞时,→0,所以排除D.4.函数f(x)=的图象如图所示,则下列结论成立的是( C )(A)a>0,b>0,c<0(B)a<0,b>0,c>0(C)a<0,b>0,c<0(D)a<0,b<0,c<0解析:函数定义域为{x|x≠-c},结合图象知-c>0,所以c<0.令x=0,得f(0)=,又由图象知f(0)>0,所以b>0.令f(x)=0,得x=-,结合图象知->0,所以a<0.5.已知函数y=f(x)及y=g(x)的图象分别如图所示,方程f(g(x))=0和g(f(x))=0的实根个数分别为a和b,则ab等于( A )(A)24 (B)15 (C)6 (D)4解析:由图象知,f(x)=0有3个根,分别为0,±m(m>0),其中1<m<2, g(x)=0有2个根n,p,-2<n<-1,0<p<1,由f(g(x))=0,得g(x)=0或±m,由图象可知当g(x)所对应的值为0,±m时,其都有2个根,因而a=6;由g(f(x))=0,知f(x)=n或p,由图象可以看出当f(x)=n时,有1个根,而当f(x)=p时,有3个根,即b=1+3=4.所以ab=24.6.如图所示,在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P以1 cm/s 的速度沿A→B→C的路径向C移动,点Q以2 cm/s的速度沿B→C→A 的路径向A移动,当点Q到达A点时,P,Q两点同时停止移动.记△PCQ的面积关于移动时间t的函数为S=f(t),则f(t)的图象大致为( A )解析:当0≤t≤4时,点P在AB上,点Q在BC上,此时PB=6-t,QC=8-2t,则S=f(t)=QC×BP=(8-2t)×(6-t)=t2-10t+24;当4≤t≤6时,点P 在AB上,点Q在CA上,此时AP=t,P到AC的距离为t,QC=2t-8,则S=f(t)=QC×t=(2t-8)×t=(t2-4t);当6≤t≤9时,点P在BC上,点Q在CA上,此时CP=14-t,QC=2t-8,则S=f(t)=QC×CPsin ∠ACB= (2t-8)·(14-t)×=(t-4)·(14-t).综上,函数f(t)对应的图象是三段抛物线,依据开口方向得图象是A.二、填空题7.若函数y=f(x)的图象过点(1,1),则函数y=f(4-x)的图象一定经过点.解析:由于函数y=f(4-x)的图象可以看作y=f(x)的图象先关于y轴对称,再向右平移4个单位长度得到.点(1,1)关于y轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y=f(4-x)的图象过定点(3,1).答案:(3,1)8.函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0), (1,2),(3,1),则f()= .解析:由已知f(3)=1,所以=1.所以f()=f(1)=2.答案:29.给定min{a,b}=已知函数f(x)=min{x,x2-4x+4}+4,若动直线y=m与函数y=f(x)的图象有3个交点,则实数m的取值范围为.解析:设g(x)=min{x,x2-4x+4},则f(x)=g(x)+4,故把g(x)的图象向上平移4个单位长度,可得f(x)的图象,函数f(x)=min{x,x2-4x+4}+4的图象如图所示,由于直线y=m与函数y=f(x)的图象有3个交点,数形结合可得m的取值范围为(4,5).答案:(4,5)10.函数f(x)是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式<0的解集为.解析:在[0,)上y=cos x>0,在(,4]上y=cos x<0.由f(x)的图象知在(1,)上<0,因为f(x)为偶函数,y=cos x也是偶函数,所以y=为偶函数,所以<0的解集为(-,-1)∪(1,).答案:(-,-1)∪(1,)11.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集为.解析:令g(x)=log2(x+1),作出函数g(x)的图象如图.由得所以结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1≤x≤1}.答案:{x|-1≤x≤1}12.若当x∈(1,2)时,函数y=(x-1)2的图象始终在函数y=log a x的图象的下方,则实数a的取值范围是.解析:如图,在同一平面直角坐标系中画出函数y=(x-1)2和y=log a x的图象.由于当x∈(1,2)时,函数y=(x-1)2的图象恒在函数y=log a x的图象的下方,则解得1<a≤2.答案:(1,2]三、解答题13.讨论方程|1-x|=kx的实数根的个数.解:可以利用函数图象确定方程实数根的个数.设y1=|1-x|,y2=kx,则方程的实根的个数就是函数y1=|1-x|的图象与y2=kx的图象交点的个数.由图象可知:当-1≤k<0时,方程没有实数根;当k=0或k<-1或k≥1时,方程只有一个实数根;当0<k<1时,方程有两个不相等的实数根.14.已知函数f(x)=x|m-x|(x∈R),且f(4)=0.(1)求实数m的值;(2)作出函数f(x)的图象;(3)根据图象指出f(x)的单调递减区间;(4)若方程f(x)=a只有一个实数根,求a的取值范围.解:(1)因为f(4)=0,所以4|m-4|=0,即m=4.(2)f(x)=x|x-4|=f(x)的图象如图所示.(3)f(x)的单调递减区间是[2,4].(4)从f(x)的图象可知,当a<0或a>4时,f(x)的图象与直线y=a只有一个交点,即方程f(x)=a只有一个实数根,所以a的取值范围是(-∞,0)∪(4,+∞).15.设函数f(x)=x+的图象为C1,C1关于点A(2,1)的对称图象为C2,C2对应的函数为g(x).(1)求函数g(x)的解析式;(2)若直线y=b与C2有且仅有一个公共点,求b的值,并求出交点的坐标.解:(1)设曲线C2上的任意一点为P(x,y),则P关于A(2,1)的对称点P′(4-x,2-y)在C1上,所以2-y=4-x+,即y=x-2+=,。
衡水内部资料-高中数学- 函数的概念及表示(精练)(解析版)
![衡水内部资料-高中数学- 函数的概念及表示(精练)(解析版)](https://img.taocdn.com/s3/m/fef2a4384028915f814dc2c7.png)
3.1 函数的概念【题组一 区间】1.(2020·三亚华侨学校高一月考)不等式0213x <-≤的解集用区间可表示为( ) A .1(,2)2B .(0,2]C .1[,2)2D .1(,2]2【答案】D【解析】由0213x <-≤解得122x <≤,用区间表示为1,22⎛⎤⎥⎝⎦,故选D. 2.(2020·全国高一课时练习)集合{|342}x x -<可以表示为( ) A .(2,)+∞ B .(,2)-∞C .[2,)+∞D .(,2]-∞【答案】B 【解析】3422x x -<⇒<,∴集合{|342}x x -<可以表示为(,2)-∞.故选:B3.(2020·全国高一课时练习)不等式20x -≥的所有解组成的集合表示成区间是( ) A .(2,)+∞ B .[2,)+∞C .(,2)-∞D .(,2]-∞【答案】B【解析】不等式20x -≥的所有解组成的集合为{|2}x x ≥,表示成区间为[2,)+∞.答案:B 4.(2019·贵州省铜仁第一中学高一期中)集合{0x x >且}2x ≠用区间表示出来( ) A .()0,2 B .()0,∞+C .()()0,22,+∞ D .()2,+∞【答案】C【解析】由集合{0x x >且}{202x x x ≠=<<或}()()20,22,x >=⋃+∞, 故选:C.5.(2019·吉林辽源高一期中(理))下列四个区间能表示数集{|05A x x =≤<或}10x >的是( ) A .((0,5)1)0,∞+B .[)0,51()0,∞+C .(]0,51[)0,∞+D .[]0,51()0,∞+【答案】B【解析】根据区间的定义可知数集{|05A x x =≤<或}10x >可以用区间[)0,51()0,∞+表示. 故选B.6.(2020·全国高一课时练习)若[a,3a -1]为一确定区间,则a 的取值范围是________.【答案】1,2⎛⎫+∞⎪⎝⎭【解析】由题意3a -1>a ,得a>12,故填1,.2⎛⎫+∞ ⎪⎝⎭7.(2020·全国高一课时练习)已知(]2,31a a -为一个确定的区间,则a 的取值范围是________. 【答案】()1,+∞.【解析】解析由(]2,31a a -为一个确定的区间知231a a <-,解得1a >, 因此a 的取值范围是()1,+∞.故答案为:()1,+∞ 【题组二 函数的判断】1.(2020·三亚华侨学校高一月考)下列图象表示函数图象的是( )A .B .C .D .【答案】C【解析】A 、B 、D 都不满足函数定义中一个与唯一的一个对应的关系,所以选C2.(2020·全国高一)在下列图象中,函数()y f x =的图象可能是( )A .B .C .D .【答案】D【解析】对于A ,存在一个自变量x 对应两个值,错误;对于B ,存在自变量x 对应两个值,错误;对于C ,存在自变量x 对应两个值,错误;对于D ,定义域内每个自变量都有唯一实数与之对应,正确,故选D. 3.(2020·全国高一课时练习)设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的是________.【答案】②【解析】对于①,当12x <≤时,集合N 中没有y 值与之对应,故①错误;对于②,集合{|02}M x x =≤≤中的每一个x 值,在{|02}N y y =≤≤中都有唯一确定的一个y 值与之对应,故②正确;对于③,对于集合{|02}M x x =≤≤中的元素2,在集合N 中没有y 值与之对应,故③错误; 对于④,对于集合{|02}M x x =<≤中的元素2,在集合N 中有两个y 值与之对应,故④错误. 故答案为:②. 【题组三 定义域】1.(2020·浙江高一课时练习)函数()f x =的定义域是( )A .[2,2]-B .{2,2}-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】B【解析】由题意2240,40x x ⎧-⎨-≥⎩,得240x -=,解得2x =±.∴定义域为{2,2}-. 故选:B .2.(2020·贵州高二学业考试)函数()f x =的定义域是( )A .{}|1x x ≥B .{|1}x x ≤C .{}|1x x >D .{}|1x x <【答案】A【解析】要使函数()f x 有意义,则:10x -≥,解得1x ≥,所有()f x 的定义域为:{}|1x x ≥,故选:A3.(2020·朝阳.吉林省实验高二期末(文))函数()f x =的定义域是 ( ) A .(],0-∞B .[)0,+∞C .(),0-∞D .(),-∞+∞【答案】A【解析】120x -≥,解得0x ≤,∴函数的定义域(],0-∞,故选A.4.(2020·汪清县汪清第六中学高二月考(文))函数()f x=A .(,2]-∞B .[0,2]C .(0,2]D .[2,)+∞【答案】C【解析】由题意得:4200x x ⎧-≥⎨>⎩,解得:02x <≤ ()f x ∴定义域为:(]0,2本题正确选项:C5.(2019·哈尔滨市第一中学校高三开学考试(文))已知()f x 的定义域为(1,0)-,则函数(21)f x +的定义域为 ( ) A .(1,1)- B .1(1,)2--C .(1,0)-D .1(,1)2【答案】B【解析】因为函数()f x 的定义域为(1,0)-,故函数(21)f x +有意义只需-1210x <+<即可,解得1-1-2x <<,选B .6.(2020·嫩江市高级中学高一月考)已知(1)f x +的定义域为[2,3)-,(2)f x -的定义域是( ) A .[2,3)- B .[1,4)-C .[0,5)D .[1,6)【答案】D 【解析】)1(f x +的定义域为[2,3)-;23x ∴-≤<;114x ∴-≤+<;()f x ∴的定义域为[1,4)-;124x ∴-≤-<;16x ∴≤<; 2()f x ∴-的定义域为[1,6).故选:D .7.(2020·全国高一)若函数()y f x =的定义域是[]0,2,则函数()()22f x g x x=的定义域是( ) A .[]0,4 B .](0,4C .](0,1D .](0,2【答案】C 【解析】函数()y f x =的定义域是[]0,2,()()22f x g x x∴=的定义域须满足,022x x ≤≤⎧⎨≠⎩,解得01x <≤,所以函数()g x 的定义域为(0,1].故选:C. 8(2020·广西兴宁.南宁三中高二月考(文))已知函数(1)f x +的定义域为[-2,1],则函数()(2)g x f x =-的定义域为( ) A .[-2,1] B .[0,3]C .[1,4]D .[1,3]【答案】C 【解析】∵()1f x +定义域为[]2,1-,∴112-≤+≤x ,即()f x 定义域为[]1,2-, 由题意得:122-≤-≤x ,解得:14x ≤≤, ∴()g x 定义域为[]1,4, 故选:C.9.(2019·内蒙古集宁一中高一期中(文))已知函数()y f x =定义域是[]2,3-,则()21y f x =-的定义域是( )A .1,22⎡⎤-⎢⎥⎣⎦B .[]1,4-C .[]2,3-D .50,2⎡⎤⎢⎥⎣⎦【答案】A【解析】由题意2213x -≤-≤,解得122x -≤≤.故选:A . 【题组四 解析式】1.(2020·云南会泽。
中职数学基础模块上册《函数的表示法》
![中职数学基础模块上册《函数的表示法》](https://img.taocdn.com/s3/m/992426d3cd22bcd126fff705cc17552706225e7b.png)
(3)恩格尔系数 (列表法)
1.2.2 函数的表示法 三、3种表示方法的特点
解析法的特点:简明、全面地概括了变量间 的关系;可以通过用解析式求出任意一个自 变量所对应的函数值。
但不够形象、直观、具体,而且并不是所 有的函数都能用解析式表示出来
列表法的特点:不通过计算就可以直接看出与自变 量的值相对应的函数值。
三、求解函数解析式的方法:代入法、配凑法、换元法 。
2.1.2 指数函数及其性质 八、作业
谢谢!
1.2.2
函数的表示法
1.2.2 函数的表示法
一、温故而知新
1.函数的概念: 设A、B是非空的数集,如果按照某个确定的对应关系f, 使对于集合A中的任意一个数x,在集合B中都有唯一确定 的数f(x)和它对应,那么就称f:A→B为从集合A到集合B 的一个函数(function).
记作:y=f(x),x∈A.
做题步骤:整体代入→化简
五、如1.2何.2根函据数已的知表条示件法求函数 的解析式
一、换元法和配凑法求解析式 类型二:已知f[g(x)] 的表达式,求f(x)的表达式
例2 已知f(x+1) =3x+5,求f(x)的解析式
练习:1、已知f(x+1)=x2+2x,求 f(x).
2、若f (x 1) x2 x 1,求f (x 1)的解析式
解:这个函数的定义域是数集{1,2,3,4,5}.
用解析式法可将函数y=f(x)表示为 y=5x,x∈{1,2,3,4,5}
用列表法可将函数y=f(x)表示为
注一:
解析法:必须 注明函数的定 义域
笔记本数 x
1
2
3
45
钱数y 5 10 15 20 25
2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析
![2023年高考数学一轮复习第二章函数1函数的概念及其表示练习含解析](https://img.taocdn.com/s3/m/1f3946737f21af45b307e87101f69e314332facb.png)
函数的概念及其表示考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理 1.函数的概念一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数. 3.函数的表示法表示函数的常用方法有解析法、图象法和列表法. 4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数. 常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × ) (2)函数y =f (x )的图象可以是一条封闭曲线.( × ) (3)y =x 0与y =1是同一个函数.( × ) (4)函数f (x )=⎩⎪⎨⎪⎧x -1,x ≥0,x 2,x <0的定义域为R .( √ )教材改编题1.下列各曲线表示的y 与x 之间的关系中,y 不是x 的函数的是( )答案 C2.(多选)下列各组函数是同一个函数的是( ) A .f (x )=x 2-2x -1,g (s )=s 2-2s -1B .f (x )=x -1,g (x )=x 2-1x +1C .f (x )=x 2,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0D .f (x )=-x 3,g (x )=x -x 答案 AC3.(2022·长沙质检)已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤0,log 3x ,x >0,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12等于( )A .-1B .2C.3D.12答案 D解析 ∵f ⎝ ⎛⎭⎪⎫12=log 312<0, ∴f ⎝⎛⎭⎪⎫f⎝ ⎛⎭⎪⎫12=31log 23=12.题型一 函数的定义域例1 (1)(2022·武汉模拟)函数f (x )=1ln x +1+4-x 2的定义域为( ) A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 要使函数有意义,则需⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,解得-1<x ≤2且x ≠0, 所以x ∈(-1,0)∪(0,2].所以函数的定义域为(-1,0)∪(0,2].(2)若函数f (x )的定义域为[0,2],则函数f (x -1)的定义域为________. 答案 [1,3]解析 ∵f (x )的定义域为[0,2], ∴0≤x -1≤2,即1≤x ≤3, ∴函数f (x -1)的定义域为[1,3].延伸探究 将本例(2)改成“若函数f (x +1)的定义域为[0,2]”,则函数f (x -1)的定义域为________. 答案 [2,4]解析 ∵f (x +1)的定义域为[0,2], ∴0≤x ≤2, ∴1≤x +1≤3, ∴1≤x -1≤3, ∴2≤x ≤4,∴f (x -1)的定义域为[2,4]. 教师备选1.(2022·西北师大附中月考)函数y =lg(x 2-4)+x 2+6x 的定义域是( ) A .(-∞,-2)∪[0,+∞) B .(-∞,-6]∪(2,+∞) C .(-∞,-2]∪[0,+∞) D .(-∞,-6)∪[2,+∞) 答案 B解析 由题意,得⎩⎪⎨⎪⎧x 2-4>0,x 2+6x ≥0,解得x >2或x ≤-6.因此函数的定义域为(-∞,-6]∪(2,+∞).2.已知函数f (x )=x1-2x ,则函数f x -1x +1的定义域为( )A .(-∞,1)B .(-∞,-1)C .(-∞,-1)∪(-1,0)D .(-∞,-1)∪(-1,1) 答案 D解析 令1-2x>0, 即2x<1,即x <0.∴f (x )的定义域为(-∞,0).∴函数f x -1x +1中,有⎩⎪⎨⎪⎧x -1<0,x +1≠0,解得x <1且x ≠-1.故函数f x -1x +1的定义域为(-∞,-1)∪(-1,1).思维升华 (1)求给定函数的定义域:由函数解析式列出不等式(组)使解析式有意义. (2)求复合函数的定义域①若f (x )的定义域为[m ,n ],则在f (g (x ))中,由m ≤g (x )≤n 解得x 的范围即为f (g (x ))的定义域.②若f (g (x ))的定义域为[m ,n ],则由m ≤x ≤n 得到g (x )的范围,即为f (x )的定义域. 跟踪训练1 (1)函数f (x )=11-4x2+ln(3x -1)的定义域为( )A.⎝ ⎛⎦⎥⎤13,12B.⎝ ⎛⎭⎪⎫13,12C.⎣⎢⎡⎭⎪⎫-12,14 D.⎣⎢⎡⎦⎥⎤-12,12 答案 B解析 要使函数f (x )=11-4x2+ln(3x -1)有意义,则⎩⎪⎨⎪⎧1-4x 2>0,3x -1>0⇒13<x <12. ∴函数f (x )的定义域为⎝ ⎛⎭⎪⎫13,12. (2)已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x的定义域为__________. 答案 [-1,0]解析 由条件可知,函数的定义域需满足⎩⎪⎨⎪⎧-2≤2x ≤2,1-2x≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0]. 题型二 函数的解析式例2 (1)(2022·哈尔滨三中月考)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,则f (x )的解析式为________.答案 f (x )=lg2x -1(x >1) 解析 令2x+1=t (t >1),则x =2t -1, 所以f (t )=lg 2t -1(t >1), 所以f (x )=lg2x -1(x >1). (2)已知y =f (x )是二次函数,若方程f (x )=0有两个相等实根,且f ′(x )=2x +2,则f (x )=________. 答案 x 2+2x +1解析 设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b ,∴2ax +b =2x +2, 则a =1,b =2.∴f (x )=x 2+2x +c , 又f (x )=0,即x 2+2x +c =0有两个相等实根. ∴Δ=4-4c =0,则c =1. 故f (x )=x 2+2x +1.(3)已知函数对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________. 答案 23x解析 ∵f (x )-2f (-x )=2x ,① ∴f (-x )-2f (x )=-2x ,② 由①②得f (x )=23x .教师备选已知f (x )满足f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,则f (x )=________.答案 -2x 3-43x解析 ∵f (x )-2f ⎝ ⎛⎭⎪⎫1x =2x ,①以1x代替①中的x ,得f ⎝ ⎛⎭⎪⎫1x -2f (x )=2x,②①+②×2得-3f (x )=2x +4x,∴f (x )=-2x 3-43x.思维升华 函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法. 跟踪训练2 (1)已知f (1-sin x )=cos 2x ,则f (x )=________. 答案 -x 2+2x ,x ∈[0,2] 解析 令t =1-sin x , ∴t ∈[0,2],sin x =1-t ,∴f (t )=1-sin 2x =1-(1-t )2=-t 2+2t ,t ∈[0,2], ∴f (x )=-x 2+2x ,x ∈[0,2].(2)(2022·黄冈质检)已知f ⎝⎛⎭⎪⎫x 2+1x2=x 4+1x4,则f (x )=__________.答案 x 2-2,x ∈[2,+∞)解析 ∵f ⎝⎛⎭⎪⎫x 2+1x 2=⎝⎛⎭⎪⎫x 2+1x22-2,∴f (x )=x 2-2,x ∈[2,+∞). 题型三 分段函数例3 (1)已知f (x )=⎩⎪⎨⎪⎧cosπx ,x ≤1,f x -1+1,x >1,则f ⎝ ⎛⎭⎪⎫43+f⎝ ⎛⎭⎪⎫-43的值为( ) A.12B .-12C .-1D .1 答案 D解析 f ⎝ ⎛⎭⎪⎫43=f⎝ ⎛⎭⎪⎫43-1+1=f ⎝ ⎛⎭⎪⎫13+1=cosπ3+1=32,f ⎝ ⎛⎭⎪⎫-43=cos ⎝ ⎛⎭⎪⎫-4π3=cos2π3=-12, ∴f ⎝ ⎛⎭⎪⎫43+f ⎝ ⎛⎭⎪⎫-43=32-12=1.(2)已知f (x )=⎩⎪⎨⎪⎧2x+3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________. 答案 1或-3 [-5,-1]解析 ①当a >0时,2a+3=5,解得a =1; 当a ≤0时,a 2-4=5, 解得a =-3或a =3(舍). 综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1. 由-3≤f (a )≤1,解得-5≤a ≤-1. 教师备选1.已知函数f (x )=⎩⎪⎨⎪⎧sin ⎝ ⎛⎭⎪⎫πx +π6,x >1,⎝ ⎛⎭⎪⎫12x,x <1,则f (f (2022))等于( )A .-32B.22C.32D. 2 答案 B解析 f (2022)=sin ⎝ ⎛⎭⎪⎫2022π+π6=sin π6=12,∴f (f (2022))=f ⎝ ⎛⎭⎪⎫12=1212⎛⎫ ⎪⎝⎭=22. 2.(2022·百校联盟联考)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x 2,x <0,若对于任意的x ∈R ,|f (x )|≥ax ,则a =________. 答案 0解析 当x ≥0时,|f (x )|=x 3≥ax ,即x (x 2-a )≥0恒成立,则有a ≤0; 当x <0时,|f (x )|=x 2≥ax ,即a ≥x 恒成立, 则有a ≥0,所以a =0.思维升华 分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3 (1)(2022·河北冀州一中模拟)设f (x )=⎩⎪⎨⎪⎧x +2x-3,x ≥1,x 2+1,x <1.则f (f (-1))=________,f (x )的最小值是________. 答案 0 22-3 解析 ∵f (-1)=2,∴f (f (-1))=f (2)=2+22-3=0,当x ≥1时,f (x )=x +2x-3≥22-3,当且仅当x =2时取等号,f (x )min =22-3, 当x <1时,f (x )=x 2+1≥1,x =0时取等号, ∴f (x )min =1,综上有f (x )的最小值为22-3.(2)(2022·重庆质检)已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案 ⎝ ⎛⎭⎪⎫-12,+∞解析 当x ≤0时,x +1≤1,f (x )<f (x +1), 等价于x 2-1<(x +1)2-1, 解得-12<x ≤0;当0<x ≤1时,x +1>1, 此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,f (x )<f (x +1)⇔log 2x <log 2(x +1)恒成立.综上知,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞.课时精练1.(2022·重庆模拟)函数f (x )=3-xlg x的定义域是( ) A .(0,3) B .(0,1)∪(1,3) C .(0,3] D .(0,1)∪(1,3]答案 D解析 ∵f (x )=3-xlg x,∴⎩⎪⎨⎪⎧3-x ≥0,lg x ≠0,x >0,解得0<x <1或1<x ≤3,故函数的定义域为(0,1)∪(1,3].2.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 A 中函数定义域不是[-2,2];C 中图象不表示函数;D 中函数值域不是[0,2]. 3.(2022·安徽江淮十校联考)设函数f (x )=⎩⎪⎨⎪⎧4x -12,x <1,a x ,x ≥1,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=8,则a 等于( ) A.12 B.34 C .1 D .2答案 D解析 f ⎝ ⎛⎭⎪⎫78=4×78-12=3,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫78=f (3)=a 3,得a 3=8,解得a =2.4.设函数f ⎝ ⎛⎭⎪⎫1-x 1+x =x ,则f (x )的表达式为( )A.1+x1-x(x ≠-1) B.1+xx -1(x ≠-1) C.1-x1+x(x ≠-1) D.2xx +1(x ≠-1) 答案 C解析 令t =1-x 1+x ,则x =1-t1+t ,∴f (t )=1-t 1+t ,即f (x )=1-x1+x(x ≠-1).5.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )答案 A解析 由题意可得y =f (x )=⎩⎪⎨⎪⎧12x ,0≤x <1,34-x4,1≤x <2,54-12x ,2≤x ≤52.画出函数f (x )的大致图象,故选A.6.(多选)下列函数中,与y =x 是同一个函数的是( ) A .y =3x 3B .y =x 2C .y =lg10xD .y =10lg x答案 AC解析 y =x 的定义域为x ∈R ,值域为y ∈R ,对于A 选项,函数y =3x 3=x 的定义域为x ∈R ,故是同一函数;对于B 选项,函数y =x 2=||x ≥0,与y =x 的解析式、值域均不同,故不是同一函数;对于C 选项,函数y =lg10x=x ,且定义域为R ,故是同一函数;对于D 选项,y =10lg x=x 的定义域为(0,+∞),与函数y =x 的定义域不相同,故不是同一函数.7.(多选)(2022·张家界质检)设函数f (x )=⎩⎪⎨⎪⎧1-x ,x ≤a ,2x,x >a ,若f (1)=2f (0),则实数a可以为( ) A .-1B .0C .1D .2 答案 AB 解析 若a <0,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若0≤a <1,则f (0)=1,f (1)=2,f (1)=2f (0)成立; 若a ≥1,则f (0)=1,f (1)=0,f (1)=2f (0)不成立. 综上所述,实数a 的取值范围是(-∞,1).8.(多选)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数满足“倒负”变换的函数的是( ) A .f (x )=x -1xB .f (x )=ln1-x1+xC .f (x )=1ex x-D .f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1答案 AD解析 对于A ,f (x )=x -1x,f ⎝ ⎛⎭⎪⎫1x =1x-x =-f (x ),满足题意; 对于B ,f (x )=ln1-x1+x,则f ⎝ ⎛⎭⎪⎫1x =ln x -1x +1≠-f (x ),不满足; 对于C ,f ⎝ ⎛⎭⎪⎫1x =111e xx -=ex -1,-f (x )=1ex x--≠f ⎝ ⎛⎭⎪⎫1x ,不满足;对于D ,f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,0<1x <1,0,1x =1,-x ,1x >1,即f ⎝ ⎛⎭⎪⎫1x =⎩⎪⎨⎪⎧1x ,x >1,0,x =1,-x ,0<x <1,则f ⎝ ⎛⎭⎪⎫1x =-f (x )满足“倒负”变换,故选AD.9.已知f (x 5)=lg x ,则f (100)=________. 答案 25解析 令x 5=100, 则x =15100=2510, ∴f (100)=25lg 10=25.10.函数f (x )=ln(x -1)+4+3x -x 2的定义域为________. 答案 (1,4]解析 依题意⎩⎪⎨⎪⎧x -1>0,4+3x -x 2≥0,解得1<x ≤4,∴f (x )的定义域为(1,4].11.(2022·广州质检)已知函数f (x )=⎩⎪⎨⎪⎧1-2a x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-1,12 解析 ∵当x ≥1时,f (x )=ln x ≥ln1=0, 又f (x )的值域为R ,故当x <1时,f (x )的值域包含(-∞,0).故⎩⎪⎨⎪⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.12.设函数f (x )=⎩⎪⎨⎪⎧x ,x <0,1,x >0,则不等式xf (x )+x ≤2的解集是________.答案 [-2,0)∪(0,1] 解析 当x <0时,f (x )=x , 代入xf (x )+x ≤2得x 2+x -2≤0, 解得-2≤x <0; 当x >0时,f (x )=1,代入xf (x )+x ≤2,解得0<x ≤1. 综上有-2≤x <0或0<x ≤1.13.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0) D .(-∞,0)答案 D解析 当x ≤0时,函数f (x )=2-x是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象知,要使f (x +1)<f (2x ),当且仅当⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,解得x <-1或-1≤x <0,即x <0.14.设函数f (x )=⎩⎪⎨⎪⎧-x +λ,x <1λ∈R,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是______. 答案 [2,+∞) 解析 当a ≥1时,2a≥2. ∴f (f (a ))=f (2a)=22a=2f (a )恒成立.当a <1时,f (f (a ))=f (-a +λ)=2f (a )=2λ-a ,∴λ-a ≥1,即λ≥a +1恒成立, 由题意λ≥(a +1)max ,∴λ≥2, 综上,λ的取值范围是[2,+∞).15.(多选)若函数f (x )满足:对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则称函数f (x )具有H 性质.则下列函数中具有H 性质的是( )A .f (x )=⎝ ⎛⎭⎪⎫12xB .f (x )=ln xC .f (x )=x 2(x ≥0) D .f (x )=tan x ⎝ ⎛⎭⎪⎫0≤x <π2 答案 ACD解析 若对定义域内任意的x 1,x 2(x 1≠x 2),有f (x 1)+f (x 2)>2f ⎝ ⎛⎭⎪⎫x 1+x 22,则点(x 1,f (x 1)),(x 2,f (x 2))连线的中点在点⎝⎛⎭⎪⎫x 1+x 22,f ⎝ ⎛⎭⎪⎫x 1+x 22的上方,如图⎝⎛⎭⎪⎫其中a =f⎝ ⎛⎭⎪⎫x 1+x 22,b =f x 1+f x 22.根据函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=ln x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2的图象可知,函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=x 2(x ≥0),f (x )=tan x ⎝⎛⎭⎪⎫0≤x <π2具有H 性质,函数f (x )=ln x 不具有H 性质.16.设f (x )是定义在R 上的函数,且f (x +2)=2f (x ),f (x )=⎩⎪⎨⎪⎧2x +a ,-1<x <0,b e 2x,0≤x ≤1,其中a ,b 为正实数,e 为自然对数的底数,若f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,则a b 的取值范围为________. 答案 (2e ,+∞)解析 因为f (x +2)=2f (x ),所以f ⎝ ⎛⎭⎪⎫92=f⎝ ⎛⎭⎪⎫12+4=(2)2f ⎝ ⎛⎭⎪⎫12=2e b ,f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12+2=2f ⎝ ⎛⎭⎪⎫-12 =2⎣⎢⎡⎦⎥⎤2×⎝ ⎛⎭⎪⎫-12+a =2(a -1), 因为f ⎝ ⎛⎭⎪⎫92=f ⎝ ⎛⎭⎪⎫32,所以2(a -1)=2e b , 所以a =2e b +1, 因为b 为正实数, 所以a b=2e b +1b=2e +1b∈(2e ,+∞),故a b的取值范围为(2e ,+∞).。
函数的概念练习题(含答案)
![函数的概念练习题(含答案)](https://img.taocdn.com/s3/m/24ee820f366baf1ffc4ffe4733687e21af45ff0b.png)
函数的概念练习题(含答案)1.2.1 函数的概念及练题答案一、选择题1.集合A = {x|0 ≤ x ≤ 4},B = {y|0 ≤ y ≤ 2},下列不表示从 A 到 B 的函数是()A。
f(x) → y = xB。
f(x) → y = xC。
f(x) → y = xD。
f(x) → y = x2.某物体一天中的温度是时间 t 的函数:T(t) = t^3 - 3t + 60,时间单位是小时,温度单位为℃,t = 表示 12:00,其后 t 的取值为正,则上午 8 时的温度为()A。
8℃B。
112℃C。
58℃D。
18℃3.函数 y = 1 - x^2 + x^2 - 1 的定义域是()A。
[-1,1]B。
(无穷小。
无穷大)C。
[0,1]D。
{ -1,1}4.已知 f(x) 的定义域为 [-2,2],则 f(x^2 - 1) 的定义域为()A。
[-1,3]B。
[0,3]C。
[-3,3]D。
[-4,4]5.若函数 y = f(3x - 1) 的定义域是 [1,3],则 y = f(x) 的定义域是()A。
[1/3,1]B。
[2/3,2]C。
[4/3,4]D。
[5/3,5]6.函数 y = f(x) 的图象与直线 x = a 的交点个数有()A。
必有一个B。
至多一个C。
可能两个以上D。
无法确定7.函数 f(x) = (ax + 4) / (ax + 3) 的定义域为 R,则实数 a 的取值范围是()A。
{a|a∈R}B。
{a|a≠-3}C。
{a|a≠-4}D。
{a|a≠-3,-4}8.某汽车运输公司购买了一批豪华大客车投入运营。
据市场分析,每辆客车营运的利润 y 与营运年数 x(x∈N) 为二次函数关系(如图),则客车有营运利润的时间不超过()年。
A。
4B。
5C。
6D。
79.(安徽铜陵县一中高一期中)已知 g(x) = 1 - 2x,f[g(x)] = (2/x) (x≠0),那么 f(2) 等于()A。
新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析
![新教材人教B版高中数学必修第一册练习-函数及其表示方法答案含解析](https://img.taocdn.com/s3/m/02291b5a680203d8cf2f24a4.png)
3.1.1函数及其表示方法第三章函数3.1 函数的概念与性质3.1.1函数及其表示方法课时1 函数的概念考点1函数的概念1.下列说法正确的是()。
A.函数值域中每一个数在定义域中一定只有一个数与之对应B.函数的定义域和值域可以是空集C.函数的定义域和值域一定是数集D.函数的定义域和值域确定后,函数的对应法则也就确定了答案:C解析:由函数的定义可知,函数的定义域和值域为非空的数集。
2.下列四个图形中,不是以x为自变量的函数的图像是()。
图3-1-1-1-1答案:C解析:根据函数定义,知对自变量x的任意一个值,都有唯一确定的实数(函数值)与之对应。
显然选项A,B,D 满足函数的定义,而选项C不满足。
故选C。
3.(2018·河北衡水中学高一月考)下列四组函数中,表示同一函数的是()。
3 B.y=1与y=x0A.y=√x2与y=√x3C.y=2x+1与y=2t+1D.y=x与y=(√x)2答案:C3=x,它们的对应关系不同,不是同一函数;对于B,y=1(x∈R),y=x0=1(x≠0),它们的解析:对于A,y=√x2=|x|,y=√x3定义域不同,不是同一函数;对于C,y=2x+1与y=2t+1,它们的定义域相同,对应关系也相同,是同一函数;对于D,y=x(x∈R),y=(√x)2=x(x≥0),它们的定义域不同,不是同一函数。
【易错点拨】考查同一函数的问题,注意把握同一函数的定义,必须保证是三要素完全相同,才是同一函数。
4.(2019·西安高一检测)下列式子中不能表示函数y=f(x)的是()。
A.x=y2B.y=x+1C.x+y=0D.y=x2答案:A5.给出下列两个集合间的对应关系:①A={-1,0,1},B={-1,0,1},f:A中的数的平方;②A={0,1},B={-1,0,1},f:A中的数的开方;③A=Z,B=Q,f:A中的数的倒数;④A=R,B={正实数},f:A中的数取绝对值;⑤A={1,2,3,4},B={2,4,6,8},f:A中的数的2倍。
《函数的基本概念与表示》知识点及典型例题总结
![《函数的基本概念与表示》知识点及典型例题总结](https://img.taocdn.com/s3/m/f4b0351e19e8b8f67d1cb929.png)
函数的基本概念与表示模块一、函数与映射要点一、映射1.映射:设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的 元素,在集合B 中都有 元素和它对应,这样的对应叫做 到 的映射,记作 .2.象与原象:如果f :A→B 是一个A 到B 的映射,那么和A 中的元素a 对应的 叫做象, 叫做原象。
要点二、函数1.定义:设A 、B 是 ,f :A→B 是从A 到B 的一个映射,则映射f :A→B 叫做A 到B 的 ,记作 。
2.函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。
3.函数的表示法有 、 、 。
要点三、函数相等只有当两个函数的 和 都分别相同时,这两个函数才是相等函数(或称为同一个函数)。
考点一、同一函数的判断 例1.下列各组函数中,表示同一函数的是( ).A. B. C. D. 变式训练1:下列函数中,与函数y=x 相同的函数是 ( )A.y= B.y=()2 C.y=lg10x D.y=考点二、已知函数解析式求函数值例2-1. 已知f(x)= 12−x (x ∈R,x≠2),g(x)=x+4(x ∈R).⑴求f (1),g (1)的值.⑵求f [g (1)],g [f (1)]的值.⑶求f [g (x)],g [f (x)]的表达式.例2-2. 设f (x )={1−√x ,x ≥0,2x ,x <0,则f(f (−2))=( ) A. -1 B. 14 C. 12 D. 32变式训练2:函数f (x )={x 2+2(x ≤2),2x (x >2)则f (−4)=( ),若f (x 0)=8,则x 0=( )。
1,x y y x==211,1y x x y x =-+=-33,y x y x ==2||,()y x y x ==x x 2x x 2log 2模块二、函数的三要素要点四、函数的定义域1. 函数的定义域就是使函数式 的集合.2.常见函数:使式子有意义(1)整式:定义域为R(2)一次函数:,定义域是R 。
高考数学 专题2.1 函数的概念以及表示试题 文-人教版高三全册数学试题
![高考数学 专题2.1 函数的概念以及表示试题 文-人教版高三全册数学试题](https://img.taocdn.com/s3/m/a22b64f44793daef5ef7ba0d4a7302768e996fd9.png)
专题2.1 函数的概念及其表示【三年高考】1. 【2017某某,5】若函数f (x )=x 2+ ax +b 在区间上的最大值是M ,最小值是m ,则M – m A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关【答案】B 【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与无关,选B .2.【2017某某,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫= ⎪⎝⎭A. 2B. 4C. 6D. 8【答案】C【解析】由1x ≥时()()21f x x =-是增函数可知,若1a ≥,则()()1f a f a ≠+,所以01a <<,由()(+1)f a f a =2(11)a =+-,解得14a =,则1(4)2(41)6f f a ⎛⎫==-= ⎪⎝⎭,故选C. 3.【2017某某,文8】已知函数||2,1,()2, 1.x x f x x x x +<⎧⎪=⎨+≥⎪⎩设a ∈R ,若关于的不等式()||2x f x a ≥+在R 上恒成立,则的取值X 围是(A )[2,2]-(B)[2]-(C)[2,-(D)[-【答案】A4.【2017课标3,文16】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值X 围是__________. 【答案】1(,)4-+∞ 【解析】由题意得: 当12x >时12221x x -+>恒成立,即12x >;当102x <≤时12112x x +-+>恒成立,即102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值X 围是1(,)4-+∞. 5.【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D )y x= 【答案】D【解析】lg 10x y x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .6.【2016高考某某文数】已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 7.【2016高考文数】已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为( )A.−1B.3C.7D.8【答案】C【解析】由题意得,AB :511(4)2924y x y x --=-⇒=-+-, ∴22(29)494497x y x x x -=--+=-≤⋅-=,当4x =时等号成立,即2x y -的最大值为7,故选C.8.【2016高考某某文数】设函数f (x )=x 3+3x 2+1.已知a≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______.【答案】-2;1.【解析】32323232()()313133f x f a x x a a x x a a -=++---=+--,23222()()(2)(2)x b x a x a b x a ab x a b --=-+++-,所以223223203a b a ab a b a a --=⎧⎪+=⎨⎪-=--⎩,解得21a b =-⎧⎨=⎩.9. 【2015高考某某,文6】函数256()4||lg 3x x f x x x -+=--的定义域为( ) A .(2,3) B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-【答案】C .【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得22,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .10. 【2015高考新课标1,文10】已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -=( )(A )74- (B )54- (C )34- (D )14- 【答案】A【解析】∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立, 当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 11. 【2015高考某某,文8】某食品的保鲜时间y (单位:小时)与储藏温度 (单位:℃)满足函数关系kx b y e +=( 2.718...e =为自然对数的底数,,k b 为常数).若该食品在℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )(A )16小时 (B )20小时 (C )24小时 (D )21小时【答案】C【解析】由题意,2219248bk b e e +⎧=⎪⎨=⎪⎩得1119212b k e e ⎧=⎪⎨=⎪⎩,于是当x =33时,y =e 33k +b =(e 11k )3·e b =31()2×192=24(小时)【2017考试大纲】(1)了解构成函数的要素,会求一些简单函数的定义域和值域; 了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.【三年高考命题回顾】纵观前三年各地高考试题, 此部分知识在高考命题中多以选择题和填空题的形式出现,或与导数结合出一个解答题,主要考查函数的定义域和值域,以及求函数解析式,求函数值与最值,分段函数求值等,试题难度中等,常和其它知识结合出题.【2018年高考复习建议与高考命题预测】由前三年的高考命题形式, 函数作为基础知识,单独命题不多,常以求函数解析式来考查立体几何,解析几何,数列,向量,三角函数等内容的最值等问题.具体对函数概念的考查,一般不会以具体形式出现,而是考查通过映射理解函数的本质,体会蕴含在其中的函数思想.对函数定义域的考察,据其内容的特点,在高考中应一般在选择题、填空题中出现,而且一般是一个具体的函数,故难度较低.对函数值域的考察,多以基本初等函数为背景,若在选择题、填空题中出现,则难度较低;若出现在解答题中,则会利用导数工具求解,难度较大.对函数表示的考查,通过具体问题(几何问题和实际应用)为背景,寻求变量间的函数关系,再求函数的定义域和值域,进而研究函数的性质,寻求问题的结果.对分段函数的考察是重点和热点,往往会以工具的形式和其他知识点结合起来考,以新颖的题型考察函数知识,难度会大点.在2018年的高考备考中同学们只需要稳扎稳打,加强常规题型的练习.由于本单元知识点的高考题,难度不大.所以在复习中不宜做过多过高的要求,只要灵活掌握小型综合题型.由于2016,2017年高考全国卷中对函数概念考查较少,预测2018年高考可能会有以分段函数的形式考查函数概念和函数性质的题目出现.【2018年高考考点定位】高考对函数概念及其表示的考查有三种主要形式:一是考察函数的概念;二是简单函数的定义域和值域;三是函数的解析表示法;其中经常以分段函数为载体考察函数、方程、不等式等知识的相联系. 【考点1】函数的概念与映射的概念【备考知识梳理】A、是两个非空的数集,如果按照某种对应法则f,对于集合A中的每一个数,1.近代定义:设B在集合B中都有唯一确定的数和它对应,那么这样的对应叫做从A到B的一个函数,通常记为=),(y∈xAxf2.传统定义:设在一个变化过程中有两个变量x,y,,若对于每一个确定的x的值,都有唯一确定的值y与之对应,则x是自变量,y是x的函数.→表示集合A到集合B的一个映射,它有以下特点:3.符号:f A B(1)对应法则有方向性, :f A B →与:f B A →不同;(2)集合A 中任何一个元素,在f 下在集合B 中都有唯一的元素与对应;(3)象不一定有原象,象集C 与B 间关系是C B ⊆.【规律方法技巧】1. 判定一条曲线是函数图象的方法:作与x 轴垂直的直线,若直线与曲线最多有一个交点,则该曲线是函数()y f x =的图象.2. 分段函数求值:给定自变量求函数值时,要确定自变量所属区间,从而代入相应的函数解析式;分段函数知道函数值或函数值X 围求自变量或自变量取值X 围时,要分类讨论并和相应的自变量区间求交集,进而得结果.3.判断一个对应是否为映射,关键看是否满足“集合A 中元素的任意性,集合B 中元素的唯一性”. 【考点针对训练】1.给出四个命题:①函数是其定义域到值域的映射;②()32f x x x =-+-是函数;③函数2(N)y x x ∈=的图象是一条直线;④2()x f x x=与()g x x =是同一个函数.其中正确的有( ) A .1个 B .2个 C .3个 D .4个【答案】A2. 设集合B A ,是两个集合,①{}x y x f y y B R A =→>==:,0,;②{}{}x y x f R y y B x x A ±=→∈=>=:,,0;③{}{}23:,41,21-=→≤≤=≤≤=x y x f y y B x x A .则上述对应法则f 中,能构成A 到B 的映射的个数是( )A .B .C .D .【答案】C【考点2】函数的表示【备考知识梳理】1.表示函数的方法有列表法、图象法、解析式法,最常用的方法是解析式法,尤其在实际问题中需要建立函数式,首先要选定变量,然后寻找等量关系,求得函数的解析式,还要注意定义域.2. 若函数在定义域的不同子集上的对应法则不同,可用分段函数来表示.【规律方法技巧】求函数的解析式的常用方法:1.代入法:如已知2()1,f x x =-求2()f x x +时,有222()()1f x x x x +=+-.2.待定系数法:已知()f x 的函数类型,要求()f x 的解析式时,可根据类型设其解析式,确定其系数即可.3.拼凑法:已知[()]f g x 的解析式,要求()f x 的解析式时,可从[()]f g x 的解析式中拼凑出“()g x ”,即用()g x 来表示,,再将解析式的两边的()g x 用代替即可.4.换元法:令()t g x =,在求出()f t 的解析式,然后用代替()f t 解析式中所有的即可.5.方程组法:已知()f x 与[()]f g x 满足的关系式,要求()f x 时,可用()g x 代替两边的所有的,得到关于[()]f g x 的方程组,解之即可得出()f x .6.赋值法:给自变量赋予特殊值,观察规律,从而求出函数的解析式.7.若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解.8.应用题求解析式可用待定系数法求解.注意:求函数解析式一定要注意函数的定义域,否则极易出错.【考点针对训练】1.设x R ∈,定义符号函数()1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则下列正确的是( )A .()sin sgn sin x x x ⋅=B .()sin sgn sin x x x ⋅=C .()sin sgn sin x x x ⋅=D .()sin sgn sin x x x ⋅=【答案】A【解析】0x >时,sin sgn()sin x x x ⋅=,0x <时,sin sgn()sin sin()x x x x ⋅=-=-,所以sin sgn()x x ⋅=sin x ,A 正确.故选A .2.定义在(1,1)-内的函数()f x 满足2()()lg(1)f x f x x --=+,求()f x 【答案】21()lg(1)lg(1)33f x x x =++-,x ∈(1,1)- 【解析】(消去法)当x ∈(1,1)-时,有2()()lg(1)f x f x x --=+,①以x -代替得2()()lg(1)f x f x x --=-+,②由①②消去()f x -得,21()lg(1)lg(1)33f x x x =++-,x ∈(1,1)-. 【考点3】分段函数及其应用【备考知识梳理】1.分段函数是一个函数,而不是几个函数;2.分段函数的定义域是各段“定义域”的并集,其值域是各段“值域”的并集;【规律方法技巧】1.因为分段函数在其定义域内的不同子集上其对应法则不同,而分别用不同的式子来表示,因此在求函数值时,一定要注意自变量的值所在子集,再代入相应的解析式求值.2.“分段求解”是处理分段函数问题解的基本原则.【考点针对训练】 1. 【某某省孝义市2017届高三高考考前质量检测三】则()4f -=( ). A. 116 B. 18 C. 14 D. 12【答案】A【解析】()()()()()41142024216f f f f f ⎛⎫-=-===== ⎪⎝⎭,故选A. 2. 【某某省某某中学2017届高三第二次摸底】设函数()4,1{2,1x x a x f x x +<=≥,若243f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则实数a =( )A. 23-B. 43-C. 43-或 23-D. 2-或 23- 【答案】A【考点4】定义域和值域【备考知识梳理】在实际问题中,通过选择变量,写出函数解析式,进而确定定义域和值域,再研究函数的性质是函数思想解决实际问题的体现,定义域就是使得实际问题或者具体问题有意义的自变量的取值X 围,值域就是与定义域相应的函数值的取值X 围.1. 函数的定义域是指使函数有意义的自变量的取值X 围.2.求函数定义域的步骤:①写出使函数有意义的不等式(组);②解不等式(组);③写出函数的定义域(注意用区间或集合的形式写出)3.在函数)(x f y =中与自变量相对应的y 的值叫做函数值,函数值的集合叫做函数的值域..函数的值域与最值均在定义域上研究.函数值域的几何意义是对应函数图像上纵坐标的变化X 围.4.函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但只确定了函数的最大(小)值,未必能求出函数的值域.在函数概念的三要素中,值域是由定义域和对应关系所确定的,因此,在研究函数值域时,既要重视对应关系的作用,又要特别注意定义域对值域的制约作用.【规律方法技巧】1.求函数的定义域一般有三类问题:一是给出解析式,应抓住使整个解式有意义的自变量的集合;二是未给出解析式,就应抓住内函数的值域就是外函数的定义域;三是实际问题,此时函数的定义域除使解析式有意义外,还应使实际问题或几何问题有意义.2.求函数的值域没有通用方法和固定模式,除了掌握常用方法(如直接法、单调性法、有界性法、配方法、换元法、判别式法、不等式法、图象法)外,应根据问题的不同特点,综合而灵活地选择方法.3.求函数定义域的主要依据是:①分式的分母不能为零;②偶次方根的被开方式其值非负;③对数式中真数大于零,底数大于零且不等于1.4.对于复合函数求定义域问题,若已知()f x 的定义域[,]a b ,则复合函数(())f g x 的定义域由不等式()a g x b ≤≤得到.5.对于分段函数知道自变量求函数值或者知道函数值求自变量的问题,应依据已知条件准确找出利用哪一段求解.6.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值X 围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由()f x 的定义域确定函数)]([x g f 的定义域或由)]([x g f 的定义域确定函数()f x 的定义域.第四类是已知函数的定义域,求参数X 围问题,常转化为恒成立问题来解决.7.函数值域的求法:利用函数的单调性:若)(x f 是],[b a 上的单调增(减)函数,则)(a f ,)(b f 分别是)(x f 在区间],[b a 上取得最小(大)值,最大(小)值.利用配方法:形如2(0)y ax bx c a =++≠型,用此种方法,注意自变量x 的X 围.利用三角函数的有界性,如sin [1,1],x ∈-cos [1,1]x ∈-.利用“分离常数”法:形如y=ax b cx d ++ 或2ax bx e y cx d++=+ (c a ,至少有一个不为零)的函数,求其值域可用此法.利用换元法:形如y ax b =+,可用此法求其值域. 利用基本不等式法:导数法:利用导数与函数的连续性求图复杂函数的极值和最值,然后求出值域8.分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的X 围求自变量值或自变量的取值X 围,应根据每一段的解析式分别求解,但要注意检验所求自变量值域X 围是否符合相应段的自变量的取值X 围.9.由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部 分剔除. 【考点针对训练】1. 【某某省某某市第一中学2017届高三最后一卷】已知函数()f x 的定义域为()0,+∞,则函数__________.【答案】(-1,1) 【解析】由题意210{340x x x +>--+>,解得11x -<<,即定义域为()1,1-.2. 【某某省揭阳市2017届高三第二次模拟】已知函数,若对任意的1x 、2x R ∈,都有()()12f x gx ≤,则实数A 的取值X 围为【答案】C【解析】也即是()()max min f x g x ≤.()g x 的最小值为,画出()f x 图像如下图所示,由图可知,当1x =时,函数取得最大值为3. 【某某省某某第一中学2017届高三全真模拟】已知函数()2,1{43,1x x f x x x x≤=+->,则()f x 的值域是A. [)1,+∞B. [)0,+∞C. ()1,+∞D. [)()0,11,⋃+∞ 【答案】B【解析】当x ≤1时,f (x )∈[)0,+∞,当x>1时,f (x )=x+4x -3≥1,当且仅当x=4x,即x=2时,f (x )取最小值1;所以f (x )的值域为[)0,+∞.选B.4.【某某省某某市2017届高三四月调研】已知函数()2xxf x e a e-=+⋅+(a R ∈,为自然对数的底数),若()g f x =与()()y f f x =的值域相同,则的取值X 围是( )A. 0a <B. 1a ≤-C. 04a <≤D. 0a <或04a <≤ 【答案】A【应试技巧点拨】1. 在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同. 2. 定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3. 求函数解析式的几种常用方法:待定系数法、换元法、配凑法、消去法. 4.分段函数体现了数学的分类讨论思想,求解分段函数求值问题时应注意的问题:(1)应用分段函数时,首先要确定自变量的值属于哪个区间,其次选定相应关系代入计算求解,特别要注意分段区间端点的取舍,当自变量的值不确定时,要分类讨论.(2)若给出函数值或函数值的X 围求自变量值或自变量的取值X 围时,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值X 围.1.【2017()()33f f +-=( )A. 1-B.C.D. 【答案】D()()332f f +-=,故选D.2.【某某省某某市崇安区江南中学2017届高三考前模拟】设函数()323614f x x x x =+++且()()1,19f a f b ==。
高一数学复习考点知识专题提升练习5--- 函数的概念及其表示(解析版)
![高一数学复习考点知识专题提升练习5--- 函数的概念及其表示(解析版)](https://img.taocdn.com/s3/m/7733f6d6c0c708a1284ac850ad02de80d4d80606.png)
高一数学复习考点知识专题提升练习精练05函数的概念及其表示1.【广东省深圳市红岭中学2019-2020学年高一期末】下列各组函数中,表示同一函数的是() A .()() ln xf x eg x x =,=B .()()24,22x f x g x x x -+==-C .()()sin 2,sin 2cos xf xg x x x==D .()()f x x g x =,【答案】D 【详解】选项A:函数()f x 的定义域是0x >,函数()g x 的定义域是全体实数,故这两个函数不是同一函数; 选项B:函数()f x 的定义域是2x ≠-,函数()g x 的定义域是全体实数,故两个函数不是同一函数; 选项C: 函数()f x 的定义域是()2x k k Z ππ≠+∈,函数()g x 的定义域是全体实数,故两个函数不是同一函数;选项D:函数()f x 和()g x 的定义域都是全体实数,且()g x x =,对应关系相同,所以是同一函数,故本题选D.2.【浙江省杭州市学军中学(学紫)2019-2020学年高一上学期期中】下列选项中两个函数,表示同一个函数的是()A .()4ln f x x =,()4ln g x x =B .()2f x x =,()g x =C .()1f x x =-,()g x =D .()f x x =,()2g x =【答案】B对于A 选项,函数()4ln f x x =的定义域为()(),00,-∞⋃+∞,函数()4ln g x x =的定义域为()0,∞+,故()4ln f x x =与()4ln g x x =不是同一函数;A 排除对于B 选项,函数()2f x x =与()g x =R ,且()2==g x x ,所以()2f x x =与()g x =B 正确;对于C 选项,函数()1f x x =-的定义域为R ,函数()1g x x ==-,定义域为R ,因此()1f x x =-与()g x =C ;对于D 选项,函数()f x x =的定义域为R ,函数()2g x =的定义域为[)0,+∞,因此()f x x=与()2g x =不是同一函数,排除D.故选B3.与函数()f x x =相等的是()A .()2x f x x=B .()2ln ln x f x x =C .()22xf x =D .()22xf x =【答案】C 【详解】()f x x =的定义域为R,而A 中0x ≠,B 中0x >,C 中x ∈R ,D 中x ∈R , 又C 中()22x f x x ==,D 中()22xf x x =≠, 故选:C.4.【山东省青岛市第二中学2019-2020学年高一上学期期末】下列哪个函数的定义域与函数12xy ⎛⎫= ⎪⎝⎭的值域相同() A .2x y =B .1y x x=+C .12y x =D .ln y x x =-【详解】指数函数12xy ⎛⎫= ⎪⎝⎭的值域是(0,)+∞ A 选项定义域是R ; B 选项定义域是{}|0x x ≠; C 选项定义域是{}|0x x ≥;D 选项定义域是{}|0x x >,满足题意。
新高考数学一轮复习考点知识专题讲解与练习 6 函数的概念及其表示
![新高考数学一轮复习考点知识专题讲解与练习 6 函数的概念及其表示](https://img.taocdn.com/s3/m/9a56e9d9f605cc1755270722192e453610665bfc.png)
新高考数学一轮复习考点知识专题讲解与练习第三章 函数、导数及其应用 考点知识总结6 函数的概念及其表示高考概览高考在本考点的常考题型为选择题和填空题,分值为5分,中、高等难度考纲研读1.了解构成函数的要素2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数3.了解简单的分段函数,并能简单应用一、基础小题1.下列关于x ,y 的关系中为函数的是( ) A .y =x -2+1-x B .x 2+y 2=1C .y =⎩⎨⎧x ,x ≥1,1-2x ,x ≤1D .答案 D解析 根据函数的定义,自变量在其允许取值范围内任意取一个值,有唯一的函数值与其对应.选项A 中的表达式,x 的取值范围为∅,故它不是函数;选项B 中的表达式,当x 在它允许取值范围内取值时,y 的值不唯一,故它不是函数;选项C 中,当x =1时,y 的值不唯一,故它不是函数;选项D 中的x ,y 满足函数的定义.故选D.2.若函数f (x )满足f ⎝⎛⎭⎪⎫x +1x =x ,则f (x )的解析式为( ) A .f (x )=1x -1(x ≠1) B .f (x )=1x +1(x ≠-1) C.f (x )=x x -1(x ≠1) D .f (x )=xx +1(x ≠-1)答案 A解析 f ⎝ ⎛⎭⎪⎫x +1x =x ,即f ⎝ ⎛⎭⎪⎫1+1x =x ,令1+1x =t (t ≠1),则x =1t -1,∴f (t )=1t -1(t ≠1),即f (x )=1x -1(x ≠1).故选A. 3.设x ∈R ,定义符号函数sgn x =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,则()A .|x |=x |sgn x |B .|x |=x sgn |x |C .|x |=|x |sgn xD .|x |=x sgn x答案 D解析 当x <0时,|x |=-x ,x |sgn x |=x ,x sgn |x |=x ,|x |sgn x =(-x )·(-1)=x ,排除A ,B ,C.故选D.4.若点A (0,1),B (2,3)在一次函数y =ax +b 的图象上,则一次函数的解析式为( ) A .y =-x +1 B .y =2x +1 C .y =x +1 D .y =2x -1 答案 C解析 将点A ,B 的坐标代入一次函数y =ax +b ,得b =1,2a +b =3,则a =1.故一次函数的解析式为y =x +1.故选C.5.已知f ⎝ ⎛⎭⎪⎫12x -1=2x +3,f (m )=6,则m 等于( )A .32B .-32C .14D .-14 答案 D解析 令2x +3=6,得x =32.故m =12x -1=12×32-1=-14.故选D.6.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 由函数的定义,排除C ;由函数y =f (x )的定义域为M ={x |-2≤x ≤2},排除A;由函数y=f(x)的值域为N={y|0≤y≤2},排除D.故选B.7.下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x| B.f(x)=x-|x|C.f(x)=x+1 D.f(x)=-x答案 C解析A中,f(2x)=|2x|=2|x|=2f(x);B中,f(2x)=2x-|2x|=2f(x);C中,f(2x)=2x +1≠2f(x);D中,f(2x)=-2x=2f(x).故选C.8.(多选)如图表示一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象提出了关于这两个旅行者的如下信息,其中正确的信息为()A.骑自行车者比骑摩托车者早出发3 h,晚到1 hB.骑自行车者是变速运动,骑摩托车者是匀速运动C.骑摩托车者在出发1.5 h后追上了骑自行车者D.骑摩托车者在出发1.5 h后与骑自行车者速度一样答案ABC解析看时间轴易知A正确;骑摩托车者行驶的路程与时间的函数图象是线段,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线段,所以是变速运动,因此B 正确;两条曲线的交点的横坐标对应着4.5,故C 正确,D 错误.9.(多选)中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译作“函数”,沿用至今.为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合M ={-1,1,2,4},N ={1,2,4,16},给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .y =log 2|x |B .y =x +1C .y =2|x |D .y =x 2 答案 CD解析 当x =±1时,y =log 21=0∉N ,故A 错误;当x =-1时,y =-1+1=0∉N ,故B 错误;任取x ∈M ,总有y =2|x |∈N ,故C 正确;任取x ∈M ,总有y =x 2∈N ,故D 正确.故选CD.10.已知函数g (x )=1-2x ,f (g (x ))=2x 2-x 2,则f ⎝ ⎛⎭⎪⎫12=________.答案 831解析 令1-2x =12,得x =14,所以f ⎝ ⎛⎭⎪⎫12=2×142-116=123116=831. 11.设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围为________.答案 ⎣⎢⎡⎭⎪⎫23,+∞解析 f (x )在R 上单调递增,由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,所以a ≥23,所以23≤a <1.当a ≥1时,有2a ≥1,所以a ≥0,所以a ≥1.综上,a ≥23.12.若函数f (x )在闭区间[-1,2]上的图象如图所示,则此函数的解析式为________,f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-13=________.答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2 -13解析 由题图可知,当-1≤x <0时,f (x )=x +1;当0≤x ≤2时,f (x )=-12x ,所以f (x )=⎩⎪⎨⎪⎧x +1,-1≤x <0,-12x ,0≤x ≤2.f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫23=-13.二、高考小题13.(2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12 答案 C解析 ∵-2<1,∴f (-2)=1+log 2[2-(-2)]=3;∵log 212>1,∴f (log 212)=2log 212-1=2log 26=6.∴f (-2)+f (log 212)=9.故选C.14.(2022·浙江高考)已知a ∈R ,函数f (x )=⎩⎨⎧x 2-4,x >2,|x -3|+a ,x ≤2.若f (f (6))=3,则a=________.答案 2解析 因为6>2,所以f (6)=6-4=2,所以f (f (6))=f (2)=1+a =3,解得a =2. 15.(2022·江苏高考)函数f (x )满足f (x +4)=f (x )(x ∈R ),且在区间(-2,2]上,f (x )=⎩⎪⎨⎪⎧cos πx 2,0<x ≤2,⎪⎪⎪⎪⎪⎪x +12,-2<x ≤0,则f (f (15))的值为________.答案22解析 ∵f (x +4)=f (x ),∴函数f (x )的周期为4,∴f (15)=f (-1)=12,f ⎝ ⎛⎭⎪⎫12=cos π4=22,∴f (f (15))=f ⎝ ⎛⎭⎪⎫12=22.16.(2022·全国Ⅲ卷)设函数f (x )=⎩⎨⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫-14,+∞解析 由题意知,可对不等式分x ≤0,0<x ≤12,x >12三段讨论.当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,所以-14<x ≤0;当0<x ≤12时,原不等式为2x +x+12>1,显然成立;当x >12时,原不等式为2x +2x -12>1,显然成立.综上可知,x >-14.三、模拟小题17.(2022·厦门外国语学校高三第一次阶段检测)已知函数y =⎩⎨⎧x 2-1,x ≤0,-3x ,x >0,则使函数值为3的x 的值是( )A .-2或2B .2或-1C .-2D .2或-2或-1 答案 C解析 当x ≤0时,令y =3,得x 2-1=3,解得x =-2;当x >0时,令y =3,得-3x =3,解得x =-1,不符合题意,舍去.综上所述,x =-2.故选C.18.(2022·重庆巴蜀中学期中)已知函数f (x )的定义域为R ,且满足f (x )+2f (-x )=x 2-x ,则f (x )的解析式是( )A .f (x )=12x 2-xB .f (x )=13x 2-xC .f (x )=12x 2+xD .f (x )=13x 2+x 答案 D解析 由f (x )+2f (-x )=x 2-x ①,得f (-x )+2f (x )=x 2+x ②,①-2×②,得f (x )=13x 2+x .故选D.19.(2022·湖北孝感模拟)某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =⎣⎢⎡⎦⎥⎤x 10 B .y =⎣⎢⎡⎦⎥⎤x +310 C .y =⎣⎢⎡⎦⎥⎤x +410 D .y =⎣⎢⎡⎦⎥⎤x +510 答案 B解析 根据规定每10人推选一名代表,当各班人数除以10的余数大于6时增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x 要进一位,所以最小应该加3,因此利用取整函数可表示为y =⎣⎢⎡⎦⎥⎤x +310,也可以用特殊取值法,若x =56,y =5,排除C ,D ;若x =57,y =6,排除A.故选B.20.(2022·衡水中学实验学校高三一模)小明在如图1所示的跑道上匀速跑步,他从A 点出发,沿箭头方向经过B 点跑到C 点,共用时30 s ,他的教练选择了一个固定的位置观察小明跑步的过程.设小明跑步的时间为t (s),他与教练间的距离为y (m),表示y 与t 的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( )A .M 点B .N 点C .P 点D .Q 点 答案 D解析 由图知,固定位置到A 点的距离大于到C 点的距离,所以舍去N ,M 两点,排除A ,B ;若是P 点,则从最高点到C 点依次递减,与图2矛盾,因此取Q 点.故选D.21.(多选)(2022·江苏苏州中学月考)下列各组函数中,两个函数是同一函数的有( )A .f (x )=|x |与g (x )=x 2B .f (x )=x +1与g (x )=x 2-1x -1C .f (x )=|x |x 与g (x )=⎩⎨⎧1,x >0,-1,x <0D .f (x )= x 2-1与g (x )=x +1·x -1答案 AC解析 对于A ,g (x )=x 2=|x |,故A 正确;对于B ,f (x )=x +1的定义域为R ,g (x )=x 2-1x -1的定义域为{x |x ≠1},故B 错误;对于C ,f (x )=|x |x =⎩⎨⎧1,x >0,-1,x <0,故C 正确;对于D ,f (x )=x 2-1的定义域为{x |x 2-1≥0}={x |x ≤-1或x ≥1},由⎩⎨⎧x +1≥0,x -1≥0,得x ≥1,即g (x )=x +1·x -1的定义域为{x |x ≥1},故D 错误.故选AC.22.(多选)(2022·海南中学高三第六次月考)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E. J. Brouwer),简单地讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .f (x )=x 2-x -3C .f (x )=⎩⎨⎧2x 2-1,x ≤1,|2-x |,x >1D .f (x )=1x -x答案 BCD解析 根据定义可知,若f (x )有不动点,则f (x )=x 有解.对于A ,令2x +x =x ,所以2x =0,此时无解,故f (x )不是“不动点”函数;对于B ,令x 2-x -3=x ,所以x =3或x =-1,所以f (x )是“不动点”函数;对于C ,当x ≤1时,令2x 2-1=x ,所以x =-12或x =1,所以f (x )是“不动点”函数;对于D ,令1x -x =x ,所以x =±22,所以f (x )是“不动点”函数.故选BCD.23.(2022·湖南郴州模拟)已知f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2,则f (x )的解析式为________. 答案 f (x )=x 2-2(x ≥2或x ≤-2)解析(配凑法)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2).24.(2022·湖北荆州模拟)已知函数f (x )=22x +1+sin x ,则f (-2)+f (-1)+f (0)+f (1)+f (2)=________.答案 5解析 ∵f (x )+f (-x )=22x +1+sin x +22-x +1-sin x =22x +1+2x +11+2x=2,且f (0)=1,∴f (-2)+f (-1)+f (0)+f (1)+f (2)=5.25.(2022·新乡模拟)∀x ,y ∈R ,都有f (x +y )=f (x )f (y ),且f (1)=2.则f (4)=________,f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2022)f (2022)+f (2022)f (2022)+f (2022)f (2022)=________. 答案 16 2022解析 因为∀x ,y ∈R ,f (x +y )=f (x )f (y ),且f (1)=2,所以f (2)=f (1+1)=f (1)f (1)=22=4,f (3)=f (1+2)=f (1)f (2)=23=8,f (4)=f (1+3)=f (1)f (3)=24=16.f (2)f (1)=2,f (4)f (3)=2,f (6)f (5)=2,…,f (2022)f (2022)=2,故原式=2×1011=2022.一、高考大题本考点在近三年高考中未涉及此题型.二、模拟大题1.(2022·昆明质量检测)已知f (x )=⎩⎪⎨⎪⎧f (x +1),-2<x <0,2x +1,0≤x <2,x 2-1,x ≥2.(1)求f ⎝ ⎛⎭⎪⎫-32的值; (2)若f (a )=4且a >0,求实数a 的值.解 (1)由题意,得f ⎝ ⎛⎭⎪⎫-32=f ⎝ ⎛⎭⎪⎫-32+1=f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫12=2. (2)当0<a <2时,由f (a )=2a +1=4,得a =32.当a ≥2时,由f (a )=a 2-1=4,得a =5或-5(舍去).故a =32或 5.2.(2022·山西太原五中月考)已知二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1.(1)求f (x )的解析式;(2)在区间[-1,1]上,y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.解 (1)设f (x )=ax 2+bx +c (a ≠0),由f (0)=1,得c =1,所以f (x )=ax 2+bx +1.因为f (x +1)-f (x )=2x ,所以a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x ,即2ax +a +b =2x ,所以⎩⎨⎧2a =2,a +b =0, 解得⎩⎨⎧a =1,b =-1,所以f (x )=x 2-x +1. (2)由题意得x 2-x +1>2x +m 在[-1,1]上恒成立,即x 2-3x +1-m >0在[-1,1]上恒成立.设g (x )=x 2-3x +1-m ,其图象的对称轴为直线x =32, 所以g (x )在[-1,1]上单调递减.故只需g (1)>0,即12-3×1+1-m >0,解得m <-1.故实数m 的取值范围是(-∞,-1).3.(2022·甘肃兰州模拟)已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1)上有表达式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的表达式.解 (1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0,f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1)时,f (x )=x 2;当x ∈[1,2)时,x -1∈[0,1),f (x )=-12f (x -1)=-12(x -1)2,f (2)=-12f (1)=14f (0)=0;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧0,x =2,-12(x -1)2,x ∈[1,2),x 2,x ∈[0,1),-2(x +1)2,x ∈[-1,0),4(x +2)2,x ∈[-2,-1).。
高一数学必修一函数概念表示及函数性质练习题(含答案)
![高一数学必修一函数概念表示及函数性质练习题(含答案)](https://img.taocdn.com/s3/m/104c99348762caaedc33d473.png)
11.已知R 是实数集,21xx ⎧⎫M =<⎨⎬⎩⎭,{y y N ==,则RN M =( )A .()1,2B .[]0,2C .∅D .[]1,22已知集合A={x |01<--ax ax },且A 3A 2∉∈,,则实数a 的取值范围是 ____3.函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6],则m 的取值范围是( )A .[0,4]B .[2,4]C .[2,6]D .[4,6] 4.设函数g(x)=x 2-2(x ∈R),f(x)=则f(x)的值域是( )A. ∪(1,+∞)B. [0,+∞)C.D. ∪(2,+∞)5.定义在),0(+∞上的函数满足对任意的))(,0(,2121x x x x ≠+∞∈,有.则满足<的x 取值范围是( )6.已知上恒成立,则实数a 的取值范围是( ) A. B.C.D.7.函数在(-1,+∞)上单调递增,则的取值范围是A .B .C .D .8.已知函数f (x )={2x 1x 01x 0+≥,,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________. 9.若函数y =2ax 1zx 2ax 3++的定义域为R ,则实数a 的取值范围是________. 10.已知函数f (x )=x 2-6x +8,x ∈[1,a],并且f (x )的最小值为f (a ),则实数a 的取值区间是________.11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =,给出下列结论:①0abc >;②24b ac =;③420a b c ++>;④30a c +>,其中正确的结论是 .(写出正确命题的序号)()f x 2121()(()())0x x f x f x -->(21)f x -1()3f 25---=a x x y a 3-=a 3<a 3-≥a 3-≤a12.已知1x f x x ⎛⎫=⎪+⎝⎭,则(1)f -= . 13.已知()221f x ax ax =++在[]2,3-上的最大值为6,则()f x 的最小值为_________.14已知[]1,0∈x ,则函数x x y --=12的值域是____15.已知2()f x ax bx =+是定义在[1,3]a a -上的偶函数,那么a b +=( )16.已知函数222f xmx m mx 为偶函数,求实数m 的值= .17.若函数f (x )=(2k -3)x 2+(k -2)x +3是偶函数,则f (x )的递增区间是____________. 18.定义在R 上的奇函数()f x ,当0x >时,()22xf x x =-,则()(0)1f f +-= .19. 函数()f x 是R 上的偶函数,且在[0,)+∞上单调递增,则下列各式成立的是( ) A .)1()0()2(f f f >>- B .)0()1()2(f f f >->- C .)2()0()1(->>f f f D .)0()2()1(f f f >->20.已知函数()f x 是定义在区间[-2,2]上的偶函数,当[0,2]x ∈时,()f x 是减函数,如果不等式(1)()f m f m -<成立,则实数m 的取值范围( ) A.1[1,)2- B. 1,2 C. (,0)-∞ D.(,1)-∞21.(5分)(2011•湖北)若定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g(x )=e x,则g (x )=( )A.e x﹣e ﹣xB.(e x+e ﹣x) C.(e ﹣x﹣e x) D.(e x﹣e ﹣x)22.已知函数1()f x x x=-. (1)判断函数()f x 的奇偶性,并加以证明;(2)用定义证明函数()f x 在区间[1,+∞)上为增函数; (3)若函数()f x 在区间[2,]a 上的最大值与最小值之和不小于1122a a-,求a 的取值范围.123.已知c bx x x f ++=22)(,不等式0)(<x f 的解集是)5,0(, (1)求)(x f 的解析式;(2)若对于任意]1,1[-∈x ,不等式2)(≤+t x f 恒成立,求t 的取值范围.24.已知函数()x f 为定义域为R ,对任意实数y x ,,均有)()()(y f x f y x f +=+,且0>x 时,0)(>x f(1)证明)(x f 在R 上是增函数(2)判断)(x f 奇偶性,并证明(3)若2)1(-=-f 求不等式4)4(2<-+a a f 的解集25.函数2()21f x x ax =-+在闭区间[]1,1-上的最小值记为()g a .(1)求()g a 的解析式; (2)求()g a 的最大值.26.已知函数22()1x f x ax x =++为偶函数. (1)求a 的值;1(2)用定义法证明函数()f x 在区间[0,)+∞上是增函数; (3)解关于x 的不等式(21)(1)f x f x -<+.参考答案1.D 【解析】试题分析:因0|{<=x x M 或}1|{},2≥=>x x N x ,故}20|{≤≤=x x M C R ,}21|{≤≤=x x M C N R ,故应选D.考点:集合的交集补集运算. 2.B 【解析】试题分析:函数()f x 是R 上的偶函数,所以()()22f f -=, ()()11f f -=,因为函数()f x 是[)0,+∞上增函数,则()()()210f f f >>,即()()()210f f f ->->.故B 正确. 考点:1函数的奇偶性;2函数的单调性. 3.A 【解析】试题分析:根据题意知,函数在[)0,2-上单调递增,在[]2,0上单调递减.首先满足⎩⎨⎧≤≤-≤-≤-22212m m ,可得21≤≤-m .根据函数是偶函数可知:)()(m f m f -=,所以分两种情况:当20≤≤m 时,根据不等式(1)()f m f m -<成立,有12-21m m m m <-≤≤-<-或,解得102m ≤<;当20m -≤<时,根据不等式(1)()f m f m -<成立,有12 -21m m m m -<-≤≤-<或,解得10m -≤<;综上可得112m -≤<. 考点:偶函数性质. 4.D 【解析】试题分析:根据已知中定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=e x,根据奇函数和偶函数的性质,我们易得到关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,解方程组即可得到g (x )的解析式. 解:∵f (x )为定义在R 上的偶函数 ∴f (﹣x )=f (x )又∵g (x )为定义在R 上的奇函数1g (﹣x )=﹣g (x ) 由f (x )+g (x )=e x,∴f (﹣x )+g (﹣x )=f (x )﹣g (x )=e ﹣x, ∴g (x )=(e x﹣e ﹣x) 故选D点评:本题考查的知识点是函数解析式的求法﹣﹣方程组法,及函数奇偶性的性质,其中根据函数奇偶性的定义构造出关于关于f (x )、g (x )的另一个方程:f (﹣x )+g (﹣x )=e ﹣x,是解答本题的关键. 5.B【解析】函数f (x )=x 2﹣4x ﹣6的图象是开口朝上,且以直线x=2为对称轴的抛物线 故f (0)=f (4)=﹣6,f (2)=﹣10∵函数f (x )=x 2﹣4x ﹣6的定义域为[0,m],值域为[﹣10,﹣6], 故2≤m≤4即m 的取值范围是[2,4] 故选B 6.B 【解析】试题分析:由题意,如下图:设1122(,),(,)A x yB x y ,联立21y x b y x =+⎧⎪⎨=⎪⎩得2210x bx +-=,则221212||(1)[()4]AB k x x x x =++- 25(8)b +=,O点到直线AB 的距离5d =,∴225(8)1||8()25b b b S f b ++==⋅⋅=. ∵()()f b f b -=,∴()f b 为偶函数.当0x >时,28()4b b f b ⋅+=,易知()f b 单调递增.故选B.考点:1.函数奇偶性;2.三角形面积应用. 7.A 【解析】 试题分析:因为2121()(()())0x x f x f x -->,所以函数()f x 在),0(+∞上单调增. 由(21)f x -<1()3f 得:.3221,31120<<<-<x x考点:利用函数单调性解不等式 8.C 【解析】,,所以,所以,选C.9.D【解析】令x<g(x),即x 2-x -2>0, 解得x<-1或x>2.令x ≥g(x),即x 2-x -2≤0,解得-1≤x ≤2. 故函数f(x)=当x <-1或x >2时,函数f(x)>f(-1)=2; 当-1≤x ≤2时,函数≤f(x )≤f(-1),即≤f(x )≤0.1故函数f(x)的值域是∪(2,+∞).选D.10.B 【解析】 作出函数在区间上的图象,以及的图象,由图象可知当直线在阴影部分区域时,条件恒成立,如图,点,,所以,即实数a 的取值范围是,选B.11.B 【解析】试题分析:由2()f x ax bx =+是定义在[1,3]a a -上的偶函数,得a a 31-=-,解得:41=a .再由()()x f x f =-,得()bx ax bx x a +=--22,即0=bx ,∴0=b .则41041=+=+b a .故选:B .考点:函数的奇偶性. 12.D 【解析】试题分析:由于函数52x y x a -=--在()1,-+∞上单调递增,可得当1x >-时,()()()()22253'022x a x a y x a x a -----==≥----,可得3021a a -≥⎧⎨+≤-⎩,解得3a ≤-,故选D. 考点:1、反比例函数的图象与性质;2、利用导数研究函数的单调性. 13.()12,1-- 【解析】试题分析:由题意可得()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,即⎩⎨⎧<<-+-<<--112121x x ,解得()12,1--∈x ,故答案为()12,1--.考点:不等式的解法.【方法点睛】本题考查分段函数的单调性,利用单调性解不等式,考查利用所学知识分析问题解决问题的能力,属于基础题.由题意可得 ()x f 在[)+∞,0上是增函数,而0<x 时,()1=x f ,故21x -必需在0=x 的右侧,故满足不等式()()x f x f 212>-的x 需满足⎪⎩⎪⎨⎧>->-012122x xx ,由此解出x 即可,借助于分段函数的图象会变的更加直观. 14.[)3,0 【解析】试题分析:因为函数3212+++=ax ax ax y 的定义域为R ,所以0322≠++ax ax 恒成立.若0=a ,则不等式等价为03≠,所以此时成立.若0≠a ,要使0322≠++ax ax 恒成立,则有0<∆,即03442<⨯-=∆a a ,解得30<<a .综上30<≤a ,即实数a 的取值范围是[)3,0.故答案为:[)3,0.考点:函数的定义域及其求法. 15.0或2- 【解析】试题分析:当0=m 时,()2=x f 为偶函数,满足题意;当0≠m 时,由于函数()()222+++=mx m mx x f 为偶函数,故对称轴为022=+-=mm x ,即2-=m ,故答案为0或2-.考点:函数的奇偶性.【方法点晴】本题考查函数奇偶性的应用.若已知一个函数为偶函数,则应有其定义域关于原点对称,且对定义域内的一切x 都有()()x f x f =-成立.其图象关于轴对称.()()222+++=mx m mx x f 是偶函数,对于二次项系数中含有参数的一元二次函数一定要分为二次项系数为0和二次项系数不为0两种情况,图象关于y 轴对称⇒对称轴为y 轴⇒实数m 的值.16.(]31,【解析】试题分析:函数()()[]a x x x x x f ,1,138622∈--=+-=,并且函数()x f 的最小值为()a f ,又∵函数()x f 在区间(]31,上单调递减,∴31≤<a ,故答案为:(]31,.考点:(1)二次函数的性质;(2)函数的最值及其几何意义. 17.①④ 【解析】试题分析:由图象知0a >,0c <,=12ba-,即20a b +=,所以0b <,所以0abc >,故①正确;因为二次函数图象与x 轴有两个交点,所以240b ac ∆=->,即24b ac >,故②错;因为原点O 与对称轴的对应点为(20),,所以2x =时,0y <,即420a b c ++<,故③错;因为当1x =-时,0y >,所以0a b c -+>,把2b a =-代入得30a c +>,故④正确,故填①④.考点:二次函数图象与系数的关系.【技巧点睛】利用图象判断解析式中,,a b c 的正负及它们之间的关系:(1)开口方向判断a 的正负;(2) 与y 轴交点位置判断c 的正负;(3) 对称轴位置判断b 的正负 (左同右异);(4) 与x 轴交点个数判断24b ac -的正负;(5) 图象上特殊点的位置判断一些函数值正负;(6) 对称轴判断2a b +和2a b -的正负. 18.12-【解析】 试题分析:由1x f x x ⎛⎫=⎪+⎝⎭,可令;1,1x x =-+求解可得; 11.2x x x =--=-。
2021-2022年高一数学人教版A版(2019)必修第一册同步练习题3-1 函数的概念及其表示
![2021-2022年高一数学人教版A版(2019)必修第一册同步练习题3-1 函数的概念及其表示](https://img.taocdn.com/s3/m/6d2c43d658fb770bf68a5550.png)
2021-2022年高一数学人教版A 版(2019)必修第一册同步练习题3-1 函数的概念及其表示【含答案】1.已知f (x )=-3x +2,则f (2x +1)等于( B ) A .-3x +2 B .-6x -1 C .2x +1 D .-6x +5【答案】B【解析】在f (x )=-3x +2中,用2x +1替换x ,可得f (2x +1)=-3(2x +1)+2=-6x -3+2=-6x -1.2.(2020·浙江高一期中)函数1()1f x x x=+的定义域是( )A .RB .[1,)-+∞C .(,0)(0,)-∞+∞ D .[1,0)(0,)-+∞【答案】D【解析】由题意可得:10x +≥,且0x ≠,得到1x ≥-,且0x ≠,故选:D3.(2020·浙江高一课时练习)已知21,[1,0),()1,[0,1],x x f x x x +∈-⎧=⎨+∈⎩则函数()y f x =-的图象是( ) A . B .C . D .【答案】A【解析】当0x =时,依函数表达式知2(0)(0)011f f -==+=,可排除B ;当1x =时,(1)(1)10f -=-+=,可排除C 、D .故选A4.已知函数y =21,02,0x x x x ⎧+≤⎨->⎩,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52- 【答案】C【解析】当0x ≤时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-,故选C.5.已知f (x )满足f (ab )=f (a )+f (b ),且f (2)=p ,f (3)=q .那么f (72)等于( ) A .p +q B .3p +2q C .2p +3q D .p 3+q 2【答案】B【解析】因为f (ab )=f (a )+f (b ),所以f (9)=f (3)+f (3)=2q ,f (8)=f (2)+f (2)+f (2)=3p ,所以f (72)=f (8×9)=f (8)+f (9)=3p +2q .6.已知f (x )={ 1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集是( ) A .{x |x ≤1} B .{x |x ≤2} C .{x |0≤x ≤1} D .{x |x <0}【答案】A【解析】当x ≥0时,f (x )=1,xf (x )+x ≤2⇔x ≤1,所以0≤x ≤1; 当x <0时,f (x )=0,xf (x )+x ≤2⇔x ≤2,所以x <0,综上,x ≤1. 7.(多选)下列函数中,满足f (2x )=2f (x )的是( )A.f(x)=|x| B.f(x)=x-|x|C.f(x)=x+1 D.f(x)=-x【答案】ABD【解析】在A中,f(2x)=|2x|=2|x|,2f(x)=2|x|,满足f(2x)=2f(x);在B中,f(2x)=2x-|2x|=2(x -|x|)=2f(x),满足f(2x)=2f(x);在C中,f(2x)=2x+1,2f(x)=2(x+1)=2x+2,不满足f(2x)=2f(x);在D中,f(2x)=-2x=2(-x)=2f(x),满足f(2x)=2f(x).8.(多选)(多选)已知函数f(x)={x+2,x≤-1,x2,-1<x<2,关于函数f(x)的结论正确的是( )A.f(x)的定义域为RB.f(x)的值域为(-∞,4)C.若f(x)=3,则x的值是 3D.f(x)<1的解集为(-1,1)【答案】BC【解析】由题意知函数f(x)的定义域为(-∞,2),故A错误;当x≤-1时,f(x)的取值范围是(-∞,1],当-1<x<2时,f(x)的取值范围是[0,4),因此f(x)的值域为(-∞,4),故B正确;当x≤-1时,x+2=3,解得x=1(舍去).当-1<x<2时,x2=3,解得x=3或x=-3(舍去),故C正确;当x≤-1时,x+2<1,解得x<-1,当-1<x<2时,x2<1,解得-1<x<1,因此f(x)<1的解集为(-∞,-1)∪(-1,1),故D错误.故选B、C.二、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)9.已知函数f(x)=2x-3,x∈{x∈N|1≤x≤5},则函数f(x)的值域为________.【答案】{-1,1,3,5,7}【解析】∵x=1,2,3,4,5,且f(x)=2x-3.∴f (x )的值域为{-1,1,3,5,7}.10.已知f (x )是一次函数,满足3f (x +1)=6x +4,则f (x )=________.【答案】322-x 【解析】设f (x )=ax +b (a ≠0), 则f (x +1)=a (x +1)+b =ax +a +b , 依题设,3ax +3a +3b =6x +4,∴⎩⎨⎧=+=43363b a a ,∴⎪⎩⎪⎨⎧-==322b a则f (x )=322-x 11.已知函数f (x )满足f (x )=2f )1(x+3x ,则f (x )的解析式为________________.【答案】f (x )=-x -x2(x ≠0) 【解析】由题意知函数f (x )满足f (x )=2f )1(x+3x ,即f (x )-2f )1(x=3x ,用x1代换上式中的x ,可得f )1(x-2f (x )=3x,联立方程得解得f (x )=-x -x2(x ≠0).12.(一题两空)根据统计,一名工人组装第x 件某产品所用的时间(单位:min )为()x A xf x x A A<⎪⎪=⎨⎪≥⎪⎩,其中A ,c 为常数,已知工人组装第4件产品用时30 min ,组装第A 件产品用时15 min ,求c 和A 的值. 【答案】60,16c A ==【解析】由题意()x A xf x x A A<⎪⎪=⎨⎪≥⎪⎩组装第4件产品用时30 min ,则()430f =,304=,即60c =,组装第A 件产品用时15 min ,则()15f A =, 15A=,即15c A =16A =,所以c 和A 的值分别为60和16. 三、解答题(本大题共4小题,共40分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)13.已知函数p =f (m )的图象如图所示.求:(1)函数p =f (m )的定义域; (2)函数p =f (m )的值域;(3)p 取何值时,只有唯一的m 值与之对应.【解析】(1)观察函数p =f (m )的图象,可以看出图象上所有点的横坐标的取值范围是-3≤m ≤0或1≤m ≤4,由图知定义域为[-3,0]∪[1,4]. (2)由图知值域为[-2,2].(3)由图知:p ∈(0,2]时,只有唯一的m 值与之对应.14.如图所示,函数()f x 的图象是折线段ABC ,其中A 、B 、C 的坐标分别为(0,4),(2,0),(6,4).(1)求[](0)f f 的值; (2)求函数()f x 的解析式.【解析】(1)直接由题图观察,可得[(0)](4)2f f f ==.(2)设线段AB 所对应的函数解析式为(0)(02)k b y x k x =+≠将04x y =⎧⎨=⎩与20x y =⎧⎨=⎩,代入y kx b =+.得402bk b =⎧⎨=+⎩,42b k =⎧⎨=-⎩,∴24(02)y x x =-+同理,线段BC 所对应的函数解析式为2(26)x y =-.∴24,02()2,26x x f x x x -+⎧=⎨-<⎩.15.某省两个相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,若该车每次拖4节车厢,一天能来回16次(来、回各算作一次),若每次拖7节车厢,则每天能来回10次.(1)若每天来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数的解析式;(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.【解析】(1)设每天来回y 次,每次拖x 节车厢,则可设y =kx +b (k ≠0).由题意,得16=4k +b,10=7k +b , 解得k =-2,b =24, 所以y =-2x +24.(2)设这列火车每天来回总共拖挂的车厢节数为S ,则由(1)知S =xy , 所以S =x (-2x +24)=-2x 2+24x =-2(x -6)2+72, 所以当x =6时,S max =72,此时y =12, 则每日最多运营的人数为110×72=7 920.所以这列火车每天来回12次,才能使运营人数最多,每天最多运营人数为7 920.16.(2019·全国高一课时练习)甲、乙两车同时沿某公路从A 地出发,驶往距离A 地300 km 的B 地,甲车先以75 km/h 的速度行驶,在到达A 、B 中点C 处停留2 h 后,再以100 km/h 的速度驶往B 地,乙车始终以v (单位:km/h )的速度行驶.(1)将甲车距离A 地的距离()f t (单位:km )表示为离开A 地的时间t (单位:h )的函数,求出该函数的解析式并画出函数的图象;(2)若两车在途中恰好相遇两次(不包括A 、B 两地),试求乙车行驶速度v 的取值范围. 【解析】(1)由题意可知,当02t ≤<时,()75f t t =; 当24t ≤≤时,()()2150f t f ==;当4t >时,()()1501004100250f t t t =+-=-,由()100250300f t t =-=,得112t =.()75,02150,2411100250,42t t f t t t t ⎧⎪≤<⎪∴=≤≤⎨⎪⎪-<≤⎩.函数()y f t =的图象如图所示:(2)由已知,得乙车离开A 地的距离()g t (单位:km )表示为离开A 地的时间t (单位:h )的函数为()3000g t vt t v ⎛⎫=≤≤⎪⎝⎭,其图象是一条线段,如图所示.由图象知,当点()4,150在直线()g t vt =下方,点11,3002⎛⎫⎪⎝⎭在直线()g t vt =的上方可知两车在途中恰好相遇两次,则有4150113002v v >⎧⎪⎨<⎪⎩,解得75600211v <<. 故当75600211υ<<时,两车在途中恰好相遇两次(不包括A 、B 两地), 因此,v 的取值范围是75600,211⎛⎫⎪⎝⎭.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的概念及表示方法练习题
一、选择题
1.集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数是( )
A .f (x )=12x
B .f (x )=13x
C .f (x )=23x
D .f (x )=x
2.某物体一天中的温度是时间t 的函数:T (t )=t 3-3t +60,时间单位是小时,温度单位为℃,t =0表示12:00,其后t 的取值为正,则上午8时的温度为( )
A .8℃
B .112℃
C .58℃
D .18℃
3.函数y =1-x 2+x 2-1的定义域是( )
A .[-1,1]
B .(-∞,-1]∪[1,+∞)
C .[0,1]
D .{-1,1}
4.函数y =f (x )的图象与直线x =a 的交点个数有( )
A .必有一个
B .一个或两个
C .至多一个
D .可能两个以上
5.函数f (x )=1ax 2+4ax +3
的定义域为R ,则实数a 的取值范围是( )
A .{a |a ∈R }
B .{a |0≤a ≤34}
C .{a |a >34}
D .{a |0≤a <34}
6.某汽车运输公司购买了一批豪华大客车投入运营.据
市场分析,每辆客车营运的利润y 与营运年数x (x ∈N )为二次
函数关系(如图),则客车有营运利润的时间不超过( )年.
A .4
B .5
C .6
D .7
7.函数f (x )=2x -1,x ∈{1,2,3},则f (x )的值域是( ) A .[0,+∞) B .[1,+∞) C .{1,3,5} D .R
二、填空题
1.某种茶杯,每个2.5元,把买茶杯的钱数y (元)表示为茶杯个数x (个)的函数,则y =________,其定义域为________.
2.函数y =x +1+12-x
的定义域是(用区间表示)________. 3. 若函数2()2f x x x =-,则)3(f =________. 4.函数4
22--=x x y 的定义域________. 5.下列四组函数表示同一函数的一组是 .
①29()
3x f x x ,()3g x x ;②2()()f x x ,2()g x x ; ③21
()3f x x ;242()3x g x x x ;④2()()f x x ,()g x x .
6. 下列图象中能表示函数y =()f x 的有 .
① ② ③ ④
7.函数221,[1,3)y x x x =--∈-的值域为_______.
8.若函数2()1f x x ,()2g x x
,则[(2)]f g . 9.若函数()f x 满足()()()f x f y f xy ,且(3)
f a ,(2)f b ,则
(36)f .
10. 已知函数2()2f x x x a =++,2()962f bx x x =-+,其中x ∈R ,a ,b 为常数,则方程()0f ax b +=的解集为 .
11. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a ,b ,c ,d 对应密文2a b +,2b c +,23c d +,4d .例如,明文1,2,3,4对应密文5,7,18,16,则当接收方收到密文14,9,23,28时,解密得到的明文为 .
12. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x 的值是 .
13.函数()f x 对于任意实数x 满足条件1
(2)()f x f x +=,若(1)5f =-,则
((5))f f = .
14. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,
则这个二次函数的表达式是________.
15. 函数()f x 满足1()2()
f x f x x ,则(2)f .
三、解答题
1.求一次函数f (x ),使f [f (x )]=9x +1.
2.求下列函数的定义域.
(1)y =x +1x 2-4; (2)y =1|x |-2
;(3)y =x 2+x +1+(x -1)0.
3.(1)已知f (x )=2x -3,x ∈{0,1,2,3},求f (x )的值域.
(2)已知f (x )=3x +4的值域为{y |-2≤y ≤4},求此函数的定义域.
4.某大学教师将每周的课时数列表如下:
则在这个函数中,求其定义域和值域.
5. 已知()2f x x a =+,21()(3)4g x x =+,若2[()]1g f x x x =++,求a 的值.。