平面向量经典习题-提高篇61861

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面向量:

1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( )

A .-2

B .-1

3

C .-1

D .-23

[答案] C

[解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ), ∵λa +b 与c 共线,

∴-2(2+λ)-2λ=0,∴λ=-1.

2. (文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( )

A .-1

B .-3

C .-3

D .1

[答案] C

[解析] a +2b =(3,1)+(0,2)=(3,3), ∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0, ∴k =-3.

(理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611

B .-116

C.611

D.116

[答案] C

[解析] a +b =(4,1),a -λb =(1-3λ,2+λ),

∵a+b与a-λb垂直,

∴(a+b)·(a-λb)=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6

11

.

3.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则向量a、b间的夹角为( )

A.150° B.120°

C.60° D.30°

[答案] B

[解析] 如图,在▱ABCD中,

∵|a|=|b|=|c|,c=a+b,∴△ABD为正三角形,

∴∠BAD=60°,∴〈a,b〉=120°,故选B.

(理)向量a,b满足|a|=1,|a-b|=

3

2

,a与b的夹角为60°,则|b|=( )

A.1

2

B.

1

3

C.1

4

D.

1

5

[答案] A

[解析] ∵|a-b|=

3

2

,∴|a|2+|b|2-2a·b=

3

4

∵|a |=1,〈a ,b 〉=60°,

设|b |=x ,则1+x 2

-x =34,∵x >0,∴x =12

.

4. 若AB

→·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形

[答案] B

[解析] AB

→·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形.

5. (文)若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( )

A .-a +3b

B .a -3b

C .3a -b

D .-3a +b

[答案] B

[解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ),

∴⎩⎪⎨⎪⎧ λ+μ=-2λ-μ=4,∴⎩⎪⎨⎪⎧

λ=1

μ=-3

,∴c =a -3b ,故选B. (理)在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC

→=a ,BD →=b ,则AF →等于( ) A.14a +12b B.23a +13b C.12a +14b D.13a +23

b [答案] B

[解析] ∵E 为OD 的中点,∴BE →=3ED →, ∵DF ∥AB ,∴|AB ||DF |=|EB |

|DE |

∴|DF |=13|AB |,∴|CF |=23|AB |=2

3|CD |,

∴AF →=AC →+CF →=AC →+23CD →=a +23(OD →-OC →)

=a +23(12b -12a )=23a +1

3

b .

6. 若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB

→·BC →的值为( ) A .19 B .14 C .-18 D .-19

[答案] D

[解析] 据已知得cos B =72+52-622×7×5=1935

,故AB

→·BC →=|AB →|×|BC →|×(-cos B )=7×5×⎝ ⎛⎭

⎪⎪⎫

-1935=-19. 7. 若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( )

A .12

B .23

C .3 2

D .6

[答案] D

[解析] a ·b =4(x -1)+2y =0,∴2x +y =2,∴9x +3y =32x +3y ≥232x +y =6,等号在x =1

2

,y =1时成立.

8. 若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得x 2OA →+xOB →+BC →=0,实数x 为( ) A .-1 B .0 C.-1+5

2

D.1+5

2

[答案] A

[解析] x 2OA

→+xOB →+OC →-OB →=0,∴x 2OA →+(x -1)OB →+OC →=0,由向量共线的充要条件及A 、B 、C 共线知,1-x -x 2=1,∴x =0或-1,当x =0时,BC →=0,与条件矛盾,∴x =-1.

9. (文)已知P 是边长为2的正△ABC 边BC 上的动点,则AP

→·(AB →+AC →)( ) A .最大值为8 B .最小值为2 C .是定值6 D .与P 的位置有关 [答案] C

[解析] 以BC 的中点O 为原点,直线BC 为x 轴建立如图坐标系,则B (-1,0),C (1,0),A (0,3),AB

→+AC →=(-1,-3)+(1,-3)=(0,-23), 设P (x,0),-1≤x ≤1,则AP

→=(x ,-3), ∴AP

→·(AB →+AC →)=(x ,-3)·(0,-23)=6,故选C.

相关文档
最新文档