15年高考真题——理科数学(浙江卷)

合集下载

浙江省宁波市(新版)2024高考数学人教版真题(提分卷)完整试卷

浙江省宁波市(新版)2024高考数学人教版真题(提分卷)完整试卷

浙江省宁波市(新版)2024高考数学人教版真题(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题函数的部分图像如图所示,则A.B.C.D.第(2)题设集合,,若,则()A.B.C.D.第(3)题抛物线上的点到其焦点的距离是到y轴距离的2倍,过双曲线的左右顶点A、B作C的同一条渐近线的垂线,垂足分别为P、Q,,则双曲线的离心率为()A.B.C.D.第(4)题已知集合,则()A.B.C.D.第(5)题已知集合,,则()A.B.C.D.第(6)题命题“”的否定是()A.B.C.D.第(7)题已知集合,则()A.B.C.D.第(8)题已知全集,集合,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知向量,,,则下列命题正确的是()A .当且仅当时,B.在上的投影向量为C.存在θ,使得D.存在θ,使得第(2)题在直三棱柱中,,,,三棱锥的体积为,点M,N,P分别为AB,BC,的中点,则下列说法正确的是()A .B.直线与直线PN为异面直线C.平面ABP⊥平面D.三棱柱外接球的体积为第(3)题在棱长为1的正方体中,若点为四边形内(包括边界)的动点,为平面内的动点,则下列说法正确的是()A.若,则平面截正方体所得截面的面积为B .若直线与所成的角为,则点的轨迹为双曲线C.若,则点的轨迹长度为D.若正方体以直线为轴,旋转后与其自身重合,则的最小值是120三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题若,且,则的最小值为______.第(2)题已知函数有两个极值点,则实数的取值范围是_________.第(3)题若,则____________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知椭圆的左右焦点分别为,焦距为4,且椭圆过点,过点且不平行于坐标轴的直线交椭圆与两点,点关于轴的对称点为,直线交轴于点.(1)求的周长;(2)求面积的最大值.第(2)题已知函数,,,是函数的导函数.(1)当时,证明:函数在区间没有零点;(2)若在上恒成立,求的取值范围.第(3)题已知有限数列共有30项,其中前20项成公差为的等差数列,后11项成公比为的等比数列,记数列的前n项和为.从条件①、条件②、条件③这三个条件中选择一个作为已知,求:条件①:;条件②:;条件③:.(1)的值;(2)数列中的最大项.第(4)题如图所示,在等腰梯形中,,,,将三角形沿折起,使点在平面上的投影落在上.(1)求证:平面平面;(2)若点为的中点,求三棱锥的体积.第(5)题已知三棱锥中,,,为的中点,四边形为平行四边形.(1)证明:平面;(2)求二面角的余弦值.。

浙江省杭州市(新版)2024高考数学部编版真题(提分卷)完整试卷

浙江省杭州市(新版)2024高考数学部编版真题(提分卷)完整试卷

浙江省杭州市(新版)2024高考数学部编版真题(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题抛物线的焦点为F,准线为l,A,B是抛物线上的两个动点,且满足,设线段AB的中点M在l上的投影为N,则的最大值是A.1B.C.D.2第(2)题已知α,β是两个不同平面,a,b是两条不同直线,则下列命题正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则第(3)题已知双曲线的左、右焦点分别为,第一象限内的点在上,点关于坐标原点的对称点为,点在内且到三边的距离相等.若点在轴上的射影分别为,,则的离心率为()A.2B.8C.D.第(4)题某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃.下面叙述不正确的是A.各月的平均最低气温都在0℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20℃的月份有5个第(5)题已知数列的前项和为()A.276B.272C.268D.266第(6)题已知函数,若是函数的唯一极小值点,则的取值范围为()A.B.C.D.第(7)题在中,若,分别是方程的两个根,则()A.B.C.D.第(8)题已知实数x,y满足,若直线经过该可行域,则实数k的最小值为()A.-5B.-C.-D.-二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题若的二项展开式的第一项为,最后一项为,则下列结论正确的是()A.B.展开式的第四项的二项式系数等于C.展开式中不含常数项D.展开式中所有项的系数之和等于32第(2)题下列说法正确的是()A.“”是“”的充分不必要条件B.在某项测量中,测量结果服从正态分布,若位于区域内的概率为,则位于区域内的概率为C .命题“”的否定是“”D.函数无零点第(3)题如图,四边形为正方形,平面,,记三棱锥,,的体积分别为,则()A.B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知曲线相邻对称轴之间的距离为,且函数在处取得最大值,则下列结论正确的序号是______.①当时,的取值范围是;②将的图象向左平移个单位后所对应的函数为偶函数;③函数的最小正周期为;④函数在区间上有且仅有一个零点.第(2)题直线(为参数,)的斜率为________.第(3)题已知圆C的圆心在抛物线上且与x轴和该抛物线的准线都相切,则圆C的标准方程为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知直线:,对它先作矩阵对应的变换,再作矩阵对应的变换(其中),得到直线:,求实数的值.第(2)题已知函数.(1)求的图象在处的切线方程;(2)讨论函数的零点个数.第(3)题某学校随机抽取部分新生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学路上所需时间的范围是,样本数据分组为,,,,.(1)求直方图中的值;(2)如果上学路上所需时间不少于40分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿.第(4)题已知.(1)若的一条切线为,求此时的k;(2)求使得有解的最大整数k.第(5)题一个玩具盘由一个直径为2米的半圆O和一个矩形ABCD构成,米,如图所示.小球从A点出发以的速度沿半圆O轨道匀速运动到某点E处,经弹射后,以的速度沿EO的方向匀速运动到BC上某点F处.设弧度,小球从A到F所需时间为T.(1)试将T表示为的函数,并写出定义域;(2)当满足什么条件时,时间T最短.。

数学-2016年高考真题——浙江卷(理)(精校解析版)

数学-2016年高考真题——浙江卷(理)(精校解析版)

2016年普通高等学校招生全国统一考试 (浙江卷)理科数学第Ⅰ卷一、选择题1.(2016·浙江,1)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )=( ) A .[2,3] B .(-2,3]C .[1,2)D .(-∞,-2]∪[1,+∞)2.(2016·浙江,2)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足m ∥α,n ⊥β,则( ) A .m ∥l B .m ∥n C .n ⊥lD .m ⊥n3.(2016·浙江,3)在平面上,过点P 作直线l 的垂线所得的垂足称为点P 在直线l 上的投影.由区域⎩⎪⎨⎪⎧x -2≤0,x +y ≥0,x -3y +4≥0 中的点在直线x +y -2=0上的投影构成的线段记为AB ,则|AB |=( )A .2 2B .4C .3 2D .64.(2016·浙江,4)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2D .∃x ∈R ,∀n ∈N *,使得n <x 25.(2016·浙江,5)设函数f (x )=sin 2x +b sin x +c ,则f (x )的最小正周期( ) A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关D .与b 无关,但与c 有关6.(2016·浙江,6)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列7.(2016·浙江,7)已知椭圆C 1:x 2m 2+y 2=1(m >1)与双曲线C 2:x 2n 2-y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( ) A .m >n 且e 1e 2>1 B .m >n 且e 1e 2<1 C .m <n 且e 1e 2>1D .m <n 且e 1e 2<18.(2016·浙江,8)已知实数a ,b ,c ,( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100第Ⅱ卷二、填空题9.(2016·浙江,9)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________. 10.(2016·浙江,10)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.11.(2016·浙江,11)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm 2,体积是________cm 3.12.(2016·浙江,12)已知a >b >1.若log a b +log b a =52,a b =b a,则a =________,b =________.13.(2016·浙江,13)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=______,S 5=______.14.(2016·浙江,14)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.15.(2016·浙江,15)已知向量a ,b ,|a |=1,|b |=2.若对任意单位向量e ,均有|a ·e |+|b ·e |≤6,则a ·b 的最大值是________. 三、解答题16.(2016·浙江,16)(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (1)证明:A =2B ;(2)若△ABC 的面积S =a 24,求角A 的大小.17.(2016·浙江,17)(本题满分15分)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求二面角B-AD-F 的平面角的余弦值.18.(2016·浙江,18)(本题满分15分)已知a ≥3,函数F (x )=min{2|x -1|,x 2-2ax +4a -2},其中min{p ,q }=⎩⎪⎨⎪⎧p ,p ≤q ,q ,p >q .(1)求使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围; (2)①求F (x )的最小值m (a );②求F (x )在区间[0,6]上的最大值M (a ).19.(2016·浙江,19)(本题满分15分)如图,设椭圆x 2a2+y 2=1(a >1).(1)求直线y =kx +1被椭圆截得的线段长(用a ,k 表示);(2)若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围. 20.(2016·浙江,20)(本题满分15分)设数列{a n }满足|a n -a n +12|≤1,n ∈N *. (1)证明:|a n |≥2n -1(|a 1|-2),n ∈N *;(2)若|a n |≤⎝⎛⎭⎫32n ,n ∈N *,证明:|a n|≤2,n ∈N *.答案解析1.解析 由已知得Q ={x |x ≥2或x ≤-2}.∴∁R Q =(-2,2).又P =[1,3],∴P ∪∁R Q =[1,3]∪(-2,2)=(-2,3]. 答案 B2.解析 由已知,α∩β=l ,∴l ⊂β,又∵n ⊥β,∴n ⊥l ,C 正确.故选C. 答案 C3.解析 已知不等式组表示的平面区域如图中△PMQ 所示.因为l 与直线x +y =0平行.所以区域内的点在直线x +y -2上的投影构成线段AB ,则|AB |=|PQ |.由⎩⎪⎨⎪⎧ x -3y +4=0,x +y =0,解得P (-1,1),由⎩⎪⎨⎪⎧x =2,x +y =0 解得Q (2,-2).所以|AB |=|PQ |=(-1-2)2+(1+2)2=3 2. 答案 C4.解析 原命题是全称命题,条件为∀x ∈R ,结论为∃n ∈N *,使得n ≥x 2,其否定形式为特称命题,条件中改量词,并否定结论,只有D 选项符合. 答案 D5.解析 因为f (x )=sin 2x +b sin x +c =-cos 2x 2+b sin x +c +12,其中当b =0时,f (x )=-cos 2x 2+c +12,f (x )的周期为π;b ≠0时,f (x )的周期为2π.即f (x )的周期与b 有关但与c 无关,故选B. 答案 B6.解析 作A 1C 1,A 2C 2,A 3C 3,…,A n C n 垂直于直线B 1B n ,垂足分别为C 1,C 2,C 3,…,C n ,则A 1C 1∥A 2C 2∥…∥A n C n .∵|A n A n +1|=|A n +1A n +2|,∴|C n C n +1|=|C n +1C n +2|. 设|A 1C 1|=a ,|A 2C 2|=b ,|B 1B 2|=c ,则|A 3C 3|=2b -a ,…,|A n C n |=(n -1)b -(n -2)a (n ≥3),∴S n =12c [(n -1)b -(n -2)a ]=12c [(b -a )n +(2a -b )],∴S n +1-S n =12c [(b -a )(n +1)+(2a -b )-(b -a )n -(2a -b )]=12c (b -a ),∴数列{S n }是等差数列. 答案 A7.解析 由题意可得:m 2-1=n 2+1,即m 2=n 2+2, 又∵m >0,n >0,故m >n .又∵e 21·e 22=m 2-1m 2·n 2+1n 2=n 2+1n 2+2·n 2+1n 2=n 4+2n 2+1n 4+2n 2=1+1n 4+2n 2>1,∴e 1·e 2>1. 答案 A8.解析 由于此题为选择题,可用特值排除法找正确选项. 对选项A ,当a =b =10,c =-110时,可排除此选项; 对选项B ,当a =10,b =-100,c =0时,可排除此选项; 对选项C ,当a =10,b =-10,c =0时,可排除此选项. 故选D. 答案 D9.解析 抛物线y 2=4x 的焦点F (1,0).准线为x =-1,由M 到焦点的距离为10,可知M 到准线x =-1的距离也为10,故M 的横坐标满足x M +1=10,解得x M =9,所以点M 到y 轴的距离为9. 答案 910.解析 ∵2cos 2x +sin 2x =cos 2x +1+sin 2x =2⎝⎛⎭⎫22cos 2x +22sin 2x +1=2sin ⎝⎛⎭⎫2x +π4+1 =A sin(ωx +φ)+b (A >0),∴A =2,b =1. 答案2 111.解析 由三视图可知,该几何体为两个相同长方体的组合,长方体的长、宽、高分别为4 cm 、2 cm 、2 cm ,其直观图如下:其体积V =2×2×2×4=32(cm 3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为S =2(2×2×2+2×4×4)-2×2×2=2×(8+32)-8=72(cm 2). 答案 72 3212.解析 设log b a =t ,则t >1,因为t +1t =52,解得t =2,所以a =b 2,①因此a b =b a ⇒b 2b=2b b ,②解得b =2,a =4. 答案 4 213.解析 由⎩⎪⎨⎪⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得: a n +1=2S n +1,① a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1, ∴{a n }是以a 1=1为首项,公比q =3的等比数列. ∴S 5=1-1×351-3=121.答案 1 12114.解析 设PD =DA =x ,在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =AB 2+BC 2-2·AB ·BC ·cos ∠ABC =4+4-2×2×2×cos 120°=23,∴CD =23-x ,且∠ACB =12(180°-120°)=30°,∴S △BCD =12BC ·DC ×sin ∠ACB =12×2×(23-x )×12=12(23-x ).要使四面体体积最大,当且仅当点P 到平面BCD 的距离最大,而P 到平面BCD 的最大距离为x .则V 四面体PBCD =13×12(23-x )x =16[-(x -3)2+3],由于0<x <23,故当x =3时,V 四面体PBCD 的最大值为16×3=12.答案 1215.解析 由已知可得:6≥|a ·e |+|b ·e |≥|a ·e +b ·e |=|(a +b )·e |, 由于上式对任意单位向量e 都成立. ∴6≥|a +b |成立.∴6≥(a +b )2=a 2+b 2+2a ·b =12+22+2a ·b . 即6≥5+2a ·b ,∴a ·b ≤12.答案 1216.(1)证明 由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B ,于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π,所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B ,所以A =2B . (2)解 由S =a 24得12ab sin C =a 24,故有sin B sin C =12sin A =12sin 2B =sin B cos B ,由sin B ≠0,得sin C =cos B . 又B ,C ∈(0,π),所以C =π2±B .当B +C =π2时,A =π2;当C -B =π2时,A =π4.综上,A =π2或A =π4.17.(1)证明 延长AD ,BE ,CF 相交于一点K ,如图所示.因为平面BCFE ⊥平面ABC ,且AC ⊥BC ,所以,AC ⊥平面BCFE ,因此BF ⊥AC . 又因为EF ∥BC ,BE =EF =FC =1,BC =2,所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK , 且CK ∩AC =C , 所以BF ⊥平面ACFD .(2)解 方法一 过点F 作FQ ⊥AK 于Q ,连接BQ . 因为BF ⊥平面ACFD ,所以BF ⊥AK , 则AK ⊥平面BQF ,所以BQ ⊥AK . 所以∠BQF 是二面角B-AD-F 的平面角. 在Rt △ACK 中,AC =3,CK =2,得FQ =31313.在Rt △BQF 中,FQ =31313,BF =3,得cos ∠BQF =34. 所以,二面角B-AD-F 的平面角的余弦值为34. 方法二 如图,延长AD ,BE ,CF 相交于一点K ,则△BCK 为等边三角形.取BC 的中点O ,连接KO ,则KO ⊥BC ,又平面BCFE ⊥平面ABC ,所以KO ⊥平面ABC . 以点O 为原点,分别以射线OB ,OK 的方向为x 轴,z 轴的正方向,建立空间直角坐标系O-xyz .由题意得B (1,0,0),C (-1,0,0),K (0,0,3),A (-1,-3,0),E ⎝⎛⎫12,0,32,F ⎝⎛⎭⎫-12,0,32.因此,AC →=(0,3,0),AK →=(1,3,3),AB →=(2,3,0).设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧AC →·m =0,AK →·m =0,得⎩⎨⎧3y 1=0,x 1+3y 1+3z 1=0,取m =(3,0,-1);由⎩⎪⎨⎪⎧AB →·n =0,AK →·n =0,得⎩⎨⎧2x 2+3y 2=0,x 2+3y 2+3z 2=0,取n =(3,-2,3).于是,cos 〈m ,n 〉=m ·n |m |·|n |=34.所以,二面角B-AD-F 的平面角的余弦值为34. 18.解 (1)由于a ≥3,故当x ≤1时,(x 2-2ax +4a -2)-2|x -1|=x 2+2(a -1)(2-x )>0, 当x >1时,(x 2-2ax +4a -2)-2|x -1|=(x -2)(x -2a ).所以,使得等式F (x )=x 2-2ax +4a -2成立的x 的取值范围是[2,2a ].(2)①设函数f (x )=2|x -1|,g (x )=x 2-2ax +4a -2,则f (x )min =f (1)=0,g (x )min =g (a )=-a 2+4a -2,所以,由F (x )的定义知m (a )=min {}f (1),g (a ),即m (a )=⎩⎨⎧0,3≤a ≤2+2,-a 2+4a -2,a >2+ 2.②当0≤x ≤2时,F (x )≤f (x )≤max {}f (0),f (2)=2=F (2). 当2<x ≤6时,F (x )≤g (x )≤max {}g (2),g (6) =max {}2,34-8a =max {}F (2),F (6). 当a ≥4时,34-8a ≤2; 当3≤a <4时,34-8a >2,所以M (a )=⎩⎪⎨⎪⎧34-8a ,3≤a <4,2,a ≥4.19.解 (1)设直线y =kx +1被椭圆截得的线段为AM , 由⎩⎪⎨⎪⎧y =kx +1,x 2a 2+y 2=1,得(1+a 2k 2)x 2+2a 2kx =0, 故x 1=0,x 2=-2a 2k 1+a 2k 2,因此|AM |=1+k 2|x 1-x 2|=2a 2|k |1+a 2k2·1+k 2. (2)假设圆与椭圆的公共点有4个,由对称性可设y 轴左侧的椭圆上有两个不同的点P ,Q ,满足|AP |=|AQ |.记直线AP ,AQ 的斜率分别为k 1,k 2,且k 1,k 2>0,k 1≠k 2. 由(1)知|AP |=2a 2|k 1|1+k 211+a 2k 21,|AQ |=2a 2|k 2|1+k 221+a 2k 22, 故2a 2|k 1|1+k 211+a 2k 21=2a 2|k 2|1+k 221+a 2k 22,所以(k 21-k 22)[1+k 21+k 22+a 2(2-a 2)k 21k 22]=0.由于k 1≠k 2,k 1,k 2>0得1+k 21+k 22+a 2(2-a 2)k 21k 22=0,因此⎝⎛⎭⎫1k 21+1⎝⎛⎭⎫1k 22+1=1+a 2(a 2-2),① 因为①式关于k 1,k 2的方程有解的充要条件是1+a 2(a 2-2)>1,所以a > 2. 因此,任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a ≤2, 由e =c a =a 2-1a ,得0<e ≤22.所以离心率的取值范围是(0,22). 20.证明 (1)由⎪⎪⎪⎪a n -a n +12≤1得|a n |-12|a n +1|≤1,故|a n |2n -|a n +1|2n +1≤12n ,n ∈N *, 所以|a 1|21-|a n |2n =⎝⎛⎭⎫|a 1|21-|a 2|22+⎝⎛⎭⎫|a 2|22-|a 3|23+…+⎝ ⎛⎭⎪⎫|a n -1|2n -1-|a n |2n ≤121+122+…+12n -1<1, 因此|a n |≥2n -1(|a 1|-2).(2)任取n ∈N *,由(1)知,对于任意m >n ,|a n |2n -|a m |2m =⎝ ⎛⎭⎪⎫|a n |2n -|a n +1|2n +1+⎝ ⎛⎭⎪⎫|a n +1|2n +1-|a n +2|2n +2+…+⎝ ⎛⎭⎪⎫|a m -1|2m -1-|a m |2m ≤12n +12n +1+…+12m -1<12n -1, 故|a n |<⎝⎛⎭⎫12n -1+|a m |2m ·2n ≤⎣⎡⎦⎤12n -1+12m ·⎝⎛⎭⎫32m ·2n =2+⎝⎛⎭⎫34m ·2n .从而对于任意m >n ,均有|a n |<2+⎝⎛⎭⎫34m ·2n . 由m 的任意性得|a n |≤2.① 否则,存在n 0∈N *,有|0n a |>2,取正整数m 0>0034||2log 2n n a -且m 0>n 0,则02n ·⎝⎛⎭⎫340m <02n ·034||2log 23()4n a -=|0n a |-2,与①式矛盾.综上,对于任意n ∈N *,均有|a n |≤2.。

2010年浙江高考真题(含答案)数学理

2010年浙江高考真题(含答案)数学理

绝密★考试结束前2010年普通高等学校招生全国统一考试数 学(理科)本试题卷分选择题和非选择题两部分。

全卷共5页,选择题部分1至2页,非选择题部分3至5页。

满分150分,考试时间120分钟。

请考生按规定用笔将所有试题的答案涂、写在答题纸上。

选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用像皮擦干净后,再选涂其它答案标号。

不能答在试题卷上。

参考公式:如果事件A 、B 互斥,那么 柱体的体积公式 P (A +B )=P (A )+P (B ) Sh V =如果事件A 、B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高P (A ·B )=P (A )·P (B ) 锥体的体积公式如果事件A 在一次试验中发生的概率是P ,那么n Sh V 31=次独立重复试验中恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高kn kkn n P P C k P )1()(=),,2,1,0(n k = 球的表面积公式台体的体积公式 .ξE )(312211S S S S h V ++=球的体积公式其中S 1,S 2分别表示台体的上、下底面积 3π34R V =h 表示台体的高 其中R 表示球的半径一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设}4|{},4|{2<=<=x x Q x x P(A )Q P ⊆(B )P Q ⊆(C )Q C P R ⊆(D )P C Q R ⊆(2)某程序框图如图所示,若输出的S=57,则判断框内为 (A )?4>k (B )?5>k (C )?6>k (D )?7>k (3)设n S 为等比数列}{n a 的前n 项和,0852=+a a ,则=25S S(A )11 (B )5 (C )-8(D )-11(4)设2π0<<x ,则“1sin2<x x ”是“1sin <x x ”的(A )充分而不必不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(5)对任意复数i R y x yi x z ),∈,(+=为虚数单位,则下列结论正确的是(A )y z z2||= (B )222y x z += (C )x z z2≥|| (D )||||≤||y x z + (6)设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是 (A )若α⊥,α⊂,⊥l m m l 则 (B )若α⊥,//,α⊥m m l l 则(C )若m l m l //,α⊂,α//则(D )若m l m l //,α//,α//则(7)若实数y x ,满足不等式组++,0≥1,0≤32,0≥33my xyxyx 且y x +的最大值为9,则实数=m(A )-2 (B )-1(C )1(D )2(8)设F 1,F 2分别为双曲线)0,0(12222>>=b a by ax 的左、右焦点。

15年高考真题——理科数学(福建卷)

15年高考真题——理科数学(福建卷)

2015年普通高等学校招生全国统一考试(福建)卷数学(理科)一.选择题(本大题共10小题,每小题5分,共50分。

在每小题给也的四个选项中,只有一项是符合题目要求的)1.若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则A B 等于( )(A ){}1- (B ){}1 (C ){}1,1- (D )∅2.下列函数为奇函数的是( )(A)y = (B )|sin |y x = (C )cos y x = (D )x x y e e -=-3.若双曲线22:1916x y E -=的左右焦点分别为12,F F ,点P 在双曲线E 上,且1||3PF =,则2||PF 等于( ) (A )11 (B )9 (C )5 (D )34.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表。

根据上表可得回归直线方程ˆˆˆy bx a =+,其中ˆ0.76b =,ˆˆa=-,据此估计,该社区一户收入为15万元家庭年支出为( ) (A )11 (B )9 (C )5 (D )35.若变量,x y 满足约束条件200220x y x y x y +≥⎧⎪-≤⎨⎪-+≥⎩,则2z x y =-的最小值等于( )(A )52- (B )2- (C )32- (D )26.阅读如图所示的程序框图,运行相应的程序,则输出的结果为( ) (A )2 (B )1 (C )0 (D )1-7.若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α”的( )(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件8.若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于( )(A )6 (B )7 (C )8 (D )99.已知AB AC ⊥,||1AB t =,||AC t =,若P 点是ABC ∆所在平面内一点,且4||||AB AC AP AB AC =+ ,则PB PC ⋅ 的最大值等于( ) (A )13 (B )15 (C )19 (D )2110.若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( )(A )11f k k ⎛⎫< ⎪⎝⎭ (B )111f k k ⎛⎫> ⎪-⎝⎭ (C )1111f k k ⎛⎫< ⎪--⎝⎭ (D )111k f k k ⎛⎫> ⎪--⎝⎭ 二.填空题(本大题共5小题,每小题4分,共20分,把答案写在答题卡相应位置上) 11.()52x +的展开式中,2x 的系数等于________。

2015年高考理科数学浙江卷(含答案解析)

2015年高考理科数学浙江卷(含答案解析)

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分.全卷共6页,选择题部分1至2页,非选择题部分3至6页.满分150分,考试时间120分钟. 考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上.2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上作答一律无效. 参考公式:球的表面积公式 锥体的体积公式24S R π= 13V Sh =球的体积公式其中S 表示锥体的底面积,h 表示锥体的高 334V R π=台体的体积公式其中R 表示球的半径121(S )3V h S =柱体的体积公式其中1S ,2S 分别表示台体的上、下底面积,V Sh = h 表示台体的高其中S 表示柱体的底面积,h 表示柱体的高选择题部分(共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合22{|}=0P x x -≥,{}12|Q x x =<≤,则R ()P Q =ð ( )A .[0,1)B .(0,2]C .(1,2)D .[1,2]2.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( ) A .8 cm 3 B .12 cm 3 C .323 cm 3 D .403cm 3 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S .若3a ,4a ,8a 成等比数列,则 ( ) A .10a d >,40dS > B .10a d <,40dS < C .10a d >,40dS <D .10a d <,40dS >4.命题“*n ∀∈N ,()*f n ∈N 且)(f n n ≤”的否定形式是( )A .*n ∀∈N ,()*f n ∉N 且)(f n n >B .*n ∀∈N ,()*f n ∉N 或)(f n n >C .0*n ∃∈N ,0()*f n ∉N 且00)(f n n >D .0*n ∃∈N ,0()*f n ∉N 或00)(f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有 三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF △与A CF △的面积之比是( )A .||1||1BF AF --B .22||1||1BF AF --C .||1||1BF AF ++ D .22||1||1BF AF ++ 6.设A ,B 是有限集,定义:((,))()d A B card AB card AB =-,其中()card A 表示有限集A 中元素的个数.( )命题①:对任意有限集A ,B ,“A B ≠”是“(,)0d A B >”的充分必要条件; 命题②:对任意有限集A ,B ,C ,(,)(,)(,)d A C d A B d B C +≤. A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立D .命题①不成立,命题②成立 7.存在函数()f x 满足:对任意x ∈R 都有( )A .(sin 2)sin f x x =B .2(sin 2)f x x x =+C .2(1)|1|f x x +=+D .2(2)|1|f x x x +=+8.如图,已知ABC △,D 是AB 的中点,沿直线CD 将ACD △翻折成A CD '△,所成二面角A CDB '--的平面角为α,则( )A .A DB α∠'≤ B .A DB α∠'≥C .A CB α∠'≤D .A CB α∠'≥非选择题部分(共110分)二、填空题:本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.把答案填在题中的横线上.9.双曲线2212x y -=的焦距是 ,渐近线方程是 .10.已知函数223, 1,()lg(1),1,x x x f x x x ⎧+-⎪⎪=⎨⎪+⎪⎩≥<,则(())3f f =- ,)(f x 的最小值是 .11.函数2()sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是 . 12.若4log 3a =,则22a a +=- .13.如图,在三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .14.若实数x ,y 满足221x y +≤,则22|||6|3x y x y +-+--的最小值是 .15.已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意,x y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0= ,y 0= ,|b |= .三、解答题:本大题共5小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤.16.(本小题满分14分)在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c .已知π4A =,22212b ac -=. (Ⅰ)求tan C 的值;(Ⅱ)若ABC △的面积为3,求b 的值.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------------姓名________________ 准考证号_____________数学试卷 第4页(共18页) 数学试卷 第5页(共18页) 数学试卷 第6页(共18页)17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(Ⅰ)证明:1A D ⊥平面1A BC ;(Ⅱ)求二面角11A BD B --的平面角的余弦值.18.(本小题满分15分)已知函数2()(,)f x x ax b a b =++∈R ,记(,)M a b 是|()|f x 在区间[]1,1-上的最大值. (Ⅰ)证明:当||2a ≥时,(,)2M a b ≥;(Ⅱ)当a ,b 满足(,)2M a b ≤时,求||||a b +的最大值.19.(本小题满分15分)已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称. (Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB △面积的最大值(O 为坐标原点).20.(本小题满分15分)已知数列{}n a 满足112a =且21*)(n n n a a a n +-=∈N . (Ⅰ)证明:112(*)nn a n a +∈N ≤≤; (Ⅱ)设数列2{}na 的前n 项和为n S ,证明:11()2(2)2(1)*n S n n n n ∈++N ≤≤.数学试卷 第7页(共18页) 数学试卷 第8页(共18页) 数学试卷 第9页(共18页)2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)答案解析一、选择题 1.【答案】C【解析】由题意得,()(0,2)P =R ð,()(1,2)P Q ∴=R ð,故选C .【提示】求出P 中不等式的解集确定出P ,求出P 补集与Q 的交集即可 【考点】集合的运算 2.【答案】C【解析】由题意得,该几何体为一立方体与四棱锥的组合,∴体积323132222c m33V =+⨯⨯=,故选C . 【提示】判断几何体的形状,利用三视图的数据,求几何体的体积即可 【考点】三视图 3.【答案】B 【解析】等差数列{}n a ,3a ,4a ,8a 成等比数列,211115(3)(2)(7)3a d a d a d a d ∴+=++⇒=-,4141122()2(3)3S a a a a d d ∴=+=++=-,21503a d d ∴=-<,24203dS d =-<故选B .【提示】由3a ,4a ,8a 成等比数列,得到首项和公差的关系,即可判断1a d 和4dS 的符号 【考点】等差数列的通项公式及前n 项和,等比数列的概念 4.【答案】D【解析】根据全称命题的否定是特称命题,可知选D . 【提示】根据全称命题的否定是特称命题即可得到结论 【考点】命题的否定5.【答案】A【解析】||1||1BCF B ACF A S x BC BF S AC x AF -===-△△,故选A . 【提示】根据抛物线的定义,将三角形的面积关系转化为||||BC AC 的关系进行求解即可 【考点】抛物线的标准方程及其性质 6.【答案】A【解析】命题①显然正确,通过下面文氏图亦可知(,)d A C 表示的区域不大于(,)(,)d A B d B C +的区域,故命题②也正确,故选A .第6题图【提示】①命题根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可 【考点】集合的性质 7.【答案】D【解析】A :取0x =,可知(sin0)sin0f =,即(0)0f =,再取π2x =,可知π(sin π)sin 2f =,即(0)1f =,矛盾,∴A 错误;同理可知B 错误,C :取1x =,可知(2)2f =,再取1x =-,可知(2)f =,矛盾,∴C 错误,D :令|1|(t x t =+≥,2(1)(0)()f t t t f x ∴-=≥⇔=D .【提示】利用x 取特殊值,通过函数的定义判断正误即可 【考点】函数的概念 8.【答案】B【解析】根据折叠过程可知A CB '∠与α的大小关系是不确定的,而根据二面角的定义易得A DB α'∠≥,当且仅当AC BC =时,等号成立,故选B .【提示】解:画出图形,分AC BC =,AC BC ≠两种情况讨论即可 【考点】立体几何中的动态问题 二、填空题9.【答案】2y x =±【解析】由题意得:a =1b =,c ===焦距为2c =线方程2b y x x a =±=± 【提示】确定双曲线中的几何量,即可求出焦距、渐近线方程 【考点】双曲线的标准方程及其性质 10.【答案】0,3【解析】[(3)](1)0f f f -==,当1x ≥时,()3f x ≥,当且仅当x =立,当1x <时,()0f x ≥,当且仅当0x =时,等号成立,故()f x最小值为3 【提示】根据已知函数可先求(3)1f -=,然后代入可求[(3)]f f -;由于1x ≥时,2()3f x x x=+-,当1x <时,2()lg(1)f x x =+,分别求出每段函数的取值范围,即可求解【考点】分段函数11.【答案】π,3π7ππ,π88k k k ⎡⎤++∈⎢⎥⎣⎦Z , 【解析】π3()s i n 2242f x x ⎛⎫=-+ ⎪⎝⎭,故最小正周期为π,单调递减区间为3π7ππ,π88k k k ⎡⎤++∈⎢⎥⎣⎦Z ,【提示】由三角函数公式化简可得π3()2242f x x ⎛⎫=-+ ⎪⎝⎭,易得最小正周期,解不等式ππ3π2π22π242k x k +≤-≤+可得函数的单调递减区间 【考点】三角恒等变形,三角函数的性质 12.【解析】4log 3a =Q,432a a ∴=⇒22a a-∴+==【提示】直接把a 代入22a a -+,然后利用对数的运算性质得答案 【考点】对数的计算 13.【答案】78【解析】如下图,连结DN,取DN中点P,连结PM,PC,则可知PMC∠即为异面直线AN,CM所成角(或其补角)易得:12P M A==,PC==,CM=,7cos8PMC∴∠==,即异面直线AN,CM所成角的余弦值为78第13题图【提示】连结ND,取ND的中点为E,连结ME说明异面直线AN,CM所成的角就是EMC∠通过解三角形,求解即可【考点】异面直线的夹角14.【答案】3【解析】221x y+≤表示圆221x y+=及其内部,易得直线63x y--与圆相离,故|63|63x y x y--=--,当220x y+-≥时,|22||63|24x y x y x y+-+--=-+,如下图所示,可行域为小的弓形内部,目标函数24z x y=-+,则可知当35x=,45y=时,min3z=,当220x y+-<时,|22||63|834x y x y x y+-+--=--,可行域为大的弓形内部,目标函数834z x y=--,同理可知当35x=,45y=时,min3z=,综上所述,|22||63|x y x y+-+--的最小值为3.第14题图【提示】根据所给x,y的范围,可得|22||63|x y x y+-+--,再讨论直线220x y+-=将圆221x y+=分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值【考点】线性规划的运用,分类讨论的数学思想,直线与圆的位置关系15.【答案】12【解析】问题等价于12()||b xe ye-+r u r u r当且仅当x x=,y y=时,取得最小值1,两边平方,即22245b x y x y xy++--+r,在x x=,y y=时,取得最小值1,2222222224345(4)5(2)724yb x y x y xy x y x y y b x y b-⎛⎫++--+=+-+-+=++--+⎪⎝⎭r r r,0024012202||71yx xy ybb-⎧+=⎧⎪=⎪⎪∴-=⇒=⎨⎨⎪⎪=-+=⎩⎪⎩rr【提示】由题意和数量积的运算可得12π3e e=u r u rg,不妨设112e⎛⎫= ⎪⎪⎝⎭u r,2(1,0,0)e=u r,由已知可解52b t⎛⎫= ⎪⎪⎝⎭r,可得2222143||(2()24)b xe yeyx y t-⎛⎫=++-+⎪⎝⎭-+r u r u r,由题意可得当1x x==,2y y==时,22243(2)24yx y t-⎛⎫++-+⎪⎝⎭取最小值1,由模长公式可得||br【考点】平面向量的模长,函数值的最值三、解答题16.【答案】(Ⅰ)2(Ⅱ)3【解析】(Ⅰ)由22212b a c-=及正弦定理得2211sin sin22B C-=,2cos2sinB C∴-=,又由π4A=,即3π4B C+=,得cos2sin22sin cosB C C C-==,解得tan2C=;(Ⅱ)由tan2C=,(0,π)C∈,得sin C=cos C=又πsin sin()sin4B AC C⎛⎫=+=+⎪⎝⎭Q,sin B∴=,由正弦定理得c=,又π4A=Q,1sin72bc A=,bc∴=故3b=【提示】(Ⅰ)由正弦定理可得:2211sin sin22B C-=,已知22212b a c-=.由π4A=.可得cos2sin22sin cosB C C C-==,即可得出答案.(Ⅱ)由πsin sin()sin4B AC C⎛⎫=+=+⎪⎝⎭,可得c,即可得出b【考点】正弦定理17.【答案】(Ⅰ)见解析(Ⅱ)18-【解析】(Ⅰ)设E为BC中点,由题意得1A E⊥平面ABC,1A E AE∴⊥,AB AC=Q,AE BC∴⊥,故AE⊥平面1A BC,由D,E分别为11B C,BC的中点,得1DE B B∥且1DE B B=,从而1DE A A∥,所以四边形1A AED为平行四边形,故1A D AE∥,又Q AE⊥平面1A BC,数学试卷第10页(共18页)数学试卷第11页(共18页)数学试卷第12页(共18页)数学试卷 第13页(共18页) 数学试卷 第14页(共18页) 数学试卷 第15页(共18页)∴1A D ⊥平面1A BC .(Ⅱ)作1A F BD ⊥,且1A FBD F =,连结1B F ,由AE EB ==1190A EA A EB ∠=∠=︒, 得114A B A A ==,由11A D B D =,11A B B B =, 得11A DB B DB △≌△, 由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角,由1143A FB F ==,且112A B =, 由余弦定理得,111cos 8A FB ∠=-第17题图【提示】(Ⅰ)设E 为BC 中点,解得四边形1A AED 为平行四边形,故1A D AE ∥,又AE ⊥平面1A BC ,∴1A D ⊥平面1A BC(Ⅱ)所求值即为平面A 1BD 的法向量与平面B 1BD 的法向量的夹角的余弦值的绝对值的相反数,计算即可【考点】线面垂直的判定与性质,二面角的求解 18.【答案】(Ⅰ)见解析 (Ⅱ)3【解析】(Ⅰ)由22()24a a f x x b ⎛⎫=++- ⎪⎝⎭,得对称轴为直线2a x =-,由||2a ≥得2a-≥1,故()f x 在[]1,1-上单调,∴(,)max{|(1)|,|(1)|}M a b f f =-,当2a ≥时,由(1)(1)24f f a --=≥, 得max{|(1)|,|(1)|}2f f -≥,即(,)2M a b ≥; 当2a ≤-时,由(1)(1)24f f a --=-≥, 得max{|(1)|,|(1)|}2f f --≥,即(,)2M a b ≥, 综上,当||2a ≥时,(,)2M a b ≥;(Ⅱ)由(,)2M a b ≥,得|1|(1)2a b f ++=≤,|1|(1)2a b f -+=-≤, 故||3a b +≤,||3a b -≤由||0||||||0a b ab a b a b ab +≥⎧+=⎨-<⎩,,,得||||3a b +≤, 当2a =,1b =-时,||||3a b +=,且221||x x +-在[]1,1-上的最大值为2,即(2,1)2M -=,所以||||a b +的最大值为3.【提示】(Ⅰ)明确二次函数的对称轴,区间的端点值,由a 的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(Ⅱ)讨论0a b ==以及分析(,)2M a b ≤得到31a b -≤+≤且31b a -≤-≤,进一步求出||||a b +的求值【考点】二次函数的性质,分类讨论的思想19.【答案】(Ⅰ)m <m >(Ⅱ)2【解析】(Ⅰ)由题知0m ≠,可设直线AB 的方程为1y x b m =-+,由22121x y y x b m ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222112102bx x b m m ⎛⎫+-+-= ⎪⎝⎭, Q 直线1y x b m =-+与椭圆2212x y +=有两个不同的交点, 224220b m∴∆=-++>①将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程12y mx =+解得2222m b m +=-②由①②得m <m >;(Ⅱ)令160,22tm ⎛⎫⎛⎫=∈⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则2||2AB t +,且O 到直线AB 的距离为212d=设AOB △的面积为()S t ,1()||2S t AB d ∴=≤g 212t =时,等号成立, 故AOB △面积的最大值为2【提示】(Ⅰ)由题意,可设直线AB 的方程为1y x b m =-+,代入椭圆方程可得222112102b x x b m m ⎛⎫+-+-= ⎪⎝⎭,将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程,解出答案. (Ⅱ)令160,t m ⎛⎫⎛⎫=∈⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,且O 到直线AB 的距离为21t d +=设△AOB 的面积为()S t ,即可得出答案【考点】直线与椭圆的位置关系,点到直线的距离公式,求函数最值 20.【答案】(Ⅰ)见解析 (Ⅱ)见解析【解析】(Ⅰ)由题意得,21n n n a a a +-=-≤0,即1n n a a +≤,12n a ≤, 由11(1)n n n a a a --=-,得1211(1)(1)(1)0n n n a a a a a --=--->,由102n a ≤≤,得211[1,2]1n n n n n n a a a a a a +==∈--, 即112nn a a +≤≤; (Ⅱ)由题意得21n n n a a a +=-,11n n S a a +∴=-①,数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)由1111n n n n a a a a ++-=和112n n a a +≤≤,得11112n na a +≤-≤, 1112n nn n a a +∴≤-≤,因此()111()212n a n n n *+≤≤∈++N ②, 由①②得112(2)2(1)n S n n n ≤≤++【提示】(Ⅰ)通过题意易得102n a ≤≤()n *∈N ,利用21n n n a a a +=-可得11n n a a +≥,利用21121n n n n n na a a a a a +==≤--,即得结论; (2)通过21n n n a a a +=-累加得112n n S a +∴=-,利用数学归纳法可证明11(2)12n a n n n≥≥≥+,从而11111122(1)222n a n n n n n+---++≥≥,化简即得结论【考点】数列与不等式结合综合题。

18年高考真题——理科数学(浙江卷)

18年高考真题——理科数学(浙江卷)

2018年普通高等学校招生全国统一考试数 学I 卷(理)(浙江卷)一.选择题(本大题共10小题,每小题4分,共40分)1.已知全集{}1,2,3,4,5U =,{}1,3A =,则U A =ð( )(A )∅ (B ){}1,3 (C ){}2,4,5 (D ){}1,2,3,4,52.双曲线2213x y -=的焦点坐标是( ) (A )()()2,0,2,0- (B )()()2,0,2,0- (C )()()0,2,0,2- (D )()()0,2,0,2-3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( ) (A )2 (B )4 (C )6 (D )84.复数21i- (i 为虚数单位)的共轭复数是( ) (A )1i + (B )1i - (C )1i -+ (D )1i --5.函数||2sin 2x y x =的图像可能是( )6.已知平面α,直线,m n 满足m α⊄,n α⊂,则“//m n ”是“//m α”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.设01p <<,随机变量ξ的分布列如右图所示。

则当p 在()0,1内增 大时,( ) (A )()D ξ减小 (B )()D ξ增大 (C )()D ξ先减小后增大 (D )()D ξ先增大后减小8.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( ) (A )123θθθ≤≤ (B )321θθθ≤≤ (C )132θθθ≤≤ (D )231θθθ≤≤9.已知,,a b c r r r 是平面向量,e r 是单位向量。

若非零向量a r 与e r 的夹角为3π,向量b r 满足2430b e b -⋅+=r r r ,则||a b -r r的最小值是( )(A )31- (B )31+ (C )2 (D )23-10.已知1234,,,a a a a 成等比数列,且()1234123ln a a a a a a a +++=++。

平面向量——2021年高考数学复习必备之2015-2020年浙江省高考试题分项解析

平面向量——2021年高考数学复习必备之2015-2020年浙江省高考试题分项解析

专题五 平面向量一、选择题1.(2018年浙江卷)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b +3=0,则|a −b |的最小值是( )A .B .C .2D .2.(2017年浙江卷)如图,已知平面四边形ABCD ,AB ⊥BC ,AB =BC =AD =2,CD =3,AC 与BD 交于点O ,记 ,,,则A .I 1<I 2<I 3B .I 1<I 3<I 2C .I 3< I 1<I 2D .I 2<I 1<I 3二、填空题3.(2020·浙江高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.4.(2019年浙江卷)已知正方形ABCD 的边长为1,当每个(1,2,3,4,5,6)i i λ=取遍±1时,123456||AB BC CD DA AC BD λλλλλλ+++++的最小值是________;最大值是_______.5.(2017年浙江卷)已知向量a,b 满足1,2a b ==,则a b a b ++-的最小值是___________,最大值是______。

6.(2016年浙江文)已知平面向量a ,b ,|a|=1,|b|=2,a·b=1.若e 为平面单位向量,则|a·e|+|b·e|的最大值是______.7.(2016年浙江理)已知向量a ,b ,|a | =1,|b |=2,若对任意单位向量e ,均有 |a·e |+|b·e |≤6,则a·b 的最大值是 . 8.(2015年浙江文)已知1e , 2e 是平面单位向量,且1212e e ⋅=.若平面向量b 满足121b e b e ⋅=⋅=,则b = .9.(2015年浙江理)已知12,e e 是空间单位向量,1212e e ⋅=,若空间向量b 满足1252,2b e b e ⋅=⋅=,且对于任意,x y R ∈,12010200()()1(,)b xe ye b x e y e x y R -+≥-+=∈,则0x = ,0y = ,b = .优质高三试题一、选择题 1.(2020·浙江镇海中学高三3月模拟)已知a ,b ,c 是平面内三个单位向量,若a b ⊥,则232a c a b c +++-的最小值( )A B C D .52.(2020届浙江省温丽联盟高三第一次联考)已知单位向量e ,向量(1,2)i b i =,满足i i e b e b -=⋅,且12xb yb e +=,其中1x y +=,当12||b b -取到最小时,12b b ⋅=( )A .0B .1CD .1-3.(2020届浙江省之江教育评价联盟高三第二次联考)已知C ,D 是以AB 为直径的圆O 上的动点,且4AB =,则AC BD ⋅的最大值是( )A.2 B . C .D .44.(2020届浙江省嘉兴市高三5月模拟)将边长为1的正方形ABCD 沿对角线BD 翻折,使得二面角A BD C --的平面角的大小为π3,若点E ,F 分别是线段AC 和BD 上的动点,则BE CF ⋅的取值范围为( )A .[1,0]-B .1[1,]4-C .1[,0]2-D .11[,]24- 二.填空题 5.(2020届浙江省高中发展共同体高三上期末)已知向量a 、b 满足1a b +=,2a b -=,则a b +的取值范围为___________.6.(2020届浙江省宁波市余姚中学高考模拟)设平面向量a ,b 满足12a ≤≤,23b ≤≤,则a b a b ++-的取值范围是________.7.(2020届浙江省宁波市鄞州中学高三下期初)已知平面向量a ,b 满足1a =,42a b a b -⋅=-,则a b +的取值范围是______.8.(2020届浙江省“山水联盟”高三下学期开学)平面中存在三个向量a ,b ,c ,若||4a =,||4b =,且0a b ⋅=,且c 满足22150c a c -⋅+=,则||4||c a b c ++-的最小值______. 9.(2020届浙江省十校联盟高三下学期开学)已知向量a ,b 满足21a b +=,且()1a a b ⋅-=,则a b -的取值范围为______.10.(2020·浙江温州中学3月高考模拟)如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.11.(2020届浙江省台州市温岭中学3月模拟)已知A ,B ,C ,D ,E 为半径为1的圆上相异的5点(没有任何两点重合),这5个点两两相连可得到10条线段,则这10条线段长度平方和的最大值为____________. 12.(2020·浙江学军中学高三3月月考)已知e 为单位向量,平面向量a ,b 满足||||1a e b e +=-=,a b ⋅的取值范围是____.13.(2020·浙江温州中学高三3月月考)已知平面向量a ,b 满足4a =,33b =+,0a b ⋅=.记()(),1f x b xa b x a =++-,则()()11f x f x ++-的最大值为______.14.(2020·浙江省温州市新力量联盟高三上期末)在ABC ∆中,1AC BC ==,3AB =且CE xCA =,CF yCB =,其中(),0,1x y ∈,且41x y +=,若M ,N 分别为线段EF ,AB 中点,当线段MN 取最小值时x y +=__________.15.(2020届浙江省绍兴市高三4月一模)已知平面向量,,,a b c d →→→→,满足||||||1a b c →→→===,0a b →→⋅=,||||c d b c →→→→-=⋅,则a d →→⋅的取值范围为______.。

专题15 立体几何多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编

专题15  立体几何多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编

十年(2014-2023)年高考真题分项汇编立体几何填空、多选目录题型一:立体几何结构特征 (1)题型二:立体几何三视图 (2)题型三:立体几何的表面积与体积 (3)题型四:立体几何中的球的问题 (9)题型五:立体几何线面位置关系 (9)题型六:立体几何中的角度与距离 (10)题型一:立体几何结构特征1.(2023年全国甲卷理科·第15题)在正方体1111ABCD A B C D -中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有____________个公共点.2.(2020年高考课标Ⅲ卷理科·第15题)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.3.(2019·全国Ⅱ·理·第16长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(本题第一空2分,第二空3分).4.(2017年高考数学上海(文理科)·第11题)如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为________.5.(2015高考数学江苏文理·第9题)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_______.二、多选题1.(2023年新课标全国Ⅰ卷·第12题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体2.(2021年新高考Ⅰ卷·第12题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 题型二:立体几何三视图1.(2021年高考全国乙卷理科·第16题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).2.(2019·北京·理·第11题)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.3.(2017年高考数学上海(文理科)·第8题)已知球的体积为36π,则该球主视图的面积等于________.4.(2017年高考数学山东理科·第13题)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为__________.则该棱台的体积为________.2.(2023年新课标全国Ⅱ卷·第14题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.3.(2020年新高考全国Ⅰ卷(山东)·第15题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.4.(2020年新高考全国卷Ⅱ数学(海南)·第13题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________5.(2020天津高考·第15题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅ 的最小值为_________.6.(2020江苏高考·第9题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半轻为0.5cm,则此六角螺帽毛坯的体积是____cm.7.(2019·天津·理·第11题)个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.8.(2019·全国Ⅲ·理·第16题)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9g /cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .9.(2019·江苏·第9题)如图,长方体1111ABCD A B C D -的体积是120,E 是1CC 的中点,则三棱椎-E BCD 的体积是______.10.(2018年高考数学江苏卷·第10题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(2018年高考数学天津(理)·第11题)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.12.(2018年高考数学课标Ⅱ卷(理)·第16题)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.13.如图,在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点1C 到直线AB 的距离为.1A 1B 1C AB C14.(2014高考数学天津理科·第10题)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m.15.(2014高考数学山东理科·第13题)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =.16.(2014高考数学江苏·第8题)设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12V V 的值是.17.(2015高考数学天津理科·第10题)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m.18.(2015高考数学上海理科·第4题)若正三棱柱的所有棱长均为a ,且其体积为,则a =.19.(2017年高考数学江苏文理科·第6题)如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_______.20.(2016高考数学浙江理科·第14题)如图,在ABC ∆中,2,120AB BC ABC ==∠= .若平面ABC 外的点P 和线段AC 上的点D ,满足,PD DA PB BA ==,则四面体PBCD 的体积的最大值是.21.(2016高考数学浙江理科·第11题)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是2cm ,体积是3cm .OO 1O 2(第6题)⋅⋅⋅22.(2016高考数学天津理科·第11题)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_____________3m .23.(2016高考数学四川理科·第13题)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则三棱锥的体积为_______.二、多选题1.(2022新高考全国II 卷·第11题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =题型四:立体几何中的球的问题1.(2020年新高考全国Ⅰ卷(山东)·第16题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.2.(2017年高考数学天津理科·第10题)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝2.(2019·北京·理·第12题)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l m ⊥;②m ∥α;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【3.(2016高考数学课标Ⅱ卷理科·第14题),αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果m n ⊥,m α⊥,//n β,那么αβ⊥.(2)如果m α⊥,//n α,那么m n ⊥.(3)如果//αβ,m α⊂,那么//m β.(4)如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)二、多选题1.(2021年新高考全国Ⅱ卷·第10题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A .B .C .D ._____________.(结果用反三角函数值表示)2.(2015高考数学浙江理科·第13题)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.3.(2015高考数学四川理科·第14题)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面相互垂直,动点M 在线段PQ 上,,E F 分别为AB ,BC 中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________4.(2015高考数学上海理科·第6题)若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为.5.(2017年高考数学课标Ⅲ卷理科·第16题),a b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角;②当直线AB 与a 成60︒角时,AB 与b 成60︒角;③直线AB 与a 所成角的最小值为45︒;④直线AB 与a 所成角的最大值为60︒.其中正确的是.(填写所有正确结论的编号)6.(2016高考数学上海理科·第6题)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________.二、多选题1.(2023年新课标全国Ⅱ卷·第9题)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC △2.(2022新高考全国I 卷·第9题)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒。

2015年浙江省高考数学试卷(理科)试题与解析

2015年浙江省高考数学试卷(理科)试题与解析

2015年浙江省高考数学试卷(理科)及答案解析版一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)22.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()D3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,**5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()C D6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线=1的焦距是,渐近线方程是.10.(6分)已知函数f(x)=,则f(f(﹣3))=,f (x)的最小值是.11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)若a=log43,则2a+2﹣a=.13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=,y0=,|=.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)22.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()D+3.(5分)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,成等比数列,得.,∴∴=**5.(5分)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()C D根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.==,6.(5分)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;x=t=∴=8.(5分)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线=1的焦距是2,渐近线方程是y=±x.解:双曲线,c=,渐近线方程是±;±10.(6分)已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.,=)的最小值是;11.(6分)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,单调递减区间是[kπ+,kπ+](k∈Z).sin),易得最小正周期,解不等式+﹣可得函数的单调递减区间.(sin2x+1sin),T==≤+≤,+],]12.(4分)若a=log43,则2a+2﹣a=.,+=故答案为:13.(4分)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.,=EN MC=2EC===.故答案为:.14.(4分)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是3.,)处取得最小值,)处取得最小值x=y=15.(6分)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0=1,y0=2,|=2.由题意和数量积的运算可得<•,不妨设=(,,,,由已知可解(,|﹣(|)(x+)(由模长公式可得解:∵=|||><>,•>,不妨设(,,,=n=2,,解得n=,∴=,∵﹣()(﹣∴|﹣(|﹣x()()(,故=2三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.由余弦定理可得:=可得sinC=,即可得出tanC=)由=×A=,由余弦定理可得:bc=.∴=.∴c.可得﹣cosC=.==2)∵×c=2∴=317.(15分)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.•==0AC=2,=)(,,,﹣,,﹣,,,(﹣,﹣)(﹣,=∵•又∵•的法向量为,得,得=的法向量为,得,得=,,>=,的平面角的余弦值为﹣.18.(15分)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.﹣,所以或≥||2a|19.(15分)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).y=mx+可得=,代入椭圆方程,可得,则×+n=上,∴+∴2,∴===,AOB=,又∵取得最大值为20.(15分)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).≤可得通过利用数学归纳法可证明(≥(﹣,∴=,∴∴≤)由已知,=a++=下面证明:≥(﹣,+=,﹣=≤∴≤,均有≥∴=≥,(。

2013年高考真题——理科数学(浙江卷)

2013年高考真题——理科数学(浙江卷)

2013年普通高等学校招生全国统一考试数学试卷(浙江卷)一.选择题:每小题5分,共50分。

1.已知i 是虚数单位,则()()12i i -+-=( )(A )i +-3 (B )i 31+- (C )i 33+- (D )i +-12.设集合{}|2S x x =>-,{}2|340T x x x =+-≤,则()R ST =ð( )(A )(]2,1- (B )(],4-∞- (C )(],1-∞ (D )[)1,+∞3.已知y x ,为正实数,则( ) (A )y x yx lg lg lg lg 222+=+(B )()lg lg lg 222x y x y +=⋅ (C )lg lg lg lg 222x y x y ⋅=+ (D )()lg lg lg 222xy x y =⋅4.已知函数()()()cos 0,0,f x A x A R ωϕωϕ=+>>∈,则“()f x 是奇函数”是2πϕ=的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件5.某程序框图如图所示,若该程序运行后输出的值是59,则a =( ) (A )4 (B )5 (C )6 (D )76.已知)sin 2cos 2R ααα+=∈,则=α2t a n ( ) (A )34 (B )43 (C )43- (D )34-7.设ABC ∆,0P 是边AB 上一定点,满足AB B P 410=,且对边AB 上任一点P 恒有00PB PC P B PC ⋅≥⋅。

则( ) (A )090=∠ABC (B )090=∠BAC (C )AC AB = (D )BC AC =8.已知e 为自然对数的底数,设函数()()()()111,2kxf x e x k =--=,则( )(A )当1=k 时,()f x 在1=x 处取得极小值 (B )当1=k 时,()f x 在1=x 处取得极大值 (C )当2=k 时,()f x 在1=x 处取得极小值 (D )当2=k 时,()f x 在1=x 处取得极大值输出 Sk = k + 1S = S +1k k + 1 ()k > a ?S = 1 , k = 19.如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点。

2015年浙江省高考数学【理】(含解析版)

 2015年浙江省高考数学【理】(含解析版)

2015年浙江省高考数学试卷(理科)一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)2()2.(5分)(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()..3.(5分)(2015•浙江)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()*,f(n)∈N*且f(n)≤n”的否定形式是()5.(5分)(2015•浙江)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()....6.(5分)(2015•浙江)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)8.(5分)(2015•浙江)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•浙江)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•浙江)已知函数f (x )=,则f (f (﹣3))=,f (x )的最小值是. 11.(6分)(2015•浙江)函数f (x )=sin 2x+sinxcosx+1的最小正周期是 ,单调递减区间是 .12.(4分)(2015•浙江)若a=log 43,则2a +2﹣a = .13.(4分)(2015•浙江)如图,三棱锥A ﹣BCD 中,AB=AC=BD=CD=3,AD=BC=2,点M ,N 分别是AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .14.(4分)(2015•浙江)若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 .15.(6分)(2015•浙江)已知是空间单位向量,,若空间向量满足,且对于任意x ,y ∈R ,,则x 0= ,y 0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知A=,b 2﹣a 2=c 2. (1)求tanC 的值;(2)若△ABC 的面积为3,求b 的值. 17.(15分)(2015•浙江)如图,在三棱柱ABC ﹣A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点. (1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1﹣BD ﹣B 1的平面角的余弦值.18.(15分)(2015•浙江)已知函数f (x )=x 2+ax+b (a ,b ∈R ),记M (a ,b )是|f (x )|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M (a ,b )≥2;(2)当a ,b 满足M (a ,b )≤2时,求|a|+|b|的最大值.19.(15分)(2015•浙江)已知椭圆上两个不同的点A ,B 关于直线y=mx+对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).20.(15分)(2015•浙江)已知数列{a n }满足a 1=且a n+1=a n ﹣a n 2(n ∈N *)(1)证明:1≤≤2(n ∈N *);(2)设数列{a n 2}的前n 项和为S n ,证明(n ∈N *).2015年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C .解:设等差数列{a n }的首项为a 1,则a 3=a 1+2d ,a 4=a 1+3d ,a 8=a 1+7d , 由a 3,a 4,a 8成等比数列,得,整理得:.∵d≠0,∴, ∴,=<0.故选:B .本题考查了等差数列和等比数列的性质,考查了等差数列的前n 项和,是基础题. 根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可. 解:如图所示,抛物线的准线DE 的方程为x=﹣1,则===,故选:A本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)解:双曲线=1中,a=,b=1,c=,∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解:化简可得f(x)=sin2x+sinxcosx+1 =(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.本题考查对数的运算性质,是基础的计算题.通过解三角形,求解即可.解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解:∵•=||||cos<•>=cos<•>=,∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2本题考查空间向量的数量积,涉及向量的模长公式,属中档题.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.18.(15分)求值.解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.本题考查了二次函数闭区间上的最值求法;解19.(15分)(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用= =≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的祝福语祝你考试成功!。

2015年高考浙江省理科数学试题及答案解析(名师精校版)

2015年高考浙江省理科数学试题及答案解析(名师精校版)

点评:本题主要考查含有量词的命题的否定,比较基础.
5.(5 分)如图,设抛物线 y2=4x 的焦点为 F,不经过焦点的直线上有三个不同的点 A,B,C,其中点 A, B 在抛物线上,点 C 在 y 轴上,则△BCF 与△ACF 的面积之比是( )
A.
B.
C.
D.
考点:直线与圆锥曲线的关系. 菁优网版 权所有
命题②:对任意有限集 A,B,C,d(A,C)≤d(A,B)+d(B,C)
A. 命题①和命题②都成立
B. 命题①和命题②都不成立
C. 命题①成立,命题②不成立
D. 命题①不成立,命题②成立
考点:复合命题的真假. 菁优网版 权所有
专题:集合;简易逻辑.
分析:命题①根据充要条件分充分性和必要性判断即可,
其中 S 表示柱体的底面积, h 表示柱体
的高
锥体的体积公式 V 1 Sh 其中 S 表示 3
锥体的底面积, h 表示锥体的高
球的表面积公式
如果事件 A 在一次试验中发生的概率为 P , 那么 n 次独立重复试验中事件 A 恰好发生 k
次的概率
Pn (k ) Cnk pk (1 p)nk (k 0,1, 2,..., n)
菁优网版 权所有
专题:等差数列与等比数列. 分析:由 a3,a4,a8 成等比数列,得到首项和公差的关系,即可判断 a1d 和 dS4 的符号. 解答:解:设等差数列{an}的首项为 a1,则 a3=a1+2d,a4=a1+3d,a8=a1+7d,
第 1 页 共 17 页
由 a3,a4,a8 成等比数列,得 .
选择题部分(共 50 分)
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规

2022年高考真题—数学(浙江卷)【含答案及解析】

2022年高考真题—数学(浙江卷)【含答案及解析】

年普通⾼等学校招⽣全国统⼀考试(浙江卷)数学参考公式:如果事件A ,B 互斥,则柱体的体积公式()()()P A B P A P B +=+V Sh=如果事件A ,B 相互独立,则其中S 表示柱体的底面积,h 表示柱体的高()()()P AB P A P B =×锥体的体积公式若事件A 在一次试验中发生的概率是p ,则n 次13V Sh=独立重复试验中事件A 恰好发生k 次的概率其中S 表示锥体的底面积,h 表示锥体的高()(1)(0,1,2,,)k k n k n n P k C p p k n -=-=L 球的表面积公式台体的体积公式24S R p=()1213V S S h =++球的体积公式其中12,S S 表示台体的上、下底面积,343V R p =h 表示台体的高其中R 表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2},{2,4,6}A B ==,则A B È=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}2.已知,,3i (i)i a b a b Î+=+R (i 为虚数单位),则()A.1,3a b ==- B.1,3a b =-= C.1,3a b =-=- D.1,3a b ==3.若实数x ,y 满足约束条件20,270,20,x x y x y -³ìï+-£íï--£î则34z x y =+的最大值是()A 20B. 18C. 13D. 64.设x ÎR ,则“sin 1x =”是“cos 0x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是().A.22πB.8πC.22π3D.16π36.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x æö=+ç÷èø图象上所有的点()A.向左平移π5个单位长度 B.向右平移π5个单位长度C.向左平移π15个单位长度 D.向右平移π15个单位长度7.已知825,log 3ab ==,则34a b -=()A.25B.5C.259 D.538.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为a ,EF 与平面ABC 所成的角为b ,二面角F BC A --的平面角为g ,则()A.a b g££ B.b a g ££ C.b g a££ D.a g b££9.已知,a b ÎR ,若对任意,|||4||25|0x a x b x x Î-+---³R ,则()A.1,3a b £³ B.1,3a b ££ C.1,3a b ³³ D.1,3a b ³£10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-ÎN ,则()A.100521002a <<B.100510032a << C.100731002a <<D.100710042a <<非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.12已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.13.若3sin sin 2pa b a b -=+=,则sin a =__________,cos 2b =_________.14.已知函数()22,1,11,1,x x f x x x x ì-+£ï=í+->ïî则12f f æöæö=ç÷ç÷èøèø________;若当[,]x a b Î时,1()3f x ££,则b a -的最大值是_________.15.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为x ,则(2)P x ==__________,()E x =_________.16.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.17.设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++u u u r u u L u r u u u r 的取值范围是_______.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 面积..的19.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE Ð=Ð=°,二面角F DC B --的平面角为60°.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ^;(2)求直线BM 与平面ADE 所成角的正弦值.20.已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *ÎN .(1)若423260S a a -+=,求n S ;(2)若对于每个n *ÎN ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 的取值范围.21.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q æöç÷èø在线段AB上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点距离的最大值;(2)求||CD 的最小值.22.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L是自然对数的底数)的的答案及解析选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2},{2,4,6}A B ==,则A B È=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}【答案】D 【解析】【分析】利用并集的定义可得正确的选项.【详解】{}1,2,4,6A B =U ,故选:D.2.已知,,3i (i)i a b a b Î+=+R (i 为虚数单位),则()A.1,3a b ==- B.1,3a b =-= C.1,3a b =-=- D.1,3a b ==【答案】B 【解析】【分析】利用复数相等的条件可求,a b .【详解】3i 1i a b +=-+,而,a b 为实数,故1,3a b =-=,故选:B.3.若实数x ,y 满足约束条件20,270,20,x x y x y -³ìï+-£íï--£î则34z x y =+的最大值是()A. 20B. 18C. 13D. 6【答案】B 【解析】【分析】在平面直角坐标系中画出可行域,平移动直线34z x y =+后可求最大值.【详解】不等式组对应的可行域如图所示:当动直线340x y z +-=过A 时z 有最大值.由2270x x y =ìí+-=î可得23x y =ìí=î,故()2,3A ,故max 324318z =´+´=,故选:B.4.设x ÎR ,则“sin 1x =”是“cos 0x =”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由三角函数的性质结合充分条件、必要条件的定义即可得解.【详解】因为22sin cos 1x x +=可得:当sin 1x =时,cos 0x =,充分性成立;当cos 0x =时,sin 1x =±,必要性不成立;所以当x ÎR ,sin 1x =是cos 0x =的充分不必要条件.故选:A.5.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是()A.22πB.8πC.22π3D.16π3【答案】C 【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =´´+´´+´´´+´+=3cm .故选:C .6.为了得到函数2sin 3y x =的图象,只要把函数π2sin 35y x æö=+ç÷èø图象上所有的点()A. 向左平移π5个单位长度 B.向右平移π5个单位长度C. 向左平移π15个单位长度 D. 向右平移π15个单位长度【答案】D【解析】【分析】根据三角函数图象的变换法则即可求出.【详解】因为ππ2sin 32sin 3155y x x éùæö==-+ç÷êúèøëû,所以把函数π2sin 35y x æö=+ç÷èø图象上的所有点向右平移π15个单位长度即可得到函数2sin 3y x =的图象.故选:D.7.已知825,log 3ab ==,则34a b -=()A. 25B. 5C.259D.53【答案】C 【解析】【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为25a=,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa bb b -====.故选:C.8.如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为a ,EF 与平面ABC 所成的角为b ,二面角F BC A --的平面角为g ,则()A.a b g££ B.b a g ££ C.b g a££ D.a g b££【答案】A 【解析】【分析】先用几何法表示出a b g ,,,再根据边长关系即可比较大小.【详解】如图所示,过点F 作FP AC ^于P ,过P 作PM BC ^于M ,连接PE ,则EFP a =Ð,FEP b =Ð,FMP g =,tan 1PE PE FP AB a ==£,tan 1FP AB PE PE b ==³,tan tan FP FPPM PEg b =³=,所以a b g ££,故选:A .9.已知,a b ÎR ,若对任意,|||4||25|0x a x b x x Î-+---³R ,则()A 1,3a b £³ B.1,3a b ££ C.1,3a b ³³ D.1,3a b ³£【答案】D 【解析】【分析】将问题转换为|||25||4|a x b x x -³---,再结合画图求解.【详解】由题意有:对任意的x ÎR ,有|||25||4|a x b x x -³---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ì-£ïïï=---=-<<íï-³ïïî,即()f x 的图象恒在()g x 的上方(可重合),如下图所示:.由图可知,3a ³,13b ££,或13a £<,3143b a££-£,故选:D .10.已知数列{}n a 满足()21111,3n n n a a a a n *+==-ÎN ,则()A.100521002a <<B.100510032a << C.100731002a <<D.100710042a <<【答案】B 【解析】【分析】先通过递推关系式确定{}n a 除去1a ,其他项都在()0,1范围内,再利用递推公式变形得到1111133n n n a a a +-=>-,累加可求出11(2)3n n a >+,得出1001003a <,再利用11111111333132n n n a a a n n +æö-=<=+ç÷-+èø-+,累加可求出()111111113323n n a n æö-<-++++ç÷èøL ,再次放缩可得出10051002a >.【详解】∵11a =,易得()220,13a =Î,依次类推可得()0,1n aÎ由题意,1113n n n a a a +æö=-ç÷èø,即()1131133n n n n n a a a a a +==+--,∴1111133n n n a a a +-=>-,即211113a a ->,321113a a ->,431113a a ->,…,1111,(2)3n n n a a -->³,累加可得()11113n n a ->-,即11(2),(2)3n n n a >+³,∴()3,22n a n n <³+,即100134a <,100100100334a <<,又11111111,(2)333132n n n n a a a n n +æö-=<=+³ç÷-+èø-+,∴211111132a a æö-=+ç÷èø,321111133a a æö-<+ç÷èø,431111134a a æö-<+ç÷èø,…,111111,(3)3n n n a a n -æö-<+³ç÷èø,累加可得()11111111,(3)3323n n n a n æö-<-++++³ç÷èøL ,∴10011111111133334943932399326a æöæö-<++++<+´+´<ç÷ç÷èøèøL ,即100140a <,∴100140a >,即10051002a >;综上:100510032a <<.故选:B .【点睛】关键点点睛:解决本题的关键是利用递推关系进行合理变形放缩.非选择题部分(共110分)二、填空题:本大题共7小题,单空题每题4分,多空题每空3分,共36分.11.我国南宋著名数学家秦九韶,发现了从三角形三边求面积的公式,他把这种方法称为“三斜求积”,它填补了我国传统数学的一个空白.如果把这个方法写成公式,就是S =,其中a ,b ,c 是三角形的三边,S 是三角形的面积.设某三角形的三边2a b c ===,则该三角形的面积S =___________.【答案】4.【解析】【分析】根据题中所给的公式代值解出.【详解】因为S =,所以4S ==.故答案为:4.12.已知多项式42345012345(2)(1)x x a a x a x a x a x a x +-=+++++,则2a =__________,12345a a a a a ++++=___________.【答案】①.8②.2-【解析】【分析】第一空利用二项式定理直接求解即可,第二空赋值去求,令0x =求出0a ,再令1x =即可得出答案.【详解】含2x 项为:()()3232222244C 12C 14128x x x x x x ×××-+×××-=-+=,故28a =;令0x =,即02a =,令1x =,即0123450a a a a a a =+++++,∴123452a a a a a ++++=-,故答案为:8;2-.13.若3sin sin 2pa b a b -=+=,则sin a =__________,cos 2b =_________.【答案】①.10②.45【解析】【分析】先通过诱导公式变形,得到a 的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出a ,接下来再求b .【详解】2pa b +=,∴sin cos b a =,即3sin cos a a -=的sin cos1010a aö-=÷÷øsin10q=,cos10q=,()a q-=,∴22k k Zpa q p-=+Î,,即22kpa q p=++,∴sin sin2cos210kpa q p qæö=++==ç÷èø,则224cos22cos12sin15b b a=-=-=.故答案为:10;45.14.已知函数()22,1,11,1,x xf xx xxì-+£ï=í+->ïî则12f fæöæö=ç÷ç÷èøèø________;若当[,]x a bÎ时,1()3f x££,则b a-的最大值是_________.【答案】①.3728②.3【解析】【分析】结合分段函数的解析式求函数值,由条件求出a的最小值,b的最大值即可.【详解】由已知2117()2224fæö=-+=ç÷èø,77437()144728f=+-=,所以137()228f féù=êúëû,当1x£时,由1()3f x££可得2123x£-+£,所以11x-££,当1x>时,由1()3f x££可得1113xx£+-£,所以12x<£1()3f x££等价于12x-££+,所以[,][1,2a bÍ-+,所以b a-的最大值为3.故答案为:3728,315.现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为x,则(2)P x==__________,()E x=_________.【答案】①.1635,②.127##517【解析】【分析】利用古典概型概率公式求(2)P x =,由条件求x 分布列,再由期望公式求其期望.【详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P x +===,由已知可得x 的取值有1,2,3,4,2637C 15(1)C 35P x ===,16(2)35P x ==,,()()233377C 31134C 35C 35P P x x ======,所以15163112()1234353535357E x =´+´+´+´=,故答案为:1635,127.16.已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.【答案】4【解析】【分析】联立直线AB 和渐近线2:bl y x a=方程,可求出点B ,再根据||3||FB FA =可求得点A ,最后根据点A 在双曲线上,即可解出离心率.【详解】过F 且斜率为4b a 的直线:()4b AB y x c a=+,渐近线2:bl y x a =,联立()4b y x c ab y xa ì=+ïïíï=ïî,得,33c bc B a æöç÷èø,由||3||FB FA =,得5,,99c bc A a æö-ç÷èø而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a =,所以离心率e 4=.故答案为:4.17.设点P 在单位圆的内接正八边形128A A A L 的边12A A 上,则222182PA PA PA +++u u u r u u L u r u u u r 的取值范围是_______.【答案】[12+【解析】【分析】根据正八边形的结构特征,分别以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设(,)P x y ,再根据平面向量模的坐标计算公式即可得到()2222212888PA PA PA x y +++=++u u u r u u u r u u u r L ,然后利用cos 22.5||1OP ££o 即可解出.【详解】以圆心为原点,37A A 所在直线为x 轴,51A A 所在直线为y 轴建立平面直角坐标系,如图所示:则1345726(0,1),,,(1,0),,,(0,1),,,(1,0)222222A A A A A A A æöææ-----ç÷ççç÷ç÷ç÷èøèøèø,822A æö-ç÷ç÷èø,设(,)P x y ,于是()2222212888PA PA PA x y +++=++u u u r u u u r u u u r L ,因为cos 22.5||1OP ££o,所以221cos 4512x y +£+£o ,故222128PA PA PA +++u u u r u u u r u u u r L 的取值范围是[12+.故答案为:[12+.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.在ABC V 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==.(1)求sin A 的值;(2)若11b =,求ABC V 的面积.【答案】(1;(2)22.【解析】【分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab+-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【小问1详解】由于3cos 5C =,0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin sin 45A C ==.【小问2详解】因为4a =,由余弦定理,得2222221612111355cos 22225a a a abc C ab a a +--+-====,即26550a a +-=,解得5a =,而4sin 5C =,11b =,所以ABC V 的面积114sin 51122225S ab C ==´´´=.19.如图,已知ABCD 和CDEF 都是直角梯形,//AB DC ,//DC EF ,5AB =,3DC =,1EF =,60BAD CDE Ð=Ð=°,二面角F DC B --的平面角为60°.设M ,N 分别为,AE BC 的中点.(1)证明:FN AD ^;(2)求直线BM 与平面ADE 所成角的正弦值.【答案】(1)证明见解析;(2)14.【解析】【分析】(1)过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点G 、H ,由平面知识易得FC BC =,再根据二面角的定义可知,60BCF Ð=o ,由此可知,FN BC ^,FN CD ^,从而可证得FN ^平面ABCD ,即得FN AD ^;(2)由(1)可知FN ^平面ABCD ,过点N 做AB 平行线NK ,所以可以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,求出平面ADE 的一个法向量,以及BM uuu u r,即可利用线面角的向量公式解出.【小问1详解】过点E 、D 分别做直线DC 、AB 的垂线EG 、DH 并分别交于点交于点G 、H .∵四边形ABCD 和EFCD 都是直角梯形,//,//,5,3,1AB DC CD EF AB DC EF ===,60BAD CDE Ð=Ð=°,由平面几何知识易知,2,90DG AH EFC DCF DCB ABC ==Ð=Ð=Ð=Ð=°,则四边形EFCG 和四边形DCBH 是矩形,∴在Rt EGD V 和Rt DHA V ,EG DH ==∵,DC CF DC CB ^^,且CF CB C Ç=,∴DC ^平面,BCF BCF Ð是二面角F DC B --的平面角,则60BCF Ð=o ,∴BCF △是正三角形,由DC Ì平面ABCD ,得平面ABCD ^平面BCF ,∵N 是BC 的中点,\FN BC ^,又DC ^平面BCF ,FN Ì平面BCF ,可得FN CD ^,而BC CD C Ç=,∴FN ^平面ABCD ,而AD Ì平面ABCD FN AD \^.【小问2详解】因为FN ^平面ABCD ,过点N 做AB 平行线NK ,所以以点N 为原点,NK ,NB 、NF 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系N xyz -,设(3,(1,0,3)A B D E,则33,,22M æöç÷ç÷èø,33,,,(2,(22BM AD DE æö\=-=--=-ç÷ç÷èøu u u u r u u ur u u u r 设平面ADE 的法向量为(,,)n x y z =r由00n AD n DE ì×=í×=îu u u v r u u u v r,得20230x x z ì--=ïí-++=ïî,取n =-r ,设直线BM 与平面ADE 所成角为q ,∴||sin cos ,14|||n BM n BM n BM q ×=áñ====×u uu u r r u uu u r r uu u u r r .20.已知等差数列{}n a 的首项11a =-,公差1d >.记{}n a 的前n 项和为()n S n *ÎN .(1)若423260S a a -+=,求n S ;(2)若对于每个n *ÎN ,存在实数n c ,使12,4,15n n n n n n a c a c a c +++++成等比数列,求d 取值范围.【答案】(1)235(N )2n n nS n *-=Î(2)12d <£【解析】【分析】(1)利用等差数列通项公式及前n 项和公式化简条件,求出d ,再求n S;的(2)由等比数列定义列方程,结合一元二次方程有解的条件求d 的范围.【小问1详解】因为42312601S a a a -+==-,,所以()()46211260d d d -+--+-++=,所以230d d -=,又1d >,所以3d =,所以34n a n =-,所以()213522n na a n n n S +-==,【小问2详解】因为n n a c +,14n n a c ++,215n n a c ++成等比数列,所以()()()212415n n n n n n a c a c a c +++=++,()()()2141115n n n nd c nd d c nd d c -+=-+-+-+++,22(1488)0n n c d nd c d +-++=,由已知方程22(1488)0n n c d nd c d +-++=的判别式大于等于0,所以()22148840d nd d D =-+-³,所以()()168812880d nd d nd -+-+³对于任意的n *ÎN 恒成立,所以()()212320n d n d ----³éùéùëûëû对于任意的n *ÎN 恒成立,当1n =时,()()()()21232120n d n d d d ----=++³éùéùëûëû,当2n =时,由()()2214320d d d d ----³,可得2£d 当3n ³时,()()21232(3)(25)0n d n d n n ---->--³éùéùëûëû,又1d >所以12d <£21.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q æöç÷èø在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.【答案】(1)11;(2)5.【解析】【分析】(1)设,sin )Q q q 是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =×+,由柯西不等式即可求出最小值.【小问1详解】设,sin )Q q q 是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ q q q q q æö=+-=--=-+£ø+ç÷è,当且仅当1sin 11q =-时取等号,故||PQ 的最大值是11.【小问2详解】设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx æö++-=ç÷èø,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ì+=-ï+ïïíï=-æöï+ç÷ïèøî,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则||CD ====231555k =×=³=+,当且仅当316k =时取等号,故CD的最小值为5.【点睛】本题主要考查最值计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.22.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ÎR ,曲线()y f x =上不同三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a æö<-<-ç÷èø;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea a x x a --+<+<-.(注:e 2.71828=L 是自然对数的底数)【答案】(1)()f x 的减区间为e 02æöç÷èø,,增区间为e ,2æö+¥ç÷èø.的的(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1eam =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.【小问1详解】()22e 12e 22xf x x x x -¢=-+=,当e 02x <<,()0f x ¢<;当e2x >,()0f x ¢>,故()f x 的减区间为e 02æöç÷èø,,()f x 的增区间为e ,2æö+¥ç÷èø.【小问2详解】(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a ¢-=-,故方程()()()f x b f x x a ¢-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x æö----+=ç÷èø,设()()21e e ln 22g x x a x b x x x æö=----+ç÷èø,则()()22321e 1e 1e22g x x a x x x x x xæö¢=-+-+--+ç÷èø()()31e x x a x=---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +¥上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b æö----+<ç÷èø且()21e e ln 022a a a b a a a æö----+>ç÷èø,整理得到:12e a b <+且()eln 2b a f a a>+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a aæöæö---<+-+-+=--ç÷ç÷èøèø,设()3e ln 22u a a a =--,则()2e-202au a a ¢=<,故()u a 为()e,+¥上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a æö<-<-ç÷èø.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +¥上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b æö----+>ç÷èø且()21e e ln 022a a a b a a a æö----+<ç÷èø,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =Î,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2e a a t t t b +-+++=即为()21ln 02mm t t t b -++++=,记123123e e e,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6e a a t t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --æöæö+-+-+<ç÷ç÷èøèø,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-´-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--´<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k j +=>-,则()()2112ln 01k k k k k j æö¢=-->ç÷èø-,设()12ln u k k k k =--,则()2122210u k k k k k¢=+->-=即()0k j ¢>,故()k j 在()1,+¥上为增函数,故()()k m j j >,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m w ---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m w ---+-+¢=>>++,所以()m w 在()0,1为增函数,故()()10m w w <=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m mm m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普通高等学校招生全国统一考试数学试卷(浙江卷)一.选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中 只有一项是符合题目要求的。

1.已知集合{}2|20P x x x =-≥,{}|12Q x x =<≤,则()R P Q = ð( )(A )[)0,1 (B )(]0,2 (C )()1,2 (D )[]1,22.某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )(A )38cm (B )312cm (C )3323cm (D )3403cm 3.已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若348,,a a a 成等比数列,则( ) (A )10a d >,0n dS >(B )10a d <,0n dS < (C )10a d >,0n dS < (D )10a d <,0n dS >4.命题“n N +∀∈,()f n N +∈且()f n n ≤”的否定形式是( ) (A )n N +∀∈,()f n N +∈且()f n n > (B )n N +∀∈,()f n N +∈或()f n n > (C )0n N +∃∈,()0f n N +∈且()00f n n > (D )0n N +∃∈,()0f n N +∈或()00f n n >5.如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点,,A B C ,其中点,A B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( ) (A )||1||1BF AF -- (B )22||1||1BF AF -- (C )||1||1BF AF ++ (D )22||1||1BF AF ++ 6.设,A B 是有限集,定义()()(),d A B card A B card A B =- ,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“(),0d A B >”的充分必要条件;命题②:对任意有限集,,A B C ,()()(),,,d A C d A B d B C ≤+。

则( )(A )命题①和命题②都成立 (B )命题①和命题②都不成立(C )命题①成立,命题②不成立 (D )命题①不成立,命题②成立7.存在函数()f x 满足,对任意x R ∈都有( )(A )()sin 2sin f x x = (B )()2sin 2f x x x =+(C )()21|1|f x x +=+ (D )()22|1|f x x x +=+ 8.如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )(A )A DB α'∠≤ (B )A DB α'∠≥(C )A CB α'∠≤ (D )A CB α'∠≤二.填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。

9.双曲线2212x y -=的焦距是 ,渐近线方程是_____________。

10.已知函数()()()()2231lg 11x x x f x x x ⎧+-≥⎪=⎨⎪+<⎩,则()()3f f -= ,()f x 的最小值是________。

11.函数()2sin sin cos 1f x x x x =++的最小正周期是 ,单调递减区间是_________________。

12.若2log 3a =,则22a a -+=________。

13.如图,三棱锥A BCD -中,3AB AC BD CD ====,2AD BC ==,点,M N 分别是,AD BC 的中点,则异面直线,AN CM 所成的角的余弦值是________。

14.若实数,x y 满足221x y +≤,则|22||63|x y x y +-+--的最小值是________。

15.已知12,e e 是空间单位向量,1212e e ⋅= ,若空间向量b 满足12b e ⋅= ,252b e ⋅= ,且对于任意,x y R ∈,()()()12010200||||1,b xe ye b x e y e x y R -+≥-+=∈ ,则0x = ,0y = ,||b = ________。

三.解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤。

16.(本题满分14分)在ABC ∆中,内角,,A B C 所对边分别为,,a b c 。

已知4A π=,22212b ac -=-。

⑴求tan C 的值;⑵若ABC ∆的面积为7,求b 的值。

17.(本题满分15分)如图,在三棱柱111ABC A B C -中,C 1B 1A 1DCBA090BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点。

⑴证明:1A D ⊥平面1A BC ;⑵求二面角11A BD B --的平面角的余弦值。

18.(本题满分15分)已知函数()()2,f x x ax b a b R =++∈,记(),M a b 是()||f x 在区间[]1,1-上的最大值。

⑴证明:当||2a ≥时,(),2M a b ≥;⑵当,a b 满足(),2M a b ≤,求||||a b +的最大值。

19.(本题满分15分)已知椭圆2212x y +=上两个不同的点,A B 关于直线12y mx =+对称。

⑴求实数m 的取值范围;⑵求AOB ∆面积的最大值(O 为坐标原点)。

20.(本题满分15分)已知数列{}n a 满足112a =且()21n n n a a a n N ++=-∈,数列{}2n a 的前n 项和为n S ,证明:⑴()112n n a n N a ++≤≤∈;⑵()()()112221n S n N n n n +≤≤∈++。

2015年普通高校招生全国统考数学试卷浙江卷解答一.CCBDA ADB二.9.32,x y 22±=;10.0,3;11.π,()37,88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;12.;13.78;14.3;15.1,2,16.解:⑴由22212b a c -=及正弦定理得2211sin sin 22B C -=,故2cos 2sin B C -=。

又由4A π=,即34B C π+=,得cos 2sin 22sin cos B C C C -==,解得tan 2C =; ⑵由tan 2C =得sin C =cos C =,又()sin sin sin 4B A C C π⎛⎫=+=+ ⎪⎝⎭,故sin 10B =,由正弦定理得3c =,又4A π=,1sin 32bc A =,故bc =,故3b =。

17.⑴设E 为BC 的中点,连1,A E AE 。

由题1A E ⊥平面ABC ,故1A E AE ⊥。

因AB AC =,故AE BC ⊥,从而AE ⊥平面1A BC 。

由,D E分别11,B C BC 的中点,得1//DE B B 且1DE B B =,从而1//DE A A 且1DE A A =,所以1A AED 为平行四边形,故1//A D AE 。

又AE ⊥平面1A BC ,故1A D ⊥平面1A BC ;⑵作1A F BD ⊥于F ,连1B F ,由题AE EB ==01190A EA A EB ∠=∠=,得114A B A A ==。

由11A D B D =,11A B B B =,得11A DB B DB ∆≅∆。

由1A F BD ⊥,得1B F BD ⊥,因此11A FB ∠为二面角11A BD B --的平面角。

由1A D 14AB =,0190DA B ∠=,得BD =1143A F B F ==,由余弦定理得11cos 1A FB =-即为所求。

18.解:⑴由()2224a a f x x b ⎛⎫=++- ⎪⎝⎭,得对称轴为直线2a x =-,由||2a ≥,得||12a -≥,故()f x 在[]1,1-上单调,因此()()(){},max |1|,|1|M ab f f =-。

当2a ≥时,由()()1124f f a --=≥,故()()4|1||1|f f ≤+-,因此()(){}max |1|,|1|2f f -≥,即(),2M a b ≥;当2a ≤-时,由()()1124f f a --=-≥,故()()4|1||1|f f ≤-+,因此()(){}max |1|,|1|2f f -≥,即(),2M a b ≥。

综上,当||2a ≥时,(),2M a b ≥;⑵由(),2M a b ≤得()|1||1|2a b f ++=≤,()|1||1|2a b f -+=-≤,故||3a b +≤,||3a b -≤,由()()||0||||||0a b ab a b a b ab +≥⎧⎪+=⎨-<⎪⎩,得||||3a b +≤。

当2a =,1b =-时,||||3a b +=,且2|21|x x +-在[]1,1-的最大值为2,即()2,12M -=,故||||a b +的最大值为3。

19.解:⑴由题知0m ≠,可设直线AB :1y x b m =-+,代入椭圆方程并整理得()()222224210m x mbx m b +-+-=。

因直线AB 与椭圆2212x y +=有两个不同的交点,C 1B 1A 1FD E C BA故()2222820m m m b ∆=+-> ①。

将AB 中点2222,22mb m b M m m ⎛⎫ ⎪++⎝⎭代入直线方程12y mx =+得2222m b m +=-②。

由①②得3m <-或3m >; ⑵令2130,2t m ⎛⎫=∈ ⎪⎝⎭,则)||21AB t =+,且O 到AB 的距离为12d t ⎛=+ ⎝AOB ∆的面积()1||22S t AB d =⋅=≤,当且仅当12t =时,等号成立,故AOB ∆。

20.解:⑴由题210n n n a a a +-=-≤,即1n n a a +≤,故12n a ≤。

由()111n n n a a a --=-得()()()12111110n n n a a a a a --=---> ,故102n a <≤,从而(]111,21n n n a a a +=∈-,即112n n a a +≤≤; ⑵由题21n n n a a a +=-,故11n n S a a +=- ①。

相关文档
最新文档