高中数学经典高考难题集锦解析版

合集下载

高中数学经典高考难题集锦(解析版)

高中数学经典高考难题集锦(解析版)

考点 :直 线与圆的位置关系;二阶矩阵;绝对值不等式的解法.
专题 :计 算题;压轴题;转化思想.
分析: ( 1)由矩阵的线性变换列出关于 x 和 y 的一元二次方程组,求出方程组的解集即可
得到点 A 的坐标;可设出矩阵 M 的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵
M
的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到

,于是 r2=2b2=2,
所求圆的方程是:

x+1

2
+

y+1

2=2,或(
x﹣
1)
2+(
y﹣
1)
2
=2

点评: 本 小题主要考查轨迹的思想, 考查综合运用知识建立曲线方程的能力, 是一道中档题.
4.( 2013?柯城区校级三模) 已知抛物线的顶点在坐标原点, 焦点在 y 轴上, 且过点 ( 2,1).
专题 :压 轴题;圆锥曲线的定义、性质与方程. 分析: ( Ⅰ) 设抛物线方程为 x 2=2py ,把点( 2, 1)代入运算求得
线的标准方程.
p 的值,即可求得抛物
6 / 22
( Ⅱ) 由直线与圆相切可得
.把直线方程代入抛物线方程
并整理,由 △ >0 求得 t 的范围.利用根与系数的关系及
,求得
M的
逆矩阵;
( 2)把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的
距离公式求出圆心到直线的距离 d 与半径 r 比较大小得到直线与圆的位置关系,即可
得到交点的个数;
( 3)分三种情况 x 大于等于 ,x 大于等于 0 小于 和 x 小于 0,分别化简绝对值后,

高中数学经典高考难题集锦

高中数学经典高考难题集锦

《高中数学经典高考难题集锦》一、集合问题1. 已知集合A={x|x^25x+6=0},求集合A的元素。

解答思路:我们需要解方程x^25x+6=0,找出满足条件的x的值。

然后,将这些值组成集合A。

2. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∩B。

解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。

然后,找出同时属于集合A和集合B的元素,即求出集合A∩B。

3. 已知集合A={x|x^25x+6=0},集合B={x|x^24x+3=0},求集合A∪B。

解答思路:我们需要解方程x^25x+6=0和x^24x+3=0,找出满足条件的x的值。

然后,找出属于集合A或集合B的元素,即求出集合A∪B。

二、函数问题1. 已知函数f(x)=x^25x+6,求函数f(x)的零点。

解答思路:函数的零点即函数图像与x轴的交点,也就是使函数值为0的x的值。

因此,我们需要解方程x^25x+6=0,找出满足条件的x的值,这些值即为函数f(x)的零点。

2. 已知函数f(x)=x^25x+6,求函数f(x)的单调区间。

解答思路:函数的单调性是指函数在其定义域内是否单调递增或单调递减。

我们可以通过求函数的一阶导数f'(x),然后判断f'(x)的符号来确定函数的单调性。

当f'(x)>0时,函数单调递增;当f'(x)<0时,函数单调递减。

3. 已知函数f(x)=x^25x+6,求函数f(x)的极值。

解答思路:函数的极值是指函数在其定义域内的最大值或最小值。

我们可以通过求函数的一阶导数f'(x)和二阶导数f''(x),然后判断f'(x)和f''(x)的符号来确定函数的极值。

当f'(x)=0且f''(x)>0时,函数在该点取得极小值;当f'(x)=0且f''(x)<0时,函数在该点取得极大值。

高中数学经典高考难题集锦(解析版)1

高中数学经典高考难题集锦(解析版)1

2021年10月18日姚杰的高中数学组卷一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.116.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.22.〔2007•四川〕设F1、F2分别是椭圆=1的左、右焦点.〔Ⅰ〕假设P是第一象限内该椭圆上的一点,且,求点P的作标;〔Ⅱ〕设过定点M〔0,﹣2〕的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角〔其中O为坐标原点〕,求直线l的斜率k的取值范围.23.〔2021•丰台区校级一模〕如图,△OFP的面积为m,且=1.〔I〕假设,求向量与的夹角θ的取值范围;〔II〕设,且.假设以O为中心,F为焦点的椭圆经过点P,当取得最小值时,求此椭圆的方程.24.设、为平面向量,假设存在不全为零的实数λ,μ使得λ+μ=0,那么称、线性相关,下面的命题中,、、均为平面M上的向量.①假设=2,那么、线性相关;②假设、为非零向量,且⊥,那么、线性相关;③假设、线性相关,、线性相关,那么、线性相关;④向量、线性相关的充要条件是、共线.上述命题中正确的选项是〔写出所有正确命题的编号〕25.〔2005•安徽〕椭圆的中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A、B两点,与=〔3,﹣1〕共线.〔Ⅰ〕求椭圆的离心率;〔Ⅱ〕设M为椭圆上任意一点,且,证明λ2+μ2为定值.26.〔2021•江苏模拟〕如图,D是△ABC的中点,,那么λ1+λ2=.27.〔2021•泗县校级模拟〕单位圆⊙O:x2+y2=1,A〔1,0〕,B是圆上的动点,∥,.〔1〕求点P的轨迹E的方程;〔2〕求过A作直线l被E截得的弦长的最小值.28.〔2021•西安校级模拟〕向量,动点M到定直线y=1的距离等于d,并且满足,其中O是坐标原点,k是参数.〔1〕求动点M的轨迹方程,并判断曲线类型;〔2〕当时,求的最大值和最小值;〔3〕如果动点M的轨迹是圆锥曲线,其离心率e满足,求实数k的取值范围.29.〔2021•上海〕在直角坐标平面xOy上的一列点A1〔1,a1〕,A2〔2,a2〕,…,A n〔n,a n〕,…,简记为{A n}、假设由构成的数列{b n}满足b n+1>b n,n=1,2,…,其中为方向与y轴正方向相同的单位向量,那么称{A n}为T点列,〔1〕判断,,是否为T点列,并说明理由;〔2〕假设{A n}为T点列,且点A2在点A1的右上方、任取其中连续三点A k、A k+1、A k+2,判断△A k A k+1A k+2的形状〔锐角三角形、直角三角形、钝角三角形〕,并予以证明;〔3〕假设{A n}为T点列,正整数1≤m<n<p<q满足m+q=n+p,求证:.30.〔2021•临川区校级一模〕设点F〔,0〕〔p为正常数〕,点M在x轴的负半轴上,点P 在y轴上,且,.〔Ⅰ〕当点P在y轴上运动时,求点N的轨迹C的方程;〔Ⅱ〕直线l过点F且与曲线C相交于不同两点A,B,分别过点A,B作直线l1:x=﹣的垂线,对应的垂足分别为A1,B1,求的值;〔Ⅲ〕在〔Ⅱ〕的条件下,记,,,λ=,求λ的值.2021年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题〔共17小题〕1.〔2021•浙江〕设△ABC,P0是边AB上一定点,满足,且对于边AB上任一点P,恒有那么〔〕A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC考点:平面向量数量积的运算.专题:平面向量及应用.分析:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.解答:解:设||=4,那么||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,那么由数量积的几何意义可得,=||•||=||2﹣〔a+1〕〕||,•=﹣a,于是•≥••恒成立,整理得||2﹣〔a+1〕||+a≥0恒成立,只需△=〔a+1〕2﹣4a=〔a﹣1〕2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC.应选:D.点评:此题主要考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力2.〔2021•广东〕对任意两个非零的平面向量和,定义○=,假设平面向量、满足||≥||>0,与的夹角,且○和○都在集合中,那么○=〔〕A.B.1 C.D.考点:平面向量数量积的运算.专题:空间向量及应用.分析:由题意可得•==,同理可得•==,故有n≥m 且m、n∈z.再由cos2θ=,与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕,由此求得n=3,m=1,从而得到•==的值.解答:解:由题意可得•====.同理可得•====.由于||≥||>0,∴n≥m 且m、n∈z.∴cos2θ=.再由与的夹角θ∈〔0,〕,可得cos2θ∈〔,1〕,即∈〔,1〕.故有n=3,m=1,∴•==,应选C.点评:此题主要考查两个向量的数量积的定义,得到n≥m 且m、n∈z,且∈〔,1〕,是解题的关键,属于中档题.3.〔2007•天津〕设两个向量和,其中λ,m,α为实数.假设,那么的取值范围是〔〕A.[﹣6,1]B.[4,8]C.〔﹣∞,1]D.[﹣1,6]考点:相等向量与相反向量;平面向量共线〔平行〕的坐标表示.专题:压轴题.分析:利用,得到λ,m的关系,然后用三角函数的有界性求解的比值,为了简化,把换元.解答:解:由,,,可得,设代入方程组可得消去m化简得,再化简得再令代入上式得〔sinα﹣1〕2+〔16t2+18t+2〕=0可得﹣〔16t2+18t+2〕∈[0,4]解不等式得因而解得﹣6≤k≤1.应选A.点评:此题难度较大,题目涉及到向量、三角函数的有界性、还用到了换元和解不等式等知识,表达了化归的思想方法.4.〔2021•广东〕对任意两个非零的平面向量和,定义°=.假设两个非零的平面向量,满足与的夹角,且•和•都在集合中,那么•=〔〕A.B.C.1 D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:先求出•=,n∈N,•=,m∈N,再由cos2θ=∈〔0,〕,故m=n=1,从而求得•=的值.解答:解:∵°•=====,n∈N.同理可得°•====,m∈N.再由与的夹角,可得cosθ∈〔0,〕,∴cos2θ=∈〔0,〕,故m=n=1,∴•==,应选:D.点评:此题主要考查两个向量的数量积的定义,求得m=n=1,是解题的关键,属于中档题.5.〔2021•山东〕设A1,A2,A3,A4是平面直角坐标系中两两不同的四点,假设〔λ∈R〕,〔μ∈R〕,且,那么称A3,A4调和分割A1,A2,点C〔c,0〕,D〔d,O〕〔c,d∈R〕调和分割点A〔0,0〕,B〔1,0〕,那么下面说法正确的选项是〔〕A.C可能是线段AB的中点B.D可能是线段AB的中点C.C,D可能同时在线段AB上D.C,D不可能同时在线段AB的延长线上考点:平面向量坐标表示的应用.专题:平面向量及应用.分析:由题意可得到c和d的关系,,只需结合答案考查方程的解的问题即可.A和B中方程无解,C中由c和d的范围可推出C和D点重合,由排除法选择答案即可.解答:解:由可得〔c,0〕=λ〔1,0〕,〔d,0〕=μ〔1,0〕,所以λ=c,μ=d,代入得〔1〕假设C是线段AB的中点,那么c=,代入〔1〕d不存在,故C不可能是线段AB 的中点,A错误;同理B错误;假设C,D同时在线段AB上,那么0≤c≤1,0≤d≤1,代入〔1〕得c=d=1,此时C和D点重合,与条件矛盾,故C错误.应选D点评:此题为新定义问题,考查信息的处理能力.正确理解新定义的含义是解决此题的关键.6.〔2021•福建〕设,,为同一平面内具有相同起点的任意三个非零向量,且满足与不共线,⊥,||=||,那么|•|的值一定等于〔〕A.以,为邻边的平行四边形的面积B.以,为两边的三角形面积C.,为两边的三角形面积D.以,为邻边的平行四边形的面积考点:平面向量数量积的运算.专题:计算题;压轴题.分析:利用向量的数量积公式表示出,有得到的夹角与夹角的关系,利用三角函数的诱导公式和条件表示成的模及夹角形式,利用平行四边形的面积公式得到选项.解答:解:假设与的夹角为θ,|•|=||•||•|cos<,>|=||•||•|cos〔90°±θ〕|=||•||•sinθ,即为以,为邻边的平行四边形的面积.应选A.点评:此题考查向量的数量积公式、三角函数的诱导公式、平行四边形的面积公式.7.〔2021•浙江〕,是平面内两个互相垂直的单位向量,假设向量满足〔﹣〕•〔﹣〕=0,那么||的最大值是〔〕A.1 B.2 C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:压轴题.分析:本小题主要考查向量的数量积及向量模的相关运算问题,所给出的两个向量是互相垂直的单位向量,这给运算带来很大方便,利用数量积为零的条件时要移项变化.解答:解:.∵,∵,∴,∵cosθ∈[﹣1,1],∴的最大值是.应选C.点评:启发学生在理解数量积的运算特点的根底上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质,此题也可以利用数形结合,,对应的点A,B在圆x2+y2=1上,对应的点C在圆x2+y2=2上即可.8.〔2007•山东〕在直角△ABC中,CD是斜边AB上的高,那么以下等式不成立的是〔〕A.B.C.D.考点:平面向量数量积的性质及其运算律.专题:压轴题.分析:根据,∴A是正确的,同理B也正确,再由D答案可变形为,通过等积变换判断为正确,从而得到答案.解答:解:∵,∴A是正确的,同理B也正确,对于D答案可变形为,通过等积变换判断为正确应选C.点评:此题主要考查平面向量的数量积的定义.要会巧妙变形和等积变换.9.〔2007•湖北〕连掷两次骰子得到的点数分别为m和n,记向量与向量的夹角为θ,那么的概率是〔〕A.B.C.D.考点:数量积表示两个向量的夹角;等可能事件的概率.专题:计算题;压轴题.分析:由题意知此题是一个古典概型,根据分步计数原理可以得到试验发生包含的所有事件数,满足条件的事件数要通过列举得到,题目大局部内容考查的是向量的问题,这是一个综合题.解答:解:由题意知此题是一个古典概型,试验发生包含的所有事件数6×6,∵m>0,n>0,∴=〔m,n〕与=〔1,﹣1〕不可能同向.∴夹角θ≠0.∵θ∈〔0,】•≥0,∴m﹣n≥0,即m≥n.当m=6时,n=6,5,4,3,2,1;当m=5时,n=5,4,3,2,1;当m=4时,n=4,3,2,1;当m=3时,n=3,2,1;当m=2时,n=2,1;当m=1时,n=1.∴满足条件的事件数6+5+4+3+2+1∴概率P==.应选C.点评:向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份〞能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点.10.〔2006•福建〕||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n〔m、n∈R〕,那么等于〔〕A.B.3 C.D.考点:向量的共线定理;向量的模.专题:计算题;压轴题.分析:将向量沿与方向利用平行四边形原那么进行分解,构造出三角形,由题目,可得三角形中三边长及三个角,然后利用正弦定理解三角形即可得到答案.此题如果没有点C在∠AOB内的限制,应该有两种情况,即也可能为OC在OA顺时针方向30°角的位置,请大家注意分类讨论,防止出错.解答:解:法一:如下图:=+,设=x,那么=.=∴==3.法二:如下图,建立直角坐标系.那么=〔1,0〕,=〔0,〕,∴=m+n=〔m,n〕,∴tan30°==,∴=3.应选B点评:对一个向量根据平面向量根本定理进行分解,关键是要根据平行四边形法那么,找出向量在基底两个向量方向上的分量,再根据条件构造三角形,解三角形即可得到分解结果.11.〔2005•湖南〕P是△ABC所在平面上一点,假设,那么P是△ABC的〔〕A.外心 B.内心 C.重心 D.垂心考点:平面向量数量积的运算;数量积判断两个平面向量的垂直关系.专题:计算题;压轴题.分析:此题考查的知识点是平面向量的数量积运算,由,我们任取其中两个相等的量,如,根据平面向量乘法分配律,及减法法那么,我们可得,同理我们也可以得到PA⊥BC,PC⊥AB,由三角形垂心的性质,我们不难得到结论.解答:解:∵,那么由得:,∴PB⊥AC同理PA⊥BC,PC⊥AB,即P是垂心应选D点评:重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍.该点叫做三角形的重心.外心定理:三角形的三边的垂直平分线交于一点.该点叫做三角形的外心.垂心定理:三角形的三条高交于一点.该点叫做三角形的垂心.内心定理:三角形的三内角平分线交于一点.该点叫做三角形的内心.12.〔2005•江西〕在△OAB中,O为坐标原点,,那么当△OAB的面积达最大值时,θ=〔〕A.B.C.D.考点:数量积表示两个向量的夹角;向量在几何中的应用.专题:压轴题.分析:在边长为1的正方形中,减去要求的三角形以外的三角形的面积,把要求的结果表示为有三角函数的代数式,后面题目变为求三角函数的最值问题,逆用二倍角公式得到结果.解答:解:在直角坐标系里△OAB的面积=1﹣==∵θ∈〔0,],∴2θ∈〔0,π]∴当2θ=π时取得最大,即θ=应选D.点评:此题考查简单的图形面积和三角函数的最值问题,用三角函数表示的式子,因此代入后,还要进行简单的三角函数变换,二倍角公式逆用.13.〔2005•安徽〕点O是三角形ABC所在平面内的一点,满足,那么点O是△ABC的〔〕A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点考点:平面向量数量积的运算;向量在几何中的应用.专题:计算题;压轴题.分析:由得到,从而所以OB⊥AC,同理得到OA⊥BC,所以点O是△ABC的三条高的交点解答:解;∵∴;∴;∴OB⊥AC,同理由得到OA⊥BC∴点O是△ABC的三条高的交点应选D点评:此题考查向量的数量积及向量的运算,对学生有一定的能力要求14.平面上一点P在原坐标系中的坐标为〔0,m〕〔m≠0〕,而在平移后所得到的新坐标系中的坐标为〔m,0〕,那么新坐标系的原点O′在原坐标系中的坐标为〔A 〕A.〔﹣m,m〕B.〔m,﹣m〕C.〔m,m〕 D.〔﹣m,﹣m〕考点:向量在几何中的应用.专题:压轴题;阅读型.分析:利用平移公式求出平移向量,再利用平移公式求出新坐标系的原点O′在原坐标系中的坐标.解答:解:设按向量,那么新坐标系的原点O′在原坐标系中的坐标为〔k,l〕那么据平移公式故∴解得即新坐标系的原点O′在原坐标系中的坐标为〔﹣m,m〕应选项为A点评:此题考查平移公式的应用.15.〔2021•桃城区校级模拟〕设向量,满足,,<>=60°,那么||的最大值等于〔〕A.2 B.C.D.1考点:平面向量数量积的坐标表示、模、夹角.专题:计算题;压轴题.分析:利用向量的数量积求出的夹角;利用向量的运算法那么作出图;结合图,判断出四点共圆;利用正弦定理求出外接圆的直径,求出最大值.解答:解:∵,∴的夹角为120°,设,那么;=如下图那么∠AOB=120°;∠ACB=60°∴∠AOB+∠ACB=180°∴A,O,B,C四点共圆∵∴∴由三角形的正弦定理得外接圆的直径2R=当OC为直径时,模最大,最大为2应选A点评:此题考查向量的数量积公式、向量的运算法那么、四点共圆的判断定理、三角形的正弦定理.16.〔2021•安徽〕在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||=•=2,那么点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是〔〕A.B. C. D.考点:平面向量的根本定理及其意义;二元一次不等式〔组〕与平面区域;向量的模.专题:压轴题;平面向量及应用.分析:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P点坐标,由平面向量根本定理,把P的坐标用A,B的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P所表示区域的面积.解答:解:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形.不妨设A〔〕,B〔〕.再设P〔x,y〕.由,得:.所以,解得①.由|λ|+|μ|≤1.所以①等价于或或或.可行域如图中矩形ABCD及其内部区域,那么区域面积为.应选D.点评:此题考查了平面向量的根本定理及其意义,考查了二元一次不等式〔组〕所表示的平面区域,考查了数学转化思想方法,解答此题的关键在于读懂题意,属中档题.17.〔2021•上海〕在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、.假设m、M分别为〔++〕•〔++〕的最小值、最大值,其中{i,j,k}⊆{1,2,3,4,5},{r,s,t}⊆{1,2,3,4,5},那么m、M满足〔〕A.m=0,M>0 B.m<0,M>0 C.m<0,M=0 D.m<0,M<0考点:平面向量数量积的运算;进行简单的合情推理.专题:压轴题;平面向量及应用.分析:利用向量的数量积公式,可知只有,其余数量积均小于等于0,从而可结论.解答:解:由题意,以A为起点,其余顶点为终点的向量分别为、、、、;以D为起点,其余顶点为终点的向量分别为、、、、,∴利用向量的数量积公式,可知只有,其余数量积均小于等于0,∵m、M分别为〔++〕•〔++〕的最小值、最大值,∴m<0,M<0应选D.点评:此题考查向量的数量积运算,考查学生分析解决问题的能力,分析出向量数量积的正负是关键.二.解答题〔共13小题〕18.〔2005•上海〕在直角坐标平面中,点P1〔1,2〕,P2〔2,22〕,P3〔3,23〕,…,P n〔n,2n〕,其中n是正整数.对平面上任一点A0,记A1为A0关于点P1的对称点,A2为A1关于点P2的对称点,…,A n为A n﹣1关于点P n的对称点.〔1〕求向量的坐标;〔2〕当点A0在曲线C上移动时,点A2的轨迹是函数y=f〔x〕的图象,其中f〔x〕是以3位周期的周期函数,且当x∈〔0,3]时,f〔x〕=lgx.求以曲线C为图象的函数在〔1,4]上的解析式;〔3〕对任意偶数n,用n表示向量的坐标.考点:平面向量的综合题.专题:综合题;压轴题;平面向量及应用;圆锥曲线的定义、性质与方程.分析:〔1〕利用中点坐标公式求出点A1,A2的坐标,再利用向量的坐标公式求出的坐标.〔2〕由判断出y=f〔x〕的图象是由C按平移得到的;得到C是由f〔x〕左移两个单位,下移4个单位得到,利用图象变换求出C的解析式.〔3〕利用向量的运算法那么将有以P n为起点终点的向量表示,利用向量的坐标公式求出各向量的坐标,利用等比数列的前n项和公式求出向量的坐标.解答:解:〔1〕设点A0〔x,y〕,A1为A0关于点P1的对称点,A1的坐标为〔2﹣x,4﹣y〕,A1为P2关于点的对称点A2的坐标为〔2+x,4+y〕,∴={2,4}.〔2〕∵={2,4},∴f〔x〕的图象由曲线C向右平移2个单位,再向上平移4个单位得到.因此,设曲线C是函数y=g〔x〕的图象,其中g〔x〕是以3为周期的周期函数,且当x∈〔﹣2,1]时,g〔x〕=lg〔x+2〕﹣4.于是,当x∈〔1,4]时,g〔x〕=lg〔x﹣1〕﹣4.〔3〕=++…+,由于=,得=2〔++…+〕=2〔{1,2}+{1,23}+…+{1,2n﹣1}〕=2{,}={n,}点评:此题考查中点坐标公式、向量的坐标公式、图象的平移变换、等比数列的前n项和公式.19.〔2021•上海〕定义向量=〔a,b〕的“相伴函数〞为f〔x〕=asinx+bcosx,函数f〔x〕=asinx+bcosx的“相伴向量〞为=〔a,b〕〔其中O为坐标原点〕.记平面内所有向量的“相伴函数〞构成的集合为S.〔1〕设g〔x〕=3sin〔x+〕+4sinx,求证:g〔x〕∈S;〔2〕h〔x〕=cos〔x+α〕+2cosx,且h〔x〕∈S,求其“相伴向量〞的模;〔3〕M〔a,b〕〔b≠0〕为圆C:〔x﹣2〕2+y2=1上一点,向量的“相伴函数〞f〔x〕在x=x0处取得最大值.当点M在圆C上运动时,求tan2x0的取值范围.考点:平面向量的综合题;复合三角函数的单调性.专题:计算题;压轴题;新定义.分析:〔1〕先利用诱导公式对其化简,再结合定义即可得到证明;〔2〕先根据定义求出其相伴向量,再代入模长计算公式即可;〔3〕先根据定义得到函数f〔x〕取得最大值时对应的自变量x0;再结合几何意义求出的范围,最后利用二倍角的正切公式即可得到结论.解答:解:〔1〕g〔x〕=3sin〔x+〕+4sinx=4sinx+3cosx,其‘相伴向量’=〔4,3〕,g〔x〕∈S.〔2〕h〔x〕=cos〔x+α〕+2cosx=〔cosxcosα﹣sinxsinα〕+2cosx=﹣sinαsinx+〔cosα+2〕cosx∴函数h〔x〕的‘相伴向量’=〔﹣sinα,cosα+2〕.那么||==.〔3〕的‘相伴函数’f〔x〕=asinx+bcosx=sin〔x+φ〕,其中cosφ=,sinφ=.当x+φ=2kπ+,k∈Z时,f〔x〕取到最大值,故x0=2kπ+﹣φ,k∈Z.∴tanx0=tan〔2kπ+﹣φ〕=cotφ=,tan2x0===.为直线OM的斜率,由几何意义知:∈[﹣,0〕∪〔0,].令m=,那么tan2x0=,m∈[﹣,0〕∪〔0,}.当﹣≤m<0时,函数tan2x0=单调递减,∴0<tan2x0≤;当0<m≤时,函数tan2x0=单调递减,∴﹣≤tan2x0<0.综上所述,tan2x0∈[﹣,0〕∪〔0,].点评:本体主要在新定义下考查平面向量的根本运算性质以及三角函数的有关知识.是对根底知识的综合考查,需要有比拟扎实的根本功.20.〔2021•江苏〕如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC 的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ,〔1〕当θ=90°时,求AM的长;〔2〕当时,求CM的长.考点:向量在几何中的应用.专题:立体几何.分析:〔1〕建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,通过,求出平面DMN的法向量为,,求出平面A1DN 的法向量为,推出〔1〕利用θ=90°求出M的坐标,然后求出AM 的长.〔2〕利用cos=以及,求出CM 的长.解答:解:建立如下图的空间直角坐标系,D﹣xyz,设CM=t〔0≤t≤2〕,那么各点的坐标为A〔1,0,0〕,A1〔1,0,2〕,N〔,1,0〕,M〔0,1,t〕;所以=〔,1,0〕.=〔1,0,2〕,=〔0,1,t〕设平面DMN的法向量为=〔x1,y1,z1〕,那么,,即x1+2y1=0,y1+tz1=0,令z1=1,那么y1=﹣t,x1=2t所以=〔2t,﹣t,1〕,设平面A1DN的法向量为=〔x2,y2,z2〕,那么,,即x2+2z2=0,x2+2y2=0,令z2=1那么y2=1,x2=﹣2所以=〔﹣2,1,1〕,〔1〕因为θ=90°,所以解得t=从而M〔0,1,〕,所以AM=〔2〕因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和〔1〕的结论,可知t=,从而CM的长为.点评:此题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.21.〔2021•山东〕设m∈R,在平面直角坐标系中,向量a=〔mx,y+1〕,向量b=〔x,y﹣1〕,a⊥b,动点M〔x,y〕的轨迹为E.〔Ⅰ〕求轨迹E的方程,并说明该方程所表示曲线的形状;〔Ⅱ〕m=.证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且OA⊥OB〔O为坐标原点〕,并求该圆的方程;〔Ⅲ〕m=.设直线l与圆C:x2+y2=R2〔1<R<2〕相切于A1,且l与轨迹E只有一个公共点B1.当R为何值时,|A1B1|取得最大值?并求最大值.考点:平面向量数量积的运算;圆的标准方程;轨迹方程;直线和圆的方程的应用.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:〔1〕由a⊥b,所以a•b=0,代入坐标化简整理即得轨迹E的方程mx2+y2=1.此为二元二次曲线,可分m=0、m=1、m>0且m≠1和m<0四种情况讨论;〔2〕当m=时,轨迹E的方程为=1,表示椭圆,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,由直线和圆相切可得k和t的关系,由OA⊥OB,所以x1x2+y1y1=0,只需联立直线和圆的方程,消元,维达定理,又可以得到k和t的关系,这样就可解出r.当切线斜率不存在时,代入检验即可.〔3〕因为l与圆C相切,故△OA1B1为直角△,故|A1B1|2=|OB1|2﹣|OA1|2,只需求出OB1和OA1的长度即可,直线l与圆C相切,且与椭圆相切找出关系,将|A1B1|表示为R的函数,转化为函数求最值.解答:解:〔Ⅰ〕因为a⊥b,所以a•b=0,即〔mx,y+1〕•〔x,y﹣1〕=0,故mx2+y2﹣1=0,即mx2+y2=1.当m=0时,该方程表示两条直线;当m=1时,该方程表示圆;当m>0且m≠1时,该方程表示椭圆;当m<0时,该方程表示双曲线.〔Ⅱ〕当时,轨迹E的方程为,设圆的方程为x2+y2=r2〔0<r<1〕,当切线斜率存在时,可设圆的任一切线方程为y=kx+t,A〔x1,y1〕,B〔x2,y2〕,所以,即t2=r2〔1+k2〕.①因为OA⊥OB,所以x1x2+y1y1=0,即x1x2+〔kx1+t〕〔kx2+t〕=0,整理得〔1+k2〕x1x2+kt〔x1+x2〕+t2=0.②由方程组消去y得〔1+4k2〕x2+8ktx+4t2﹣4=0.③由韦达定理代入②式并整理得〔1+k2〕,即5t2=4+4k2.结合①式有5r2=4,r=,当切线斜率不存在时,x2+y2=也满足题意,故所求圆的方程为x2+y2=.〔Ⅲ〕显然,直线l的斜率存在,设l的方程y=k1x+t1,B1〔x3,y3〕轨迹E的方程为.由直线l与圆相切得t12=R2〔1+k12〕,且对应③式有△=〔8k1t1〕2﹣4〔1+4k12〕〔4t12﹣4〕=0,即t12=1+4k12,由方程组,解得当l与轨迹E只有一个公共点时,对应的方程③应有两个相等的.由韦达定理x32===,又B1在椭圆上,所以,因为l与圆C相切,所以|A1B1|2=|OB1|2﹣|OA1|2=x32+y32﹣R2===≤,其中,等号成立的条件,。

高考数学数列求和错位相减裂项相消(解析版)全

高考数学数列求和错位相减裂项相消(解析版)全

数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。

高中数学经典高考难题集锦(解析版)

高中数学经典高考难题集锦(解析版)

2015年10月18日姚杰的高中数学组卷一.选择题(共11小题)1.(2014•湖南)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x12.(2005•天津)若函数f(x)=log a(x3﹣ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是()A.B.C.D.3.(2009•上海)函数的反函数图象是()A.B.C.D.4.(2008•天津)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()A.{a|1<a≤2}B.{a|a≥2} C.{a|2≤a≤3}D.{2,3}5.(2005•山东)0<a<1,下列不等式一定成立的是()A.|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|>2;B.|log(1+a)(1﹣a)|<|log(1﹣a)(1+a)|;C.|log(1+a)(1﹣a)+log(1﹣a)(1+a)|<|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|;D.|log(1+a)(1﹣a)﹣log(1﹣a)(1+a)|>|log(1+a)(1﹣a)|﹣|log(1﹣a)(1+a)|6.(2005•天津)设f﹣1(x)是函数f(x)=(a x﹣a﹣x)(a>1)的反函数,则使f﹣1(x)>1成立的x的取值范围为()A.(,+∞)B.(﹣∞,)C.(,a)D.[a,+∞)7.(2004•天津)函数(﹣1≤x<0)的反函数是()A.B.C.D.8.(2004•江苏)设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f (x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3 B.C.D.9.(2006•天津)已知函数y=f(x)的图象与函数y=a x(a>0且a≠1)的图象关于直线y=x 对称,记g(x)=f(x)[f(x)+f(2)﹣1].若y=g(x)在区间上是增函数,则实数a的取值范围是()A.[2,+∞)B.(0,1)∪(1,2)C.D.10.(2011•湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=()A.5太贝克B.75In2太贝克C.150In2太贝克D.150太贝克11.(2014•湖南)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.B.C. D.﹣1二.填空题(共12小题)12.(2013•北京)函数的值域为.13.(2011•湖北)里氏震级M的计算公式为:M=lgA﹣lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A0为0.001,则此次地震的震级为级;9级地震的最大的振幅是5级地震最大振幅的倍.14.(2007•上海)函数的反函数是.15.(2006•江苏)不等式的解集为.16.(2005•北京)设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③;④.其中正确的命题序号是.17.(2004•广东)函数的反函数f﹣1(x)= .18.(2011秋•岳阳楼区校级期末)已知0<a<1,0<b<1,如果<1,那么x的取值范围为.19.(2005•天津)设,则的定义域为.20.(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为.21.(2002•上海)已知函数y=f(x)(定义域为D,值域为A)有反函数y=f﹣1(x),则方程f(x)=0有解x=a,且f(x)>x(x∈D)的充要条件是y=f﹣1(x)满足.22.(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0= .23.(2004•湖南)若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点,则a的取值范围是.三.解答题(共7小题)24.(2014秋•沙河口区校级期中)21、设的大小,并证明你的结论.25.解不等式26.(2006•重庆)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.27.如果正实数a,b满足a b=b a.且a<1,证明a=b.28.(2011•上海模拟)已知n为自然数,实数a>1,解关于x的不等式.29.(2010•荔湾区校级模拟)f(x)=lg,其中a是实数,n是任意自然数且n≥2.(Ⅰ)如果f(x)当x∈(﹣∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.30.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题(共11小题)1.(2014•湖南)若0<x1<x2<1,则()A.﹣>lnx2﹣lnx1B.﹣<lnx2﹣lnx1C.x2>x1D.x2<x1,由导数判断其在(.2.(2005•天津)若函数f(x)=log a(x3﹣ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是()A.B.C.D.(﹣(解答:解:设g(x)=x3﹣ax,g(x)>0,得x∈(﹣,0)∪(,+∞),g′(x)=3x2﹣a,x∈(﹣,0)时,g(x)递减,x∈(﹣,﹣)或x∈(,+∞)时,g(x)递增.∴当a>1时,减区间为(﹣,0),不合题意,当0<a<1时,(﹣,0)为增区间.∴﹣≥﹣.∴a∈[,1)故选B.3.(2009•上海)函数的反函数图象是()A.B.C.D.先画出条件中函数式的图象,如图,的反函数图象是:4.(2008•天津)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()解:易得,5.(2005•山东)0<a<1,下列不等式一定成立的是()A.|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|>2;B.|log(1+a)(1﹣a)|<|log(1﹣a)(1+a)|;C.|log(1+a)(1﹣a)+log(1﹣a)(1+a)|<|log(1+a)(1﹣a)|+|log(1﹣a)(1+a)|;,<=>6.(2005•天津)设f﹣1(x)是函数f(x)=(a x﹣a﹣x)(a>1)的反函数,则使f﹣1(x)>1成立的x的取值范围为()A.(,+∞)B.(﹣∞,)C.(,a)D.[a,+∞)(y=,y+x+x+,∴x+由此解得:7.(2004•天津)函数(﹣1≤x<0)的反函数是()A.B.C.D.,根据解:函数,可得,∴所以函数(﹣1≤x<)的反函数是:8.(2004•江苏)设k>1,f(x)=k(x﹣1)(x∈R).在平面直角坐标系xOy中,函数y=f (x)的图象与x轴交于A点,它的反函数y=f﹣1(x)的图象与y轴交于B点,并且这两个函数的图象交于P点.已知四边形OAPB的面积是3,则k等于()A.3 B.C.D.AB×OP,求得AB×OP=×.9.(2006•天津)已知函数y=f(x)的图象与函数y=a x(a>0且a≠1)的图象关于直线y=x 对称,记g(x)=f(x)[f(x)+f(2)﹣1].若y=g(x)在区间上是增函数,则实数a的取值范围是()A.[2,+∞)B.(0,1)∪(1,2)C.D.)在区间,要求对称轴)在区间,要求对称轴,,10.(2011•湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M0,其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是﹣10In2(太贝克/年),则M(60)=(),0××11.(2014•湖南)某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.B.C. D.﹣11+x=﹣二.填空题(共12小题)12.(2013•北京)函数的值域为(﹣∞,2).;所以函数13.(2011•湖北)里氏震级M的计算公式为:M=lgA﹣lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅A0为0.001,则此次地震的震级为 6 级;9级地震的最大的振幅是5级地震最大振幅的10000 倍..14.(2007•上海)函数的反函数是.,y≥1,y=((故答案为:15.(2006•江苏)不等式的解集为.由不等式<故答案:16.(2005•北京)设函数f(x)=2x,对于任意的x1,x2(x1≠x2),有下列命题①f(x1+x2)=f(x1)•f(x2);②f(x1•x2)=f(x1)+f(x2);③;④.其中正确的命题序号是①③④.=+,所以对于②不成立,,则,则17.(2004•广东)函数的反函数f﹣1(x)= e2x+2e x (x∈R).求原函数的反函数,即从原函数式18.(2011秋•岳阳楼区校级期末)已知0<a<1,0<b<1,如果<1,那么x的取值范围为(3,4).,如果19.(2005•天津)设,则的定义域为(﹣4,﹣1)∪(1,4).有意义建立方程组,解答解得要确保两个式子都要有意义,则20.(2008•天津)设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=c,这时a的取值的集合为{2} .=c21.(2002•上海)已知函数y=f(x)(定义域为D,值域为A)有反函数y=f﹣1(x),则方程f(x)=0有解x=a,且f(x)>x(x∈D)的充要条件是y=f﹣1(x)满足f﹣﹣1(0)=a,且f﹣﹣1(x)<x(x∈A)/y=f﹣﹣1(x)的图象在直线y=x的下方,且与y轴的交点为(0,a)….22.(2013•上海)对区间I上有定义的函数g(x),记g(I)={y|y=g(x),x∈I}.已知定义域为[0,3]的函数y=f(x)有反函数y=f﹣1(x),且f﹣1([0,1))=[1,2),f﹣1((2,4])=[0,1).若方程f(x)﹣x=0有解x0,则x0= 2 .23.(2004•湖南)若直线y=2a与函数y=|a x﹣1|(a>0且a≠1)的图象有两个公共点,则a的取值范围是0<a<.<.<三.解答题(共7小题)24.(2014秋•沙河口区校级期中)21、设的大小,并证明你的结论.与的大小,再由对数函数的单调性可得到答案.时,由基本不等式可得时,是单调减函数,∴>即25.解不等式可以转化为故原不等式可转化为不等式组.解:原不等式等价于时,上述不等式组变成时,上述不等式组变成所以原不等式解集为26.(2006•重庆)已知定义域为R的函数是奇函数.(Ⅰ)求a,b的值;(Ⅱ)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求k的取值范围.)知时,是奇函数.(Ⅱ)由(Ⅰ)知从而判别式<﹣27.如果正实数a,b满足a b=b a.且a<1,证明a=b.,考虑函数,它的导数是.然后根据,从而考虑函数,即,即,但因,而,这也与矛盾,,28.(2011•上海模拟)已知n为自然数,实数a>1,解关于x的不等式.+12++n故原不等式可化为log>>{x|<,{x|{x|29.(2010•荔湾区校级模拟)f(x)=lg,其中a是实数,n是任意自然数且n≥2.(Ⅰ)如果f(x)当x∈(﹣∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.,等价于>﹣30.(2010•四川)设,a>0且a≠1),g(x)是f(x)的反函数.(Ⅰ)设关于x的方程求在区间[2,6]上有实数解,求t的取值范围;(Ⅱ)当a=e,e为自然对数的底数)时,证明:;(Ⅲ)当0<a≤时,试比较||与4的大小,并说明理由.,|==,)>(,则≤2<,)≤1+1+﹣<|。

高考数学必考难题试题答案

高考数学必考难题试题答案

高考数学必考难题试题答案一、选择题1. 若函数f(x) = ax^2 + bx + c在x=1和x=-1处取得相同的值,且a<0,那么a、b、c之间的关系是()。

A. a = -b + cB. a + b + c = 0C. b = -2a - cD. 2a + b + c = 0答案:C解析:由题意可知,f(1) = f(-1),即a + b + c = a - b + c,化简得2b = 0,所以b = 0。

又因为a < 0,所以c = -a。

代入b = 0,得c = -a,进一步得出b = -2a - c。

2. 已知数列{an}满足a1 = 1,an = (1/2)^(n-1) * (an-1 + 1),若bn = an - 1,则求证:数列{bn}是等比数列。

答案:证明如下:由题意,an = (1/2)^(n-1) * (an-1 + 1),可得:bn = an - 1 = (1/2)^(n-1) * (an-1 + 1) - 1将n-1代入,得:bn-1 = (1/2)^(n-2) * (an-2 + 1) - 1将两个式子相除,得:bn / bn-1 = [(1/2)^(n-1) * (an-1 + 1) - 1] / [(1/2)^(n-2) * (an-2 + 1) - 1] = 1/2所以bn / bn-1 = 1/2为常数,故数列{bn}是首项为b1 = a2 - 1 = (1/2) * (a1 + 1) - 1 = 1/2,公比q = 1/2的等比数列。

二、填空题1. 已知圆的方程为(x-2)^2 + (y-3)^2 = 16,点P(5,0)到圆心的距离为______。

答案:√13解析:圆心坐标为(2,3),点P(5,0),根据两点间距离公式,有:d = √[(5-2)^2 + (0-3)^2] = √[3^2 + (-3)^2] = √(9 + 9) =√18 = √13三、解答题1. 已知函数f(x) = x^3 - 3x^2 - 9x + 5,在x∈[-2,3]上的最大值为7,求函数在该区间上的最小值。

高中数学经典高考难题集锦(解析版) (3)

高中数学经典高考难题集锦(解析版) (3)

2015年10月18日姚杰的高中数学组卷一.选择题(共16小题)1.(2014•上海二模)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()A.1 B.C.2 D.32.(2010•四川)半径为R的球O的直径AB垂直于平面a,垂足为B,△BCD是平面a内边长为R的正三角形,线段AC、AD分别与球面交于点M、N,那么M、N两点间的球面距离是()A.B.C.D.3.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P ﹣EFQ的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关4.(2009•宁夏)一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()A.48+12 B.48+24 C.36+12 D.36+245.(2003•天津)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()A.3πB.4πC.3D.6π6.(2013秋•禄劝县校级期中)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.27.(2010•安徽模拟)如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=()A.10 B.15 C.20 D.258.(2009•辽宁)正六棱锥P﹣ABCDEF中,G为PB的中点,则三棱锥D﹣GAC与三棱锥P﹣GAC体积之比为()A.1:1 B.1:2 C.2:1 D.3:29.(2009•湖北)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2CC.成反比,比例系数为C D.成反比,比例系数为2C10.(2007•安徽)把边长为的正方形ABCD沿对角线AC折成直二面角,折成直二面角后,在A,B,C,D四点所在的球面上,B与D两点之间的球面距离为()A.B.πC.D.11.(2006•浙江)如图,O是半径为l的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧AB与AC的中点,则点E、F在该球面上的球面距离是()A.B.C.D.12.(2006•江苏)两相同的正四棱锥组成左图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有()A.1个B.2个C.3个D.无穷多个13.(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()A.18对B.24对C.30对D.36对14.(2010•安徽)一个几何体的三视图如图,该几何体的表面积是()A.372 B.360 C.292 D.28015.(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,)D.(0,)16.(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是()A.3 B.2 C.1 D.0二.填空题(共4小题)17.(2010•江西)如图,在三棱锥O﹣ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为.18.(2011•河北)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.19.(2012•贾汪区校级模拟)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为.20.(2004•黑龙江)下面关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是(写出所有真命题的编号).三.解答题(共10小题)21.(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.22.(2009•山东)两城市A和B相距20km,现计划在两城市外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.23.(2007•广东)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.24.(2005•上海)已知函数f(x)=x+的定义域为(0,+∞),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.(1)求a的值.(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.(3)设O为坐标原点,求四边形OMPN面积的最小值.25.(2007•江苏)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f(x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.26.(2001•北京)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价﹣投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?27.由正方体ABCD﹣A1B1C1D1的顶点A作这正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.28.有一直圆锥,另外有一与它同底同高的直圆柱,假设a是圆锥的全面积,a′是圆柱的全面积,试求圆锥的高与母线的比值.29.(2004•上海)如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P﹣ABC为正四面体;(2)若PD=DA=求二面角D﹣BC﹣A的大小;(结果用反三角函数值表示)(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.30.如图,长方形框架ABCD﹣A′B′C′D′,三边AB、AD、AA′的长分别为6、8、3.6,AE 与底面的对角线B′D′垂直于E.(1)证明A′E⊥B′D′;(2)求AE的长.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.选择题(共16小题)1.(2014•上海二模)已知正四棱锥S﹣ABCD中,SA=2,那么当该棱锥的体积最大时,它的高为()h==a,﹣h=2.(2010•四川)半径为R的球O的直径AB垂直于平面a,垂足为B,△BCD是平面a内边长为R的正三角形,线段AC、AD分别与球面交于点M、N,那么M、N两点间的球面距离是()A.B.C.D.BAC=BAC=BAC=AN=RMN=MON=.3.(2010•北京)如图,正方体ABCD﹣A1B1C1D1的棱长为2,动点E、F在棱A1B1上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,A1E=y(x,y大于零),则三棱锥P ﹣EFQ的体积()A.与x,y都有关B.与x,y都无关4.(2009•宁夏)一个棱锥的三视图如图,则该棱锥的全面积(单位:cm2)为()6=54=12,另两个侧面三角形的面积都是15+12=48+125.(2003•天津)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()题考查的知识点是球的体积和表面积公式,由棱长都为R=R=的正方体,内接正四面体的棱长为6.(2013秋•禄劝县校级期中)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于()7.(2010•安徽模拟)如果圆台的上底面半径为5,下底面半径为R,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=()r=8.(2009•辽宁)正六棱锥P﹣ABCDEF中,G为PB的中点,则三棱锥D﹣GAC与三棱锥P﹣GAC体积之比为()AB9.(2009•湖北)设球的半径为时间t的函数R(t).若球的体积以均匀速度c增长,则球的表面积的增长速度与球半径.A.成正比,比例系数为C B.成正比,比例系数为2C,则由此可得10.(2007•安徽)把边长为的正方形ABCD沿对角线AC折成直二面角,折成直二面角后,在A,B,C,D四点所在的球面上,B与D两点之间的球面距离为()A.B.πC.D.BOD=,.11.(2006•浙江)如图,O是半径为l的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧AB与AC的中点,则点E、F在该球面上的球面距离是()A.B.C.D.在该球面上的球面距离为12.(2006•江苏)两相同的正四棱锥组成左图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有()13.(2005•安徽)过三棱柱任意两个顶点的直线共15条,其中异面直线有()14.(2010•安徽)一个几何体的三视图如图,该几何体的表面积是()15.(2010•辽宁)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是(),SD=,则有2+)16.(2011•山东)如图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图;②存在四棱柱,其正(主)视图、俯视图如图;③存在圆柱,其正(主)视图、俯视图如图.其中真命题的个数是()二.填空题(共4小题)17.(2010•江西)如图,在三棱锥O﹣ABC中,三条棱OA,OB,OC两两垂直,且OA>OB>OC,分别经过三条棱OA,OB,OC作一个截面平分三棱锥的体积,截面面积依次为S1,S2,S3,则S1,S2,S3的大小关系为S3<S2<S1.18.(2011•河北)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.;由此可以求得球心到圆锥底面的距离是,所以这两个圆锥中,体积较小者的高与体积较大者的高的比值为:故答案为:19.(2012•贾汪区校级模拟)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.DG=..20.(2004•黑龙江)下面关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是②④(写出所有真命题的编号).三.解答题(共10小题)21.(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.,解得.的取值范围是(﹣,22.(2009•山东)两城市A和B相距20km,现计划在两城市外以AB为直径的半圆弧上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)判断弧上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.,再根据当,将函数转化为:)由题意得时,,当且仅当上存在一点,的距离为23.(2007•广东)已知a是实数,函数f(x)=2ax2+2x﹣3﹣a,如果函数y=f(x)在区间[﹣1,1]上有零点,求a的取值范围.表示出来,转化为求函数在上有解,问题转化为求函数[,,的取值范围是⇔∈24.(2005•上海)已知函数f(x)=x+的定义域为(0,+∞),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.(1)求a的值.(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.(3)设O为坐标原点,求四边形OMPN面积的最小值.=2+求解+=2+=2+,=,即t=(+++x()≥.1+25.(2007•江苏)已知a,b,c,d是不全为零的实数,函数f(x)=bx2+cx+d,g(x)=ax3+bx2+cx+d.方程f(x)=0有实数根,且f(x)=0的实数根都是g(f(x))=0的根;反之,g(f(x))=0的实数根都是f(x)=0的根.(1)求d的值;(2)若a=0,求c的取值范围;(3)若a=1,f(1)=0,求c的取值范围.,,且时,只需,矛盾,舍去.时,只需..的取值范围为26.(2001•北京)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价﹣投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?(解不等式得27.由正方体ABCD﹣A1B1C1D1的顶点A作这正方体的对角线A1C的垂线,垂足为E,证明A1E:EC=1:2.,,28.有一直圆锥,另外有一与它同底同高的直圆柱,假设a是圆锥的全面积,a′是圆柱的全面积,试求圆锥的高与母线的比值.,消去,R=,代入可得=a'L这个关于29.(2004•上海)如图,P﹣ABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点,截面DEF∥底面ABC,且棱台DEF﹣ABC与棱锥P﹣ABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:P﹣ABC为正四面体;(2)若PD=DA=求二面角D﹣BC﹣A的大小;(结果用反三角函数值表示)(3)设棱台DEF﹣ABC的体积为V,是否存在体积为V且各棱长均相等的直平行六面体,使得它与棱台DEF﹣ABC有相同的棱长和?若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由.PD=DA=设直平行六面体的棱长均为,,体积为sinPM=AM=,由DMA=arcsin设直平行六面体的棱长均为,体积为sin的体积是,∴<,底面相邻两边夹角为30.如图,长方形框架ABCD﹣A′B′C′D′,三边AB、AD、AA′的长分别为6、8、3.6,AE 与底面的对角线B′D′垂直于E.(1)证明A′E⊥B′D′;(2)求AE的长.×,.。

高中数学难题汇编带解析

高中数学难题汇编带解析
方法(二):
(1) //
又 平面 , 平面 ,∴ // 平面
(2)易证:平面 底面
所以截面 与面 所成的二面角即为面 与面 所成的二面角,
ห้องสมุดไป่ตู้因为 平面 所以 平面

由(1)可知 四点共面
所以 为截面 与平面 所成的二面角的平面角.
所以 ,
所以
考点:线面平行,二面角.
7.如图,在四棱锥 中, , 平面 , 平面 , , , .
试题解析:(1)∵点 到 和 的距离之和等于 且 ,∴ 是以 和 为焦点的椭圆,设椭圆方程为 ,则 ,故 ,∴曲线 的方程为 .
(2)设 , ,则联立方程 ,得 ,此时 恒成立,又由韦达定理可得 , ………………①
由点 在直线 上,可得 , 又∵ , ∴ 即
即 ,整理得 ,将①式代入得 ,故 .
当 时, ,当 时, ,综上所述, .
(2)若分数在(含60分)的人对“高速公路免费政策”表示满意,现从全市参加了这次满意度测评的人中随机抽取一人,求此人满意的概率;
(3)请你估计全市的平均分数.
【答案】(1) ;(2) ;(3) .
【解析】
试题分析:(1)利用频率分布表以及 进行求解;(2)利用互斥事件的概率公式进行求解;(3)利用平均数的计算公式进行求解.
(Ⅰ)求棱锥 的体积;
(Ⅱ)求证:平面 平面 ;
(Ⅲ)在线段 上是否存在一点 ,使 平面 ?若存在,求出 的值;若不存在,说明理由.
【答案】(I) ;(II)证明见解析;(III)存在, .
【解析】
试题分析:(I)在在 中, ,可得 ,由于 平面 ,可的棱锥的高,利用体积公式求解几何体的体积;(II)由 平面 ,可得 ,进而得到 平面 ,即可证明平面 平面 ;(III)在线段 上存在一点 ,使得 平面 , ,设F为线段DE上的一点,且 ,过F作 ,由线面垂直的性质可得 ,可得四边形ABMF是平行四边形,于是 ,即可证明 平面 .

高考数学难题书

高考数学难题书

高考数学难题书篇一:高考数学综合训练(难题)综合训练(1)篇二:高中数学经典高考难题集锦(解析版) (5)2015年10月18日姚杰的高中数学组卷一.选择题(共11小题)1.(2014?江北区校级模拟)等腰三角形两腰所在直线的方程分别为x+y﹣2=0与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C. D.2.(2004?广东)如图,定圆半径为a,圆心坐标为(b,c),则直线ax+by+c=0,与直线x+y﹣1=0的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(2003?天津)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB 夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=()A.4.(2009?北京)点P在直线l:y=x﹣1上,若存在过P的直线交抛物线y=x于A,B两点,且|PA|=|AB|,则称点P为“A.直线l上的所有点都是“B.直线l上仅有有限个点是“C.直线l上的所有点都不是“点”,那么下列结论中正确的是()点” 点” 点”点” 2B. C. D.1 D.直线l上有无穷多个点(点不是所有的点)是“5.(2014?崇明县一模)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么A.的最小值为() B. C. D.6.(2013?上海)已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若A.圆,其中λ为常数,则动点M的轨迹不可能是() B.椭圆C.抛物线 D.双曲线227.(2008?山东)已知圆的方程为x+y﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10 B.20 C.30 D.408.(2009?浙江)已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点的个数最多为()A.3 B.4 C.5 D.69.(2004?重庆)若三棱锥A﹣BCD的侧面ABC内一动点P到底面BCD的面积与到棱AB的距离相等,则动点P的轨迹与△ABC组成图形可能是:()A. B. C.D.2210.(2008?湖北)过点A(11,2)作圆x+y+2x﹣4y﹣164=0的弦,其中弦长为整数的共有()A.16条 B.17条 C.32条 D.34条11.(2012?天津)设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+] B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2] D.(﹣∞,2﹣2]∪[2+2,+∞)二.填空题(共13小题)12.(2006?上海)已知直线l过点P(2,1)且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB 面积的最小值为213.(2008?重庆)直线l与圆x+y+2x﹣4y+a=0(a<3)相交于两点A,B,弦AB的中点为(0,1),则直线l的方程为.14.(2006?福建)如图,连接△ABC的各边中点得到一个新的△A1B1C1,又连接△A1B1C1的各边中点得到△A2B2C2,如此无限继续下去,得到一系列三角形:△ABC,△A1B1C1,△A2B2C2,…,这一系列三角形趋向于一个点M.已知A(0,0),B(3,0),C(2,2),则点M的坐标是.2215.(2011?北京)曲线C是平面内与两个定点F1(﹣1,0)和F2(1,0)的距离的积等于2常数a(a>1)的点的轨迹.给出下列三个结论:①曲线C过坐标原点;②曲线C关于坐标原点对称;③若点P在曲线C上,则△F1PF2的面积不大于a.其中,所有正确结论的序号是.16.(2011?湖南)已知圆C:x+y=12,直线l:4x+3y=25.(1)圆C的圆心到直线l的距离为;(2)圆C上任意一点A到直线l的距离小于2的概率为.17.(2007?上海)已知圆的方程x+(y﹣1)=1,P为圆上任意一点(不包括原点).直线OP的倾斜角为θ弧度,|OP|=d,则d=f(θ)的图象大致为.2222218.(2005?江西)以下四个关于圆锥曲线的命题中①设A、B为两个定点,k为非零常数,||﹣||=k,则动点P 的轨迹为双曲线;=(+),则动点P②设定圆C上一定点A作圆的动点弦AB,O 为坐标原点,若的轨迹为椭圆;③方程2x﹣5x+2=0的两根可分别作为椭圆和双曲线的离心率;④双曲线﹣=1与椭圆+y=1有相同的焦点. 22其中真命题的序号为(写出所有真命题的序号)19.(2007?上海)如图,A,B是直线l上的两点,且AB=2.两个半径相等的动圆分别与l相切于A,B点,C是这两个圆的公共点,则圆弧AC,CB与线段AB围成图形面积S的取值范围是.20.(2006?江西)已知圆M:(x+cosq)+(y﹣sinq)=1,直线l:y=kx,下面四个命题:(A)对任意实数k与q,直线l和圆M相切;(B)对任意实数k与q,直线l和圆M有公共点;(C)对任意实数q,必存在实数k,使得直线l与和圆M相切(D)对任意实数k,必存在实数q,使得直线l与和圆M相切其中真命题的代号是.(写出所有真命题的代号)21.(2010?北京)(北京卷理14)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点P(x,y)的轨迹方程是y=f (x),则f(x)的最小正周期为y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为说明:“正方形PABC沿X轴滚动”包括沿x轴正方向和沿x 轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动.2222.(2004?北京)若直线mx+ny﹣3=0与圆x+y=3没有公共点,则m、n满足的关系式为;以(m,n)为点P的坐标,过点P的一条直线与椭圆有个.23.(2011?江苏)设集合,B={(x,+=1的公共点22y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠?,则实数m的取值范围是24.(2012?陆丰市校级模拟)如图,⊙O1与⊙O2交于M、N 两点,直线AE与这两个圆及MN依次交于A、B、C、D、E;且AD=19,BE=16,BC=4,则AE=.三.解答题(共6小题)25.(2005?江西)如图,M是抛物线上y=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明:直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.226.(2005?广东)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示).将矩形折叠,使A点落在线段DC上.(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;(Ⅱ)求折痕的长的最大值.27.(2004?福建)如图,P是抛物线C:y=x上一点,直线l 过点P并与抛物线C在点P的切线垂直,l与抛物线C相交于另一点Q.(Ⅰ)当点P的横坐标为2时,求直线l的方程;(Ⅱ)当点P在抛物线C上移动时,求线段PQ中点M的轨迹方程,并求点M到x轴的最短距离.2篇三:题目818b998fcc220e52一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

高考数学压轴专题专题备战高考《数列》难题汇编附答案解析

高考数学压轴专题专题备战高考《数列》难题汇编附答案解析

高中数学《数列》期末考知识点一、选择题1.等比数列{}n a 的前n 项和为n S ,若32S =,618S =,则106S S 等于( ) A .-3 B .5C .-31D .33【答案】D 【解析】 【分析】先由题设条件结合等比数列的前n 项和公式,求得公比q ,再利用等比数列的前n 项和公式,即可求解106S S 的值,得到答案.【详解】由题意,等比数列{}n a 中32S =,618S =,可得313366316(1)1121(1)11181a q S q q a q S q q q ---====--+-,解得2q =, 所以101105105516(1)11133(1)11a q S q q q a q S q q---===+=---. 故选:D . 【点睛】本题主要考查了等比数列的前n 项和公式的应用,其中解答中熟记等比数列的前n 项和公式,准确计算是解答的关键,着重考查了推理与计算能力.2.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.即:21n n n a a a ++=+.记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .201920202S a =+B .201920212S a =+C .201920201S a =-D .201920211S a =-【答案】D 【解析】 【分析】根据递推关系利用裂项相消法探求和项与通项关系,即得结果. 【详解】因为1233243546521()()()()()n n n n S a a a a a a a a a a a a a a ++=++++=-+-+-+-+-L L 2221n n a a a ++=-=-,所以201920211S a =-,选D. 【点睛】本题考查裂项相消法,考查基本分析判断能力,属中档题.3.数列{}n a 满足12a =,对于任意的*n N ∈,111n na a +=-,则2018a =( ) A .-1 B .12C .2D .3【答案】A 【解析】 【分析】先通过递推公式111n na a +=-,找出此周期数列的周期,再计算2018a 的值. 【详解】111n na a +=-Q ,2111111111n n n na a a a ++∴===----, 32111111n nn n a a a a ++∴===-⎛⎫-- ⎪⎝⎭,故有3n n a a +=,则20183672221111a a a a ⨯+====-- 故选:A 【点睛】本题考查根据数列递推公式求数列各项的值,属于中档题.4.函数()f x 对任意正整数,a b 满足条件()()()f a b f a f b +=⋅,且()12f =,(2)(4)(6)(2018)(1)(3)(5)(2017)f f f f f f f f ++++L 的值是( )A .1008B .1009C .2016D .2018【答案】D 【解析】 【分析】由题意结合()()()f a b f a f b +=⋅求解()()()()()()()()24620181352017f f f f f f f f ++++L 的值即可.【详解】在等式()()()f a b f a f b +=⋅中,令1b =可得:()()()()112f a f a f f a +==, 则()()12f a f a +=,据此可知: ()()()()()()()()24620181352017f f f f f f f f ++++L 2222210092018=++++=⨯=L .本题选择D 选项. 【点睛】本题主要考查抽象函数的性质,函数的求值方法等知识,意在考查学生的转化能力和计算求解能力.5.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L ()332432299=+++=.故选:B . 【点睛】本题考查周期数列求和,属于中档题.6.已知等比数列{a n },a n >0,a 1=256,S 3=448,T n 为数列{a n }的前n 项乘积,则当T n 取得最大值时,n =( )A .8B .9C .8或9D .8.5【答案】C 【解析】 【分析】设等比数列{a n }的公比为q ,由a n >0,可得q >0.根据a 1=256,S 3=448,可得256(1+q +q 2)=448,解得q .可得a n ,T n ,利用二次函数的单调性即可得出. 【详解】设等比数列{a n }的公比为q ,∵a n >0,∴q >0. ∵a 1=256,S 3=448, ∴256(1+q +q 2)=448, 解得q 12=. ∴a n =25611()2n -⨯=29﹣n .T n =28•27•……•29﹣n=28+7+…+9﹣n()217289[)89242222n n n ⎛⎤--- ⎥+-⎝⎦==.∴当n =8或9时,T n 取得最大值时, 故选C . 【点睛】本题考查了等比数列的通项公式与求和公式及其性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.7.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.8.将正整数20分解成两个正整数的乘积有120⨯,210⨯,45⨯三种,其中45⨯是这三种分解中两数差的绝对值最小的,我们称45⨯为20的最佳分解.当p q ⨯(p q ≤且*,p q ∈N )是正整数n 的最佳分解时我们定义函数()f n q p =-,则数列(){}5nf ()*n N ∈的前2020项的和为( )A .101051+B .1010514-C .1010512-D .101051-【答案】D 【解析】 【分析】首先利用信息的应用求出关系式的结果,进一步利用求和公式的应用求出结果. 【详解】解:依题意,当n 为偶数时,22(5)550nnn f =-=; 当n 为奇数时,111222(5)5545n n n n f +--=-=⨯,所以01100920204(555)S =++⋯+,101051451-=-g ,101051=-.故选:D 【点睛】本题考查的知识要点:信息题的应用,数列的求和的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题.9.已知单调递增的等比数列{}n a 中,2616a a ⋅=,3510a a +=,则数列{}n a 的前n 项和n S =( ) A .2124n -- B .1122n -- C .21n - D .122n +-【答案】B 【解析】 【分析】由等比数列的性质,可得到35,a a 是方程210160x x -+=的实数根,求得1,a q ,再结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,2616a a ⋅=,3510a a +=, 根据等比数列的性质,可得3516a a ⋅=,3510a a +=,所以35,a a 是方程210160x x -+=的实数根,解得352,8a a ==或358,2a a ==, 又因为等比数列{}n a 为单调递增数列,所以352,8a a ==,设等比数列{}n a 的首项为1a ,公比为(1)q q >可得214128a q a q ⎧=⎨=⎩,解得11,22a q ==,所以数列{}n a 的前n 项和11(12)122122nn n S --==--. 故选:B . 【点睛】本题主要考查了等比数列的通项公式的基本量的运算,以及等比数列的前n 项和公式的应用,着重考查了推理与运算能力.10.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.11.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O 点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r, 所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1, ∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.12.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.13.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.14.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.15.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.16.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( ) A .17(1)a r + B .17[(1)(1)]ar r r +-+C .18(1)a r +D .18[(1)(1)]ar r r+-+【答案】D 【解析】 【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可. 【详解】 解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +, 孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +,⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和, 此时将存款(含利息)全部取回, 则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r aS a r a r a r r r r r++-=++++⋯⋯++==+-++-;故选:D . 【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.17.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D【解析】【分析】根据等差数列公式直接计算得到答案.【详解】依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.18.已知{}n a 是各项都为正数的等比数列,n S 是它的前n 项和,若47S =,821S =,则16S =( )A .48B .90C .105D .106【答案】C【解析】【分析】根据4841281612,,,S S S S S S S ---成等比数列即可求出16S .【详解】由等比数列的性质得4841281612,,,S S S S S S S ---成等比数列,所以1216127,14,21,S S S --成等比数列,所以121216162128,49,4956,105S S S S -=∴=∴-=∴=.故选:C【点睛】本题主要考查等比数列的性质,意在考查学生对这些知识的理解掌握水平.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+;接下来利用累加法可求得()12n n n a +=,从而()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭, 于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)【答案】D【解析】【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<- ⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。

高三数学难题及答案

高三数学难题及答案

1.在平面上向量AB1垂直向量AB2,向量OB1的模等于向量OB2的模=1,向量AP等于向量AB1+向量AB2,若向量OP的模<1/2,则向量OA的模的取值范围是解:以点O为圆心,分别以1为半径作单位圆大⊙O、以1/2为半径作小⊙O,线段B1B2是大⊙O的一条弦,以B1B2为直径的圆是⊙C,由向量AB1⊥向量AB2知点A在⊙C上,由向量AP等于向量AB1+向量AB2知点P也在⊙C上,且点P和点A关于点C对称(即PA是⊙C的直径)。

设⊙C与小⊙O的公共点为D.令⊙C半径为r=|B1B2|/2(即半弦长),|OC|=d(即弦心距),则考虑到|OP|<1/2,于是⊙C的圆周上必须有点落在小⊙O内部,由图1可知,当⊙C和小⊙O外切时,r最小(即图1中⊙C);当⊙C和小⊙O内切时,r最大(即图1中⊙C‘)。

(取开值)下面先求出最值,由图1——r²+d²=1d=r±1/2(外切时,d=|OC|=|CD|+|OD|=r+1/2;内切时,d=|OC’|=|C‘D|-|OD|=r-1/2.)于是r²+(r±1/2)²=1整理得8r²±4r-3=0解得r=(√7±1)/4(负根已舍去)于是(√7-1)/4<r <(√7+1)/4,以此为前提(重点),我们来研究|OA|的取值——【易得此前提即(√7-1)/4<d<(√7+1)/4)】先研究最大值,由图1,直线OC与⊙C有两个交点,取近O的一个为P,P必在小⊙O内部满足题设要求,这时远O的一个为A,最大值必在此时取得,此时|OA|=d+r.(参见图1和图2)由r²+d²=1,令r=sina,d=cosa,a为锐角,于是|OA|=d+r=sina+cosa=√2sin(a+b)=√2sin(a+45°),tanb=1可取b=45°.(辅助角公式)a+45°=90°时取最大值,即a=45°,此时r=sina=√2/2,d=cosa=√2/2.r=√2/2满足(√7-1)/4<r <(√7+1)/4,此时|OA|=d+r=√2取最大值,即|OA|≤√2.再研究最小值,如图2,P的范围是图2中弧D1D2,于是A的范围是图2中弧AA',过A 作OA垂线,垂线在⊙C内部,以OA为半径O为圆心的圆还在垂线内部,故|OA|最小值必在图2中A(或A')处,通过计算得知此时|OA|是定值√7/2(与图2中d或r的取值无关).在△OCD2中,|OC|=d,|OD2|=1/2,|CD2|=r,于是cos∠OCD2=(d²+r²-1/4)/(2dr)=(1-1/4)/(2dr)=3/(8dr)|EC|=|CD2|·cos∠OCD2=r·3/(8dr)=3/(8d)|AF|²=|ED2|²=|CD2|²-|EC|²=r²-9/(64d²)|OF|=|OC|+|CF|=|OC|+|EC|=d+3/(8d)|OA|²=|AF|²+|OF|²=r²-9/(64d²)+[d+3/(8d)]²=r²-9/(64d²)+d²+3/4+9/(64d²)=r²+d²+3/4=1+3/4= 7/4|OA|=√7/2段首已证无论d或r如何取值,A点在图2中的A点位置时,|OA|最小(取开值),于是|OA|>√7/2.综合上述,由连续性可知|OA|属于(√7/2,√2].。

破解恒成立问题 高考数学【解析版】

破解恒成立问题 高考数学【解析版】

专题16 破解恒成立问题从高考命题看,方程有解问题、无解问题以及不等式的恒成立问题,也是高考命题的热点.而此类问题的处理方法较为灵活,用导数解决不等式“恒成立”“存在性”问题的常用方法是分离参数,或构造新函数分类讨论,将不等式问题转化为函数的最值问题.也可以结合题目的条件、结论,采用数形结合法等.【重点知识回眸】(一)参变参数法1.参变分离:顾名思义,就是在不等式中含有两个字母时(一个视为变量,另一个视为参数),可利用不等式的等价变形让两个字母分居不等号的两侧,即不等号的每一侧都是只含有一个字母的表达式.然后可利用其中一个变量的范围求出另一变量的范围2.一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围.3.参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行.但有些不等式中由于两个字母的关系过于“紧密”,会出现无法分离的情形,此时要考虑其他方法.例如:()21log a x x -<,111axx e x-+>-等 (2)要看参变分离后,已知变量的函数解析式是否便于求出最值(或临界值),若解析式过于复杂而无法求出最值(或临界值),则也无法用参变分离法解决问题.(可参见”恒成立问题——最值分析法“中的相关题目)(二)构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.1.构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参2.参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论 (三)数形结合法1.函数的不等关系与图象特征:(1)若,均有的图象始终在的下方 (2)若,均有的图象始终在的上方2.在作图前,可利用不等式的性质对恒成立不等式进行变形,转化为两个可作图的函数x D ∀∈()()()f x g x f x <⇔()g x x D ∀∈()()()f x g x f x >⇔()g x3.作图时可“先静再动”,先作常系数的函数的图象,再做含参数函数的图象(往往随参数的不同取值而发生变化).作图要突出“信息点”.4.利用数形结合解决恒成立问题,往往具备以下几个特点:(1)所给的不等式运用代数手段变形比较复杂,比如分段函数,或者定义域含参等,而涉及的函数便于直接作图或是利用图象变换作图(2)所求的参数在图象中具备一定的几何含义 (3)题目中所给的条件大都能翻译成图象上的特征【典型考题解析】热点一 参变分离法解决不等式恒成立问题【典例1】(2019·天津·高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( ) A .[]0,1 B .[]0,2 C .[]0,e D .[]1,e【答案】C【解析】先判断0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,转化为ln xa x≤在(1,)+∞上恒成立. 【详解】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a >时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故()()min g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C .【典例2】(2020·全国·高考真题(理))已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【详解】(1)当1a =时,()2e xf x x x =+-,()e 21x f x x ='+-,由于()''e 20xf x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减, 当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2) [方法一]【最优解】:分离参数 由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x ----, 记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x ⎛⎫---- ⎪⎝⎭'=-, 令()()21e 102xh x x x x =---≥,则()e 1xh x x ='--,()''e 10x h x =-≥,故()'h x 单调递增,()()00h x h ''≥=, 故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102xx x ---恒成立, 故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减; 因此,()()2max7e 24g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭. [方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a .只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x xf x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e74244e-+++⇔≤xx x x ,令()223e 7424()(0)e-+++=≥xx x x h x x ,则()()222313e 2e 92()e -+--=='xxx x h x ()()222213e 2e 9e⎡⎤-----⎣⎦=xx x x ()2(2)2e 9e⎡⎤--+-⎣⎦xx x x ,所以当29e 0,2⎡⎤-∈⎢⎥⎣⎦x 时,()0,()h x h x '<单调递减; 当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增; 当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e1(1)e 122x x x ax x x ax x -⇒+-+⇒-++≤, 记()32(1(1)e 0)2xg x x ax x x -=-++≥,()2231(1)e 22123x g x x ax x x ax -'=--+++--()()()2112342e 212e 22xx x x a x a x x a x --⎡⎤=--+++=----⎣⎦,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x xg x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21xg x x x -=+≤+恒成立,所以12a ≥时,满足题意. 综上,27e 4a-. 【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有:方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性; 方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性! 【总结提升】利用分离参数法来确定不等式f (x ,λ)≥0(x ∈D ,λ为实参数)恒成立问题中参数取值范围的基本步骤: (1)将参数与变量分离,化为f 1(λ)≥f 2(x )或f 1(λ)≤f 2(x )的形式. (2)求f 2(x )在x ∈D 时的最大值或最小值.(3)解不等式f 1(λ)≥f 2(x )max 或f 1(λ)≤f 2(x )min ,得到λ的取值范围. 热点二 构造函数分类讨论法解决不等式恒成立问题【典例3】(2019·全国·高考真题(文))已知函数f (x )=2sin x -x cos x -x ,f′(x )为f (x )的导数. (1)证明:f′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析; (2)(],0a ∈-∞.【分析】(1)求导得到导函数后,设为()g x 进行再次求导,可判断出当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>,当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<,从而得到()g x 单调性,由零点存在定理可判断出唯一零点所处的位置,证得结论;(2)构造函数()()h x f x ax =-,通过二次求导可判断出()()min 2h x h a π''==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭;分别在2a ≤-,20a -<≤,202a π-<<和22a π-≥的情况下根据导函数的符号判断()h x 单调性,从而确定()0h x ≥恒成立时a 的取值范围.【详解】(1)()2cos cos sin 1cos sin 1f x x x x x x x x '=-+-=+- 令()cos sin 1g x x x x =+-,则()sin sin cos cos g x x x x x x x '=-++= 当()0,x π∈时,令()0g x '=,解得:2x π=∴当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0g x '<()g x ∴在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减又()0110g =-=,1022g ππ⎛⎫=-> ⎪⎝⎭,()112g π=--=-即当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x >,此时()g x 无零点,即()f x '无零点()02g g ππ⎛⎫⋅< ⎪⎝⎭0,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x =又()g x 在,2ππ⎛⎫ ⎪⎝⎭上单调递减 0x x ∴=为()g x ,即()f x '在,2ππ⎛⎫⎪⎝⎭上的唯一零点综上所述:()f x '在区间()0,π存在唯一零点(2)若[]0,x π∈时,()f x ax ≥,即()0f x ax -≥恒成立 令()()()2sin cos 1h x f x ax x x x a x =-=--+ 则()cos sin 1h x x x x a '=+--,()()cos h x x x g x '''==由(1)可知,()h x '在0,2π⎛⎫ ⎪⎝⎭上单调递增;在,2ππ⎛⎫⎪⎝⎭上单调递减且()0h a '=-,222h a ππ-⎛⎫'=- ⎪⎝⎭,()2h a π'=-- ()()min 2h x h a π''∴==--,()max 222h x h a ππ-⎛⎫''==- ⎪⎝⎭①当2a ≤-时,()()min 20h x h a π''==--≥,即()0h x '≥在[]0,π上恒成立()h x ∴在[]0,π上单调递增()()00h x h ∴≥=,即()0f x ax -≥,此时()f x ax ≥恒成立 ②当20a -<≤时,()00h '≥,02h π⎛⎫'> ⎪⎝⎭,()0h π'<1,2x ππ⎛⎫∴∃∈ ⎪⎝⎭,使得()10h x '=()h x ∴在[)10,x 上单调递增,在(]1,x π上单调递减又()00h =,()()2sin cos 10h a a ππππππ=--+=-≥()0h x ∴≥在[]0,π上恒成立,即()f x ax ≥恒成立③当202a π-<<时,()00h '<,2022h a ππ-⎛⎫'=-> ⎪⎝⎭20,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()20h x '=()h x ∴在[)20,x 上单调递减,在2,2x π⎛⎫⎪⎝⎭上单调递增()20,x x ∴∈时,()()00h x h <=,可知()f x ax ≥不恒成立④当22a π-≥时,()max 2022h x h a ππ-⎛⎫''==-≤ ⎪⎝⎭()h x ∴在0,2π⎛⎫⎪⎝⎭上单调递减 00h xh可知()f x ax ≥不恒成立 综上所述:(],0a ∈-∞【点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.【典例4】(2022·重庆巴蜀中学高三阶段练习)已知函数()()ln 20f x a x x a =-≠. (1)讨论()f x 的单调性;(2)当0x >时,不等式()()22cos eax x f x f x ⎡⎤-≥⎣⎦恒成立,求a 的取值范围. 【答案】(1)答案见解析 (2)(]0,2e【分析】(1)求出函数()f x 的定义域,求得()2a xf x x-'=,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间;(2)令()t f x =,()e 2cos tg t t t =--,利用导数分析函数()g t 的单调性,对实数a 的取值进行分类讨论,求出()t f x =的取值范围,结合函数()g t 的图象可得出关于实数a 的不等式,即可求得实数a 的取值范围. (1)解:函数()()ln 20f x a x x a =-≠的定义域为()0,∞+,且()22a a x f x x x-'=-=.当0a <时,因为0x >,则()0f x '<,此时函数()f x 的单调递减区间为()0,∞+;当0a >时,由()0f x '<可得2ax >,由()0f x '>可得02ax <<.此时,函数()f x 的单调递增区间为0,2a ⎛⎫ ⎪⎝⎭,单调递减区间为,2a ⎛⎫+∞ ⎪⎝⎭.综上所述,当0a <时,函数()f x 的单调递减区间为()0,∞+;当0a >时,函数()f x 的单调递增区间为0,2a ⎛⎫⎪⎝⎭,单调递减区间为,2a ⎛⎫+∞ ⎪⎝⎭. (2)解:()()()()()()()ln 222cos e 2cos 0e 2cos 0eaf x a x x x x f x f x f x f x f x f x -⎡⎤⎡⎤⎡⎤-≥⇔--≥⇔--≥⎣⎦⎣⎦⎣⎦,设()e 2cos tg t t t =--,其中()t f x =,则()e 2sin t g t t '=-+,设()e sin 2th t t =+-,则()e cos th t t '=+,当0t ≤时,e 1t ≤,sin 1t ≤,且等号不同时成立,则()0g t '<恒成立,当0t >时,e 1t >,cos 1t ≥-,则()0h t '>恒成立,则()g t '在()0,∞+上单调递增,又因为()01g '=-,()1e 2sin10g '=-+>,所以,存在()00,1t ∈使得()00g t '=,当00t t <<时,()0g t '<;当0t t >时,()0g t '>.所以,函数()g t 在()0,t -∞上单调递减,在()0,t +∞上单调递增,且()00g =,作出函数()g t 的图象如下图所示:由(1)中函数()f x 的单调性可知,①当0a <时,()f x 在()0,∞+上单调递增,当0x +→时,()f x →+∞,当x →+∞时,()f x →-∞,所以,()t f x =∈R ,此时()00g t <,不合乎题意;②当0a >时,()max ln 22a a f x f a a ⎛⎫==- ⎪⎝⎭,且当0x +→时,()f x →-∞,此时函数()f x 的值域为,ln 2a a a ⎛⎤-∞- ⎥⎝⎦,即,ln 2a t a a ⎛⎤∈-∞- ⎥⎝⎦.(i )当ln 02a a a -≤时,即当02e a <≤时,()0g t ≥恒成立,合乎题意;(ii )当ln 02a a a ->时,即当2e a >时,取10min ln ,2a t a a t ⎧⎫=-⎨⎬⎩⎭,结合图象可知()10g t <,不合乎题意.综上所述,实数a 的取值范围是(]0,2e . 【规律方法】对于f (x )≥g (x )型的不等式恒成立问题,若无法分离参数,一般采用作差法构造函数h (x )=f (x )-g (x )或h (x )=g (x )-f (x ),进而只需满足h (x )min ≥0或h (x )max ≤0即可. 热点三 利用数形结合法解决不等式恒成立问题【典例5】(2013·全国·高考真题(文))已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D【解析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解.【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为 22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D【典例6】(2015·全国·高考真题(理))设函数()(21)xf x e x ax a =--+,其中1a < ,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭B .33,2e 4⎡⎫-⎪⎢⎣⎭C .33,2e 4⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D【分析】设()()21xg x e x =-,()1y a x =-,问题转化为存在唯一的整数0x 使得满足()()01g x a x <-,求导可得出函数()y g x =的极值,数形结合可得()01a g ->=-且()312g a e-=-≥-,由此可得出实数a 的取值范围.【详解】设()()21xg x e x =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a ,故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D.【典例7】(2020·全国高二)若关于x 的不等式0x x e ax a ⋅-+<的解集为()m n ,(0n <),且()m n ,中只有一个整数,则实数a 的取值范围是( ). A .211[)e e, B .221[)32e e, C .212[)e e, D .221[)3e e, 【答案】B 【解析】不等式0x x e ax a ⋅-+<有唯一整数解,即不等式()1xx e a x ⋅<-有唯一整数解,设()xg x x e =⋅,y ax a =-,求出()g x 的单调区间,作出其大致图像,y ax a =-恒过定点()10,P ,数形结合可得答案.【详解】设()xg x x e =⋅,y ax a =-,()()1xg x x e '=+⋅,由()0g x '>,解得1x >-,由()0g x '<解得1x <-所以()xg x x e =⋅在(]1-∞-,上单调递减,在[)1-+∞,上单调递增. 又当x →-∞ ,()0g x <且()0g x →,又()00g =,则()xg x x e =⋅的大致图象如下由题意由不等式0x x e ax a ⋅-+<有唯一整数解,即不等式()1xx e a x ⋅<-有唯一整数解即()xg x x e =⋅在直线y ax a =-下方的部分,故min 1()(1)g x g e=-=-,y ax a =-恒过定点()10,P , 结合函数图像得PA PB k a k ≤<,即22132a e e≤<, 故选:B .【点睛】本题考查根不等式的解集中整数的个数求参数范围的问题,解答本题的关键的根据题意转化为不等式()1x x e a x ⋅<-有唯一整数解,即()x g x x e =⋅在直线y ax a =-下方的部分中唯一整数x ,讨论出()xg x x e =⋅的单调区间,得出其大致图象,属于中档题.【精选精练】一、单选题1.(2022·湖北·黄冈中学模拟预测)对任意的(]12,1,3x x ∈,当12x x <时,1122ln 03x a x x x -->恒成立,则实数a的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .[)9,+∞ D .()9,+∞【答案】C【分析】将不等式等价变形,构造函数()ln 3af x x x =-,再借助函数单调性、最值求解作答.【详解】依题意,11211222ln 0ln (ln )0333x a a ax x x x x x x -->⇔--->,令()ln 3a f x x x =-,(1,3]x ∈, 则对任意的12,(1,3]x x ∈,当12x x <时,12()()f x f x >,即有函数()f x 在(1,3]上单调递减, 因此,(1,3]x ∀∈,()1033af x a x x'=-≤⇔≥,而max (3)9x =,则9a ≥, 所以实数a 的取值范围是[9,)+∞. 故选:C2.(2021·青海·西宁市海湖中学高三开学考试(文))若函数()2ln f x x x=-,满足() f x a x ≥-恒成立,则a 的最大值为( ) A .3 B .4 C .3ln 2- D .3ln 2+【答案】C【分析】由题意,分离参数可得min 2ln a x x x ⎛⎫≤+- ⎪⎝⎭,令2()ln g x x x x=+-,然后利用导数求出()g x 的最小值即可求解.【详解】解:因为()2ln f x x x=-,满足() f x a x ≥-恒成立, 所以min2ln a x x x ⎛⎫≤+- ⎪⎝⎭,令2()ln g x x x x =+-,则()()()222221212()10x x x x g x x x x x x -+--'=--==>,令()0g x '>,得2x >,令()0g x '<,得02x <<, 所以()g x 在()0,2上单调递减,在()2,+∞上单调递增, 所以min ()(2)3ln 2g x g ==-, 所以3ln 2a ≤-,所以a 的最大值为3ln 2-, 故选:C.3.(2023·全国·高三专题练习)已知函数12ln ,(e)ey a x x =-≤≤的图象上存在点M ,函数21y x =+的图象上存在点N ,且M ,N 关于x 轴对称,则a 的取值范围是( )A .21e ,2⎡⎤--⎣⎦B .213,e ∞⎡⎫--+⎪⎢⎣⎭C .213,2e ⎡⎤---⎢⎥⎣⎦D .2211e ,3e ⎡⎤---⎢⎥⎣⎦【答案】A【详解】因为函数21y x =+与函数21y x =--的图象关于x 轴对称,根据已知得函数12ln ,(e)e y a x x =-≤≤的图象与函数21y x =--的图象有交点,即方程22ln 1a x x -=--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解,即22ln 1a x x =--在1,e e x ⎡⎤∈⎢⎥⎣⎦上有解.令()22ln 1g x x x =--,1,e e x ⎡⎤∈⎢⎥⎣⎦,则()()22212222xx g x x x x x--'=-==,可知()g x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增,在[]1,e 上单调递减,故当1x =时,()()max 12g x g ==-,由于21e e 13g ⎛⎫=-- ⎪⎝⎭,()2e e 1g =-,且2211e 3e -->-,所以212e a -≤≤-. 故选:A .4.(2021·青海·大通回族土族自治县教学研究室高三开学考试(文))已知函数1()e 2xf x =,直线y kx =与函数()f x 的图象有两个交点,则实数k 的取值范围为( )A .1e 2⎛ ⎝B .(e,)+∞C .(e,)+∞D .1e,2⎛⎫+∞ ⎪⎝⎭【答案】D【分析】首先考查临界情况,利用导数求得切线的斜率,据此可求得实数k 的取值范围【详解】当过原点的直线y kx =与函数()f x 的图象相切时,设切点为1,e 2m P m ⎛⎫⎪⎝⎭,由()1e 2x f x '=,可得过点P 的切线方程为()11e e 22m my x m -=-,代入点()0,0可得11e e 22m mm -=-,解得1m =,此时切线的斜率为1e 2,由函数()f x 的图象可知,若直线y kx =与函数()f x 的图象有两个交点,直线的斜率k 的取值范围为1e,2⎛⎫+∞ ⎪⎝⎭. 故答案选:D5.(2022·福建省福安市第一中学高三阶段练习)设函数()()()()1e e ,e 1x x f x x g x ax =--=--,其中R a ∈.若对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立,则a 的最大值为( ) A .0 B .1eC .1D .e【答案】C【分析】由题意易知()0f x ≥恒成立,则可等价为对[)20,x ∀∈+∞,()20g x ≥恒成立,利用参变分离,可变形为e 1,(0)x a x x -≤>恒成立,易证e 11,(0)x x x->>,则可得1a ≤,即可选出答案.【详解】对[)20,x ∀∈+∞,都1R x ∃∈,使得不等式()()12f x g x ≤成立, 等价于()()12min min f x g x ≤,当1x <时,10,e e<0x x -<-,所以()0f x >, 当1≥x 时,10,e e 0x x -≥-≥,所以()0f x ≥, 所以()0f x ≥恒成立,当且仅当1x =时,min ()0f x =, 所以对[)20,x ∀∈+∞,()20g x ≥恒成立,即e 10x ax --≥, 当0x =,e 100x ax --=≥成立,当0x >时,e 1e 10x xax a x---≥⇒≤恒成立.记()e 1,0x h x x x =-->, 因为()e 10x h x '=->恒成立,所以()h x 在(0,)+∞上单调递增,且(0)0h =,所以()e 10xh x x =-->恒成立,即e 1e 11,(0)x xx x x-->⇒>>所以1a ≤.所以a 的最大值为1. 故选:C.【点睛】本题考查导数在不等式的恒成立与有解问题的应用,属于难题, 此类问题可按如下规则转化:一般地,已知函数[](),,=∈y f x x a b ,[](),,y g x x c d =∈(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有12()()f x g x <成立,故max 12min ()()f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有12()()f x g x <成立,故1max 2max ()()f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有12()()f x g x <成立,故1min 2max ()()f x g x <; (4)若[]1,x a b ∃∈,[]2,x c d ∀∈,有12()()f x g x <成立,故1min 2min ()()f x g x <; (5)若[]1,x a b ∀∈,[]2,x c d ∃∈,有12()()f x g x =,则()f x 的值域是()g x 值域的子集. 二、多选题6.(2022·重庆南开中学高三阶段练习)已知定义在R 上函数()g x 满足:()()2g x g x =+,且()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,设函数()()f x x g x =+,则下列正确的是( ) A .()f x 的单调递增区间为()()2,21,Z k k k +∈ B .()f x 在()2022,2024上的最大值为2025 C .()f x 有且只有2个零点 D .()f x x ≥恒成立. 【答案】ABD【分析】由题可知函数()g x 为周期函数,根据导数判断函数的单调性,进而可得函数的值域可判断D ,结合条件可得函数()[)[)232,2,2144,21,22x kk x k k f x x k x k k -⎧+∈+⎪=⎨-++∈++⎪⎩可判断AB ,利用数形结合可判断C.【详解】由题可得函数()g x 为周期函数,当[)0,1x ∈时,()3x g x x =-,则()3ln31ln310xg x '=-≥->,函数单调递增,()[)31,2xg x x =-∈,当[)1,2x ∈时,()(]240,2g x x =-+∈, 故可得函数()g x 的值域为(]0,2,因为()[)[)3,0,124,1,2x x x g x x x ⎧-∈⎪=⎨-+∈⎪⎩,()()2g x g x =+,所以()()[)[)232,2,212244,21,22x kx k x k k g x g x k x k x k k -⎧-+∈+⎪=-=⎨-++∈++⎪⎩(Z k ∈), 故()()f x x g x =+[)[)232,2,2144,21,22x k k x k k x k x k k -⎧+∈+⎪=⎨-++∈++⎪⎩,所以函数()f x 的单调递增区间为()()2,21,Z k k k +∈,单调减区间为()()21,22,Z k k k ++∈,故A 正确; 所以函数()f x 在()2022,2023上单调递增,在()2023,2024上单调递减, 故()f x 在()2022,2024上的最大值为()()()202320232023202312025f g g =+=+=,故B 正确;由()()0f x x g x =+=可得()g x x =-,所以函数()y g x =与函数y x =-交点的个数即为函数()f x 的零点数, 作出函数()y g x =与函数y x =-的大致图象,由图可知函数()y g x =与函数y x =-有一个交点, 即函数()f x 有且只有1个零点,故C 错误;由()f x x ≥,即()0g x ≥,因为()g x ∈(]0,2,故()f x x ≥恒成立,故D 正确. 故选:ABD. 三、填空题7.(2022·湖北·黄冈中学模拟预测)函数2()2e x f x a bx =++,其中a ,b 为实数,且(0,1)a ∈.已知对任意24e b >,函数()f x 有两个不同零点,a 的取值范围为___________________.【答案】)8e ,1-⎡⎣【分析】将函数有两个不同零点转化为方程有两个不等实根;再将方程变形构造新函数,求导并研究新函数的单调性,求其最小值,得到22ln ba-≥e ,再由已知条件求得)8,1a -⎡∈⎣e 即可. 【详解】因为()f x 有两个不同零点()0f x ⇔=有两个不相等的实根 即220x a bx ++=e 有两个不相等的实根; 所以ln 220x a bx ++=e e ,令ln t x a = ,则220ln tbta++=e e ,t 显然不为零,所以22ln t b a t+-=e e ,因为()0,1a ∈ ,24e b > , 所以20ln ba-> ,所以0t > ; 令()()20t g t t t+=>e e ,则()()22t t t g t t-+'=e e e ;令()()()20t t h t t t =-+>e e e ,则()0t t t t h t t t '=+-=>e e e e ,所以()h t 在()0,∞+上单调递增,又()20h = ,所以当()0,2t ∈时,()0h t < ;当()2,t ∈+∞ 时,()0h t > ; 所以当()0,2t ∈时,()0g t '< ;当()2,t ∈+∞ 时,()0g t '> ; 故()g t 在()0,2上单调递减,在()2,+∞上单调递增;所以()()2min 2g t g ==e ,所以22ln ba-≥e ; 又24e b >,所以24b >e ,所以ln 42a -≤ 即ln 8a ≥- ,8a -≥e , 又()0,1a ∈ ,所以)8,1a -⎡∈⎣e ; 故答案为:)8,1-⎡⎣e .8.(2023·江苏·南京市中华中学高三阶段练习)若关于x 的不等式()()ee ln mxmx m x x mx x x +≤+-恒成立,则实数m 的最小值为________ 【答案】e e 1- 【分析】将不等式两边同时除以m x ,进而转化为()()ln e eln m x x xx m x x -+≤+-,令()e x f x x =+,进而将原不等式转化为()()()ln f x f m x x ≤-恒成立,再根据单调性转化为ln xm x x≥-恒成立,进而构造函数()()0ln xg x x x x=>-,求导分析最大值即可. 【详解】∵0x >,∴不等式两边同时除以mx ,得:()e e ln mxxm x m x x x+≤+-∴()1lne eln mmx xx x m x x ++≤+- ∴()ln e eln x mx m xx m x x -+≤+- ∴()()ln e eln m x x xx m x x -+≤+- ①令()e xf x x =+,可知()f x 单调递增.①式等价于()()()ln f x f m x x ≤-恒成立 ∴()ln x m x x ≤-恒成立.构造()()ln 0x x x x ϕ=->,则()1x x xϕ-'=,故当()0,1x ∈时()0x ϕ'<, 当()1,x ∈+∞时()0x ϕ'>,所以()()ln 0x x x x ϕ=->在1x =时取得最小值. 即()()ln 010x x x ϕϕ=-≥=>,∴ln 0x x -> ∴ln xm x x≥-恒成立 令()()0ln xg x x x x=>- ∴()g x '()()221ln 11ln ln ln x x x x x x x x x ⎛⎫--- ⎪-⎝⎭==-- ∴当()0e x ∈,时,()0g x '>,∴()g x 单调递增;当()e x +∞,时,()0g x '< ∴()g x 单调递减; ∴()g x 的最大值为()e e e 1g =- ∴ee 1m ≥-,故实数m 的最小值为e e 1-. 故答案为:e e 1- 【点睛】关键点点睛:本题关键是将已知不等式转化为()()ln e eln m x x xx m x x -+≤+-,构造()e x f x x =+,进而将原不等式转化为()()()ln f x f m x x ≤-恒成立,再根据单调性即可得到.9.(2022·全国·长垣市第一中学高三开学考试(理))已知不等式e ln x a a x x x +≥+对任意()1,x ∈+∞恒成立,则正实数a 的取值范围是___________. 【答案】(]0,e【分析】将题目所给不等式进行变形,然后利用构造函数法,结合导数来求得a 的取值范围. 【详解】不等式e ln x a a x x x +≥+可变形为ln e ln e ln x a a x x x a x a x --=-. 因为0a >且1x >,所以ln 0a x >.令()e (0)u f u u u =->,则()e 10uf u ='->.所以函数()f u 在()0,∞+上单调递增.不等式ln e e ln x a x x a x -≥-等价于()()ln f x f a x ≥,所以ln x a x ≥. 因为1x >,所以ln x a x≤. 设()(1)ln xg x x x=>,则()2ln 1(ln )x g x x -'=.当()1,e x ∈时,()0g x '<,函数()g x 在()1,e 上单调递减; 当()e,x ∈+∞时,()0g x '>,函数()g x 在()e,+∞上单调递增. 所以()min ()e e g x g ==,所以0e a <≤. 故正实数a 的取值范围是(]0,e .10.(2022·重庆南开中学高三阶段练习)已知函数124e ,1()(2)2,1x ax a x f x x a x a x -⎧+->=⎨+--≤⎩,若关于x 的不等式()0≤f x 的解集为[)2,-+∞,则实数a 的取值范围是___________. 【答案】[]1,2【分析】将不等式()0≤f x 的解集为[)2,-+∞转化为21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-及当1x >时,14e 0x ax a -+-≤恒成立,从而可求得12a ≤≤.【详解】不等式()0≤f x 等价于21(2)20x x a x a ≤⎧⎨+--≤⎩或114e 0x x ax a ->⎧⎨+-≤⎩, 而()0≤f x 的解集为[)2,-+∞,故21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-且14e 0x ax a -+-≤对任意的1x >恒成立. 又21(2)20x x a x a ≤⎧⎨+--≤⎩即为()()120x x x a ≤⎧⎪⎨+-≤⎪⎩,若2a <-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x a x ≤⎧⎨≤≤-⎩,这与解为[]2,1-矛盾;若2a =-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x x ≤⎧⎨=-⎩,这与解为[]2,1-矛盾;若2a >-,则()()120x x x a ≤⎧⎪⎨+-≤⎪⎩即为12x x a ≤⎧⎨-≤≤⎩,因为21(2)20x x a x a ≤⎧⎨+--≤⎩的解为[]2,1-,故1a ≥.当1x >时,14e0x ax a -+-≤恒成立即为14e 1x a x -≤+恒成立, 令()14e ,11x s x x x -=>+,则()()()()111224e 14e 4e 011x x x x x s x x x ---+-'==>++, 故()s x 在()1,+∞为增函数,故()()02s x s >=, 故2a ≤. 综上,12a ≤≤ 故答案为:[]1,2.【点睛】思路点睛:与分段函数有关的不等式解的问题,应该就不同解析式对应的范围分类讨论,讨论时注意结合解析式的形式确定分类讨论还是参变分离.四、解答题11.(2022·全国·高一课时练习)已知函数,()()e 1e x xf x a -=++.(1)若0是函数()2=-y f x 的零点,求a 的值;(2)若对任意,()0x ∈+∞,不等式()1f x a ≥+恒成立,求a 的取值范围. 【答案】(1)0 (2)(,3]-∞【分析】(1)0是函数()2=-y f x 的零点代入可得a ;(2)由题意知e (1)e 1-++≥+xxa a 在(0,)+∞上恒成立,转化为2e e 1e 1x xxa -+≤-在(0,)+∞上恒成立,化简可得11≤++a t t,利用均值不等式求最值可得答案.(1)因为0是函数()2=-y f x 的零点,所以00e (1)e 20a -++-=,解得a =0; (2)由题意知e (1)e 1-++≥+x x a a 在(0,)+∞上恒成立,则()2e 1e e 1x x xa -≤-+,又因为,()0x ∈+∞,所以e 1x>,则2e e 1e 1x x xa -+≤-, 令e 1(0)-=>x t t ,则e 1x t =+,可得22(1)(1)1111+-++++≤==++t t t t a t t t t, 又因为111123t t t t ++≥+⋅=,当且仅当1t t =即1t =时,等号成立,所以3a ≤,即a 的取值范围是(],3-∞.12.(2021·河南·高三开学考试(文))已知函数()()()ln 12f x a x x a =+-∈R . (1)讨论函数()f x 的单调性;(2)若函数()3f x 在()1,+∞上恒成立,求证:2e a <.(注:3e 20≈)【答案】(1)当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减; (2)证明见解析.【分析】(1)对函数求导,讨论0a 和0a >两种情况,即可得出函数的单调性; (2)利用分类参数的方法,先得到23ln 1x a x +≤+,构造新的函数()()231ln 1x h x x x +=>+,用导数的方法求其最小值,即可证明结论成立.【详解】(1)由题知函数()f x 的定义域为()0,∞+,()22a a xf x x x-'=-= ①当0a ≤时,()0f x '<,此时函数()f x 在()0,∞+上单调递; ②当0a >时,令()0f x '>,得02ax <<;令()0f x '<,得2a x >, 所以函数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;综上,当0a 时,()f x 在()0,∞+上单调递;当0a >时,数()f x 在0,2a ⎛⎫ ⎪⎝⎭上单调递增;在,2a ⎛⎫+∞ ⎪⎝⎭上单调递减;(2)由题意,()()ln 123f x a x x =+-在()1,+∞上恒成立, 可化为23ln 1x a x +≤+在()1,x ∈+∞上恒成立, 设()()231ln 1x h x x x +=>+, 则()()()()()22132ln 1232ln ln 1ln 1x x x x x h x x x +-+⨯-'==++设()()32ln 1x x x x ϕ=->,则()2230x x xϕ'=+>, 所以()x ϕ在()1,+∞上单调递增,又()3ln16322ln 2022ϕ-=-=<,()3e 20eϕ=-> 所以方程()0h x '=有且只有一个实根0x ,且02e x <<,0032ln x x =, 所以在()01,x 上,()0h x '<,()h x 单调递减, 在()0,x +∞上,()0h x '>,()h x 单调递增, 所以函数()h x 的最小值为()000000232322e 3ln 112x x h x x x x ++===<++, 从而022e a x ≤<. 【点睛】思路点睛:求解不等式在给定区间内恒成立求参数的问题时,优先考虑分离参数的方法,分离出所求参数,构造新的函数,利用导数的方法求解函数的最值,进而即可求解.13.(2022·云南省下关第一中学高三开学考试)已知函数()ln (1)f x x x a x a =-++. (1)求函数()f x 的极值;(2)若不等式(1)()(2)e x f x x a a -≤--+对任意[1,)x ∈+∞恒成立,求实数a 的取值范围. 【答案】(1)极小值为e a a -;无极大值 (2)a 的取值范围为(,0]-∞【分析】(1)先判断函数定义域,再求导结合函数单调性求出极值即可;(2)对函数进行同构变形,令()(1)e x g x x a =--,则(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立,首先可以证明0ln 1x x ≤≤-对[1,)x ∈+∞恒成立,原题转化为求()g x 在[0,)+∞上单调递增时a 的取值范围即可. (1)由题意得:()ln (1)f x x x a x a =-++,,()0x ∈+∞, 所以()ln f x x a '=-,令()0f x '=,解得e (0,)a x =∈+∞,当0e a x <<时()0f x '<;当e a x >时,()0f x '>.所以()f x 在()0,e a 上单调递减,在()e ,a+∞上单调递增. 所以()f x 有极小值,为()e e a af a =-;无极大值.(2)由已知得,(1)ln (1)(2)e x x x a x x a --+≤--对任意[1,)x ∈+∞恒成立, 即ln (1)(ln 1)e [(1)1]e x x x a x a ---≤---对任意[1,)x ∈+∞恒成立, 令()(1)e x g x x a =--,则(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立, 下证:0ln 1x x ≤≤-对任意[1,)x ∈+∞恒成立, 令()ln (1)h x x x =--,[1,)x ∈+∞. 则()10xh x x-'=≤在[1,)+∞上恒成立,且仅当1x =时取"=". 所以()h x 在[1,)+∞上单调递减,()(1)0h x h ≤=, 即0ln 1x x ≤≤-,[1,)x ∈+∞所以(ln )(1)g x g x ≤-对任意[1,)x ∈+∞恒成立,只需()g x 在[0,)+∞上单调递增,即()()e 0xg x x a '=-≥在[0,)+∞上恒成立,即a x ≤在[0,)+∞上恒成立, 所以0,a ≤即a 的取值范围为(,0]-∞.【点睛】导数求参问题要善于运用转化的手法,本题先运用同构方法对原不等式变形,最终转化为函数单调性问题,结合函数的单调性与导数的关系,即可解答.14.(2022·甘肃定西·高二开学考试(理))已知函数()ln f x x x =,()23g x x ax =-+-(1)求()f x 在()()e,e f 处的切线方程(2)若存在[]1,e x ∈时,使()()2f x g x ≥恒成立,求a 的取值范围. 【答案】(1)2e y x =- (2)32eea【分析】(1)求出函数()f x 的导函数,确定切线的斜率,即可求()f x 在()()e,e f 处的切线方程;(2)先把不等式()()2f x g x ≥成立转化为32ln a x x x≤++成立,设32ln x x xx,[]1,e x ∈,利用导函数求出()x ϕ在[]1,e x ∈上的最大值,即可求实数a 的取值范围.(1)由()ln f x x x =,可得()ln 1f x x '=+, 所以切线的斜率()e 2k f '==,()e e f =.所以()f x 在()()e,e f 处的切线方程为()e 2e y x -=-,即2e y x =-; (2) 令20l 223n h x xf xg x x ax x ,则max 32ln a x x x ⎡⎤≤++⎢⎥⎣⎦,令32ln x x xx ,[]1,e x ∈, 在[]1,e x ∈上,2130x xxx ,()x ϕ∴在[]1,e 上单调递增,max3e 2e +ex , 32eea. 15.(2016·四川·高考真题(理))设函数f (x )=ax 2-a -ln x ,其中a ∈R. (I )讨论f (x )的单调性;(II )确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数). 【答案】(I ) 见解析(II ) 1[,)2a ∈+∞.【详解】试题分析:本题考查导数的计算、利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.第(Ⅰ)问,对()f x 求导,再对a 进行讨论,从而判断函数()f x 的单调性;第(Ⅱ)问,利用导数判断函数的单调性,从而证明结论. 试题解析:(Ⅰ)2121()2(0).ax f x ax x x x --=>'=0a ≤当时,()'f x <0,()f x 在0+∞(,)内单调递减. 0a >当时,由()'f x =0,有12x a=. 此时,当x ∈10,)2a(时,()'f x <0,()f x 单调递减; 当x ∈1+)2a(,∞时,()'f x >0,()f x 单调递增. (Ⅱ)令()g x =111ex x --,()s x =1e x x --.则()s x '=1e 1x --. 而当1x >时,()s x '>0,所以()s x 在区间1+)∞(,内单调递增. 又由(1)s =0,有()s x >0, 从而当1x >时,()f x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<.故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >. 当102a <<时,12a>1. 由(Ⅰ)有1()(1)02f f a <=,从而1()02g a>, 所以此时()f x >()g x 在区间1+)∞(,内不恒成立. 当12a ≥时,令()()()(1)h x f x g x x =-≥, 当1x >时,3212222111112121()20xx x x x h x ax e x x x x x x x x --+-+=-+->-+-=>>', 因此,()h x 在区间(1,)+∞单调递增.又因为(1)=0h ,所以当1x >时,()()()0h x f x g x =->,即()()f x g x >恒成立. 综上,1[,)2a ∈+∞.【考点】导数的计算,利用导数求函数的单调性,解决恒成立问题【名师点睛】本题考查导数的计算,利用导数求函数的单调性,解决恒成立问题,考查学生的分析问题、解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 的极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到,有一定的难度.16.(2020·河南开封市·高三一模(理))已知函数()()ln 0af x ax x a =>.(1)当1a =时,求曲线()y f x =在x e =处的切线方程; (2)若()xf x xe ≤对于任意的1x >都成立,求a 的最大值.【答案】(1)2y x e =-;(2)最大值为e . 【解析】(1)先由1a =,得到()ln f x x x =,对其求导,根据导数的几何意义,即可求出切线方程;(2)先由不等式恒成立,得到ln ln a a x x x x e e ≤⋅,构造函数()ln g x x x =,利用导数的方法判定其单调性,得到a x x e ≤对于任意的1x >都成立,分离参数,得到ln xa x≤对于任意的1x >都成立,再由导数的方法求出ln xx的最小值,即可得出结果. 【详解】(1)当1a =时,()ln f x x x =,得()ln 1f x x '=+, 则()f e e =,()2f e '=,所以()y f x =在x e =处的切线方程为:2y x e =-. (2)当0a >且1x >时,由于()ln ln ln ln xaxaaxaaxxf x xe ax x xe x x xe x x e e ≤⇔≤⇔≤⇔≤⋅, 构造函数()lng x x x =,得()ln 10g x x '=+>在1x >上恒成立,所以()ln g x x x =在()1,+∞上单调递增,()()()ln ln x a a x x a x f x xe x x e e g x g e ≤⇔≤⋅⇔≤,由于()xf x xe ≤对任意的1x >都成立,又1a x >,e 1x >,再结合()g x 的单调性知道:。

高中数学人教版 必修五 数列经典例题 高考题(附黄冈解析答案)

高中数学人教版 必修五 数列经典例题 高考题(附黄冈解析答案)

黄冈经典例题高考题(附答案,解析)等差数列例 1、在等差数列{a n}中:1、若a1-a4-a8-a12+a15=2,则a3+a13=___________.2、若a6=5,a3+a8=5,则a10=___________.3、若a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9=___________.例 2、已知数列{a n}的通项,试问该数列{a n}有没有最大项?若有,求最大项和最大项的项数,若没有,说明理由.例 3、将正奇数1,3,5,7,……排成五列,(如下图表),按图表的格式排下去,2003所在的那列,从左边数起是第几列?第几行?1 3 5 715 13 11 917 19 21 2331 29 27 25…………例 4、设f(x)=log2x-log x4(0<x<1).又知数列{a n}的通项an满足.(1)求数列{a n}的通项公式;(2)判断该数列{a n}的单调性.1.(2009年安徽卷)已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于()A.-1B.1C.3D.72.(2009年湖北卷)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图(1)中的1,3,6,10,……,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图(2)中的1,4,9,16,……这样的数为正方形数,下列数中既是三角形数又是正方形数的是()A.289 B.1024 C.1225 D.13783.(江西卷)在数列{a n}中,,则a n=( )A.2+lnnB.2+(n-1)lnnC.2+nlnnD.1+n+lnn等差数列前N项和、等比数列例 1 、在等差数列 {a n}中,(1)已知a15=33,a45=153,求a61;(2)已知S8=48,S12=168,求S4;(3)已知a1-a4-a8-a12+a15=2,求S15;(4)已知S7=42,S n=510,a n-3=45,求n.例 2 、已知数列 {a n}的前n项和,求数列{|a n|}的前n项和S n′.例 3 、设数列 {a n}的首项a1=1,前n项之和S n满足关系式:3tS n-(2t+3)S n-1=3t(t>0,n=2,3,4…)(1)求证:数列{a n}为等比数列;(2)设数列{a n}的公比为f(t),作数列{b n},使(n=2,3,4,…),求b n.(3)求和:b1b2-b2b3+b3b4-…+(-1)n+1b n b n+1.例 4、一个水池有若干出水量相同的水龙头,如果所有水龙头同时放水,那么 24分钟可注满水池,如果开始时,全部放开,以后每隔相等的时间关闭一个水龙头,到最后一个水龙头关闭时,恰好注满水池,而且最后一个水龙头放水的时间恰好是第一个水龙头放水时间的5倍,问最后关闭的这个水龙头放水多少时间?例 5 、在 XOY平面上有一个点列P1(a1,b1),P2(a2,b2),…,P n(a n,b n),…,对每个自然数n,点P n位于函数y=2000(0<a<10)的图象上,且点P n,点(n,0)与点(n+1,0)构成一个以P n为顶点的等腰三角形. (1)求点P n的纵坐标b n的表达式;(2)若对每个自然数n,以b n,b n+1,b n+2为边长能构成一个三角形,求a的取值范围;(3)设B n=b1·b2·…·b n(n∈N*).若a取(2)中确定的范围内的最小整数,求数列{B n}的最大项的项数.1.(2009年宁夏、海南卷)等差数列{a n}的前n项和为S n,已知,,则m=()A.38B.20C.10D.92.(2009年全国1卷)设等差数列{a n}的前n项和为S n,若S9=72,则=_________.3.(2009年福建卷)等比数列中,已知.(1)求数列的通项公式;(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和.等比数列前N项和、数列的应用例 1 、 {a n} 为等差数列(d≠0) , {a n} 中的部分项组成的数列恰为等比数列,且 k1=1 ,k2=5 , k3=17 ,求 k1+k2+k3+……+k n的值 .例 2、已知数列 {a n} 满足条件: a1=1 , a2=r(r ﹥ 0) 且 {a n·a n+1} 是公比为 q(q ﹥ 0) 的等比数列,设 b n=a2n a2n(n=1,2, …… ).-1+(1)求出使不等式 a n a n+1+a n+1a n+2> a n+2 a n+3 (n ∈ N*) 成立的 q 的取值范围;(2)求 b n;(3)设,求数列的最大项和最小项的值 .例 3 、某职工年初向银行贷款 2万元用于购房,银行为了推行住房制度改革,贷款优惠的年利率为10%,按复利计算,若这笔贷款要求分10年等额还清,每年一次,并且从贷款后次年年初开始归还,问每年应还多少元?(精确到1元)例 4、在一次人才招聘会上,有 A、B两家公司分别开出它们的工资标准:A公司允诺第一年月工资为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资为2000元,以后每年月工资比上一年的月工资的基础上递增5%.设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?(3)在A公司工作比在B公司工作的月工资收入最多可以多多少元?(精确到1元)并说明理由.1.(2009年全国2卷)设等比数列{a n}的前n项和为S n,若,则=___________.2.(2009年北京卷)若数列满足:,则___________;前8项的和___________.(用数字作答)3.(2009年辽宁卷)等比数列{a n}的前n 项和为S n,已知,,成等差数列.(1)求{a n}的公比q;(2)若a1-a3=3,求S n.答案&解析等差数列例一分析:利用等差数列任两项之间的关系:am =an+(m-n)d以及“距首末两端等距离两项的和相等”的性质可简化解答过程.解:,故 5=10-d,∴ d=5.故 a10=a6+4d=5+4×5=25.例二分析:考察数列{an}在哪一范围是递增数列,在哪些范围是递减数列,即可找到最大项.解:由有n≤9.而 an >0,∴当n≤9时,有an+1≥an.即 a1<a2<…<a9=a10>a11>a12>…∴数列{an}中存在最大项,最大项的项数为9或10,最大项为.点评:最大项与最大项的项数是不同概念,一个是项,一个是项号.例三分析:考虑到每行占有四个数,利用周期性进行处理,每一个周期占两行用 8个数,只须确定2003是第几个正奇数,问题就得到解决.解:设2003是第n个正奇数.则 2003=1+(n-1)·2.∴ n=1002.而 1002=8×125+2.∴ 2003在第251行第3列.例四分析:的方程,解方程并注意f(x)的定义域0<x<1即可得通项公式.依据条件列出关于an解:(1)又∵ f(x)定义域为0<x<1,(2)}为递增数列.则数列{an1. 答案:B2.答案:C解析:=n2,由此可排除D(1378不是平方数),将A、B、C选项根据图形的规律可知第n个三角形数为,第n个正方形数为bn代入到三角形数表达式中检验可知,符合题意的是C选项,故选C.3.答案:A等差数列前N项和、等比数列例1 解析:(1) a45 -a15=30d=153 -33 得 d=4 , a61=a45+16d=217.(2)方法 1 S4, S8-S4, S12-S8成等差数列,则 S4+(168 -48) =2(48 -S4)解得 S4= -8方法 2 成等差数列,则,∴ d=2.故.则 S4= -8.(3)∵(4) S7=7a4=42 ∴ a4=6∴ n=20例二解析:∴ an=63 -3n≥0 有 n ≤ 21 误解一=误解二例三解析:(1)∵ n≥2 时∴ {an} 为等比数列 .(2)∵则 {bn } 为等差数列,而 b1=1.∴(3)∵. ∴当 n 为偶数时,当 n 为奇数时例四解析:设有 n 个水龙头,每个水龙头放水时间依次为 x1, x2, x3,…, xn,则数列 {xn} 为等差数列且每个水龙头 1 分钟放水池水,故最后关闭的水龙头放水时间为 40 分钟 .例五解析:(1)∵.(2)∵ 0<a<10 ,则 0<.要使 bn , bn+1, bn+2为边能构成三角形,(3)故{B n} 中最大项的项数为n=20.1.答案:C解析:}是等差数列,所以,由,得:2-=0,所以=2,又,因为{an即=38,即(2m-1)×2=38,解得m=10,故选C.2.答案:24解析:}是等差数列,由,得,∵{an.3.解析:(1)设的公比为,由已知得,解得..(2)由(1)得,,则,.设的公差为,则有,解得.从而.所以数列的前项和.等比数列前N项和、数列的应用例一解答:设公比为 q ,例二解答:(1)由题意得 rq n-1+rq n> rq n+1.由题设 r ﹥ 0,q ﹥ 0 ,故上式 q2-q-1﹤0 ,(2)因为,所以,b1=1+r≠0 ,所以 {bn} 是首项为 1+r ,公比为 q 的等比数列,从而 bn=(1+r)q n-1.(3)由(2)知 bn=(1+r)q n-1,从上式可知当 n-20.2 > 0 ,即 n ≥ 21(n ∈ N) 时, cn随 n 的增大而减小,故①当 n-20.2<0 ,即 n ≤ 20(n ∈ N) 时, cn也随着 n 的增大而减小,故②综合①、②两式知对任意的自然数 n 有 c20≤ cn≤ c21故 {cn } 的最大项 c21=2.25 ,最小项 c20=-4.例三解一:我们把这类问题一般化,即贷款年利率为 a ,贷款额为 M ,每年等额归还 x 元,第 n 年还清,各年应付款及利息分别如下:第 n 次付款 x 元,这次欠款全还清 .第 n-1 次付款 x 元后,过一年贷款全部还清,因此所付款连利息之和为 x(1+a) 元;第 n-2 次付款 x 元后,过二年贷款全部还清,因此所付款连利息之和为 x(1+a)2元;……第一次付款 x 元后,一直到最后一次贷款全部还清,所付款连利息之和为 x(1+a)n-1元.将 a=0.1 , M=20000 , n=10 代入上式得故每年年初应还 3255 元.解二:设每年应还 x 元,第 n 次归还 x 元之后还剩欠款为 an元;则 a0=20000 , a1=20000(1+10%)-x ,an+1=an(1+10%)-x ,∴ an+1-10x=1.1(an-10x) ,故数列 { an-10x} 为等比数列.∴ an -10x= (a-10x)×1.1n,依题意有 a10=10x+(20000-10x) ×1.110=0 ..故每年平均应还 3255 元.例四解答:(1)此人在 A 、 B 公司第 n 年的月工资数分别为:an=1500+230 × (n-1)(n ∈ N*) ,bn=2000(1+5%)n-1(n ∈ N*) .(2)若该人在 A 公司连续工作 10 年,则他的工资收入总量为:12(a1+a2+…+a10)=304200 (元);若该人在 B 公司连续工作 10 年,则他的工资收入总量为:12(b1+b2+…+b10) ≈ 301869 (元).因此在 A 公司收入的总量高些,因此该人应该选择 A 公司 .(3)问题等价于求 Cn =an-bn=1270+230n-2000×1.05n-1(n ∈ N*) 的最大值 .当 n ≥ 2 时, Cn -Cn-1=230-100×1.05n-2,当 Cn -Cn-1> 0 ,即 230-100×1.05n-2> 0 时, 1.05n-2<2.3 ,得 n<19.1,因此,当 2 ≤ n ≤ 19 时, Cn-1<Cn;于是当 n ≥ 20 时, Cn≤ Cn-1.∴ C19=a19-b19≈ 827 (元) .即在 A 公司工作比在 B 公司工作的月工资收入最多可以多827 元.1.答案:3解析:设等比数列的公比为q.当q=1时,.当q≠1时,由.2. 答案:16;255解析:依题知数列{a}是首项为1,且公比为2的等比数列,n.3. 解析:(1)依题意有.由于,故.又,从而.(2)由已知可得.故.从而.。

高中数学经典高考难题集锦(解析版)

高中数学经典高考难题集锦(解析版)

2015年10月18日姚杰的高中数学组卷一.解答题(共10小题)1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明多边形EACB的面积是定值,并求这个定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;(Ⅱ)求S的最大值,并求取得最大值时k的值.3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.4y轴上,且过点(2,1).M,N,当∠MON为钝角5M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆(:((3)解不等式|2x﹣1|<|x|+1.6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣直线l与直线相交于N,与圆C相交于P,Q两点,M(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y轴上且与圆C外切,圆D与y轴交于A、B两点,定点P的坐标为(﹣3,0).(1)若点D(0,3),求∠APB的正切值;(2)当点D在y轴上运动时,求∠APB的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P(0,2)且斜率为k 的直线与圆Q相交于不同的两点A,B.(Ⅰ)求k的取值范围;(Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.9.如图,已知圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.解答题(共10小题)1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明多边形EACB的面积是定值,并求这个定值;)证明:点(是直角坐标系原点,即E(0,0).的方程是.则.知,圆心C在Rt△AEB斜边AB上,其面积的垂直平分线,,2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x+y=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;的距离为(弦长面积(﹣(Ⅱ)令,∴t=时,时,的距离为.求该圆的方程.轴所得的弦长为的距离为,所以=由此有或解方程组得或,于是4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角(Ⅱ)由直线与圆相切可得.把直线方程代入抛物线方程并整理,由的范围.利用根与系数的关系及,求得直线的距离,从而求得,由此函数在()单调递增,故有因为直线与圆相切,所以..到直线的距离为,易证在(,故不存在直线,当∠5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.(2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数;大于等于,小于解得,所以的逆矩阵为,则?=,即,,解得的逆矩阵为=<≥[,时,原不等式变为:)6.(2009?东城区一模)如图,已知定圆C:x+(y﹣3)=4,定直线m:x+3y+6=0,过A(﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.由于弦长t=.再用两根直线方程联立,去找.从而确定t=(Ⅰ)由已知,由于.由,解得,,)则,,故.即,,=.又由,.t=.,得(由相交弦定理得7.(2009?天河区校级模拟)已知圆C:(x+4)+y=4,圆D的圆心D在y轴上且与圆C外切,圆D与y轴交于A、B两点,定点P的坐标为(﹣3,0).(1)若点D(0,3),求∠APB的正切值;(2)当点D在y轴上运动时,求∠APB的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不,==.由,得,即此时有故存在8.(2007?海南)在平面直角坐标系xOy中,已知圆x+y﹣12x+32=0的圆心为Q,过点P(0,2)且斜率为k 的直线与圆Q相交于不同的两点A,B.(Ⅰ)求k的取值范围;(Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.的表达式,进而根据以与共线可推知(解得,则②所以共线等价于(.由(Ⅰ)知9.如图,已知圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l向右移动时,取弧AC 的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.的长为,半径,考虑,∴)DC=sin,∴∴.t=y′x?x′t=时,的速度.,因为,代入上式得整理即可.要注意范围.的中点,所以,代入上式得两端乘以,得)这是一个一点为中心,以﹣;最值为:)②根与系数的关系.若△≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1?x2=;③二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;例题:y=2x2+x﹣3那么由2>0,可知抛物线开口向上,对称轴为x=﹣,最小值为f(﹣)=﹣,;△=1+24=25>0,故方程2x2+x ﹣3=0有两个根,其满足x1+x2=﹣;x1?x2=﹣;另外,方程可以写成(y+)=2(x+)2,当沿x轴向右,在向下平移时,就变成y=2x2;【命题方向】重点关注高中所学的抛物线的焦点、准线和曲线的平移.另外在解析几何当做要灵活运用韦达定理.2.向量的共线定理共线向量又叫平行向量,指的是方向相同或方向相反的向量.【定理】假设向量=(1,2),向量=(2,4),则=2,那么向量与向量平行,且有1×4﹣2×2=0,即当向量=(x1,y1)与向量=(x2,y2)平行时,有x1?y2﹣x2?y1=0,这也是两向量平行的充要条件.【例题解析】例:设与是两个不共线的向量,且向量与共线,则λ=﹣0.5.解;∵向量与共线,∴存在常数k,使得=k()∴2=k.﹣1=λk解得,λ=﹣0.5故答案为﹣0.5.共线,就能得到含λ的等式,解出λ即可.3(±)=2?+2(﹣+﹣2③(≠(??①“mn=nm”类比得到“”②“(m+n)t=mt+nt”类比得到“()?=③“t≠0,mt=nt?m=n”类比得到“?”;④“|m?n|=|m|?|n|”类比得到“||=||?||”;⑤“(m?n)t=m(n?t)”类比得到“()?=”;⑥“”类比得到.以上的式子中,类比得到的结论正确的是①②.解:∵向量的数量积满足交换律,∴“mn=nm”类比得到“”,即①正确;∵向量的数量积满足分配律,∴“(m+n)t=mt+nt”类比得到“()?=”,∵向量的数量积不满足消元律,∴“t≠0,mt=nt?m=n”不能类比得到“?”,即③错误;∵||≠||?||,∴“|m?n|=|m|?|n|”不能类比得到“||=||?||”;即④错误;∵向量的数量积不满足结合律,∴“(m?n)t=m(n?t)”不能类比得到“()?=”,即⑤错误;∵向量的数量积不满足消元律,∴”即“””)?=”“|||?||,故“||=||?||”足结合律,故“(m?n)t=m(n?t)”不能类比得到“()?=”故”不能类比得到.【考点分析】本知识点应该所有考生都要掌握,这个知识点和三角函数联系比较多,也是一个常考点,题目相对来说也不难,所以是拿分的考点,希望大家都掌握.4.直线的一般式方程【直线的一般式方程】直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.5.轨迹方程【知识点的认识】1.曲线的方程和方程的曲线在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对(x,y)表示,这就是动点的坐标.当点按某种规律运动形成曲线时,动点坐标(x,y)中的变量x、y存在着某种制约关系,这种制约关系反映到代数中,就是含有变量x、y的方程.一般地,在直角坐标系中,如果某曲线C(看做适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程就叫做曲线的方程,这条曲线就叫做方程的曲线.2.求曲线方程的一般步骤(直接法)(1)建系设点:建立适当的直角坐标系,用(x,y)表示曲线上任一点M的坐标;(2)列式:写出适合条件p的点M的集合{M|p(M)};(3)代入:用坐标表示出条件p(M),列出方程f(x,y)=0;(4)化简:化方程f(x,y)=0为最简形式;(5)证明:证明以化简后的方程的解为坐标的点都是在曲线上的点【常用解法】(1)直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间的距离公式、点到直线的距离公式、夹角公式等)进行整理、化简.这种求轨迹方程的过程不需要特殊的技巧.(2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.关键是条件的转化,即转化为某一基本轨迹的定义条件.(3)相关点法:用所求动点P的坐标(x,y)表示已知动点M的坐标(x0,y0),即得到x0=f(x,y),y0=g(x,y),再将x0,y0代入M满足的条件F(x0,y0)=0中,即得所求.一般地,定比分点问题、对称问题可用相关→化简.(((612(①相交:d<r②相切:d=r③相离:d>r(2由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.7.直线和圆的方程的应用【知识点的知识】1、直线方程的形式:2、圆的方程:(1)圆的标准方程:(x﹣a)2+(y﹣b)2=r2(r>0),其中圆心C(a,b),半径为r.特别地,当圆心为坐标原点时,半径为r的圆的方程为:x2+y2=r2.其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0)其中圆心(﹣,﹣),半径r=.8.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:(1)y2=2px,焦点在x轴上,焦点坐标为F(,0),(p可为正负)(2)x2=2py,焦点在y轴上,焦点坐标为F(0,),(p可为正负)四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.(,)﹣﹣由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n 列矩阵,简称m×n矩阵.为表示这个数是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作这m×n个数称为矩阵A的元素,简称为元,数a ij位于矩阵的第i行第j列,称为矩阵的(i,j)元.以数a ij为(i,j)元的矩阵可简记作(a ij)或(a ij)m×n.矩阵A也记作A m×n.注意:①矩阵的记号是在数表外加上括弧,与行列式的记号(在数表外加上双竖线)是不同的,这是两个不同的概念.②矩阵的行数和列数不一定相等.2.二阶矩阵由四个数a,b,c,d排成的正方形数表称为二阶矩阵,其中称为矩阵的元素,矩阵通常用大写字母A,B,C,…或(aij)表示(其中i,j分别为元素aij所在的行和列).2.矩阵的乘法行矩阵[a11a12]与列矩阵的乘法规则为,二阶矩阵与列矩阵的乘法规则为=.矩阵乘法满足结合律,不满足交换律和消去律.10.绝对值不等式的解法【知识点的认识】绝对值不等式的解法数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a ﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.。

高中高考数学专题:抽象函数经典题型大全(含答案和解析)

高中高考数学专题:抽象函数经典题型大全(含答案和解析)

抽象函数一、求表达式方法 (2)1.换元法 (2)2.拼凑法 (2)3.待定系数法 (2)4.利用函数性质法 (3)5.方程组法 (3)5.赋值法 (3)二、抽象函数常见考点解法综述 (5)1.定义域问题 (5)2.求值问题 (5)3.值域问题 (5)4.奇偶性问题 (6)5单调性问题 (6)6.对称性问题 (7)7.求参数的取值范围 (7)8.解不定式 (7)9.周期问题 (7)三、抽象函数五类题型及解法 (9)1.线性函数型抽象函数 (9)2.指数函数型抽象函数 (10)3.对数函数型抽象函数 (11)4.幂函数型抽象函数 (12)5.三角函数型抽象函数 (13)四、巩固练习 (15)抽象函数问题综述-----含有函数记号“()f x ”有关问题解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。

现将常见解法及意义总结如下:一、求表达式方法1.换元法例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1ux u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 例2:已知+1)=x +2,则f(x)=____________.解:设t+1=t -1,x =(t -1)2,t≥1,代入原式有f(t)=(t -1)2+2(t -1)=t 2-1,故f(x)=x 2-1(x≥1).2.拼凑法在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例1:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()((3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1) 例2:已知+1)=x +2,则f(x)=____________. 解:+1)=x +2=+1)2-1,故f(x)=x 2-1(x≥1).3.待定系数法先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

高中数学经典高考难题集锦(解析版)(10)

高中数学经典高考难题集锦(解析版)(10)

2015年10月18日姚杰的高中数学组卷一.填空题(共17小题)1.(2014•永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.2.(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为.3.(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=;(2)S1+S2+…+S100=.4.(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是.5.(2012•河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为.6.(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.7.(2012•上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=.8.(2011•浙江)若数列中的最大项是第k项,则k=.9.(2010•天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=.10.(2013•湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为.11.(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=,((a n)+)+=.12.(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.13.(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为;第2009棵树种植点的坐标应为.14.(2008•天津)已知数列{a n}中,,则=.15.(2006•天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=.16.(2005•上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=0.1n(n∈N),当|f (a n)﹣2005|取得最小值时,n=.17.(2006•湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.二.解答题(共13小题)18.(2008•安徽)设数列{a n}满足a1=a,a n+1=ca n+1﹣c,n∈N*,其中a,c为实数,且c≠0 (Ⅰ)求数列{a n}的通项公式;(Ⅱ)设N*,求数列{b n}的前n项和S n;(Ⅲ)若0<a n<1对任意n∈N*成立,证明0<c≤1.19.(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.20.(2014•濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.21.(2014秋•渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c﹣.(Ⅰ)设c=,b n=,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.22.(2010•荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.23.(2010•安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.24.(2010•湖南)给出下面的数表序列:其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)25.(2010•湖北)已知数列{a n}满足:,a n a n+1<0(n≥1),数列{b n}满足:b n=a n+12﹣a n2(n≥1).(Ⅰ)求数列{a n},{b n}的通项公式(Ⅱ)证明:数列{b n}中的任意三项不可能成等差数列.26.(2009•广东)已知点(1,)是函数f(x)=a x(a>0,且a≠1)的图象上一点,等比数列{a n}的前n项和为f(n)﹣c,数列{b n}(b n>0)的首项为c,且前n项和S n满足S n﹣S n﹣1=(n≥2).(Ⅰ)求数列{a n}和{b n}的通项公式;(Ⅱ)若数列{}前n项和为T n,问满足T n>的最小正整数n是多少?27.(2009•江西)数列{a n}的通项a n=n2(cos2﹣sin2),其前n项和为S n.(1)求S n;(2)b n=,求数列{b n}的前n项和T n.28.(2009•重庆)已知,(Ⅰ)求b1,b2,b3的值;(Ⅱ)设c n=b n b n+1,S n为数列{c n}的前n项和,求证:S n≥17n;(Ⅲ)求证:.29.(2008•四川)设数列{a n}的前n项和为S n=2a n﹣2n,(Ⅰ)求a1,a4(Ⅱ)证明:{a n+1﹣2a n}是等比数列;(Ⅲ)求{a n}的通项公式.30.(2007•福建)等差数列{a n}的前n项和为S n,,.(1)求数列{a n}的通项a n与前n项和为S n;(2)设(n∈N+),求证:数列{b n}中任意不同的三项都不可能成为等比数列.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.填空题(共17小题)1.(2014•永川区校级学业考试)已知等差数列{a n}的公差d≠0,且a1,a3,a9成等比数列,则的值是.考点:等差数列的性质.专题:压轴题.分析:由a1,a3,a9成等比数列求得a1与d的关系,再代入即可.解答:解:∵a1,a3,a9成等比数列,∴(a1+2d)2=a1•(a1+8d),∴a1=d,∴=,故答案是:.点评:本题主要考查等差数列的通项公式及等比数列的性质.2.(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为12.考点:等比数列的前n项和;一元二次不等式的解法;数列的函数特性;等差数列的前n项和.专题:等差数列与等比数列.分析:设正项等比数列{a n}首项为a1,公比为q,由题意可得关于这两个量的方程组,解之可得数列的通项公式和a1+a2+…+a n及a1a2…a n的表达式,化简可得关于n的不等式,解之可得n的范围,取上限的整数部分即可得答案.解答:解:设正项等比数列{a n}首项为a1,公比为q,由题意可得,解之可得:a1=,q=2,故其通项公式为a n==2n﹣6.记T n=a1+a2+…+a n==,S n=a1a2…a n=2﹣5×2﹣4…×2n﹣6=2﹣5﹣4+…+n﹣6=.由题意可得T n>S n,即>,化简得:2n﹣1>,即2n﹣>1,因此只须n>,即n2﹣13n+10<0解得<n<,由于n为正整数,因此n最大为的整数部分,也就是12.故答案为:12点评:本题考查等比数列的求和公式和一元二次不等式的解法,属中档题.3.(2013•湖南)设S n为数列{a n}的前n项和,S n=(﹣1)n a n﹣,n∈N*,则(1)a3=﹣;(2)S1+S2+…+S100=.考点:数列的求和;数列的函数特性.专题:压轴题;等差数列与等比数列.分析:(1)把给出的数列递推式先分n=1和n≥2讨论,由此求出首项和n≥2时的关系式.对此关系式再分n为偶数和奇数分别得到当n为偶数和奇数时的通项公式,则a3可求;(2)把(1)中求出的数列的通项公式代入,n∈N*,则利用数列的分组求和和等比数列的前n项和公式可求得结果.解答:解:由,n∈N*,当n=1时,有,得.当n≥2时,.即.若n为偶数,则.所以(n为正奇数);若n为奇数,则=.所以(n为正偶数).所以(1).故答案为﹣;(2)因为(n为正奇数),所以﹣,又(n为正偶数),所以.则.,.则.….所以,S1+S2+S3+S4+…+S99+S100====.故答案为.点评:本题考查了数列的求和,考查了数列的函数特性,解答此题的关键在于当n为偶数时能求出奇数项的通项,当n为奇数时求出偶数项的通项,此题为中高档题.4.(2012•湖南)对于n∈N*,将n表示为n=+…+,当i=k时,a i=1,当0≤i≤k﹣1时,a i为0或1.定义b n如下:在n的上述表示中,当a0,a1,a2,…,a k中等于1的个数为奇数时,b n=1;否则b n=0.(1)b2+b4+b6+b8=3;(2)记c m为数列{b n}中第m个为0的项与第m+1个为0的项之间的项数,则c m的最大值是2.考点:数列的应用;数列的函数特性.专题:压轴题;新定义.分析:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,从而b2=1,b4=1,b6=0,b8=1,故可求b2+b4+b6+b8的值;(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,再进行分类讨论:当a2a1a0=000时,c m=2;当a2a1a0=001时,c m=0;当a2a1a0=010时,c m=1;当a2a1a0=011时,c m=0;当a2a1a0=100时,c m=2;当a2a1a0=101时,c m=0;当a0=0,前面有奇数个1时,c m=1;当a0=0,前面有偶数个1时,c m=2;当末位有奇数个1时,c m=1;当末位有偶数个1时,c m=0,由此可得c m的最大值.解答:解:(1)由题设定义可知,2=1×2,4=1×22,6=1×22+1×2,8=1×23,∴b2=1,b4=1,b6=0,b8=1∴b2+b4+b6+b8=3(2)设{b n}中第m个为0的项为b i,即b i=0,构造二进制数(i)10=(a k a k﹣1…a1a0)2,则a k a k﹣1…a1a0中1的个数为偶数,当a2a1a0=000时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=001时,b i+1=0,c m=0;当a2a1a0=010时,b i+1=1,b i+2=0,c m=1;当a2a1a0=011时,b i+1=0,c m=0;当a2a1a0=100时,b i+1=1,b i+2=1,b i+3=0,c m=2;当a2a1a0=101时,b i+1=0,c m=0;当a0=0,前面有奇数个1时,b i+1=1,b i+2=0,c m=1;当a0=0,前面有偶数个1时,b i+1=1,b i+2=1,b i+3=0,c m=2;当末位有奇数个1时,b i+1=1,b i+2=0,c m=1;当末位有偶数个1时,b i+1=1,b i+2=0,c m=0;故c m的最大值为2.点评:对于新定义型问题,正确理解新定义传递的信息是解题的突破口.5.(2012•河北)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为1830.考点:数列递推式;数列的求和.专题:计算题;压轴题.分析:令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣2+a4n+16=b n+16可得数列{b n}是以16为公差的等差数列,而{a n}的前60项和为即为数列{b n}的前15项和,由等差数列的求和公式可求解答:解:∵,∴令b n+1=a4n+1+a4n+2+a4n+3+a4n+4,a4n+1+a4n+3=(a4n+3+a4n+2)﹣(a4n+2﹣a4n+1)=2,a4n+2+a4n+4=(a4n+4﹣a4n+3)+(a4n+3+a4n+2)=16n+8,则b n+1=a4n+1+a4n+2+a4n+3+a4n+4=a4n﹣3+a4n﹣2+a4n﹣1+a4n+16=b n+16∴数列{b n}是以16为公差的等差数列,{a n}的前60项和为即为数列{b n}的前15项和∵b1=a1+a2+a3+a4=10∴=1830点评:本题主要考查了由数列的递推公式求解数列的和,等差数列的求和公式的应用,解题的关键是通过构造等差数列6.(2012•上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),若a2010=a2012,则a20+a11的值是.考点:数列与函数的综合.专题:综合题;压轴题.分析:根据,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),可确定a1=1,,,a7=,,,利用a2010=a2012,可得a2010=(负值舍去),依次往前推得到a20=,由此可得结论.解答:解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:点评:本题主要考查数列的概念、组成和性质、同时考查函数的概念.理解条件a n+2=f(a n),是解决问题的关键,本题综合性强,运算量较大,属于中高档试题.7.(2012•上海)已知等差数列{a n}的首项及公差均为正数,令.当b k是数列{b n}的最大项时,k=1006.考点:数列与不等式的综合;等差数列的性质.专题:综合题;压轴题.分析:设,,由,根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012)=2(2a1006)=4a1006,由此能求出结果.﹣n解答:解:设,,∵,∴根据基本不等式(x+y)2=x2+y2+2xy≤x2+y2+x2+y2=2(x2+y2),得b n2=()2≤2(a n+a2012﹣n)=2(2a1006)=4a1006,当且仅当a n=a2012﹣n时,b n取到最大值,此时n=1006,所以k=1006.故答案为:1006.点评:本题考查数列与不等式的综合应用,具体涉及到等差数列的通项公式、基本不等式的性质等基本知识,解题时要认真审题,仔细解答,注意合理地进行等价转化.8.(2011•浙江)若数列中的最大项是第k项,则k=4.考点:数列的函数特性.专题:点列、递归数列与数学归纳法.分析:求数列的最大值,可通过做差或做商比较法判断数列的单调性处理.解答:解:令,假设=≥1,则2(n+1)(n+5)≥3n(n+4),即n2≤10,所以n<4,又n是整数,即n≤3时,a n+1>a n,当n≥4时,a n+1<a n,所以a4最大.故答案为:4.点评:本题考查数列的最值问题,利用做差或做商比较法判断数列的单调性是求数列最值的常用方式.9.(2010•天津)设{a n}是等比数列,公比,S n为{a n}的前n项和.记.设为数列{T n}的最大项,则n0=4.考点:等比数列的前n项和;等比数列的性质.专题:等差数列与等比数列.分析:首先用公比q和a1分别表示出S n和S2n,代入T n易得到T n的表达式.再根据基本不等式得出n0解答:解:==因为≧8,当且仅当=4,即n=4时取等号,所以当n0=4时T n有最大值.故答案为:4.点评:本题主要考查了等比数列的前n项和公式与通项及平均值不等式的应用,属于中等题.本题的实质是求T n取得最大值时的n值,求解时为便于运算可以对进行换元,分子、分母都有变量的情况下通常可以采用分离变量的方法求解.10.(2013•湖南)对于E={a1,a2,….a100}的子集X={a i1,a i2,…,a ik},定义X的“特征数列”为x1,x2…,x100,其中x i1=x i2=…x ik=1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,1,0,0,…,0(1)子集{a1,a3,a5}的“特征数列”的前3项和等于2;(2)若E的子集P的“特征数列”P1,P2,…,P100满足p1=1,p i+p i+1=1,1≤i≤99;E的子集Q的“特征数列”q1,q2,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,则P∩Q的元素个数为17.考点:数列的求和;交集及其运算.专题:压轴题;新定义.分析:(1)利用“特征数列”的定义即可得出;(2)利用“特征数列”的定义分别求出子集P,Q的“特征数列”,再找出相同“1”的个数即可.解答:解:(1)子集{a1,a3,a5}的“特征数列”为:1,0,1,0,1,0,…,0.故前三项和等于1+0+1=2;(2)∵E的子集P的“特征数列”P1,P2,…,P100满足P i+P i+1=1,1≤i≤99,∴P的特征数列为1,0,1,0,…,1,0.其中奇数项为1,偶数项为0.则P={a1,a3,a5,…,a99}有50个元素,又E的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q j+q j+1+q j+2=1,1≤j≤98,可知:j=1时,q1+q2+q3=1,∵q1=1,∴q2=q3=0;同理q4=1=q7=…=q3n﹣2.∴子集Q的“特征数列”为1,0,0,1,0,0,1,…,1,0,0,1.则Q={a1,a4,a7,…,a100}则P∩Q的元素为a1,a7,a13,…,a91,a97.∵97=1+(17﹣1)×6,∴共有17相同的元素.故答案分别为2,17.点评:正确理解“特征数列”的定义是解题的关键.11.(2010•湖南)若数列{a n}满足:对任意的n∈N﹡,只有有限个正整数m使得a m<n成立,记这样的m的个数为(a n)+,则得到一个新数列{(a n)+}.例如,若数列{a n}是1,2,3…,n,…,则数列{(a n)+}是0,1,2,…,n﹣1…已知对任意的n∈N+,a n=n2,则(a5)+=2,((a n)+)+=n2.考点:数列的应用.专题:计算题;压轴题;新定义.分析:根据题意,若a m<5,而a n=n2,知m=1,2,∴(a5)+=2,由题设条件可知((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,于是猜想:((a n)+)+=n2.解答:解:∵a m<5,而a n=n2,∴m=1,2,∴(a5)+=2.∵(a1)+=0,(a2)+=1,(a3)+=1,(a4)+=1,(a5)+=2,(a6)+=2,(a7)+=2,(a8)+=2,(a9)+=2,(a10)+=3,(a11)+=3,(a12)+=3,(a13)+=3,(a14)+=3,(a15)+=3,(a16)+=3,∴((a1)+)+=1,((a2)+)+=4,((a3)+)+=9,((a4)+)+=16,猜想:((a n)+)+=n2.答案:2,n2.点评:本题考查数列的性质和应用,解题时要认真审题.仔细解答.12.(2010•辽宁)已知数列{a n}满足a1=33,a n+1﹣a n=2n,则的最小值为.考点:数列递推式;基本不等式在最值问题中的应用.专题:计算题;压轴题.分析:由累加法求出a n=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.解答:解:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为点评:本题考查了递推数列的通项公式的求解以及构造函数利用导数判断函数单调性,考查了同学们综合运用知识解决问题的能力.13.(2008•北京)某校数学课外小组在坐标纸上,为学校的一块空地设计植树方案如下:第k棵树种植在点P k(x k,y k)处,其中x1=1,y1=1,当k≥2时,T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案,第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).考点:数列的应用.专题:压轴题;规律型.分析:由题意可知,数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…;数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…由此入手能够得到第6棵树种植点的坐标和第2009棵树种植点的坐标.解答:解:∵组成的数列为0,0,0,0,1,0,0,0,0,1,0,0,0,0,1…,k=2,3,4,5,…一一代入计算得数列x n为1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,…即x n的重复规律是x5n+1=1,x5n+2=2,x5n+3=3,x5n+4=4,x5n=5.n∈N*.数列{y n}为1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,…即y n的重复规律是y5n+k=n,0≤k<5.∴由题意可知第6棵树种植点的坐标应为(1,2);第2009棵树种植点的坐标应为(4,402).点评:本题考查数列的性质和应用,解题时要注意创新题的灵活运用.14.(2008•天津)已知数列{a n}中,,则=.考数列的求和;极限及其运算.点:计算题;压轴题.专题:分首先由求a n可以猜想到用错位相加法把中间项消去,即析:可得到a n的表达式,再求极限即可.解解:因为答:所以a n是一个等比数列的前n项和,所以,且q=2.代入,所以.所以答案为此题主要考查数列的求和问题,用到错位相加法的思想,需要注意.点评:15.(2006•天津)设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn,则=1.考点:数列的极限.专题:综合题;压轴题.分析:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),则能推导出S n=,由此能导出.解答:解:设函数,点A0表示坐标原点,点A n(n,f(n))(n∈N*),若向量=,θn是与的夹角,(其中),设S n=tanθ1+tanθ2+…+tanθn=,则=1.点评:本题考查数列的极限和运算,解题时要注意三角函数的灵活运用.16.(2005•上海)已知函数f(x)=2x+log2x,数列{a n}的通项公式是a n=0.1n(n∈N),当|f (a n)﹣2005|取得最小值时,n=110.考点:数列的函数特性;等差数列的通项公式.专题:压轴题.分析:要使|f(a n)﹣2005|取得最小值,可令|f(a n)﹣2005|=0,即20.1n+log20.1n=2005,对n值进行粗略估算可得答案.解答:解:|f(a n)﹣2005|=|f(0.n)﹣2005|=|20.1n+log20.1n﹣2005|,(1)要使(1)式取得最小值,可令(1)式等于0,即|20.1n+log20.1n﹣2005|=0,20.1n+log20.1n=2005,又210=1024,211=2048,则当n=100时,210=1024,log210≈3,(1)式约等于978,当n=110时,211≈2048,log211≈3,(1)式约等于40,当n<100或n>110式(1)式的值会变大,所以n=110,故答案为:110.点评:本题考查数列的函数特性、指数函数对数函数的性质,考查学生灵活运用知识解决问题的能力.17.(2006•湖北)将杨辉三角中的每一个数C n r都换成,就得到一个如下图所示的分数三角形,成为莱布尼茨三角形,从莱布尼茨三角形可看出,其中x=r+1,令,则=.考数列的求和;极限及其运算.点:计算题;压轴题;探究型.专题:分析:通过观察可得=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕=1﹣+﹣=+﹣.进而可得.解:第一个空通过观察可得.解答:==(1+﹣1)+()+(+﹣)+(+﹣)+…+(+﹣)+(+﹣)=(1+++…+)+(++++…+)﹣2(++…+)=〔(1+++…+)﹣(++…+)〕+〔(++++…+)﹣(++…+)〕 =1﹣+﹣ =+﹣所以=.答案:.点评: 本题考查数列的性质和应用,解题时要认真审题,仔细解答.二.解答题(共13小题) 18.(2008•安徽)设数列{a n }满足a 1=a ,a n+1=ca n +1﹣c ,n ∈N*,其中a ,c 为实数,且c ≠0 (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设N*,求数列{b n }的前n 项和S n ;(Ⅲ)若0<a n <1对任意n ∈N*成立,证明0<c ≤1.考点:数列的求和;数列的函数特性. 专题:压轴题. 分析: (Ⅰ)需要观察题设条件进行恒等变形,构造a n ﹣1=c (a n ﹣1﹣1)利用迭代法计算出数列的通项公式;(Ⅱ)由(Ⅰ)的结论求出数列的通项,观察知应用错位相减法求和;(Ⅲ)由(Ⅰ)的结论知a n =(a ﹣1)c n ﹣1+1.接合题设条件得出,.然后再用反证法通过讨论得出c 的范围.解答: 解:(Ⅰ)由题设得:n ≥2时,a n ﹣1=c (a n ﹣1﹣1)=c 2(a n ﹣2﹣1)=…=c n ﹣1(a 1﹣1)=(a﹣1)c n ﹣1. 所以a n =(a ﹣1)c n ﹣1+1.当n=1时,a 1=a 也满足上式.故所求的数列{a n }的通项公式为:a n =(a ﹣1)c n ﹣1+1. (Ⅱ)由(Ⅰ)得:.,∴.∴所以∴.(Ⅲ)证明:由(Ⅰ)知a n =(a ﹣1)c n ﹣1+1.若0<(a ﹣1)c n ﹣1+1<1,则0<(1﹣a )c n ﹣1<1. 因为0<a 1=a <1,∴.由于c n ﹣1>0对于任意n ∈N +成立,知c >0. 下面用反证法证明c ≤1.假设c >1.由函数f (x )=c x 的图象知,当n →+∞时,c n ﹣1→+∞,所以不能对任意n ∈N +恒成立,导致矛盾.∴c ≤1.因此0<c ≤1点评: 本题主要考查数列的概念、数列通项公式的求法以及不等式的证明等;考查运算能力,综合运送知识分析问题和解决问题的能力.第三问中特值法与反证法想接合,对做题方向与方法选取要求较高.是一个技能性较强的题.19.(2011•广东)设b >0,数列{a n}满足a 1=b ,a n =(n ≥2)(1)求数列{a n }的通项公式;(2)证明:对于一切正整数n ,2a n ≤b n+1+1.考点: 数列递推式;数列与不等式的综合. 专题: 等差数列与等比数列. 分析: (1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的. 解答:解:(1)∵(n ≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,点评:本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.20.(2014•濮阳二模)设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.考点:等差数列的通项公式;等比数列的通项公式;数列的求和.专题:等差数列与等比数列.分析:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,根据等比数列和等差数列的通项公式,联立方程求得d和q,进而可得{a n}、{b n}的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n项和S n.解答:解:(Ⅰ)设{a n}的公差为d,{b n}的公比为q,则依题意有q>0且解得d=2,q=2.所以a n=1+(n﹣1)d=2n﹣1,b n=q n﹣1=2n﹣1.(Ⅱ),,①S n =,②①﹣②得S n=1+2(++…+)﹣,则===.点本题主要考查等差数列的通项公式和用错位相减法求和.评:21.(2014秋•渝中区校级月考)已知数列{a n}中,a1=1,a n+1=c ﹣.(Ⅰ)设c=,b n =,求数列{b n}的通项公式;(Ⅱ)求使不等式a n<a n+1<3成立的c的取值范围.考点:数列递推式;数学归纳法.专题:综合题;压轴题.分析:(1)令c=代入到a n+1=c ﹣中整理并令b n =进行替换,得到关系式b n+1=4b n+2,进而可得到{}是首项为﹣,公比为4的等比数列,先得到{}的通项公式,即可得到数列{b n}的通项公式.(2)先求出n=1,2时的c的范围,然后用数学归纳法分3步进行证明当c>2时a n <a n+1,然后当c>2时,令α=,根据由可发现c >时不能满足条件,进而可确定c的范围.解答:解:(1),,即b n+1=4b n +2,a1=1,故所以{}是首项为﹣,公比为4的等比数列,,(Ⅱ)a1=1,a2=c﹣1,由a2>a1得c>2.用数学归纳法证明:当c>2时a n<a n+1.(ⅰ)当n=1时,a2=c﹣>a1,命题成立;(ii)设当n=k时,a k<a k+1,则当n=k+1时,故由(i)(ii)知当c>2时,a n<a n+1当c>2时,令α=,由当2<c≤时,a n<α≤3当c>时,α>3且1≤a n<α于是α﹣a n+1≤(α﹣1),当n>因此c>不符合要求.所以c的取值范围是(2,].点评:本小题主要考查数列的通项公式、等比数列的定义、递推数列、不等式等基础知识和基本技能,同时考查分析、归纳、探究和推理论证问题的能力,在解题过程中也渗透了对函数与方程思想、化归与转化思想的考查.22.(2010•荔湾区校级模拟)设{a n}是由正数组成的等比数列,S n是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.考点:等比数列的前n项和;对数的运算性质;不等式的证明.专题:计算题;证明题;压轴题.分析:(1)设{a n}的公比为q,当q=1时根据S n•S n+2﹣S n+12求得结果小于0,不符合;当q≠1时利用等比数列求和公式求得S n•S n+2﹣S n+12<0,进而推断S n•S n+2,<S n+12.根据对数函数的单调性求得lg(S n•S n+2)<lgS n+12,原式得证.(2)要使.成立,则有进而分两种情况讨论当q=1时根据(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2求得﹣a12<0不符合题意;当q≠1时求得(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2=﹣a1q n[a1﹣c(1﹣q)],进而推知a1﹣c(1﹣q)=0,判断出0<q<1,但此时不符合题意,最后综合可得结论.解答:(1)证明:设{a n}的公比为q,由题设a1>0,q>0.(i)当q=1时,S n=na1,从而S n•S n+2﹣S n+12=na1•(n+2)a1﹣(n+1)2a12=﹣a12<0(ⅱ)当q≠1时,,从而S n•S n+2﹣S n+12==﹣a12q n<0.由(i)和(ii)得S n•S n+2,<S n+12.根据对数函数的单调性,知lg(S n•S n+2)<lgS n+12,即.(2)解:不存在.要使.成立,则有分两种情况讨论:(i)当q=1时,(S n﹣c)(S n+2﹣c)=(S n+1﹣c)2=(na1﹣c)[(n+2)a1﹣c]﹣[(n+1)a1﹣c]2=﹣a12<0.可知,不满足条件①,即不存在常数c>0,使结论成立.(ii)当q≠1时,若条件①成立,因为(S n﹣c)(S n+2﹣c)﹣(S n+1﹣c)2==﹣a1q n[a1﹣c(1﹣q)],且a1q n≠0,故只能有a1﹣c(1﹣q)=0,即此时,因为c>0,a1>0,所以0<q<1.但0<q<1时,,不满足条件②,即不存在常数c>0,使结论成立.综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使.点评:本小题主要考查等比数列、对数、不等式等基础知识,考查推理能力以及分析问题和解决问题的能力.23.(2010•安徽)设C1,C2,…,C n,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线相切,对每一个正整数n,圆C n都与圆C n+1相互外切,以r n表示C n的半径,已知{r n}为递增数列.(Ⅰ)证明:{r n}为等比数列;(Ⅱ)设r1=1,求数列的前n项和.考点:数列的求和;等比关系的确定.专题:压轴题.分析:(1)求直线倾斜角的正弦,设C n的圆心为(λn,0),得λn=2r n,同理得λn+1=2r n+1,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即{r n}中r n+1与r n 的关系,证明{r n}为等比数列;(2)利用(1)的结论求{r n}的通项公式,代入数列,然后用错位相减法求和.解答:解:(1)将直线y=x的倾斜角记为,则有tanθ=,sinθ=,设C n的圆心为(λn,0),则由题意得知,得λn=2r n;同理λn+1=2r n+1,从而λn+1=λn+r n+r n+1=2r n+1,将λn=2r n代入,解得r n+1=3r n故|r n|为公比q=3的等比数列.(Ⅱ)由于r1=1,q=3,故r n=3n﹣1,从而,记,则有S n=1+2•3﹣1+3•3﹣2+…+n•31﹣n①﹣②,得=,∴点评:本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象概括能力以及推理论证能力.对于数列与几何图形相结合的问题,通常利用几何知识,并结合图形,得出关于数列相邻项a n与a n+1之间的关系,然后根据这个递推关系,结合所求内容变形,得出通项公式或其他所求结论.对于数列求和问题,若数列的通项公式由等差与等比数列的积构成的数列时,通常是利用前n项和S n乘以公比,然后错位相减解决.24.(2010•湖南)给出下面的数表序列:其中表n(n=1,2,3 …)有n行,第1行的n个数是1,3,5,…2n﹣1,从第2行起,每行中的每个数都等于它肩上的两数之和.(I)写出表4,验证表4各行中数的平均数按从上到下的顺序构成等比数列,并将结论推广到表n(n≥3)(不要求证明);(II)每个数列中最后一行都只有一个数,它们构成数列1,4,12…,记此数列为{b n}求和:(n∈N+)考点:数列的求和;等比数列的性质. 专题:综合题;压轴题. 分析: (1)根据表1,表2,表3的规律可写出表4,然后求出各行的平均数,可确定等比数列的首项和公比,进而推广到n .(2)先求出表n 的首项的平均数,进而可确定它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列,进而得到表中最后一行的数b n =n •2n ﹣1,再化简通项,最后根据裂项法求和.解答: 解:(I )表4为 13 5 74 8 12 12 20 32它的第1,2,3,4行中的数的平均数分别是4,8,16,32,它们构成首项为4,公比为2的等比数列将这一结论推广到表n (n ≥3),即 表n (n ≥3)各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列.(II )表n 的第1行是1,3,5,…,2n ﹣1,其平均数是=n由(I )知,它的各行中的数的平均数按从上到下的顺序构成首项为n ,公比为2的等比数列(从而它的第k 行中数的平均数是n •2k ﹣1),于是,表中最后一行的唯一一个数为b n =n •2n ﹣1. 因此====(k=1,2,…,n )故++…+=(﹣)+(﹣)+…+[﹣]=﹣=4﹣.点评: 本题主要考查数列求和和等比数列的性质.数列求和是高考的必考点,一般有公式法、裂项法、错位相减法等,都要熟练掌握.25.(2010•湖北)已知数列{a n }满足:,a n a n+1<0(n ≥1),数列{b n }满足:b n =a n+12﹣a n 2(n ≥1). (Ⅰ)求数列{a n },{b n }的通项公式(Ⅱ)证明:数列{b n }中的任意三项不可能成等差数列.考点: 数列递推式;数列的概念及简单表示法;等差数列的性质. 专题: 计算题;应用题;压轴题. 分析:(1)对化简整理得,令c n =1﹣a n 2,进而可推断数列{c n }是首项为,公比为的等比数列,根据等比数列通项公式求得c n ,则a 2n 可得,进而根据a n a n+1<0求得a n .(2)假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列,由于数列{b n }为等比数列,于是有b r >b s >b t ,则只有可能有2b s =b r +b t 成立,代入通项公式,化简整理后发现等式左边为2,右边为分数,故上式不可能成立,导致矛盾. 解答:解:(Ⅰ)由题意可知,令c n =1﹣a n 2,则又,则数列{c n }是首项为,公比为的等比数列,即,故,又,a n a n+1<0故因为=,故(Ⅱ)假设数列{b n }存在三项b r ,b s ,b t (r <s <t )按某种顺序成等差数列, 由于数列{b n }是首项为,公比为的等比数列,。

高中数学经典高考难题集锦(解析版)(9)

高中数学经典高考难题集锦(解析版)(9)

使之满足( |OQ2|﹣ 2)( |OR2|﹣2)< 0.依次下去, 得到 P1, P2, …, Pn, … ,

=

29.( 2009?湖北)已知数列 {a n} 满足: a1=m( m为正整数),
an+1=
若 a6=1, 则 m所有可能的取值为

第4页(共 22页)
30.( 2019?北京)定义 “等和数列 ”:在一个数列中,
据此可得, 最佳乐观系数 x的值等于

19.( 2019?江苏)设 1=a1≤a2≤…≤a7, 其中 a1, a3, a5, a7 成公比为 q的等比数列, a2,
a4, a6成公差为 1的等差数列, 则 q的最小值是

20.( 2009?北京) {a n} 满足: a4n﹣ 3=1, a4n﹣1=0 , a2n=an,

A.0 B.
C. 2 D. 2
14.( 2019?上海)用 n个不同的实数 a1, a2, …, an可得到 n! 个不同的排列,
每个排列为一行写成一个 n! 行的数阵, 对第 i行 ai1 , ai2, … , ain, 记bi=﹣ai1+2ai2 ﹣3ai3++ (﹣ 1)nnain , i=1 , 2, 3, … , n!, 例如:用 1, 2,
以f (n)表示第 n堆的乒乓球总数, 则 f ( 3) =
; f ( n)=
(答案用 n表示).
25.( 2019?广东)设平面内有 n条直线( n≥3), 其中有且仅有两条直线互相平行,
任意三条直线不过同一点, 若用 f (n)表示这 n条直线交点个数, 则 f ( 4) =

当n> 4时 f( n)=
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年10月18日姚杰的高中数学组卷一.解答题(共10小题)1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明多边形EACB的面积是定值,并求这个定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S.(Ⅰ)试将S表示成的函数S(k),并求出它的定义域;(Ⅱ)求S的最大值,并求取得最大值时k的值.3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由.5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.(2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数;(3)解不等式|2x﹣1|<|x|+1.6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0).(1)若点D(0,3),求∠APB的正切值;(2)当点D在y轴上运动时,求∠APB的最大值;(3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由.8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.(Ⅰ)求k的取值范围;(Ⅱ)是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由.9.如图,已知圆心为O,半径为1的圆与直线l相切于点A,一动点P自切点A沿直线l 向右移动时,取弧AC的长为,直线PC与直线AO交于点M.又知当AP=时,点P的速度为v,求这时点M的速度.10.过原点O作圆x2+y2﹣2x﹣4y+4=0的任意割线交圆于P1,P2两点,求P1P2的中点P的轨迹.2015年10月18日姚杰的高中数学组卷参考答案与试题解析一.解答题(共10小题)1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.(1)证明多边形EACB的面积是定值,并求这个定值;(2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.考点:直线和圆的方程的应用.专题:计算题;压轴题.分析:(1)由题意,由于以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B,所以先得到点E为原点,利用方程的思想设出圆心C的坐标,进而利用面积公式求解;(2)由于|EM|=|EN|此可以转化为点E应在线段MN的垂直平分线上,利用圆的性质可得EC与MN垂直建立t的方程求解即可.解答:解:(1)证明:点(t>0),因为以点C为圆心的圆与x轴交于点E、A,与y轴交于点E、B.所以点E是直角坐标系原点,即E(0,0).于是圆C的方程是.则.由|CE|=|CA|=|CB|知,圆心C在Rt△AEB斜边AB上,于是多边形EACB为Rt△AEB,其面积.所以多边形EACB的面积是定值,这个定值是4.(2)若|EM|=|EN|,则E在MN的垂直平分线上,即EC是MN的垂直平分线,,k MN=﹣2.所以由k EC?k MN=﹣1,得t=2,所以圆C 的方程是(x ﹣2)2+(y ﹣1)2=5.点评:(1)重点考查了利用方程的思想用以变量t 写出圆的方程,判断出圆心O 在AB 上,故四边形为直角三角形,还考查了三角形的面积公式;(2)重点考查了垂直平分线的等价式子,还考查了方程的求解思想,及两直线垂直的实质解直线的斜率互为负倒数.2.(2010?江苏模拟)已知直线l :y=k (x+2)与圆O :x 2+y 2=4相交于A 、B 两点,O 是坐标原点,三角形ABO 的面积为S .(Ⅰ)试将S 表示成的函数S (k ),并求出它的定义域;(Ⅱ)求S 的最大值,并求取得最大值时k 的值.考点:直线与圆的位置关系;二次函数的性质.专题:计算题;压轴题.分析: (Ⅰ)先求出原点到直线的距离,并利用弦长公式求出弦长,代入三角形的面积公式进行化简.(Ⅱ)换元后把函数S 的解析式利用二次函数的性质进行配方,求出函数的最值,注意换元后变量范围的改变.解答:解:(Ⅰ)直线l 方程,原点O 到l 的距离为(3分) 弦长(5分)?ABO 面积? ∵|AB|>0,∴﹣1<K <1(K ≠0),? ∴(﹣1<k <1且K ≠0)(8分), (Ⅱ) 令 , ∴. ∴当t=时,时,S max =2(12分)点评: 本题考查点到直线的距离公式、弦长公式的应用,以及利用二次函数的性质求函数的最大值,注意换元中变量范围的改变.3.(2013?越秀区校级模拟)已知圆满足:①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l :x ﹣2y=0的距离为.求该圆的方程.考点:直线与圆的位置关系.专题:综合题;压轴题.分析:设出圆P的圆心坐标,由圆被x轴分成两段圆弧,其弧长的比为3:1,得到圆P截x 轴所得劣弧对的圆心角为90°,根据垂径定理得到圆截x轴的弦长,找出r与b的关系式,又根据圆与y轴的弦长为2,利用垂径定理得到r与a的关系式,两个关系式联立得到a与b的关系式;然后利用点到直线的距离公式求出P到直线x﹣2y=0的距离,让其等于,得到a与b的关系式,将两个a与b的关系式联立即可求出a与b的值,得到圆心P的坐标,然后利用a与b的值求出圆的半径r,根据圆心和半径写出圆的方程即可.解答:解:设圆P的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截x轴所得的弦长为.故r2=2b2又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1;又因为P(a,b)到直线x﹣2y=0的距离为,所以=,即有a﹣2b=±1,由此有或解方程组得或,于是r2=2b2=2,所求圆的方程是:(x+1)2+(y+1)2=2,或(x﹣1)2+(y﹣1)2=2.点评:本小题主要考查轨迹的思想,考查综合运用知识建立曲线方程的能力,是一道中档题.4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程;(Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由.考点:直线与圆的位置关系;平面向量数量积的运算;抛物线的标准方程.专题:压轴题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)设抛物线方程为x2=2py,把点(2,1)代入运算求得p的值,即可求得抛物线的标准方程.(Ⅱ)由直线与圆相切可得.把直线方程代入抛物线方程并整理,由△>0求得t的范围.利用根与系数的关系及,求得,求得点O到直线的距离,从而求得,由此函数在(0,4)单调递增,故有,从而得出结论.解答:解:(Ⅰ)设抛物线方程为x2=2py,由已知得:22=2p,所以p=2,所以抛物线的标准方程为x2=4y.(Ⅱ)不存在.因为直线与圆相切,所以.把直线方程代入抛物线方程并整理得:x2﹣4kx﹣4t=0.由△=16k2+16t=16(t2+2t)+16t>0,得t>0或t<﹣3.设M(x1,y1),N(x2,y2),则x1+x2=4k且x1?x2=﹣4t,∴.∵∠MON为钝角,∴,解得0<t<4,∵,点O到直线的距离为,∴,易证在(0,4)单调递增,∴,故不存在直线,当∠MON为钝角时,S △MON=48成立.点评:本题主要考查直线和圆的位置关系,两个向量的数量积公式的应用,点到直线的距离公式,利用函数的单调性求函数的值域,属于中档题.5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标.(2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数;(3)解不等式|2x﹣1|<|x|+1.考点:直线与圆的位置关系;二阶矩阵;绝对值不等式的解法.专题:计算题;压轴题;转化思想.分析:(1)由矩阵的线性变换列出关于x和y的一元二次方程组,求出方程组的解集即可得到点A的坐标;可设出矩阵M的逆矩阵,根据逆矩阵的定义得到逆矩阵与矩阵M 的乘积等于单位矩阵,得到一个一元二次方程组,求出方程组的解集即可得到M的逆矩阵;(2)把圆的参数方程化为普通方程后,找出圆心坐标与半径,然后利用点到直线的距离公式求出圆心到直线的距离d与半径r比较大小得到直线与圆的位置关系,即可得到交点的个数;(3)分三种情况x大于等于,x大于等于0小于和x小于0,分别化简绝对值后,求出解集,即可得到原不等式的解集.三个题中任选两个作答即可.解答:解:(1)由题意可知(x,y)=(13,5),即,解得,所以A(2,﹣3);设矩阵M的逆矩阵为,则?=,即,且,解得a=﹣1,b=3,c=﹣1,d=2所以矩阵M的逆矩阵为;(2)把圆的参数方程化为普通方程得(x+1)2+(y﹣2)2=4,圆心(﹣1,2),半径r=2则圆心到已知直线的距离d==<2=r,得到直线与圆的位置关系是相交,所以直线与圆的公共点有两个;(3)当x≥时,原不等式变为:2x﹣1<x+1,解得x<2,所以原不等式的解集为[,2);当0≤x<时,原不等式变为:1﹣2x<x+1,解得x>0,所以原不等式的解集为(0,);当x<0时,原不等式变为:1﹣2x<﹣x+1,解得x>0,所以原不等式无解.综上,原不等式的解集为[0,2).点评:此题考查学生会求矩阵的逆矩阵及掌握矩阵的线性变换,灵活运用点到直线的距离公式化简求值,掌握直线与圆的位置关系的判断方法,会利用讨论的方法求绝对值不等式的解集,是一道综合题.6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.直线与圆的位置关系;平面向量数量积的运算;直线的一般式方程.考点:专压轴题.题:分析: (Ⅰ)根据已知,容易写出直线l 的方程为y=3(x+1).将圆心C (0,3)代入方程易知l 过圆心C .(Ⅱ)过A (﹣1,0)的一条动直线l .应当分为斜率存在和不存在两种情况;当直线l 与x 轴垂直时,进行验证.当直线与x 轴不垂直时,设直线l 的方程为y=k (x+1),由于弦长,利用垂径定理,则圆心C 到弦的距离|CM|=1.从而解得斜率K 来得出直线l 的方程为.(Ⅲ)同样,当l 与x 轴垂直时,要对设t=,进行验证.当l 的斜率存在时,设直线l 的方程为y=k (x+1),代入圆的方程得到一个二次方程.充分利用“两根之和”和“两根之积”去找.再用两根直线方程联立,去找.从而确定t=的代数表达式,再讨论t 是否为定值.解答:解:(Ⅰ)由已知,故k l =3, 所以直线l 的方程为y=3(x+1).将圆心C (0,3)代入方程易知l 过圆心C .(3分)(Ⅱ)当直线l 与x 轴垂直时,易知x=﹣1符合题意;(4分)当直线与x 轴不垂直时,设直线l 的方程为y=k (x+1),由于,所以|CM|=1.由,解得. 故直线l 的方程为x=﹣1或4x ﹣3y+4=0.(8分)(Ⅲ)当l 与x 轴垂直时,易得M (﹣1,3),, 又A (﹣1,0)则,,故.即t=﹣5.(10分)当l 的斜率存在时,设直线l 的方程为y=k (x+1),代入圆的方程得(1+k 2)x 2+(2k 2﹣6k )x+k 2﹣6k+5=0. 则,, 即,=. 又由得, 则.故t=.综上,t 的值为定值,且t=﹣5.(14分)另解一:连接CA ,延长交m 于点R ,由(Ⅰ)知AR ⊥m .又CM ⊥l 于M ,故△ANR ∽△AMC .于是有|AM|?|AN|=|AC|?|AR|. 由,得|AM|?|AN|=5. 故(14分)另解二:连接CA 并延长交直线m 于点B ,连接CM ,CN ,由(Ⅰ)知AC ⊥m ,又CM ⊥l , 所以四点M ,C ,N ,B 都在以CN 为直径的圆上, 由相交弦定理得.(14分)点评: (1)用直线方程时,一定要注意分为斜率存在和不存在两种情况.一般是验证特殊,求解一般.(2)解决直线与圆相交弦相关计算时一般采用垂径定理求解.(3)涉及到直线和圆、圆锥曲线问题时,常常将直线代入曲线方程得到一个一元二次方程,再充分利用“两根之和”和“两根之积”整体求解.这种方法通常叫做“设而不求”.7.(2009?天河区校级模拟)已知圆C :(x+4)2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,定点P 的坐标为(﹣3,0).(1)若点D (0,3),求∠APB 的正切值;(2)当点D 在y 轴上运动时,求∠APB 的最大值;(3)在x 轴上是否存在定点Q ,当圆D 在y 轴上运动时,∠AQB 是定值?如果存在,求出Q 点坐标;如果不存在,说明理由.考点:直线和圆的方程的应用.专题:计算题;证明题;压轴题.分析: (1)由已知中圆C :(x+4)2+y 2=4,点D (0,3),我们易求出CD 的长,进而求出圆D 的半径,求出A ,B 两点坐标后,可由tan ∠APB=k BP 得到结果.(2)设D 点坐标为(0,a ),圆D 半径为r ,我们可以求出对应的圆D 的方程和A ,B 两点的坐标,进而求出∠APB 正切的表达式(含参数r ),求出其最值后,即可根据正切函数的单调性,求出∠APB 的最大值;(3)假设存在点Q (b ,0),根据∠AQB 是定值,我们构造关于b 的方程,若方程有解,则存在这样的点,若方程无实根,则不存在这样的点.解答: 解:(1)∵|CD|=5,∴圆D 的半径r=5﹣2=3,此时A 、B 坐标分别为A (0,0)、B (0,6)∴tan ∠APB=k BP =2(3分)(2)设D 点坐标为(0,a ),圆D 半径为r ,则(r+2)2=16+a 2,A 、B 的坐标分别为(0,a ﹣r ),(0,a+r ) ∴,∴==∵|r+2|2≥16,∴r ≥2,∴8r ﹣6≥10, ∴∴.(8分) (3)假设存在点Q (b ,0),由,,得∵a 2=(r+2)2﹣16, ∴欲使∠AQB 的大小与r 无关,则当且仅当b 2=12,即, 此时有,即得∠AQB=60°为定值, 故存在或,使∠AQB 为定值60°.(13分)点评: 本题考查的知识点是直线和圆的方程的应用,其中根据已知中圆C :(x+4)2+y 2=4,圆D 的圆心D 在y 轴上且与圆C 外切,圆D 与y 轴交于A 、B 两点,确定圆D 的方程,进而求出A ,B 的方程是解答本题的关键.8.(2007?海南)在平面直角坐标系xOy 中,已知圆x 2+y 2﹣12x+32=0的圆心为Q ,过点P (0,2)且斜率为k 的直线与圆Q 相交于不同的两点A ,B .(Ⅰ)求k 的取值范围;(Ⅱ)是否存在常数k ,使得向量与共线?如果存在,求k 值;如果不存在,请说明理由.考点:直线和圆的方程的应用;向量的共线定理. 专题:计算题;压轴题. 分析:(Ⅰ)先把圆的方程整理成标准方程,进而求得圆心,设出直线方程代入圆方程整理后,根据判别式大于0求得k 的范围,(Ⅱ)A (x 1,y 1),B (x 2,y 2),根据(1)中的方程和韦达定理可求得x 1+x 2的表达式,根据直线方程可求得y 1+y 2的表达式,进而根据以与共线可推知(x 1+x 2)=﹣3(y 1+y 2),进而求得k ,根据(1)k 的范围可知,k 不符合题意.解答: 解:(Ⅰ)圆的方程可写成(x ﹣6)2+y 2=4,所以圆心为Q (6,0),过P (0,2)且斜率为k 的直线方程为y=kx+2.代入圆方程得x 2+(kx+2)2﹣12x+32=0,整理得(1+k 2)x 2+4(k ﹣3)x+36=0. ①直线与圆交于两个不同的点A ,B 等价于△=[4(k ﹣3)2]﹣4×36(1+k 2)=42(﹣8k 2﹣6k )>0, 解得,即k 的取值范围为.(Ⅱ)设A (x 1,y 1),B (x 2,y 2),则, 由方程①,② 又y 1+y 2=k (x 1+x 2)+4. ③ 而. 所以与共线等价于(x 1+x 2)=﹣3(y 1+y 2),将②③代入上式,解得.由(Ⅰ)知,故没有符合题意的常数k . 点评:本题主要考查了直线与圆的方程的综合运用.常需要把直线方程与圆的方程联立,利用韦达定理和判别式求得问题的解.9.如图,已知圆心为O ,半径为1的圆与直线l 相切于点A ,一动点P 自切点A 沿直线l 向右移动时,取弧AC 的长为,直线PC 与直线AO 交于点M .又知当AP=时,点P 的速度为v ,求这时点M 的速度.考点:直线与圆的位置关系.专题:压轴题.分析:设AP 的长为x ,AM 的长为y ,用x 表示y ,并用复合函数求导法则对时间t 进行求导. 解答: 解:如图,作CD ⊥AM ,并设AP=x ,AM=y ,∠COA=θ,由题意弧AC 的长为,半径OC=1,可知θ=,考虑θ∈(0,π).∵△APM ∽△DCM ,∴.∵DM=y ﹣(1﹣cos ),DC=sin ,∴∴.上式两边对时间t 进行求导,则y ′t =y ′x ?x ′t . ∴y ′t =当时,x ′t =v ,代入上式得点M 的速度.点评: 本题是难度较大题目,考查了弦长、弧度、相似、特别是复合函数的导数,以及导数的几何意义;同时也考查了逻辑思维能力和计算能力.10.过原点O 作圆x 2+y 2﹣2x ﹣4y+4=0的任意割线交圆于P 1,P 2两点,求P 1P 2的中点P 的轨迹. 考点: 直线与圆的位置关系;轨迹方程. 专题: 计算题;压轴题;数形结合. 分析: 设割线OP 1P 2的直线方程为y=kx 与圆的方程联立得(1+k 2)x 2﹣2(1+2k )x+4=0,再由韦达定理得:,因为P 是P 1P 2的中点,所以,再由P 点在直线y=kx 上,得到,代入上式得整理即可.要注意范围. 解答: 解:设割线OP 1P 2的直线方程为y=kx 代入圆的方程,得:x 2+k 2x 2﹣2x ﹣4kx+4=0即(1+k 2)x 2﹣2(1+2k )x+4=0设两根为x 1,x 2即直线与圆的两交点的横坐标; 由韦达定理得:又设P 点的坐标是(x ,y )P 是P 1P 2的中点,所以又P 点在直线y=kx 上, ∴,代入上式得两端乘以,得即x2+y2=x+2y(0<x<)这是一个一点为中心,以为半径的圆弧,所求轨迹是这个圆在所给圆内的一段弧.点评:本题主要考查直线与圆的位置关系,韦达定理,中点坐标公式及点的轨迹方程.考点卡片1.二次函数的性质【知识点的认识】其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.【解题方法点拨】以y=ax2+bx+c为例:①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式△=b2﹣4ac,当△=0时,函数与x轴只有一个交点;△>0时,与x轴有两个交点;当△<0时无交点.②根与系数的关系.若△≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1?x2=;③二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;例题:y=2x2+x﹣3那么由2>0,可知抛物线开口向上,对称轴为x=﹣,最小值为f(﹣)=﹣,;△=1+24=25>0,故方程2x2+x﹣3=0有两个根,其满足x1+x2=﹣;x1?x2=﹣;另外,方程可以写成(y+)=2(x+)2,当沿x轴向右,在向下平移时,就变成y=2x2;【命题方向】重点关注高中所学的抛物线的焦点、准线和曲线的平移.另外在解析几何当做要灵活运用韦达定理.2.向量的共线定理【概念】共线向量又叫平行向量,指的是方向相同或方向相反的向量.假设向量=(1,2),向量=(2,4),则=2,那么向量与向量平行,且有1×4﹣2×2=0,即当向量=(x1,y1)与向量=(x2,y2)平行时,有x1?y2﹣x2?y1=0,这也是两向量平行的充要条件.【例题解析】例:设与是两个不共线的向量,且向量与共线,则λ=﹣0.5.解;∵向量与共线,∴存在常数k,使得=k()∴2=k.﹣1=λk解得,λ=﹣0.5故答案为﹣0.5.根据向量共线的充要条件,若向量与共线,就能得到含λ的等式,解出λ即可.【考点分析】向量共线定理和向量垂直定理是向量里面最重要的两个定理,要学会应用这两个定理去判别向量之间的关系.3.平面向量数量积的运算【平面向量数量积的运算】平面向量数量积运算的一般定理为①(±)2=2±2?+2.②(﹣)(+)=2﹣2.③?(?)≠(?)?,从这里可以看出它的运算法则和数的运算法则有些是相同的,有些不一样.【例题解析】例:由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn=nm”类比得到“”②“(m+n)t=mt+nt”类比得到“()?=”;③“t≠0,mt=nt?m=n”类比得到“?”;④“|m?n|=|m|?|n|”类比得到“||=||?||”;⑤“(m?n)t=m(n?t)”类比得到“()?=”;⑥“”类比得到.以上的式子中,类比得到的结论正确的是①②.解:∵向量的数量积满足交换律,∴“mn=nm”类比得到“”,∵向量的数量积满足分配律,∴“(m+n)t=mt+nt”类比得到“()?=”,即②正确;∵向量的数量积不满足消元律,∴“t≠0,mt=nt?m=n”不能类比得到“?”,即③错误;∵||≠||?||,∴“|m?n|=|m|?|n|”不能类比得到“||=||?||”;即④错误;∵向量的数量积不满足结合律,∴“(m?n)t=m(n?t)”不能类比得到“()?=”,即⑤错误;∵向量的数量积不满足消元律,∴”不能类比得到,即⑥错误.故答案为:①②.向量的数量积满足交换律,由“mn=nm”类比得到“”;向量的数量积满足分配律,故“(m+n)t=mt+nt”类比得到“()?=”;向量的数量积不满足消元律,故“t≠0,mt=nt?m=n”不能类比得到“?”;||≠||?||,故“|m?n|=|m|?|n|”不能类比得到“||=||?||”;向量的数量积不满足结合律,故“(m?n)t=m (n?t)”不能类比得到“()?=”;向量的数量积不满足消元律,故”不能类比得到.【考点分析】本知识点应该所有考生都要掌握,这个知识点和三角函数联系比较多,也是一个常考点,题目相对来说也不难,所以是拿分的考点,希望大家都掌握.4.直线的一般式方程【直线的一般式方程】直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.【知识点的认识】1.曲线的方程和方程的曲线在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对(x,y)表示,这就是动点的坐标.当点按某种规律运动形成曲线时,动点坐标(x,y)中的变量x、y存在着某种制约关系,这种制约关系反映到代数中,就是含有变量x、y的方程.一般地,在直角坐标系中,如果某曲线C(看做适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程就叫做曲线的方程,这条曲线就叫做方程的曲线.2.求曲线方程的一般步骤(直接法)(1)建系设点:建立适当的直角坐标系,用(x,y)表示曲线上任一点M的坐标;(2)列式:写出适合条件p的点M的集合{M|p(M)};(3)代入:用坐标表示出条件p(M),列出方程f(x,y)=0;(4)化简:化方程f(x,y)=0为最简形式;(5)证明:证明以化简后的方程的解为坐标的点都是在曲线上的点【常用解法】(1)直接法:根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(如两点间的距离公式、点到直线的距离公式、夹角公式等)进行整理、化简.这种求轨迹方程的过程不需要特殊的技巧.(2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.关键是条件的转化,即转化为某一基本轨迹的定义条件.(3)相关点法:用所求动点P的坐标(x,y)表示已知动点M的坐标(x0,y0),即得到x0=f(x,y),y0=g(x,y),再将x0,y0代入M满足的条件F(x0,y0)=0中,即得所求.一般地,定比分点问题、对称问题可用相关点法求解,相关点法的一般步骤是:设点→转换→代入→化简.(4)待定系数法(5)参数法(6)交轨法.6.直线与圆的位置关系【知识点的认识】1.直线与圆的位置关系2.判断直线与圆的位置关系的方法直线Ax+By+C=0与圆(x﹣a)2+(y﹣b)2=r2(r>0)的位置关系的判断方法:(1)几何方法:利用圆心到直线的d和半径r的关系判断.圆心到直线的距离d=①相交:d<r②相切:d=r③相离:d>r(2)代数方法:联立直线与圆的方程,转化为一元二次方程,用判别式△判断.由消元,得到一元二次方程的判别式△①相交:△>0②相切:△=0③相离:△<0.7.直线和圆的方程的应用【知识点的知识】1、直线方程的形式:2、圆的方程:(1)圆的标准方程:(x﹣a)2+(y﹣b)2=r2(r>0),其中圆心C(a,b),半径为r.特别地,当圆心为坐标原点时,半径为r的圆的方程为:x2+y2=r2.其中,圆心(a,b)是圆的定位条件,半径r是圆的定形条件.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2﹣4F>0)其中圆心(﹣,﹣),半径r=.8.抛物线的标准方程【知识点的认识】抛物线的标准方程的四种种形式:(1)y2=2px,焦点在x轴上,焦点坐标为F(,0),(p可为正负)(2)x2=2py,焦点在y轴上,焦点坐标为F(0,),(p可为正负)四种形式相同点:形状、大小相同;四种形式不同点:位置不同;焦点坐标不同.下面以两种形式做简单的介绍:标准方程y2=2px(p>0),焦点在x轴上x2=2py(p>0),焦点在y轴上图形顶点(0,0)(0,0)对称轴x轴焦点在x轴长上y轴焦点在y轴长上焦点(,0)(0,)焦距无无离心率e=1 e=1准线x=﹣y=﹣9.二阶矩阵【知识点的知识】1、矩阵由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成的m行n列的数表称为m行n列矩阵,简称m×n矩阵.为表示这个数是一个整体,总是加一个括弧,并用大写黑体字母表示它,记作这m×n个数称为矩阵A的元素,简称为元,数a ij位于矩阵的第i行第j列,称为矩阵的(i,j)元.以数a ij为(i,j)元的矩阵可简记作(a ij)或(a ij)m×n.矩阵A也记作A m×n.注意:①矩阵的记号是在数表外加上括弧,与行列式的记号(在数表外加上双竖线)是不同的,这是两个不同的概念.②矩阵的行数和列数不一定相等.2.二阶矩阵由四个数a,b,c,d排成的正方形数表称为二阶矩阵,其中称为矩阵的元素,矩阵通常用大写字母A,B,C,…或(aij)表示(其中i,j分别为元素aij所在的行和列).2.矩阵的乘法行矩阵[a11 a12]与列矩阵的乘法规则为,二阶矩阵与列矩阵的乘法规则为=.矩阵乘法满足结合律,不满足交换律和消去律.10.绝对值不等式的解法【知识点的认识】绝对值不等式的解法1、绝对值不等式|x|>a与|x|<a的解集不等式a>0 a=0 a<0|x|<a {x|﹣a<x<a} ??|x|>a {x|x>a,或x<﹣a} {x|x≠0} R2、|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:(1)|ax+b|≤c?﹣c≤ax+b≤c;(2)|ax+b|≥c?ax+b≥c或ax+b≤﹣c;(3)|x﹣a|+|x﹣b|≥c(c>0)和|x﹣a|+|x﹣b|≤c(c>0)型不等式的解法:方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.【解题方法点拨】1、解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.2.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x﹣a|+|x﹣b|>m或|x﹣a|+|x﹣b|<m (m为正常数),利用实数绝对值的几何意义求解较简便.3.不等式|x﹣a|+|x﹣b|≥c的解就是数轴上到A(a),B(b)两点的距离之和不小于c的点所对应的实数,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.4.不等式|a|﹣|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|﹣|b|≤|a﹣b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.。

相关文档
最新文档