焊接裂纹-冷裂纹资料PPT课件

合集下载

常见焊接缺陷PPT课件

常见焊接缺陷PPT课件
焊缝区产生的裂纹。有些焊接结构即使焊
后消除应力热处理过程中不产生裂纹,而 在500~600℃的温度下长期运行中也会产 生裂纹。这些裂纹统称为再热裂纹。
❖ 产生原因:在热处理温度下,由于应力的 松驰产生附加变形,同时在热影响区的粗 晶区析出沉淀硬化相(钼、铬、钒等的碳化 物)造成回火强化,当塑性缺乏以适应附加 变形时,就会产生再热裂纹。
❖ 产生原因:金属材料的中含有较多的非金 属夹杂物,Z向拘束应力大,热影响区的脆 化等。
❖ 防止措施:选用具有抗层状撕裂能力的钢 材,在接头设计和焊接施工中采取措施降 低Z向应力和应力集中。
❖ (3)热裂纹:焊缝和热影响区金属冷却到固 相线附近的高温区产生的焊接裂纹。沿奥 氏体晶界开裂,裂纹多贯穿于焊缝外表, 断口被氧化,呈氧化色。常有结晶裂纹、 液化裂纹、多边化裂纹等。
❖ 防止措施:a.控制基体金属的化学成分(如 钼、钒、铬的含量),使再热裂纹的敏感性 减小。
❖ b.工艺方面改善粗晶区的组织,减少马氏体 组织,保证接头具有一定的韧性。
❖ c.焊接接头:减少应力集中并降低剩余应力, 在保证强度条件下,尽量选用屈服强度低 的焊接材料。
❖ 3、气孔:焊接时,因熔池中的气泡在凝固 时未能逸出,而在焊缝金属内部(或外表)所 形成的空穴,称为气孔。
❖ c.力学因素对热裂纹的影响:焊件的 刚性很大,工艺因素不当,装配工艺 不当以及焊接缺陷等都会导致应力集 中而加大焊缝的热应力,在结晶时形 成热裂纹。
❖ 防止措施:a.控制焊缝金属的化学成 分,严格控制硫、磷的含量,适当提 高含锰量,以改善焊缝组织,减少偏 析,控制低熔点共晶体的产生。
❖ b.控制焊缝截面形状,宽深比要稍大些, 以防止焊缝中心的 偏析。
❖ d.当用碱性焊条施焊时,应保持较低的电 弧长度,外界风大时应采取防风措施。

焊接冷裂纹

焊接冷裂纹
当应力状态恶劣,拉应力水平高时,即使含 氢量比较低,经过不长的孕育期,即有裂纹产生。
.
6
2、三大要素的作用 (1)氢的作用
❖ 氢是引起的冷裂纹具有延迟的特征,称为氢致裂纹。
❖ 氢在钢中分为残余的固溶氢和扩散氢,只有扩散氢 对钢的焊接冷裂纹起直接影响。
1)氢在焊缝中的溶解
❖ 从图4.9中可知,氢在铁中 的溶解度随温度变化很大, 并在凝固点发生突变。由于 熔池很快由液态凝固,多余 的氢来不及逸出,结果就以 过饱和状态存在于焊缝中. 。
二、冷裂纹的特征及产生机理
1、产生延迟裂纹的三个基本要素 ① 钢材的淬硬倾向
② 焊接接头中的氢含量及其分布
③ 焊接接头的拘束应力状态
❖ 产生延迟裂纹的孕育期:
决定于焊缝金属中扩散氢的含量与焊接接头 所处的应力状态的交互作用。
相应于某一应力状态,焊缝金属中含氢量愈 高,裂纹的孕育期愈短,裂纹倾向就愈大。
❖ 裂纹的起源多发生在具有缺口效应的焊接热影响区或物理 化学不均匀的氢聚集的局部地带;
❖ 裂纹的分布与最大应力方向有关。
.
2
2、分类
❖ 焊接生产中由于采用的钢种、焊接材料不同,结构 的类型、刚度以及施工的条件不同,大致分为: 1)淬硬脆化裂纹
❖ 一些淬硬倾向很大的钢种(焊接含碳较高的Ni-CrMo钢、马氏体不锈钢、工具钢,及异种钢等), 焊接时即使没有氢的诱发,仅在拘束应力作用下就 能导致开裂。
❖ 碱性焊条熔敷金属中的扩散氢含量比酸性焊条低, 所以碱性焊条的抗冷裂纹性能大大优于酸性焊条。
❖ 对于重要的低合金高强度钢结构的焊接,原则上 都应选用碱性焊条。
❖ 通常也是焊后立即产生,无延迟现象。
3)延迟裂纹
❖ 焊后不立即出现,有一定孕育期(又叫潜伏期),具 有延迟现象。

焊接裂纹-冷裂纹资料PPT教学课件

焊接裂纹-冷裂纹资料PPT教学课件
冷裂纹主要发生在高、中碳钢,低、中合金高强钢 的焊接热影响区,但有些金属,如某些超高强钢、 钛及钛合金等,有时冷裂纹也发生在焊缝金属中。
2020/10/16
3
二、冷裂纹的种类
延迟裂纹还可以进一步分类,常见的有以下三种。
(一)焊趾裂纹
这种裂纹起源于母材与焊缝交界处,并有明显应力 集中部位(如咬肉处)。裂纹的走向经常与焊道平 行,一般由焊趾表面开始向母材的深处扩展,如图 5-40中A所示。
氢是引起高强钢焊接冷裂纹重要因素之一,并且有 延迟的特征。高强钢焊接接头的含氢量越高,则裂 纹的敏感性越大,当局部地区的含氢量达到某一临 界值时,便开始出现裂纹,此值称为产生裂纹的临 界含氢量。
钢中的含氢量分为两部分,即残余氢量和扩散氢量。
扩散氢对冷裂的产生和扩展起了决定性作用。
在Ms点以下扩散氢才具有致裂的作用。这一部分 扩散氢可以称为“残余扩散氢”。
2020/10/16
10
当焊缝由奥氏体转变为铁素体、珠光体等组织时, 氢的溶解度突然下降,而氢在铁素体、珠光体中 的扩散速度很快,因此氢就很快的从焊缝越过熔 和线向尚未发生分解的奥氏体影响区扩散。
由于氢在奥氏体中的扩散速度较小,不能很快把 氢扩散到距熔合线较远的母材中去,因而在熔合 线附近就形成了富氢地带。
第三节 焊接冷裂纹
一、冷裂纹的危害性及其一般特征
(一)冷裂纹的危害性 建造结构由于焊接冷裂纹而带来的危害性十分严重
2020/10/16
1
(二)冷裂纹的一般特征
高强钢焊接冷裂纹一的,也有的要推迟 很久才产生。冷裂纹的起源多发生具有缺口效应的 焊接热影响区或有物理化学不均匀的氢聚集的局部 地带。冷裂纹的断裂行径,有时是沿晶界扩展,有 时是穿晶前进,这要由焊接接头的金相组织和应力 状态及氢的含量等而定。这一点不像热裂纹那样, 都是沿晶界开裂。

焊接冷裂纹

焊接冷裂纹

焊接冷裂纹1.1焊接裂纹的简介焊接裂纹是指金属在焊接应力及其他致脆因素共同作用下,焊接接头中局部地区金属原子结合力遭到破坏所产生的缝隙。

在焊接生产中由于钢种和结构的类型不同,可能出现各种裂纹,焊接裂纹产生的条件和原因各有不同。

有些裂纹在焊后立即产生,有些在焊后延续一段时间才发生,有的在一定外界条件诱发下才产生;裂纹既出现在焊缝和热影响区表面,也产生在其内部。

焊接裂纹对焊接结构的危害有:①减少了焊接接头的工作截面,因而降低了焊接结构的承载能力②构成了严重的应力集中。

裂纹是片状缺陷,其边缘构成了非常尖锐的切口应力集中,既降低结构的疲劳强度,又容易引发结构的脆性破坏。

③造成泄漏。

由于盛装或输送有毒且可燃的气体或液体的各种焊接储罐和管道,若有穿透性裂纹,必然发生泄漏。

④表面裂纹能藏污纳垢,容易造成或加速结构的腐蚀。

⑤留下隐患,使结构变得不可靠。

由于延迟裂纹产生具有不定期性,微裂纹和内部裂纹易于漏检,这些都增加了焊接结构在使用中的潜在危险。

焊接裂纹是焊接结构最严重的工艺缺陷,直接影响产品质量,甚至引起突发事故,例如,焊接桥梁坍塌,大型海轮断裂,各种类型压力容器爆炸等恶性事故。

随着现代钢铁、石油化工、船舶和电力等工业的发展,在焊接结构方面都趋向大型化、大容量和高参数方向发展,有的在低温、深冷或腐蚀介质下工作,都广泛采用各种低合金高强钢材料,而这些金属材料通常对裂纹十分敏感。

因此,从焊接裂纹的微观形态、起源与扩展及影响因素等进行深入分析,对防止焊接裂纹和保证工程结构的质量稳定性是十分重要的。

1.2焊接裂纹分类焊接裂纹按产生的机理可分为热裂纹、冷裂纹、再热裂纹、层状撕裂和应力腐蚀裂纹等。

(1)热裂纹焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区产生的裂纹,它的特征是沿原奥氏体晶界开裂。

根据所焊金属的材料不同,产生热裂纹的形态、温度区间和主要原因也不同。

一般把热裂纹分为结晶裂纹、液化裂纹和多边化裂纹三类。

焊接冷裂纹的分类、危害及机理

焊接冷裂纹的分类、危害及机理
冷裂纹的危害性
焊接裂纹不仅造成设备的损失,更重要的是直接威胁人 的生命安全。
冷裂纹的一般特征
裂纹在Ms点附近或更低温度区间逐渐产生;裂纹起源 多发生在具有缺口效应的热影响区或物理化学不均匀 的氢聚集的局部地带;裂纹扩展或沿晶或穿晶,取决 于组织、应力状态和氢含量等。
冷裂纹可以焊后立即出现, 也有要经过一段时间才出 现
氢的应力扩散理论:金属内部的缺陷(包括微孔、夹 杂、晶格缺陷)提供潜在的裂源,在应力作用下,微 观缺陷的前沿形成三向应力区,诱使氢向该处扩散并 聚集。当氢的浓度达到一定程度时,一方面产生较大 的应力,另一方面阻碍位错移动而脆化,当应力进一 步加大时,促使缺陷扩展形成裂纹。
电解渗氢的钢丝加载试验 和W.F.Savage等人观察形 成裂纹时气泡的逸出情况说明 应力扩散理论的合理性。
cr [132.3 27.5 lg([H ] 1) 0.216HV 0.0102t100 ) 9.8
国产低合金钢抗裂试验建立的经验公式
初略估计,σ cr大于σ s,认为是安全的。否 则设法降低[H] ,提高t8/5和t100。
高强钢焊接产生冷裂纹的机理在于钢种淬硬之后受到氢 的侵袭和诱发,使之脆化,在拘束应力的作用下产生 裂纹。
淬硬引起开裂的原因: 形成淬硬的马氏体组织 焊接条件下形成的M是一脆硬组织,发生断裂消耗能量 较低,裂纹易形成和扩展。但不同成分和形态的M,对 裂纹的敏感性是不同的。组织对裂纹敏感性顺序 F或P→BL→ML→Bu→Bg→M-A→MT 淬硬会形成更多的晶格缺陷
氢的作用
氢是引起高强钢焊接冷裂纹重要因素之一,并具有延 迟特性。
预测某结构各部位 的焊接拘束应力比较困 难,采用拘束度作为预 测拘束应力的桥梁比较 方便。

第三节-冷裂纹课件

第三节-冷裂纹课件
*
第九章 成形缺陷的产生机理及防止措施
一、冷裂纹的分类及特征
按裂纹形成原因,冷裂纹可分为以下三类: 延迟裂纹 淬硬脆化裂纹 低塑性脆化裂纹 按加工方法分类 ,可分为: 铸造冷裂纹 焊接冷裂纹
*
第九章 成形缺陷的产生机理及防止措施
*
第九章 成形缺陷的产生机理及防止措施
(三)接头中的拘束应力状态
如前所述,焊接接头存在拘束应力。拉伸拘束应力是引起冷裂纹的直接原因,并且还会加剧氢的有害作用。 接头的拘束度与拘束应力大小,可近似地用经验公式计算,如平板对接接头:
δ
l
F
F
L
m 是转换系数,与钢的线胀系数、比热容、接头坡口形式和焊接方法等因素有关。
*
第九章 成形缺陷的产生机理及防止措施
(一)接头中扩散氢的含量与分布
因焊接冷却速度很快,高温下溶入液态金属中的氢来不及逸出,以过饱和状态保留在已凝固的焊缝中。由于 H 的尺寸很小,可以在金属晶格点阵中自由扩散,焊后接头中尚未来得及扩散出去的氢称为残留扩散氢 [ H ]R 。焊后 [ H ]R 在浓度差的作用下将自发地向焊缝周围的焊接热影响区扩散。
*
第九章 成形缺陷的产生机理及防止措施
CF62钢球罐使用过程中在焊缝附近发现的裂纹 60×
*
第九章 成形缺陷的产生机理及防止措施
不同焊接工艺条件下熔覆金属中的扩散氢含量
钛型焊条 : 30ml / 100g 纤维素型焊条 : 60ml / 100g 低氢型焊条 : 5 - 7ml /100g 超低氢型焊条 : 2 - 5ml /100g 熔化极(或钨极)氩弧焊 : 2ml/100g 药芯焊丝气体保护焊 : 6 - 10ml/100g 埋弧焊 : 2 - 7 ml/100g

《焊接冶金学——基本原理》教学课件 第七章

《焊接冶金学——基本原理》教学课件 第七章
裂纹:一类是与液态薄膜有关的热裂纹,对应图7-2中的Ⅰ区,位于固相线TS
附近;第二类是与液态薄膜无关的热裂纹,对应图7-2中的Ⅱ区,位于奥氏体
再结晶温度TR附近。
7.2 焊接热裂纹
1. 焊接热裂纹的一般条件
(1)结晶裂纹 产生在焊缝中,是在结晶过程中形成的。结晶裂纹主要 产生在单相奥氏体钢、镍基合金、铝合金,以及含杂质较多的碳钢和低合 金钢中。
(2)高温液化裂纹 产生在近缝区或多层焊的层间,是由于母材含有较 多的低熔点共晶,在焊接热源的高温作用下晶间被重新熔化,在拉应力作用 下沿奥氏体晶界发生的开裂现象。图7-4所示为因科镍合金大刚度拘束试 板根部产生的高温液化裂纹
7.2 焊接热裂纹
1. 焊接热裂纹的一般条件
(3)多边化裂纹 产生在焊缝或热影响区,是当温度降到固相线稍下的 高温区形成的。它是由于在较高的温度和一定的应力条件下,晶格缺陷(位 错和空位)迁移和聚集,形成二次边界,即所谓“多边化边界”。
7.2 焊接热裂纹
1. 焊接热裂纹的一般条件
图7-2 形成焊接热裂纹的“脆 性温度区间”示意图
7.2 焊接热裂纹
1. 焊接热裂纹的一般条件
图7-2所示为温度对延性影响的示意图,可见存在延性最低的温度区间, 这个温度区间即为易于促使产生焊接热裂纹的所谓“脆性温度区间”。由 图7-2可见,有两个延性较低的温度区间,与此相对应,可以见到两类焊接热
焊接冶金学基本原理
目录
7.1 焊接裂纹的危害及分类 7.2 焊接热裂纹 7.3 焊接冷裂纹 7.4 再热裂纹
目录
7.5 层状撕裂 7.6 应力腐蚀裂纹 7.7 焊接裂纹诊断的一般方法
引言
焊接裂纹是在焊接应力及其他致脆因素的共同作用下,材料的原子结合 遭到破坏,形成新界面而产生的缝隙。焊接裂纹具有尖锐的缺口和长宽比 大的特征。近年来随着机械、能源、交通、石油化工等工业部门的发展, 各种焊接结构也日趋大型化、高参数化,有的焊接结构还需要在高温、深 冷以及强腐蚀介质等恶劣环境下工作。各种低合金高强度钢,以及低温、 耐热、耐蚀、抗氢等专用钢得到广泛应用。焊接裂纹正是这些焊接结构生 产中经常遇到的一种危害最严重的焊接缺欠,常发生于焊缝和热影响区。 焊接裂纹直接影响焊接部件及焊接结构的质量与安全性,甚至能造成灾难 性事故。因此,控制焊接裂纹就成了焊接技术中急需解决的首要课题。

焊接冷裂纹

焊接冷裂纹

拘束度
焊接接头根部间隙产生单位长度的弹性位移 时,单位长度焊缝上所承受的力。
L 两端被固定 的对接接头
假定焊缝冷却结束时,根部间隙产生了单位长度 的弹性位移,则应变为:
h
1
L
焊缝对母材产 生的拉伸应力为:


E0

E0 L
单位长度母材上所承受的力与单位长度焊缝 上所承受的力相等,即拘束度R为:
I. 钢种的淬硬倾向
钢种的淬硬倾向主要决定于化学成 分,板厚、焊接工艺及冷却条件等也有 影响。钢种的淬硬倾向越大,冷裂倾向 越大。
• 脆硬的片M组织 • 淬硬会产生较多的晶格缺陷
焊接时,近缝区加热温度高,A晶 粒严重长大,在焊后快速冷却条件下, 粗大的A就转变为粗大的M。这种脆硬 的M组织易于裂纹的萌生及裂纹的扩展。
氢、组织和应力三者对冷 裂纹的影响是非常复杂的。
R / ×1000N(mm·mm)-1
20

HD=4~5mL/100g
15
t8/5=8~9s
Ceq: IIW
10

组织

5
0.3
0.4
0.5
Ceq
Ceq
C

Mn 6

Cr
Mo V 5

Cu Ni 15
4.4.2 冷裂纹敏感指数
PC

Pcm
适用范围:
1) 合金元素含量 wt%
C Si Mn Cu Ni Cr Mo V Ti Nb B
0.07~
~ 0.4~
~
~
~
~
~
~
~
~
0.22 0.6 1.4 0.5 1.20 1.2 0.7 0.12 0.05 0.04 0.005

冷裂纹介绍

冷裂纹介绍
-----精品文档------
2、冷裂纹
✓ 冷裂纹的形态和特征 焊缝区和热影响区都可能产生冷裂纹。冷裂
纹的特征是无分支,通常为穿晶型。冷裂纹无氧 化色彩。
最常见的冷裂纹是延迟裂纹,即在焊后延迟 一段时间才发生的裂纹。
冷--裂---精纹品动文档画---仿--- 真
✓ 延迟裂纹的产生原因: ➢ 焊接接头(焊缝和热影响区及熔合区)的淬火倾向严
2~6h,使焊缝金属中的扩散氢逸出金属表面。 ➢ 焊后进行清除应力的退火处理。
-----精品文档------4.5 焊接缺陷与检验
焊接接头的不完整性称焊接缺陷。主要有焊 接裂纹、未焊透、夹渣、气孔和焊缝外观缺陷 等。
-----精品文档------
4.5.1 焊接裂纹 1、热裂纹
✓ 热裂纹的特征 热裂纹可发生在焊缝区或热影响区。 热裂纹的微观特征是沿晶界开裂,所以又称
晶间裂纹。因热裂纹在高温下形成,所以有氧化 色彩。
高焊缝金属塑性。 ➢ 焊条焊剂要烘干,焊缝坡口及附近母材要去油水;除
锈,减少氢的来源。 ➢ 工件焊前预热,焊后缓冷,可降低焊后冷却速度,避
免产生淬硬组织,并可减少焊接残余应力。 ➢ 采取减小焊接应力的工艺措施,如对称焊,小线能量
的多层多道焊等。 ➢ 焊后立即进行去氢(后热)处理,加热到250℃,保温
重,产生淬火组织,导致接头性能脆化。 ➢ 焊接接头含氢量较高,并聚集在焊接缺陷处形成大
量氢分子,造成非常大的局部压力,使接头脆化。 ➢ 存在较大的拉应力。因氢的扩散需要时间,所以冷
裂纹在焊后需延迟一段时间才出现。由于是氢所诱 发的,也叫氢致裂纹。
-----精品文档------
✓ 防止延迟裂纹的措施: ➢ 选用碱性焊条或焊剂,减少焊缝金属中氢的含量,提

第4章 焊接裂纹

第4章  焊接裂纹

(2) 层状撕裂
层状撕裂示意图
4. 其他焊接裂纹
(3) 应力腐蚀裂纹
产生SCC的δth与钢的δs的关系 APC—应力阳极溶解开裂
HEC—应力阴极氢脆开裂
4. 其他焊接裂纹
起源于焊接热裂纹的应力腐蚀裂纹
a)16Cr23Ni13,80℃×720h,30% MgCl2
b)16Cr23Ni13,80℃×720h,15% MgCl2
3. 焊接冷裂纹
厚板多层焊接残余应力的分布
厚板多层焊扩散氢的分布
4. 其他焊接裂纹
(1) 再热裂纹
不同材料的再热温度与断裂时间的关系
再热裂纹的发生部位和形态 1—22Cr2NiMo 2—25CrNi3MoV 3—25NiMoV 4—20CrNiMoVNbB 5—25Cr2NiMoMnV
4. 其他焊接裂纹
2. 焊接热裂纹
熔池结晶阶段及脆性温度区 δ—塑性 y—流动性 TB—脆性温度区
2. 焊接热裂纹
Al-Mn合金的脆化温度区间
焊接时产生结晶裂纹的条件
1—Al-1.5% Mn
2—Al-1.5% Mn-0.2% Fe
TL—液相线温度 TS—固相线温度 TH—固液 阶段的开始温度 T‘S—固液阶段的结束温度
材料连接原理
第4章 焊接裂纹
主要内容
▲ 焊接裂纹的类型及特点 ▲ 焊接热裂纹 ▲ 焊接冷裂纹 ▲ 其他裂纹
1. 焊接裂纹的类型及特点
焊接裂纹的宏观形态及其分布 1—焊缝中纵向裂纹 2—焊缝中横线裂纹 3—熔合区裂纹 4—焊缝根部裂纹 5—HAZ根部裂纹 6—焊趾纵向裂纹(延迟裂纹) 7—焊趾纵向裂纹(液化裂纹、 再热裂纹) 8—焊道下裂纹(延迟裂纹、液化裂纹、多边化裂纹) 9—层状撕裂

焊缝成形中的热裂纹与冷裂纹

焊缝成形中的热裂纹与冷裂纹

五、多边化裂纹和高温失延裂纹的形成
在热影响区(包括多层焊时前一焊道的热影响区)温度低于固 相线的部位,不存在液态薄膜,也会产生晶间断裂而形成高 温裂纹。这种裂纹大多属于多边化裂纹或高温失延裂纹。 在纯金属或单相奥氏体焊缝或近缝区中,刚凝固的金属存 在很多晶格缺陷,晶格缺陷在高温条件下的扩散聚集形成低 塑性的二次边界(多边化晶界),在收缩应力的作用下由多 边化晶界产生多边化裂纹。 在其它材料的焊接热影响区中,在高温条件下由晶内晶界 的不均匀变形加上晶界的缺陷聚集而失强、失塑导致的晶界 开裂属于高温失延裂纹。
第三节
焊接冷裂纹
一、 冷裂纹的分类
(一) 延迟裂纹
这种裂纹是冷裂纹中一种普遍形态,它的主要特点是不在焊后立即出现,而是 有一定孕育期,具有延迟现象 1. 焊趾裂纹 2. 焊道下裂纹 3. 根部裂纹
(二) 淬硬脆化裂纹(或称淬火裂纹)
它完全是由冷却时马氏体相变而产生的脆性造成的,这种裂纹基本上没有 延迟现象,焊后可以立即发现,有时出现在热影响区,有时出现在焊缝上
1. 焊缝中氢的溶解与扩散 来源:焊接时焊接材料、坡口表面的铁锈、油污、空气中水分 中的氢会熔入焊缝金属 溶解与扩散:氢在铁素体中的扩散速度要显著大于奥氏体中 氢在铁素体中的溶解度小,扩散速度大;相反,氢在奥氏 体中溶解度大,扩散速度小。
2. 氢在焊接接头中的扩散集聚
焊接低合金高强钢时,焊缝冷却时焊缝的相变点也总是高于母材 (因为,为了改善焊接性,焊缝的含碳量总是低于母材) 所以,焊缝中的H中冷却过程中要先从焊缝向母材HAZ区扩散,由于氢在 HAZ奥氏体中的扩散速度较小,不能很快把氢扩散到距熔合线较远的母材中 去,因而在熔合线附近就形成了富氢地带。 当滞后相变的HAZ由奥氏体向马氏体转变时(TAM),氢便以过饱和状态残留在 马氏体中,促使这个地区进一步脆化,为延迟裂纹的产生创造了条件。

焊接冶金原理课件:焊接裂纹 (一)

焊接冶金原理课件:焊接裂纹 (一)

焊接冶金原理课件:焊接裂纹 (一)焊接冶金原理课件:焊接裂纹焊接是一种常见的连接方法,它通过熔化并再次凝固来实现一些金属部件的连接。

焊接中存在许多问题,其中之一就是焊接裂纹。

焊接裂纹是指焊接过程中或焊后由于各种原因导致的金属裂纹。

本文将对焊接裂纹的形成原理、预防方法和修补方法进行介绍。

一、焊接裂纹的形成原理1.热裂纹:热裂纹是在热作用下形成的,主要由于金属在加热和冷却过程中产生的热应力和压应力不断变化,使得金属发生了裂纹的问题。

2.冷裂纹:冷裂纹是由于钢材或钢板塑性后强度减小,在一些应变状态下容易发生的裂纹。

3.应力腐蚀裂纹:应力腐蚀裂纹是金属在介质的影响下结合高应力的作用下,产生的化学反应和电化学过程中,出现的腐蚀、氢脆和应力相结合的裂纹。

二、焊接裂纹的预防方法1.合理焊接工艺:合理的焊接工艺可以减少焊接裂纹的发生,例如减小焊接热量、加大间隙、控制焊接速度、选用适当的电流电压和极性等。

2.选用合适的焊接材料:选用适合的焊接材料可以有效降低焊接裂纹的产生,焊接材料的选择要根据基体材料和工作环境进行,在选择焊接材料时,要注意焊接后的连续性和完整性。

3.进行预热和后热处理:进行预热和后热处理,可以降低材料的收缩应力、热应力,减少焊接裂纹的发生。

三、修补焊接裂纹的方法1.热处理修补:用热处理的方法来修补焊接裂纹,主要是对焊接部位进行局部加热,使出现的裂纹处得到熔化、结合,从而达到修补的效果。

2.机械修补:通过机械的方法将焊接裂纹处切割或者打磨掉,然后重新进行焊接或补焊即可。

3.焊接修补:选择合适的焊接方法,进行焊接修补,让焊接材料与原来的金属材料结合在一起,从而达到焊接裂纹的修补效果。

综上所述,焊接裂纹是焊接过程中比较常见的问题,产生原因多种多样。

为了避免焊接裂纹的产生,应采取正确的焊接工艺、选用合适的焊接材料、进行适当的热处理和预防应力腐蚀等方法。

如果出现了焊接裂纹,可以采用热处理、机械修补和焊接修补等方法进行修复。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年9月28日
2
冷裂纹可以在焊后立即出现,也有时要经过一段时 间(几小时,几天甚至更长)才出现。开始少量出 现,随时间增长逐渐增多和扩展。对于这类不是在 焊后立即出现的冷裂纹,称为“延迟裂纹”,它是 冷裂纹中比较普遍的一种形态。
由于延迟裂纹不是在焊后立即可以了现,需延迟一 段时间,甚至在使用过程中才出现,所以它的危害 性就更为严重。
2020年9月28日
10
当焊缝由奥氏体转变为铁素体、珠光体等组织时, 氢的溶解度突然下降,而氢在铁素体、珠光体中 的扩散速度很快,因此氢就很快的从焊缝越过熔 和线向尚未发生分解的奥氏体影响区扩散。
由于氢在奥氏体中的扩散速度较小,不能很快把 氢扩散到距熔合线较远的母材中去,因而在熔合 线附近就形成了富氢地带。
冷裂纹的延迟行为主要是由氢引起的。
氢的应力扩散理论:
金属内部的缺陷(包括微孔、微夹杂和晶格缺陷 等)提供了潜在裂源,在应力的作用下,这些微 观缺陷的前沿形成的三向应力区,诱使氢向该处 扩散并聚集,应力随之提高。
当氢的浓度达到一定程度时,一方面产生较大的 应力,另一方面阻碍位错移动而使该处变脆,当 应力进一步加大时,促使缺陷扩散。
2020年9月28日
8
1.氢的来源及焊缝中的含氢量
焊接时,焊接材料中的水分、焊件坡口处的铁锈、 油污,以及环境湿度等都是焊缝中富氢的来源。
2.金属组织对氢扩散的影响
氢在不同金属组织中的溶解度和扩散系数不同。
氢在奥氏体中的溶解度远比在铁素体中的溶解度 大,并且随温度的增高而增加。
因此,在焊接时有奥氏体转变为铁素体时,氢的 溶解度 急剧下降,而氢的扩散速度恰好相反,由 奥氏体转变为铁素体时突然增大。
第三节 焊接冷裂纹
一、冷裂纹的危害性及其一般特征
(一)冷裂纹的危害性 建造结构由于焊接冷裂纹而带来的危害性十分严重
2020年9月28日
1
(二)冷裂纹的一般特征
高强钢焊接冷裂纹一般是在焊后冷却过程中,Ms点 附近或更低的温度区间逐渐产生的,也有的要推迟 很久才产生。冷裂纹的起源多发生具有缺口效应的 焊接热影响区或有物理化学不均匀的氢聚集的局部 地带。冷裂纹的断裂行径,有时是沿晶界扩展,有 时是穿晶前进,这要由焊接接头的金相组织和应力 状态及氢的含量等而定。这一点不像热裂纹那样, 都是沿晶界开裂。
氢是引起高强钢焊接冷裂纹重要因素之一,并且有 延迟的特征。高强钢焊接接头的含氢量越高,则裂 纹的敏感性越大,当局部地区的含氢量达到某一临 界值时,便开始出现裂纹,此值称为产生裂纹的临 界含氢量。
钢中的含氢量分为两部分,即残余氢量和扩散氢量。
扩散氢对冷裂的产生和扩展起了决定性作用。
在Ms点以下扩散氢才具有致裂的作用。这一部分 扩散氢可以称为“残余扩散氢”。
2020年有大量的氢溶解在熔池 中,在随后的冷却和凝固过程中,由于溶解度的 急剧降低,氢极力逸出,但因冷却很快,使氢来 不及逸出而保留在焊缝金属中,使焊缝中的氢处 于过饱和状态,因而氢要极力进行扩散。
3.氢在致裂过程中的动态行为
由于焊缝的含碳量低于母材,因此焊缝在较高的 温度就发生相变,即由奥氏体分解为铁素体、珠 光体、贝氏体,以及低碳马氏体等(根据焊缝的 化学成分和冷却速度而定)。此时母材热影响区 金属尚未开始奥氏体分解(因含碳高,发生滞后 相变)。
2020年9月28日
5
三、焊接冷裂纹的机理
钢种的淬硬倾向、焊接接头含量及其分布,以及接 头所承受的拘束应力状态是高强钢焊接时产生冷裂 纹的三大主要因素[11、20、21]。这三个因素在一 定条件下是相互联系和相互促进的。
(一)钢种的淬硬倾向
钢种的淬硬倾向主要决定于化学成分、板厚、焊接 工艺和冷却条件等。焊接时,钢种的淬硬倾向越大, 越易产生裂纹,因此,采用高强度钢建造焊接结构 就受到限制。
冷裂纹主要发生在高、中碳钢,低、中合金高强钢 的焊接热影响区,但有些金属,如某些超高强钢、 钛及钛合金等,有时冷裂纹也发生在焊缝金属中。
2020年9月28日
3
二、冷裂纹的种类
延迟裂纹还可以进一步分类,常见的有以下三种。
(一)焊趾裂纹
这种裂纹起源于母材与焊缝交界处,并有明显应力 集中部位(如咬肉处)。裂纹的走向经常与焊道平 行,一般由焊趾表面开始向母材的深处扩展,如图 5-40中A所示。
为什么钢淬硬之后会引起开裂呢?
2020年9月28日
6
1.形成脆硬的马氏体组织 马氏体是碳在铁中的过 饱和固溶体,碳原子以间隙原子存在于晶格之中, 使铁原子偏离平衡位置,晶格发生较大的畸变,致 使组织处于硬化状态。马氏体是一种脆硬的组织, 发生断裂时将消耗较低的能量 因此,焊接接头有 马氏体存在时,裂纹是易于形成和扩展。
其后,氢又不断向新的三向应力区扩散,达到临 界浓度时又发生了新的裂纹扩展。
当滞后相变的热影响区由奥氏体向马氏体转变时, 氢便以过饱和状态残留在马氏体中,促使这一地 区进一步脆化。如果这个部位有缺口效应,并且 氢的浓度足够高时,就可能产生根部裂纹或焊趾 裂纹。若氢的浓度更高,可是马氏体更加脆化, 也可能产生焊道下裂纹。
2020年9月28日
11
4.延迟裂纹的开裂机理 (见下图)
(二)焊道下裂纹
这种裂纹经常发生在淬硬倾向较大、含氢量较高的 焊接热影响区。一般情况下裂纹走向与熔合线平行, 但也有垂直熔线的,如图5-40中B和图5-41所示。
2020年9月28日
4
(三)根部裂纹
这种裂纹是延迟裂纹中比较常见的一种形态,主要 发生在含氢量较高、预热温度不足的情况下,这种 裂纹与焊趾裂纹相似,起源于焊缝根部应力集中最 大的部位。根部裂纹可能出现在热影响区的粗晶段, 也可能出现在焊缝金属中,这决定于母材和焊缝的 强韧程度,以及根部的形状,如图5-42所示。
2.淬硬会形成更多的晶格缺陷 金属在热力不平衡 的条件下会形成大量的晶格缺陷。主要是空位和位 错,在应力和热力不平衡的条件下,空位和位错都 会发生移动和聚集,当它们的浓度达到一定的临界 值后,就会形成裂纹源。在应力的继续作用下,就 会不断地发生扩展而形成宏观的裂纹。
2020年9月28日
7
(二)氢的作用
相关文档
最新文档