新北师大版七年级数学下导学案_第四章__变量之间的关系
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学反思第四章变量之间的关系
§4.1 小车下滑的时间
学习目标:通过分析小车在斜坡上下滑时高度与时间数据之间的联系,使学生体会小车
下滑时间随着高度变化而变化,从而了解变量、自变量和因变量的意义,了解可以用列表示
两个变量之间的关系,培养学生分析问题的能力与归纳思维的能力。
学习重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的
变化情况。
学习难点:对表格所表达的两个变量关系的理解。
一、预习
(一)、预习书P96~P97
(二)、思考:什么是变量?什么是自变量?什么是因变量?
(三)、预习作业:
1
(1)表中反映了哪两个变量之间的关系,哪个是自变量?哪个是因变量?
(2)根据表中的数据,你认为老师在第____分钟提出观念比较适宜?说出你的理由.
二、学习过程:
(一)要点引导
1、在一个变化过程中数值保持不变的量叫做______可以取不同数值的量叫做______,如果
一个量随着另外一个量的变化而变化,那么把这个量叫做______,另一个量叫做______.
2、本节是通过______形式来表示两个变量之间的关系的.
(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什
么?
(3)h每增加10厘米,t的变化情况相同吗?
(4)估计当h=110时,t的值是多少,你是怎样估计的?
变式:一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表:
教学反思(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?
(3)当t每增加1秒时,v的变化情况相同吗?在哪1秒钟内,v的增加最大?
(4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车
速度就将达到这个上限?
(三)拓展:
1、如图,是一个形如六边形的点阵,它的中心是一个点,算第一层;第二层每边两个点;
第三层每边有三个点,依此类推:
(1)填写下表:
(2)每层点数是如何随层数的变化而变化的?所有层的总点数是如何随层数的变化而变化
的?
(3)此题中的自变量和因变量分别是什么?
(4)写出第n层所对应的点数,以及n层的六边形点阵的总点数;
(5)如果某一层的点数是96,它是第几层?
(6)有没有一层,它的点数是100?为什么?
2、下表是明明商行某商品的销售情况,该商品原价为560元,随着不同幅度的降价(单位:
元)
(1
(2)每降价5元,日销量增加多少件?请你估计降价之前的日销量是多少?
(3)如果售价为500元时,日销量为多少?
(四)回顾小结:
总结本节所学的知识,从表格中获取信息;用表格表示变量之间的关系;对变化趋势进
行预测。
教 学 反 思
§4.2 用关系式表示的变量间的关系 学习目标:1、经历探索某些图形中变量之间的关系的过程,进一步体会一个变量对另
一个变量的影响,发展符号感。
2、能根据具体情景,用关系式表示某些变量之间的关系。
3、能根据关系式求值,初步体会自变量和因变量的数值对应关系。
学习重点:1、找问题中的自变量和因变量。
2、根据关系式找自变量和因变量之间的对应关系。
学习难点:根据关系式找自变量和因变量之间的对应关系。
一、预习
(一)、预习书:P100~P101
(二)、思考:确定关系式的步骤?
(三)、预习作业:
1、会议厅共有30排座位,第一排有20个座位,后排每排比前一排多一个座位.
(1)你知道第九排有多少个座位吗?第26排呢?
(2)每排的座位数y 可用排数x 来表示吗?
(3)可不可能某一排的座位数是52?为什么?
二、学习过程:
(一)要点引导
1、通过表格可表示两个变量之间的关系,本节中利用_______也可表示两个变量之间的关系.
2、确定关系式的步骤:先找出题目中关于________与________的相等关系,再用________的代数式表示________
3、半径为R 的圆面积S=________,当R=3时,S=________
方法小结:
1、涉及到图形的面积或体积时,写关系式的关键是利用面积或体积公式写出等式;
2、一定要将表示因变量的字母单独写在等号的左边;
3、已知一个变量的值求另一个变量的值时,一定要分清已知的是自变量还是因变量,千万不要代错了.
(二)例题 例1、如图,ABC 底边BC 上的高是6厘米,当三角形的
顶点C 沿底边所在直线向点B 运动时,三角形的面积发生
了变化. (1)在这个变化过程中,自变量、因变量各是什么?
(2)如果三角形的底边长为x (厘米),那么三角形的面积y (厘
米2)可以表示为_________ (3)当底边长从12厘米变化到3厘米时,三角形的面积从____厘米2变化到____厘米2
A
C B 1
C 2C 3C 8
4 x
教 学 反 思
变式1、 如图,已知梯形的上底为x ,下底为8,高为4.
(1)求梯形面积y 与x 的关系;
(2)用表格表示,当x 从3到7(每次增加1)时,y 的相应值;
(3)当x 每增加1时,y 如何变化?
(4)当y=50时,x 为多少?
(5)当x=0时,y 等于多少?此时它表示的是什么?
例2、将若干张长为20cm 、宽为10cm 的
长方形白纸,按下图所示的方法粘合起来,粘合部分的宽为2cm . (1)求4张白纸粘合后的总长度; (2)设x 张白纸粘合后的总长度为ycm ,写出y 与x 之间的关系式;
(3)并求当x=20时,y 的值
变式2、 声音在空气中传播的速度y (米/秒)与气温x C 之间有如下关系:3
3315y x =+
(1)在这一变化过程中,自变量是________、因变量是________;
(2)当气温15x C =时,声音速度y=________米/秒;
(3)当气温22x C =时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放烟花所在地约相距________米;
(三)拓展
1、如图,在Rt ABC ∆中,已知90C ∠=,边AC=4cm ,BC=5cm ,点P 为CB 边上一动点,当点P 沿CB 从点C 向点B 运动时,APC ∆的面积发生了变化.
(1)在这个变化过程中,自变量和因变量各是什么?
(2)如果设CP 长为xcm ,APC ∆的面积为2ycm ,则y 与x 的关系可表示为__________;
(3)当点P 从点D (点D 为BC 的中点)运动到点B 时,则APC ∆的面积从______
2cm 变到______2cm
(四)回顾小结:
自变量和因变量之间的关系;根据关系式找出与自变量相应的因变量的数值。