《数值计算方法》试题集及答案

合集下载

《数值计算办法》试题集及参考答案

《数值计算办法》试题集及参考答案

精心整理《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,式为。

答案:-1,)3)(1(2)3)(2(21)(2-----=x x x x x L 4、近似值5、设)(x f ();答案1n x =+6、对)(x f =]4,3,2,1(0);78n 次后的误差限为(12+-n ab ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 代矩阵的谱半径)(M ρ=121。

15、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l (1l )1(716)(2-+=x x x x N 。

16、(高斯型)求积公式为最高,具有(12+n )次代21]内的根精确到三位小数,需对分(10)次。

22、已知≤≤≤≤3110(x x S 是三次样条函数,则a =(3 ),b 23、(),(10l x l Lagrange 插值基函数,则∑==nk kx l)((1),=k 0(j),当时=++=)()3(204x l x xk k k k (324++x x )。

数值计算方法试题和答案解析

数值计算方法试题和答案解析

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

(完整版)数值计算方法试题及答案

(完整版)数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

数值计算方法总结计划试卷试题集及答案

数值计算方法总结计划试卷试题集及答案

一、选择题(每题2分,共20分)1.数值计算的基本思想是()。

A.精确求解B.近似求解C.解析表达D.图像显示2.下列哪种方法不属于数值计算方法?()A.有限差分法B.有限元法C.插值法D.微积分3.在数值计算中,为避免数值计算误差,通常采用()方法。

A.精确计算B.误差分析C.误差校正D.舍入运算4.下列哪种数值方法适用于求解偏微分方程?()A.欧拉法B.龙格-库塔法C.有限差分法D.牛顿法5.下列哪种方法不属于求解线性方程组的数值方法?()A.高斯消元法B.追赶法C.迭代法D.矩阵分解法二、填空题(每题2分,共20分)6.数值计算方法是利用计算机求解科学和工程问题的_______方法。

7.数值计算的主要目的是将_______问题转化为_______问题。

8.在数值计算中,通常需要对实际问题进行_______,以简化计算过程。

9.有限差分法的核心思想是将偏微分方程转化为_______方程。

10.牛顿法是一种_______方法,适用于求解非线性方程组。

三、判断题(每题2分,共20分)11.数值计算方法只能解决线性问题。

()12.在数值计算中,误差只能通过增加计算精度来减小。

()13.迭代法求解线性方程组时,需要预先知道方程组的解。

()14.数值计算方法在实际应用中具有较高的可靠性。

()15.有限元法适用于求解所有类型的偏微分方程。

()四、简答题(每题10分,共30分)16.请简要说明数值计算的基本思想及其应用范围。

17.请简要介绍有限差分法的原理及应用。

18.请简要说明牛顿法求解非线性方程组的原理。

五、计算题(每题10分,共50分)2x+3yz=14xy+5z=2-x+2y+z=3y'=-y+e^x,初始条件y(0)=1答案:一、选择题1.B2.D3.B4.C5.A二、填空题6.近似7.连续离散8.简化9.差分10.迭代三、判断题11.×12.×13.×14.√15.×四、简答题16.数值计算的基本思想是将实际问题转化为数学问题,再通过计算机求解。

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为,拉格朗日插值多项式为。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有(2)位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1),=]4,3,2,1,0[f (0);7、计算方法主要研究(截断)误差和(舍入)误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为(12+-n a b );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=104)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

枯藤老树昏鸦,小桥流水人家,古道西风瘦马。

夕阳西下,断肠人在天涯。

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎢⎢⎢⎣⎡--=15401411A 3、)3(,2)2(,1)1(=-=f f f 答案:-1,2(21)(2-=x x L 4* 2 )位有效数字; 5( );答案6 ),=]4,3,2,1,0[f ( 0 );7舍入 )误差;8a ,b )内的根时,二分n 次后的误差限为( 12+n );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

14、 求解方程组⎩⎨⎧=+=+042.01532121x x x x,该迭代格式的迭代矩阵的谱半径)(M ρ15、 设46)2(,16)1(,0)0(===f f f ,则1l 插值多项式为 (716)(2+=x x x x N 16、 求积公式⎰∑=≈ba k nk k x f A x x f )(d )(0的代数精度以( 高斯型 )求积公式为最高,具21内的根精确到三位小数,需对分( 10 )次。

22≤≤≤≤3110x c x 是三次样条函数,则a =( )。

《数值计算办法》试题集及参考答案

《数值计算办法》试题集及参考答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为,拉格朗日插值多项式为。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有(2)位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1),=]4,3,2,1,0[f (0);7、计算方法主要研究(截断)误差和(舍入)误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为(12+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

《数值计算方法》试题及答案

《数值计算方法》试题及答案

数值计算方法考试试题一、选择题(每小题4分,共20分)1. 误差根据来源可以分为四类,分别是( A )A. 模型误差、观测误差、方法误差、舍入误差;B. 模型误差、测量误差、方法误差、截断误差;C. 模型误差、实验误差、方法误差、截断误差;D. 模型误差、建模误差、截断误差、舍入误差。

2. 若132)(356++-=x x x x f ,则其六阶差商=]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。

3. 数值求积公式中的Simpson 公式的代数精度为 ( D )A. 0;B. 1;C. 2;D. 3 。

4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B )A. 都发散;B. 都收敛C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散;D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。

5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C )A. 02≤≤-h ;B. 0785.2≤≤-h ;C. 02≤≤-h λ;D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分)1. 已知⎪⎪⎭⎫⎝⎛--='-=4321,)2,1(A x ,则 =2x 5,=1Ax 16 ,=2A 22115+2. 已知3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。

3. 要使20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。

三、利用下面数据表,1. 用复化梯形公式计算积分dxx f I )(6.28.1⎰=的近似值;解:1.用复化梯形公式计算 取2.048.16.2,4=-==h n 1分分分分7058337.55))6.2()2.08.1(2)8.1((22.04))()(2)((231114=+++=++=∑∑=-=f k f f b f x f a f hT k n k k10.466758.030146.042414.425693.12014f (x ) 2.6 2.4 2.2 2.0 1.8 x2. 用复化Simpson 公式计算积分dxx f I )(6.28.1⎰=的近似值。

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU分解为 A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x xx f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程f (x )=0在区间(a ,b )的根时,二分n 次后的误差限为( 12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( )],(),([2111+++++=n n n n n n y x f y x f hy y );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 );11、 两点式高斯型求积公式⎰10d )(x x f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

《数值计算方法》试题集及答案解析

《数值计算方法》试题集及答案解析

=
9

4 8 2 A= 2 5 7 1 3 6 的 A = LU ,则 U = 32、设矩阵
4 8 2 U = 0 1 6 1 0 0 − 2

3
33、若 f ( x ) = 3 x + 2 x + 1 ,则差商 f [ 2, 4, 8,16, 32] =
5、舍入误差是( A )产生的误差。 A. 只取有限位数 C. 观察与测量 B.模型准确值与用数值方法求得的准确值 D.数学模型准确值与实际值
6、3.141580 是π的有( B )位有效数字的近似值。 A. 6 B. 5 C. 4 C )误差。 D. 舍入
4
D. 7
7、用 1+x 近似表示 ex 所产生的误差是( A. 模型 B. 观测
1 x +1 + x
27 、若用二分法求方程 f ( x ) = 0 在区间 [1,2] 内的根,要求精确到第 3 位小数,则需要对分 10 次。
2 x 3 , 0 ≤ x ≤ 1 S (x ) = 3 2 x + ax + bx + c, 1 ≤ x ≤ 2 是 3 次样条函数,则 28、设
C. 截断
8、解线性方程组的主元素消去法中选择主元的目的是( A )。 A.控制舍入误差 C.防止计算时溢出 B. 减小方法误差 D. 简化计算
x 3 9、用 1+ 3 近似表示 1 + x 所产生的误差是(
D )误差。 D. 截断 )位有效数字。 D. 8
A. 舍入
B. 观测
C. 模型
10、-324.7500 是舍入得到的近似值,它有( C A. 5 B. 6 C. 7

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0。

15 );11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0。

《数值计算方法》试题集及答案资料

《数值计算方法》试题集及答案资料

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+ 。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

数值计算方法试题及答案

数值计算方法试题及答案

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k kx ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

《数值计算方法》试题集及答案.

《数值计算方法》试题集及答案.

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.25 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为(12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为()],(),([2111+++++=n n n n n n y x f y x f hy y);10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

《数值计算方法》试题集及答案

《数值计算方法》试题集及答案

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为,拉格朗日插值多项式为。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有(2)位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是();答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f (1),=]4,3,2,1,0[f (0);7、计算方法主要研究(截断)误差和(舍入)误差;8、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为(12+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

12、 为了使计算32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为199920012+。

13、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为0.5,1,进行两步后根的所在区间为0.5,0.75。

数值计算方法试题卷和的答案解析

数值计算方法试题卷和的答案解析

数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。

2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。

3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。

4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)(( ),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。

5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f。

6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。

7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。

8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。

10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值计算方法》复习试题一、填空题:1、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=410141014A ,则A 的LU 分解为A ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦。

答案:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=15561415014115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得⎰≈31_________)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.253、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2x 的系数为 ,拉格朗日插值多项式为 。

答案:-1,)2)(1(21)3)(1(2)3)(2(21)(2--------=x x x x x x x L4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );答案)(1)(1n n n n n x f x f x x x '---=+6、对1)(3++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( 12+-n a b );9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( )],(),([2111+++++=n n n n n n y x f y x f hy y );10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 );11、 两点式高斯型求积公式⎰1d )(xx f ≈(⎰++-≈1)]3213()3213([21d )(f f x x f ),代数精度为( 5 );12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均不为零)。

13、 为了使计算 32)1(6)1(41310---+-+=x x x y 的乘除法次数尽量地少,应将该表达式改写为11,))64(3(10-=-++=x t t t t y ,为了减少舍入误差,应将表达式19992001-改写为 199920012+ 。

14、 用二分法求方程01)(3=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。

15、 计算积分⎰15.0d xx ,取4位有效数字。

用梯形公式计算求得的近似值为 0.4268 ,用辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。

16、 求解方程组⎩⎨⎧=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ⎪⎩⎪⎨⎧-=-=+++20/3/)51()1(1)1(2)(2)1(1k k k k x x x x ,该迭代格式的迭代矩阵的谱半径)(M ρ= 121。

17、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿插值多项式为 )1(716)(2-+=x x x x N 。

18、 求积公式⎰∑=≈ba k nk k x f A x x f )(d )(0的代数精度以( 高斯型 )求积公式为最高,具有( 12+n )次代数精度。

19、 已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求⎰51d )(xx f ≈( 12 )。

20、 设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( 2.5 )。

21、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( 10 )次。

22、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( 3 ),b =( 3 ),c =( 1 )。

23、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑==nk kx l)(( 1 ),∑==nk k jk x lx 0)((jx ),当2≥n 时=++∑=)()3(204x l x xk k nk k ( 324++x x )。

24、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是2 阶方法。

25、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到_____2_____阶的连续导数。

26、改变函数f x x x ()=+-1 (x >>1)的形式,使计算结果较精确()x x x f ++=11。

27、若用二分法求方程()0=x f 在区间[1,2]内的根,要求精确到第3位小数,则需要对分 10次。

28、设()⎩⎨⎧≤≤+++≤≤=21,10,2233x c bx ax x x x x S 是3次样条函数,则a= 3 , b= -3 , c= 1 。

29、若用复化梯形公式计算⎰10dxe x ,要求误差不超过610-,利用余项公式估计,至少用 477个求积节点。

30、写出求解方程组⎩⎨⎧=+-=+24.016.12121x x x x 的Gauss-Seidel 迭代公式()()()() ,1,0,4.026.111112211=⎩⎨⎧+=-=+++k x x x x k k k k ,迭代矩阵为⎪⎪⎭⎫⎝⎛--64.006.10,此迭代法是否收敛 收敛 。

31、设A =⎛⎝ ⎫⎭⎪5443,则=∞A 9 。

32、设矩阵482257136A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的A LU =,则U = 4820161002U ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦ 。

33、若4321()f x x x =++,则差商2481632[,,,,]f = 3 。

34、数值积分公式11218019()[()()()]f x dx f f f -'≈-++⎰的代数精度为 2 。

35、线性方程组121015112103x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦的最小二乘解为 11⎛⎫ ⎪⎝⎭ 。

36、设矩阵321204135A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦分解为A LU =,则U = 32141003321002⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦ 。

二、单项选择题:1、 Jacobi 迭代法解方程组b x =A 的必要条件是( C )。

A .A 的各阶顺序主子式不为零 B . 1)(<A ρ C . n i a ii ,,2,1,0 =≠ D . 1≤A2、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=700150322A ,则)(A ρ为( C ). A . 2 B . 5 C . 7 D . 3 3、三点的高斯求积公式的代数精度为( B )。

A . 2 B .5 C . 3 D . 44、求解线性方程组A x =b 的LU 分解法中,A 须满足的条件是( B )。

A . 对称阵B . 正定矩阵C . 任意阵D . 各阶顺序主子式均不为零 5、舍入误差是( A )产生的误差。

A. 只取有限位数 B .模型准确值与用数值方法求得的准确值 C . 观察与测量 D .数学模型准确值与实际值 6、3.141580是π的有( B )位有效数字的近似值。

A . 6 B . 5 C . 4 D . 7 7、用 1+x 近似表示e x 所产生的误差是( C )误差。

A . 模型 B . 观测 C . 截断 D . 舍入8、解线性方程组的主元素消去法中选择主元的目的是( A )。

A .控制舍入误差 B . 减小方法误差 C .防止计算时溢出 D . 简化计算9、用1+3x近似表示31x 所产生的误差是( D )误差。

A . 舍入B . 观测C . 模型D . 截断10、-324.7500是舍入得到的近似值,它有( C )位有效数字。

A . 5 B . 6 C . 7 D . 811、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x 2的系数为( A )。

A . –0.5 B . 0.5 C . 2 D . -2 12、三点的高斯型求积公式的代数精度为( C )。

A . 3 B . 4 C . 5 D . 2 13、( D )的3位有效数字是0.236×102。

(A) 0.0023549×103 (B) 2354.82×10-2 (C) 235.418 (D) 235.54×10-114、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=ϕ(x),则f(x)=0的根是( B )。

(A) y=ϕ(x)与x 轴交点的横坐标 (B) y=x 与y=ϕ(x)交点的横坐标 (C) y=x 与x 轴的交点的横坐标 (D) y=x 与y=ϕ(x)的交点15、用列主元消去法解线性方程组⎪⎩⎪⎨⎧-=+--=-+-=+-134092143321321321x x x x x x x x x ,第1次消元,选择主元为( A ) 。

(A) -4 (B) 3 (C) 4 (D)-916、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。

(A) f(x,x0,x1,x2,…,xn)(x -x1)(x -x2)…(x -xn -1)(x -xn),(B))!1()()()()()1(+=-=+n f x P x f x R n n n ξ (C) f(x,x0,x1,x2,…,xn)(x -x0)(x -x1)(x -x2)…(x -xn -1)(x -xn),(D) )()!1()()()()(1)1(x n f x P x f x R n n n n +++=-=ωξ17、等距二点求导公式f '(x1) ≈( A )。

101101010010101)()()D ()()()C ()()()B ()()()A (x x x f x f x x x f x f x x x f x f x x x f x f +--+----18、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列{xn}n=0,1,2,…一定收敛到方程f(x)=0的根。

相关文档
最新文档