幂函数的图像与性质

合集下载

幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法

幂函数图像及性质总结幂函数九个基本图像幂函数比较大小的方法

幂函数•冥函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。

幂函数的解析式:y=xα幂函数的图像:•幂函数图像的性质:所有幂函数在(0,+∞)上都有定义.①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。

幂函数图象的其他性质:(1)图象的对称性:把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。

幂函数的单调性和奇偶性:对于幂函数(a∈R).(1)单调性当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.(2)奇偶性①当a为整数时,若a为偶数,则是偶函数;若a为奇数,则是奇函数。

②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数,若分母q为偶数,则为非奇非偶函数.。

幂函数图像与性质

幂函数图像与性质

证明: 任取x1, x2 [0,),且x1 x2 ,则
f (x1) f (x2)
x1
x2
(
x1
x2 )(
x1
x2 )
x1 x2
x1 x2 x1 x2
因为0 x1 x2 ,所以x1 x2 0, x1 x2 0,
所以f ( x1 ) f ( x2 ) 即幂函数f ( x) x在[0,)上的增函数.
(4)
1
y x2
(5)
y x1 (6) y x2
函数 y x的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
函数 y x2 的图像
定义域: R
值 域:[0,)
奇偶性:在R上是偶函数
单调性:在[0,)上是增函数 在(,0]上是减函数
6 α <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、α为奇数时,幂函数为奇函
数,
-3
α为偶数时,幂函数为偶函
数.
-4
练习:利用单调性判断下列各值的大小。
(1)5.20.8 与 5.30.8
(2)0.20.3-2与 0.30.3-2
(3) 2.5 5 与2.7 5
解:(1)y= x0.8在(0,∞)内是增函数,
∵5.2<5.3 ∴ 5.20.8 < 5.30.8 (2)y=x0.3在(0,∞)内是增函数
∵0.2<0.3∴ 0.20.3 <0.30.3
(3)y=x-2/5在(0,∞)内是减函数
∵2.5<2.7∴ 2.5-2/5>2.7-2/5

2.3 幂函数图像与性质

2.3 幂函数图像与性质
y 0.2x
(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
幂函数的图象及性质
对于幂函数,我们只讨论 =1,2,3,1 , 2
-1时的情形。
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
2
(4,2)
1
(-1,1)
(1,1)
y=x-1
2、在第一象限内, k >0,在
4
6 k <0,在(0,+∞)上为减函数.
-1
(-1,-1)
-2
3、k为奇数时,幂函数为奇函数,
k为偶数时,幂函数为偶函数.
-3
-4
4、幂函数图像不过第四象限。
例3
若m
4
1 2
23 4
3 4… 27 64 …
3 2…
1
y=x 2
x
函数 y x3 的图像
定义域: R 值 域: R
奇偶性:在R上是奇函数 单调性:在R上是增函数
1
函数 y x 2 的图像
定义域:[0,)
值 域:[0,)
奇偶性:非奇非偶函数
单调性:在[0,)上是增函数
4
3
2
1
(1,1)
-6

2、定义域与k的值有关系.
例1、下列函数中,哪几个函
数是幂函数? 答案:(1)(4)
(1)y = 1
x2
(3)y=2x
(2)y=2x2
(4)y=
1 x
(5) y=x2 +2

幂函数图像与性质

幂函数图像与性质
问题引入 我们先看几个具体问题:
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需
要支付p= w 元 这里p是w的函数
yx
(2) 如果正方形的边长为a,那么正方形的面积
S a2
这里S是a的函数
y x2
(3) 如果立方体的边长为a,那么立方体的体积
V a3
这里V是a的函数
y x3
(4)如果一个正方形场地的面积为S,那么这个正方形的
-2 α为偶数时,幂函数为偶函数.
3、在第一象限内,
-3
a >0,在(0,+∞)上为增函数; -4 a <0,在(0,+∞)上为减函数.
看未知数x是指数还是底数
指数函数
幂函数
快速反应
y 0.2x
(指数函数)
y x1
(幂函数)
y 3x
(指数函数)
1
y x2
(幂函数)
y 5x
(指数函数)
y5 x
(幂函数)
题型:关于定义
例1、下列函数中,哪几个函数是幂函数?
(1) y x4
(2) y
1 x2
(3) y x2
(4) y 2x2 (5) y x3 x (6) y 1x x 0
3,1 ,-1时的情形。
2
五个常用幂函数的图像和性质
(1) y x (2) y x2 (3) y x3
(4)
1
y x2
(5)
y x1
x … -1 -1/2 0 1/2 1 3/2 2 … y=x3 … -1 -1/8 0 1/8 1 27/8 8 …
x … 0 1/4 1 2 3 4 …
幂函数:(1)(2) yy1x0 (6)

幂函数图像及性质总结

幂函数图像及性质总结

幂函数图像及性质总结幂函数是高中数学中的一个重要概念,它是指形式为f(x)=ax^k的函数,其中a 为非零实数,k为实数。

幂函数在数学中具有广泛的应用,在图像的研究中,掌握幂函数的图像及其性质是非常重要的。

首先,我们来看幂函数的图像特点。

当k为正数时,幂函数的图像呈现出“增长”或“递减”的趋势。

当k>1时,曲线会明显上升,形成类似于指数函数的图像特征。

而当0<k<1时,曲线则会下降,但下降的速率逐渐减慢。

特别地,当k=1时,幂函数成为一次函数,即f(x)=ax,其图像为一条直线。

此外,当k为负数时,幂函数的图像则出现在第二、第四象限,并且具有对称轴。

接下来,我们来讨论幂函数的性质。

首先,我们来看函数的定义域和值域。

由于幂函数的底数a不能为零,函数的定义域为除以0的集合,即R-{0}。

而幂函数的值域则依赖于指数k的正负情况。

当k为正数时,函数的值域为正实数集(0,+∞)。

当k为负数时,函数的值域为(0, +∞)的实数集。

由于底数a的正负情况也会影响函数的关系,故在具体分析时需要考虑a的取值范围。

其次,我们来讨论幂函数的奇偶性。

当指数k为偶数时,幂函数f(x)=ax^k是一个偶函数,即满足f(x)=f(-x)。

这是因为对于任意x∈R,有(-x)^k=x^k,从而f(x)=ax^k=f(-x)。

相应地,当指数k为奇数时,幂函数f(x)=ax^k是一个奇函数,即满足f(x)=-f(-x)。

这是因为对于任意x∈R,有(-x)^k=-x^k,从而f(x)=ax^k=-ax^k=-f(-x)。

进一步地,我们来讨论幂函数的增减性和极值点。

当指数k为正数时,幂函数在定义域上是递增的。

当a>1时,函数的增长速度更快;当0<a<1时,函数的增长速度更慢。

而当指数k为负数时,幂函数在定义域上是递减的。

在图像上,幂函数具有一个最小值或最大值,该点称为极值点。

当k为偶数时,函数的极值点出现在定义域的最小值点,当k为奇数时,函数的极值点出现在定义域的最大值点。

幂函数的图像和性质 纪福双【打印】

幂函数的图像和性质    纪福双【打印】
幂函数的图像和性质
(1)幂函数的定义: (2)幂函数的图象

纪福双
一般地,函数 y x 叫做幂函数,其中 x 为自变量, 是常数.
(3)幂函数的性质: ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图 象关于 y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第 一象限. ②过定点:所有的幂函数在 (0, ) 都有定义,并且图象都通过点 (1,1) . ③单调性:如果 0 ,则幂函数的图象过原点,并且在 [0, ) 上为增函数.如果 0 ,则幂函数的图象在 (0, ) 上为减函数,在第一象限内,图象无限接近 x 轴与 y 轴. ④奇偶性:当 为奇数时,幂函数为奇函数,
大行不倦呕心沥血传道授业解惑!大思行广打通大脑思维的任督二脉,大行无疆捍卫中国文化最后良心!第 1 页
q p q p
q p

⑤图象特征: 幂函数 y x , x (0, ) ,当 ,若 x 1 ,其图象在直线 y x 上方,当 1时,若 0 x 1 ,其

图象在直线 y x 上方,若 x 1 ,其图象在直线 y x 下方.
q (其 p 中 p, q 互质, p 和 q Z ) ,若 p 为奇数 q 为奇
当 为偶数时, 幂函数为偶函数. 当 数时,则 y x 是奇函数【简称:奇,奇,奇】 , 图像位于一三象限,关于原点对称。若 p 为奇 数 q 为偶数时, 则 y x 是偶函数, 【简称: 偶, 奇,偶】 ,图像位于一二象限,关于关于 y 轴对 称。 ; 若 p 为偶数 q 为奇数时, 则 y x 是非奇 非偶函数【简称:奇,偶,非】 ,图像只在第一 象限.

幂函数的概念及其图像

幂函数的概念及其图像

3.3幂函数知识点一、幂函数的定义一般地,形如函数 (α∈R)的函数称为幂函数,其中底数 是自变量,α为常数.知识点二、幂函数的图象在同一平面直角坐标系下,幂函数x y =,2x y =,3x y =,x y =,1-=x y 的图象分别如下.知识点三、幂函数的性质: (1)都过点 ;(2)任何幂函数都不过 象限; (3)当0>α时,幂函数的图象过 .知识点四、幂函数的图象在第一象限的分布规律(1)在经过点平行于轴的直线的右侧,按幂指数由小到大的关系幂函数的图象从 到 分布;(2)幂指数的分母为偶数时,图象只在 象限;幂指数的分子为偶数时,图象在第一、第二象限关于 轴对称;幂指数的分子、分母都为奇数时,图象在第一、第三象限,关于 对称.一、幂函数的定义例1、幂函数352)1(----=m x m m y 在0(,)∞+上为减函数,则实数m 的值是( ) A .2 B .1- C .1-或2 D .251±≠m【举一反三】1、已知y =(m 2+2m -2)·211m x -+(2n -3)是幂函数,求m 、n 的值.(1,1)y2、已知12)2()(-++=m m x m m x f ,m 为何值时,)(x f 是:(1)正比例函数; (2)反比例函数; (3)二次函数;(4)幂函数.二、幂函数的图像例2、幂函数αx y =,当α取不同的正数时,在区间0[,]1上它们的图象是一族美丽的曲线(如图).设点A 1(,)0,B 0(,)1,连接AB ,线段AB 恰好被其中的两个幂函数αx y =,βx y =的图象三等分,即有|BM |=|MN |=|NA |,那么=αβ( )A .1B .2C .3D .无法确定例3、已知幂函数)(x f 的图象过点(2,2),幂函数g(x)的图象过点(2,41) (1)求)(x f ,)(x g 的解析式;(2)当x 为何值时,①)()(x g x f >;②)()(x g x f =;③)()(x g x f <.三、幂函数的性质【考题】比较下列各组数的大小: (1)13(0.95)- 13(0.96)-; (2)138-- 1319⎛⎫- ⎪⎝⎭;(3)30.830.7(4)122 131.8;例5、已知幂函数=)(x f 223m m x --(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是单调减函数,试求满足3(1)ma -+<3(32)ma --的a 的取值范围.【举一反三】已知幂函数y =243m m x --(m ∈Z )的图象与y 轴有公共点,且其图象关于y 轴对称,求m 的值,并作出其图象.【课后巩固】1.函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1-C .4D .4-2.下列所给出的函数中,是幂函数的是( ) A .3x y -=B .3-=x yC .32x y =D .13-=x y3.函数3x y =和31x y =图象关于( )对称 A .原点B .x 轴C .y 轴D .直线x y =4.下列函数中既是偶函数又在0(,)∞+上是增函数的是( ) A .y x =43B .y x =32C .y x =-2D .y x=-145.函数R x x x y ∈=|,|,满足( ) A .是奇函数又是减函数 B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数6.对于幂函数54)(x x f =,若210x x <<,则)2(21x x f +,2)()(21x f x f +大小关系是( ) A .)2(21x x f +>2)()(21x f x f + B . )2(21x x f +<2)()(21x f x f + C .)2(21x x f +=2)()(21x f x f +D . 无法确定7.)()27,3)(14x f x f -,则的图象过点(幂函数的解析式是 .8.已知幂函数)()(322Z m xx f m m ∈=--y y x 轴都无交点,且关于轴,的图象与轴对称,则f x ()的解析式是 . 9.已知幂函数12)()(-+=m m xx f (m ∈N *).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,2),试确定m 的值,并求满足条件f(2-a)>f(a -1)的实数a 的取值范围.。

幂函数与指数函数的性质

幂函数与指数函数的性质

幂函数与指数函数的性质幂函数和指数函数是数学中常见的两类函数,它们在数学和科学研究中有着重要的应用。

本文将探讨幂函数和指数函数的性质,包括定义、图像、增减性、奇偶性以及反函数等方面。

1. 幂函数的性质幂函数的一般形式为f(x) = x^n,其中n为正整数,是幂函数的指数。

幂函数的定义域为实数集,由于x^n中的n是正整数,所以幂函数的值域可以是正数、负数或零。

1.1. 幂函数的图像根据幂函数的指数n的奇偶性,幂函数的图像有不同的特点。

当n为偶数时,幂函数的图像相对于y轴对称,关于原点对称;而当n为奇数时,幂函数的图像关于原点对称。

1.2. 幂函数的增减性幂函数的增减性与指数n的值相关。

当指数n为正数时,幂函数在定义域上递增;当指数n为负数时,幂函数在定义域上递减。

值得注意的是,当指数n为偶数时,幂函数的绝对值增长速度比n为奇数时慢。

1.3. 幂函数的奇偶性当幂函数的指数n为偶数时,幂函数是偶函数;当指数n为奇数时,幂函数是奇函数。

这意味着幂函数的图像关于y轴对称或者关于原点对称。

1.4. 幂函数的反函数由于幂函数的定义域为实数集,而幂函数的指数并不一定能覆盖所有实数,所以幂函数的反函数并不一定存在。

当幂函数的指数n为倒数时,幂函数的反函数存在。

2. 指数函数的性质指数函数的一般形式为f(x) = a^x,其中a为常数,称为底数。

指数函数的定义域为实数集,底数a大于0且不等于1。

2.1. 指数函数的图像指数函数的图像与底数a有关。

当底数a大于1时,指数函数在整个定义域上递增;当底数a介于0和1之间时,指数函数在整个定义域上递减。

指数函数的图像经过点(0, 1),即当x等于0时,指数函数的值为1。

2.2. 指数函数的增减性指数函数的增减性取决于底数a的值。

当底数a大于1时,指数函数在整个定义域上递增;当底数a介于0和1之间时,指数函数在整个定义域上递减。

2.3. 指数函数的奇偶性指数函数一般情况下不具有奇偶性,即指数函数的图像不关于y轴对称也不关于原点对称。

高中幂函数图像及性质

高中幂函数图像及性质

高中幂函数图像及性质
幂函数图像及性质总结:1.幂函数图像总结:α>0时,图像过原点和(1,1)点,在第一象限的部分“上升”;α<0时,图像不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立。

1、幂函数的图像
2.幂函数性质总结:幂函数的图像一定在第一象限内,一定不在第四象限,至于是否在第二、三象限内,要看函数的奇偶性;幂函数的图像最多只能同时在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点。

(1)正值性质:当α>0时,幂函数y=x有下列性质:
a、图像都经过点(1,1)(0,0)
b、函数的图像在区间[0,+∞)上是增函数
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0
(2)负值性质:当α<0时,幂函数y=x有下列性质:
a、图像都通过点(1,1)
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X易得到其为偶函数。

利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。

其余偶函数亦是如此)
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

幂函数的图像和性质

幂函数的图像和性质

幂函数的图像和性质(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!幂函数的图像和性质概念一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。

5、幂函数图像与性质

5、幂函数图像与性质
单调性:在R上是增函数
函数 y x 的图像
2
定义域:
R
值 域:[0,) 奇偶性: 在R上是偶函数 单调性: 在[0,)上是增函数
在(,0]上是减函数
函数 y x
1
的图像
定义域:{x x 0} 值 域:{ y
y 0}
奇偶性:在{x x 0}上是奇函数
单调性: 在(0,)上是减函数
问题引入
我们先看几个具体问题:
(1) 如果张红购买了每千克1元的蔬菜w千克,那么她需
要支付p= w 元 (2) 如果正方形的边长为a,那么正方形的面积
S
yx
2
a
2
yx
y x
1 2
(3) 如果立方体的边长为a,那么立方体的体积
V
a
3
3
(4)如果一个正方形场地的面积为S,那么这个正方形的 边长 a 度
幂函数的图象及性质
1 -1, 2 , 时的情形。
对于幂函数,我们只讨论 =1,2,3,
五个常用幂函数的图像和性质
3 2 y x y x (1) (2) y x (3)
(4) y x
1 2
(5) y x
1
函数 y x 的图像
定义域: 值 域:
R R
奇偶性:在R上是奇函数
单调性:在R上是增函数
函数 y x 的图像
1 2性:在[0,)上是增函数
幂函数的定义域、值域、奇偶性和单调性,随常 数α取值的不同而不同.
y=x
定义域 值域 R R
y = x2
R [0,+∞) 偶函数
y=
x3
y x
[0,+∞) [0,+∞) 非奇非偶 函数

幂函数图像与性质(有的有,有的没有)

幂函数图像与性质(有的有,有的没有)

幂函数的性质与图像1、幂函数的定义一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数.如11234,,y x y x y x -===等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数. 2、函数的图像(1)y x = (2)12y x = (3)2y x = (4)1y x -= (5)3y x =用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出幂函数的性质。

3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)x >0时,幂函数的图象都通过原点,并且在[0, +∞]上,是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. (4)在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数 . y 轴和直线1x =之间,图象由上至下,指数α .:4. 规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. 在[0,+∞]上,y x =、2y x =、3y x =、12y x =是增函数, 在(0,+∞)上, 1y x -=是减函数。

例1.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x :(1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数;(3)是正比例函数;(4)是反比例函数;(5)是二次函数; 简解:(1)2m =或1m =-(2)1m =-(3)45m =-(4)25m =-(5)1m =- 变式训练:已知函数()()2223m m f x m m x --=+,当 m 为何值时,()f x 在第一象限内它的图像是上升曲线。

幂函数的像与性质

幂函数的像与性质

幂函数的像与性质幂函数是高中数学中的重要概念,我们经常会在各种数学问题中遇到幂函数。

在本文中,我们将探讨幂函数的像以及幂函数的一些性质。

一、幂函数的定义与基本性质幂函数是指形如 y = x^n 的函数,其中 x 是自变量,y 是因变量,n是常数指数。

这里要注意,n 可以是任意实数,但不能为零。

幂函数有以下几个基本性质:1. 当 n 是正整数时,幂函数是一个增函数。

这意味着随着自变量 x的增大,因变量 y 也会增大。

2. 当 n 是负整数时,幂函数是一个减函数。

这意味着随着自变量 x的增大,因变量 y 会减小。

3. 当 n 是零时,幂函数是一个常数函数。

这意味着自变量 x 的任何取值都不会改变因变量 y 的值。

二、幂函数的像像是函数的一个重要概念,可以理解为函数的值域。

对于幂函数来说,它的像取决于指数 n 的值。

1. 当 n 是正数且大于 1 时,幂函数的像是大于零的实数集合。

因为当 x 为负数时,y 的值会是复数,所以在这种情况下只考虑正数范围。

2. 当 n 是正数且小于 1 时,幂函数的像是大于零且小于等于 1 的实数集合。

因为当 x 为负数时,y 的值会是复数,所以在这种情况下只考虑正数范围。

3. 当 n 是负数且不是整数时,幂函数的像是小于零的实数集合。

因为当 x 为正数时,y 的值会是复数,所以在这种情况下只考虑负数范围。

4. 当 n 是零时,幂函数的像是一个实数,并且只有一个特定的值。

三、幂函数的图像特点根据幂函数的像以及性质,我们可以总结出幂函数的图像特点:1. 当 n 是正数且大于 1 时,幂函数的图像是一个上升的曲线,且在x 轴的正半轴上。

2. 当 n 是正数且小于 1 时,幂函数的图像是一个下降的曲线,且在x 轴的正半轴上。

3. 当 n 是负数且不是整数时,幂函数的图像是一个下降的曲线,且在 x 轴的负半轴上。

4. 当 n 是零时,幂函数的图像是一条水平的直线,且与 x 轴相交于一个特定点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数的图像与性质
(三)幂函数 1、幂函数的定义
形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数
注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。

例1.下列函数中不是幂函数的是( )
A .y x =
B .3y x =
C .2y x =
D .1
y x -=
例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数;
变式 已知幂函数2
223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数
y =_______.
2.幂函数的图像
幂函数y =x α的图象由于α的值不同而不同.
α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;
α<0时,图象不过原点,在第一象限的图象下降,反之也成立;
3、幂函数的性质
y=x
y=x 2 y=x 3
12
y x = y=x -1
定义域 R R R [0,+∞) {}|0x x R x ∈≠且
值域 R [0,+∞)
R
[0,+∞) {}|0y y R y ∈≠且
奇偶性 奇 偶 奇
非奇非偶 奇
单调性

x ∈[0,+∞)时,增;
x ∈(,0]-∞时,减
增 增
x ∈(0,+∞)时,减;
x ∈(-∞,0)时,减
定点
(1,1)
例3.比较大小:
(1)112
2
1.5,1.7 (2)33( 1.2),( 1.25)--(3)112
5.25,5.26,5.26---(4)30.530.5,3,log 0.5
4.幂函数的性质及其应用 幂函数y =x α有下列性质:
(1) 单调性:当α>0时,函数在(0,+∞)上单调递增;
当α<0时,函数在(0,+∞)上单调递减.
(2)奇偶性:幂函数中既有奇函数,又有偶函数,也有非奇非偶函数,可以用函数奇偶性的定义进行判断.
例4.已知幂函数2
23
m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于
原点对称,求m 的值.
例5.已知幂函数2()m y x m -=∈N 的图象与x y ,轴都无交点,且关于y 轴对称,求
m 的值,并画出它的图象.
变式:已知幂函数f(x)=x 322
--m m (m ∈Z )为偶函数,且在区间(0,+∞)上是单调减函数.(1)求函数f(x);(2)讨论F (x )=a

()(x xf b
x f -
的奇偶性.
5.规律方法
(1).幂函数y =x α(α=0,1)的图象
(2).幂函数(,,,a q q
y x a p q N p p
*==
∈为最简分式)的图象
6.性质:
(1)幂函数的图象都过点 ;任何幂函数都不过 象限; (2)当0a >时,幂函数在[0,)+∞上 ;当0a <时,幂函数在(0,)+∞上 ;
(3)当2,2a =-时,幂函数是 ;当1
1,1,3,3
a =-时,幂函数
是 .
例6右图为幂函数y x α=在第一象限的图像,则,,,a b c d 的大小关系是 ( )
()A a b c d >>> ()B b a d c >>> ()C a b d c >>>
()D a d c b >>>
例7 若点
在幂函数
的图象上,点
在幂函数
的图象上,定义
,试求函数
的最大值以及单调区间。

例8 若函数
在区间
上是递减函数,求实数的取值范围。

x
O
y a
y x =
b y x =
c
y x =
【巩固练习】
1.在函数220
3
1,3,,y y x y x x y x x
=
==-=中,幂函数的个数为 ( ) A .0 B .1 C .2 D .3
2、幂函数的图象都经过点( )
A .(1,1)
B .(0,1)
C .(0,0)
D .(1,0) 3、幂函数2
5
-=x
y 的定义域为( )
A .(0,+∞)
B .[0,+∞)
C .R
D .(-∞,0)U (0,+∞) 4.若幂函数()a f x x =在()0,+∞上是增函数,则 ( ) A .a >0
B .a <0
C .a =0
D .不能确定
5.若幂函数()1m f x x -=在(0,+∞)上是减函数,则 ( ) A .m >1 B .m <1
C .m =l
D .不能确定
6.若函数f (x )=x 3(x ∈R),则函数y =f (-x )在其定义域上是( )
A .单调递减的偶函数
B .单调递减的奇函数
C .单调递增的偶函数
D .单调递增的奇函数 7.已知幂函数f (x )=x α的部分对应值如下表:
x 1
12 f (x )
1
22
则不等式f (|x |)≤2的解集是( ) A .{x |-4≤x ≤4}
B .{x |0≤x ≤4}
C .{x |-2≤x ≤2}
D .{x |0<x ≤2} 8.如果幂函数y =(m 2-3m +3)
的图象不过原点,则m 的取值是( )
A .-1≤m ≤2
B .m =1或m =2
C .m =2
D .m =1
9、当x ∈(1,+∞)时,函数)y =a x 的图象恒在直线y =x 的下方,则a 的取值范围是 A 、a <1 B 、0<a <1 C 、a >0 D 、a <0
二、填空题: 11、若21)
1(-+a <2
1)
23(-
-a ,则a 的取值范围是____;
12.函数2
3-
=x
y 的定义域为___________.
(A ) (B ) (C ) (D ) (E ) (F ) 13.幂函数y =f (x )的图象经过点⎝

⎭⎪⎫-2,-18,则满足f (x )=27的
x 的值是________.
14.已知a =5-1
2
,函数f (x )=a x ,若实数m ,n 满足f (m )>f (n ),则m ,
n 的大小关系为________.
幂函数的性质与图像测试
一、填空题
1.若幂函数()y f x =的图像过点2,22⎛⎫
⎪ ⎪⎝⎭
,则函数()y f x =的解析式为
__________.
2.已知函数()()2
21
44m
m f x m m x --=--是幂函数,则实数m 的值为
__________.
3.幂函数2
23
n
n y x --=()n N ∈的图像与两坐标无交点且关于y 轴对称,
则n 的值等于_________.
4.设1112,1,,,,1,2,3232a ⎧⎫
∈---⎨⎬⎩⎭
,已知幂函数()f x x α=是偶函数,且在区间
()0,+∞上是减函数,则满足要求的α值的个数是__________.
5.已知函数()1
a x
f x x a -=
--的图像的对称中心是()3,1-,则函数()f x 的单调
递减区间是_________.
6.已知幂函数()y x R αα=∈的图像当01x <<时,在直线y x =的上方;当1x >时在直线y x =的下方,则α的取值范围是__________.
7.函数1y x =+12
y x =的图像向__________平移________个单位. 8.已知()()113
3
132x x -
-
+<-,则实数x 的取值范围是_________.
二、选择题
9.如图,M 、N 、P 、Q 分别为幂函数图像上的点,且他们的纵坐标相同,若四个幂函数为①3
y x -=;②2
y x -=;③23
y x -
=;④13
y x -
=,则M 、N 、
P 、Q 与四个函数序号的对应顺序只可能是( ). (A )①②③④ (B)②③④①
(C)②①③④
(D)③②①④
10.下列函数中,是奇函数且在()0,+∞上是增函数的是( ). (A)53
y x -= (B) 53
y x = (C)54y x =
(D)43
y x =
11.当()1,x ∈+∞时,下列函数的图像全在直线y x =下方且为偶函数的是( ). (A)12
y x =
(B) 4y x -= (C)4y x =
(D)1y x -=
12.设()y f x =和()y g x =是两个不同的幂函数,集合()(){}|M x f x g x ==,则集合M 中元素的个数是( ) (A)1或2或0 (B) 1或2或3 (C)1或2或3或4 (D)0或1或2或3
三、解答题
13.研究函数23
y x =的定义域、值域、奇偶性和单调性,并画出其大致图像.。

相关文档
最新文档