2014年广东省中考数学试题(word版)及答案
广州市2014年中考数学试卷及答案(word版)
秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()的相反数是().(A)(B)(C)(D)2.下列图形是中心对称图形的是().(A)(B)(C)(D)3.如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则().(A)(B)(C)(D)4.下列运算正确的是().(A)(B)(C)(D)5.已知和的半径分别为2cm和3cm,若,则和的位置关系是().(A)外离(B)外切(C)内切(D)相交6.计算,结果是().(A)(B)(C)(D)7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是().(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,().(A)(B)2 (C)(D)图2-①图2-②9.已知正比例函数()的图象上两点(,)、(,),且,则下列不等式中恒成立的是().(A)(B)(C)(D)10.如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;④.其中结论正确的个数是().(A)4个(B)3个(C)2个(D)1个第二部分 非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分) 11.中,已知,,则的外角的度数是_____.12.已知是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点,,则PE的长度为_____. 13.代数式有意义时,应满足的条件为______.14.一个几何体的三视图如图4,根据图示的数据计算该 几何体的全面积为_______(结果保留).15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真”或“假”). 16.若关于的方程有两个实数根、,则的最小值为___.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤). 17.(本小题满分分) 解不等式:,并在数轴上表示解集.18.(本小题满分分)如图5,平行四边形的对角线相交于点,过点且与、分别交于点,求证:.19.(本小题满分10分)已知多项式.(1)化简多项式; (2)若,求的值.图 4图5某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下: (1)求,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数的图像与反比例函数的图像交于两点,点的横坐标为2.(1)求的值和点的坐标;(2)判断点的象限,并说明理由.22、(本小题满分12分)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍. (1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.自选项目 人数 频率 立定跳远 9 0.18 三级蛙跳 12 一分钟跳绳 8 0.16 投掷实心球 0.32 推铅球 5 0.10 合计501如图6,中,,.(1)动手操作:利用尺规作以为直径的,并标出与的交点,与的交点(保留作图痕迹,不写作法):(2)综合应用:在你所作的圆中,①求证:;②求点到的距离.24.(本小题满分14分)已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C.点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式与顶点C的坐标.(2)当∠APB为钝角时,求m的取值范围.(3)若,当∠APB为直角时,将该抛物线向左或向右平移t()个单位,点P、C移动后对应的点分别记为、,是否存在t,使得首尾依次连接A、B、、所构成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.25.(本小题满分14)如图7,梯形中,,,,,,点为线段上一动点(不与点重合),关于的轴对称图形为,连接,设,的面积为,的面积为.(1)当点落在梯形的中位线上时,求的值;(2)试用表示,并写出的取值范围;(3)当的外接圆与相切时,求的值.。
2014年广东省中考数学真题(word版,含答案)
2014年广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是( )A 、1B 、0C 、2D 、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A 、B 、C 、D 、 3、计算3a -2a 的结果正确的是( )A 、1B 、aC 、-aD 、-5a 4、把39x x -分解因式,结果正确的是( )A 、()29x x -B 、()23x x - C 、()23x x + D 、()()33x x x +-5、一个多边形的内角和是900°,这个多边形的边数是( ) A 、10 B 、9 C 、8 D 、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A 、47 B 、37 C 、34 D 、137、如图7图,□ABCD 中,下列说法一定正确的是(A 、AC=BDB 、AC ⊥BDC 、AB=CD D 、AB=BC题7图 8、关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为( )A 、94m >B 、94m <C 、94m =D 、9-4m <9、一个等腰三角形的两边长分别是3和7,则它的周长为( ) A 、17 B 、15 C 、13 D 、13或17 10、二次函数()20y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( )A 、函数有最小值B 、对称轴是直线x =21DC 、当x <21,y 随x 的增大而减小 D 、当 -1 < x < 2时,y >0 二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ; 13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 。
2014年广东佛山中考数学试卷及答案(WORD版)
2014年佛山市高中阶段阶段招生考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,答案选项填涂在答题卡上) 1、2-等于( ) A .2 B .-2 C .21 D .21- 2、一个几何体的展开图如图所示,这个几何本是( )A .三棱柱B .三棱锥C .四棱柱D .四棱锥 3、下列调查中,适合用普查方式的是( ) A .调查佛山市市民的吸烟情况B .调查佛山市电视台某节目的收视率C .调查佛山市民家庭日常生活支出情况D .调查佛山市某校某班学生对“文明佛山”的知晓率4、若两个相似多边形的面积之比为1︰4,则它们的周长之比为( ) A .1︰4 B .1︰2 C .2︰1 D .4︰15、若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是( ) A .15° B .30° C .45° D .75°6、下列函数中,当0>x 时,y 值随x 值的增大而减小的是( ) A .x y = B .12-=x y C .xy 1=D .2x y = 7、根据佛山日报2014年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学计数法表示民生项目资金是( ) A .81070⨯元 B .9107⨯元 C .81093.6⨯元 D .91093.6⨯元 8、多项式ab b a b a --222的项数及次数分别是( ) A .3,3 B .3,2 C .2,3 D .2,2 9、下列说法正确的是( )A .10=a B .夹在两条平行线间的线段相等 C .勾股定理是222c b a =+ D .若21--x x 有意义,则x ≥1且x ≠2 10、把24个边长为1的小正方体木块拼成一个长方体(要全部用完),则不同的拼法(不考虑放置的位置,形状和大小一样的拼法即为相同的拼法)的种数是( ) A .5 B .6 C .7 D .8二、填空题(本大题共5小题,每小题3分,共15分,把答案填在答题卡上) 11、如图,线段的长度大约是__________厘米(精确到0.1米); 12、计算:=⋅322)(a a __________;OA13、不等式组⎪⎩⎪⎨⎧-<>-32123x x x 的解集是__________;14、如图是一副三角板叠放的示意图,则∠α=__________;15、如图,AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为O ,以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是__________;三、解答题(在答题卡上作答,写出必要的解题步骤,另有要求的则按要求作答;16~20题每小题6分,21~23题第小题8分,24题10分,25题11分,共75分) 16、计算])2(2[2728331-+⋅+÷-17、解分式方程242a +=(在表格中的下划线处填空)18、一个不透明的袋里有两个白球和三个红球,它们除颜色外其它都一样 ⑴求“从袋中任意摸出一个球,摸出的一个球是白球”的概率;⑵直接写出“从袋中同时任意摸出两个球,摸出的两个球都是红球”的概率;19、如图,已知⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围;20、函数12+=x y 的图象经过哪几个象限?要求:不能直接写出答案,要有解题过程; 注:“图象经过某象限”是指“图象上至少有一点在某象限内”21⑴根据以上数据填表:22、现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变; ②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变。
广州市2014年中考数学试卷及答案(Word解析版)
秘密★启用前广州市2014年初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.()的相反数是().(A)(B)(C)(D)【考点】相反数的概念【分析】任何一个数的相反数为.【答案】A2.下列图形是中心对称图形的是( ).(A)(B) (C) (D) 【考点】轴对称图形和中心对称图形.【分析】旋转180°后能与完全重合的图形为中心对称图形.【答案】D3.如图1,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则().(A)(B)(C)(D)【考点】正切的定义.【分析】.【答案】D4.下列运算正确的是( ).(A)(B)(C)(D)【考点】整式的加减乘除运算.【分析】,A错误;,B错误;,C正确;,D错误.【答案】C5.已知和的半径分别为2cm和3cm,若,则和的位置关系是().(A)外离(B)外切(C)内切(D)相交【考点】圆与圆的位置关系.【分析】两圆圆心距大于两半径之和,两圆外离.【答案】A6.计算,结果是().(A)(B) (C) (D)【考点】分式、因式分解【分析】【答案】B7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是( ).(A)中位数是8 (B)众数是9 (C)平均数是8 (D)极差是7【考点】数据【分析】中位数是8.5;众数是9;平均数是8.375;极差是3.【答案】B8.将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,().(A)(B)2 (C)(D)图2-①图2—②【考点】正方形、有内角的菱形的对角线与边长的关系【分析】由正方形的对角线长为2可知正方形和菱形的边长为,当=60°时,菱形较短的对角线等于边长,故答案为.【答案】A9.已知正比例函数()的图象上两点(,)、(,),且,则下列不等式中恒成立的是().(A) (B) (C)(D)【考点】反比例函数的增减性【分析】反比例函数中,所以在每一象限内随的增大而减小,且当时,,时,∴当时,,故答案为【答案】C10.如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;④.其中结论正确的个数是().(A)4个(B)3个(C)2个(D)1个【考点】三角形全等、相似三角形【分析】①由可证,故①正确;②延长BG交DE于点H,由①可得,(对顶角)∴=90°,故②正确;③由可得,故③不正确;④,等于相似比的平方,即,∴,故④正确.【答案】B第二部分非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分)11.中,已知,,则的外角的度数是_____.【考点】三角形外角【分析】本题主要考察三角形外角的计算,,则的外角为【答案】12.已知是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点,,则PE 的长度为_____.【考点】角平线的性质【分析】角平分线上的点到角的两边距离相等.【答案】1013.代数式有意义时,应满足的条件为______.【考点】分式成立的意义,绝对值的考察【分析】由题意知分母不能为0,即,则【答案】14.一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:,侧面积为扇形的面积,首先应该先求出扇形的半径R,由勾股定理得,,则侧面积,全面积.【答案】15.已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:_________,该逆命题是_____命题(填“真"或“假”).【考点】命题的考察以及全等三角形的判定【分析】本题主要考察命题与逆命题的转换,以及命题真假性的判断【答案】如果两个三角形的面积相等,那么这两个三角形全等.假命题.16.若关于的方程有两个实数根、,则的最小值为___。
广东省广州市2014年中考数学真题试题(含扫描答案)
2014年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔走宝自已的考生号、姓名;走宝考场室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (0)a a ≠的相反数是 ( )A .a -B .2aC .||aD .1a2.下列图形中,是中心对称图形的是 ( ) A . B . C . D .3.如图1,在边长为1的小正方形组成的网格中,ABC ∆的三个顶点均在格点上,则tan A =( )A .35 B .45 C .34 D .434.下列运算正确的是( )A .54ab ab -=B .112a b a b +=+C .624a a a ÷=D .2353()a b a b =5.已知1O 和2O 的半径分别为2cm 和3cm ,若127cm O O =,则1O 和2O 的位置关系是( )A . 外离B .外切C .内切D .相交6.计算242x x --,结果是 ( ) A .2x - B .2x + C .42x - D .2x x+7.在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是 ( )A . 中位数是8B . 众数是9C . 平均数是8D . 极差是78.将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )图2-① 图2-②A B .2 C D .9.已知正比例函数(0)y kx k =<的图象上两点11(,)A x y 、22(,)B x y ,且12x x <,则下列不等式中恒成立的是( )A .120y y +>B .120y y +<C .120y y ->D .120y y -<10.如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GO GC CE =;④22()EFO DGO a b S b S ∆∆-⋅=⋅.其中结论正确的个数是 ( )A .4个B .3 个C .2个D .1个第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11. ABC ∆中,已知60A ∠=︒,80B ∠=︒,则C ∠的外角..的度数是______︒. 12. 已知OC 是AOB ∠的平分线,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为点D 、E ,10PD =,则PE 的长度为______.13. 代数式11x -有意义时,x 应满足的条件为______. 14. 一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积...为______.(结果保留π)15. 已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题: ,该逆命题是 命题(填“真”或“假”).16. 若关于x 的方程222320x mx m m +++-=有两个实数根1x 、2x ,则21212()x x x x ++的最小值为______.三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分9分)解不等式:523x x -≤,并在数轴上表示解集.18.(本小题满分9分)如图5,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别交于点E 、F ,求证:AOE COF ∆≅∆.19.(本小题满分10分)已知多项式2(2)(1)(2)3A x x x =++-+-(1)化简多项式A ;(2)若2(1)6x +=,求A 的值.20.(本小题满分10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求a b ,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生.为了了解学生的训练效果,从这5 名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.21.(本小题满分12分)已知一次函数6y kx =-的图象与反比例函数2k y x =-的图象交于A B 、两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.22.(本小题满分12分) 从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(本小题满分12分)如图6,ABC ∆中,AB AC ==cos C =. (1)动手操作:利用尺规作以AC 为直径的O ,并标出O 与AB 的交点D ,与BC 的交点E (保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:DE CE =;②求点D 到BC 的距离。
2014年广东佛山中考数学试卷及答案(WORD版)
2014年佛山市高中阶段阶段招生考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,答案选项填涂在答题卡上) 1、2-等于( ) A .2 B .-2 C .21 D .21- 2、一个几何体的展开图如图所示,这个几何本是( )A .三棱柱B .三棱锥C .四棱柱D .四棱锥 3、下列调查中,适合用普查方式的是( ) A .调查佛山市市民的吸烟情况B .调查佛山市电视台某节目的收视率C .调查佛山市民家庭日常生活支出情况D .调查佛山市某校某班学生对“文明佛山”的知晓率4、若两个相似多边形的面积之比为1︰4,则它们的周长之比为( ) A .1︰4 B .1︰2 C .2︰1 D .4︰15、若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是( ) A .15° B .30° C .45° D .75°6、下列函数中,当0>x 时,y 值随x 值的增大而减小的是( ) A .x y = B .12-=x y C .xy 1=D .2x y = 7、根据佛山日报2014年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学计数法表示民生项目资金是( ) A .81070⨯元 B .9107⨯元 C .81093.6⨯元 D .91093.6⨯元 8、多项式ab b a b a --222的项数及次数分别是( ) A .3,3 B .3,2 C .2,3 D .2,2 9、下列说法正确的是( )A .10=a B .夹在两条平行线间的线段相等 C .勾股定理是222c b a =+ D .若21--x x 有意义,则x ≥1且x ≠2 10、把24个边长为1的小正方体木块拼成一个长方体(要全部用完),则不同的拼法(不考虑放置的位置,形状和大小一样的拼法即为相同的拼法)的种数是( ) A .5 B .6 C .7 D .8二、填空题(本大题共5小题,每小题3分,共15分,把答案填在答题卡上) 11、如图,线段的长度大约是__________厘米(精确到0.1米); 12、计算:=⋅322)(a a __________;OA13、不等式组⎪⎩⎪⎨⎧-<>-32123x x x 的解集是__________;14、如图是一副三角板叠放的示意图,则∠α=__________;15、如图,AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为O ,以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是__________;三、解答题(在答题卡上作答,写出必要的解题步骤,另有要求的则按要求作答;16~20题每小题6分,21~23题第小题8分,24题10分,25题11分,共75分) 16、计算])2(2[2728331-+⋅+÷-17、解分式方程242a +=(在表格中的下划线处填空)18、一个不透明的袋里有两个白球和三个红球,它们除颜色外其它都一样 ⑴求“从袋中任意摸出一个球,摸出的一个球是白球”的概率;⑵直接写出“从袋中同时任意摸出两个球,摸出的两个球都是红球”的概率;19、如图,已知⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围;20、函数12+=x y 的图象经过哪几个象限?要求:不能直接写出答案,要有解题过程; 注:“图象经过某象限”是指“图象上至少有一点在某象限内”21⑴根据以上数据填表:22、现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变; ②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变。
(高清版)2014年广东省中考数学试卷
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前广东省2014年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在1,0,2,3-这四个数中,最大的数是( )A .1B .0C .2D .3-2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )AB C D 3.计算32a a -的结果正确的是( ) A .1B .aC .a -D .5a - 4.把39x x -分解因式,结果正确的是( )A .2(9)x x -B .2(3)x x -C .2(3)x x +D .(3)(3)x x x +- 5.一个多边形的内角和是900o ,这个多边形的边数是( )A .10B .9C .8D .76.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率为( )A.47B .37C .34D .137.如图,□ABCD 中,下列说法一定正确的是 ( )A .AC BD =B .AC BD ⊥ C .AB CD =D .AB BC =8.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围是 ( )A .94m >B .94m <C .94m =D .94m <- 9.一个等腰三角形的两边长分别是3和7,则它的周长为( )A .17B .15C .13D .13或1710.二次函数2(0)y ax bx c a =++≠的大致图象如图所示,关于该二次函数,下列说法错误的是( )A .函数有最小值B .对称轴是直线12x =C .当12x <时,y 随x 的增大而减小 D .当12x -<<时,0y >第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填写在题中的横线上) 11.计算32=x x ÷ .12.据报道,截至2013年12月我国网民规模达618000000人.将618000000用科学记数法表示为 .13.如图,在ABC △中,点D ,E 分别是AB ,AC 的中点,若6BC =,则DE = .14.如图,在O e 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 .毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共20页) 数学试卷 第4页(共20页)15.不等式组28,41+2x x x ⎧⎨-⎩<>的解集是 .16.如图,ABC △绕点A 顺时针旋转45o 得到''AB C △,若90BAC ∠=o,AB AC ==则图中阴影部分的面积等于.三、解答题(本大题共9小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)11|4|(1)()2--+--.18.(本小题满分6分) 先化简,再求值:221()(1)11x x x +--+g ,其中x =19.(本小题满分6分)如图,点D 在ABC △的AB 边上,且ACD A ∠=∠.(1)作BDC ∠的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE 与直线AC 的位置关系(不要求证明).20.(本小题满分7分)如图,某数学兴趣小组想测量一棵树CD 的高度.他们先在点A 处测得树顶C 的仰角为30o ,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60o (A B D 三点在同一直线上).请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m ).( 1.414 1.732≈)21.(本小题满分7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(==)利润售价-进价利润率进价进价(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?数学试卷 第5页(共20页) 数学试卷 第6页(共20页)22.(本小题满分7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食.为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图1和图2所示的不完整的统计图.图1图2(1)这次被调查的同学共有 名; (2)把条形统计图(图1)补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?23.(本小题满分9分)如图,已知1(4,)2A -,(1,2)B -是一次函数()y kx b k b =+≠与反比例函数m y x=(0,0)m x ≠<图象的两个交点,AC x ⊥轴于点C ,BD y ⊥轴于点D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数的值大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若PCA △和PDB △面积相等,求点P 的坐标.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共20页) 数学试卷 第8页(共20页)24.(本小题满分9分)如图,O e 是ABC △的外接圆,AC 是直径.过点O 作线段OD AB ⊥于点D ,延长DO 交O e 于点P ,过点P 作PE AC ⊥于点E ,作射线DE 交BC 的延长线于点F ,连接PF .(1)若60POC ∠=o ,12AC =,求劣弧»PC的长(结果保留π); (2)求证:OD OE =; (3)求证:PF 是O e 的切线.25.(本小题满分9分)如图,在ABC △中,AB AC =,AD BC ⊥点D ,10cm BC =,8cm AD =.点P 从点B 出发,在线段BC 上以每秒3cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2cm 的速度沿DA 方向匀速平移,分别交AB ,AC ,AD 于E ,F ,H .当点P 到达点C 时,点P 与直线m 同时停止运动.设运动时间为t秒(0)t >.备用图(1)当2t =时,连接DE ,DF .求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的PEF △的面积存在最大值.当PEF △的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使PEF △为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.广东省2014年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题1.【答案】C【解析】根据正数大于0,0大于负数,可得3012-<<<,最大的数是2,故选C. 【考点】有理数比较大小. 2.【答案】C【解析】判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.A ,B既不是轴对称数学试卷 第9页(共20页) 数学试卷 第10页(共20页)图形,也不是中心对称图形;C 是轴对称图形,也是中心对称图形;D 是轴对称图形,不是中心对称图形,故选C. 【考点】中心对称,轴对称. 3.【答案】B【解析】根据合并同类项的法则,原式(32)a a =-=,故选B. 【考点】合并同类项. 4.【答案】D【解析】一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,329(9)(3)(3)x x x x x x x -=-=+-g ,故选D.【考点】提公因式法,公式分解法因式分解. 5.【答案】D【解析】设这个多边形是n 边形,根据多边形的内角和公式等于(2)180n -°g ,得(2)180=900n -°°g ,解得7n =,故选D.【考点】多边形的内角和公式. 6.【答案】B【解析】∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随即摸出一个球,摸出的球是红球的概率37P =,故选B.【考点】概率公式. 7.【答案】C【解析】根据平行四边形的性质,一般情况下,AC BD ≠,A 选项错误;一般情况下,AC 不垂直BD ,B 选项错误;由平行四边形的对边相等得AB CD =,C 选项正确;一般情况下,AB BC ≠,D 选项错误,故选C. 【考点】平行四边形的性质. 8.【答案】B【解析】因为一元二次方程230x x m -+=有两个不相等的实数根,所以2(3)40m ∆=-->,解得94m <,故选B. 【考点】一元二次方程的根的判别式.9.【答案】A【解析】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:①当等腰三角形的腰为3,底为7时,337+<不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为37717++=,这个等腰三角形的周长是17,故选A. 【考点】等腰三角形的性质,三角形三边关系. 【提示】本题易因忽略构成三角形的三边关系而错选D. 10.【答案】D【解析】由抛物线的开口向上,可知0a >,函数有最小值,A 正确;由图象可知,对称轴为2(1)122x +-==,B 正确;因为0a >,所以当12x <时,y 随x 的增大而减小,C 正确;由图象可知,当12x -<<时,0y <,D 错误,故选D. 【考点】二次函数的图象和性质.第Ⅱ卷二、填空题 11.【答案】22x【解析】利用整式的除法运算法则3222x x x ÷=. 【考点】整式的除法. 12.【答案】86.1810⨯【解析】科学记数法是将一个数写成10n a ⨯的形式,其中1||10a ≤<,n 为整数.当原数的绝对值大于等于10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位上的零).即8618000000 6.1810=⨯.【考点】科学记数法. 13.【答案】3【解析】由D ,E 分别是AB ,AC 的中点可知,DE 是ABC △的中位线,由三角形中位线的性质得132DE BC ==.数学试卷 第11页(共20页) 数学试卷 第12页(共20页)【考点】三角形中位线的性质. 14.【答案】3【解析】作OC AB ⊥于点C ,连接OA ,∵OC AB ⊥,∴118422AC BC AB ===⨯=,在Rt AOC △中,5OA =,∴3OC =,即圆心O 到AB 的距离为3.【考点】垂径定理,勾股定理. 15.【答案】14x <<【解析】分别求出不等式组中两不等式的解集,找出两解集的公共部分,即28412x x x <⎧⎨->+⎩①,②,由①得4x <;由②得1x >,则不等式组的解集为14x <<. 【考点】一元一次不等式组的解法. 16.1【解析】设BC 与AC '交于点D ,BC 与B C ''交于点E ,AB 与B C ''交于点F ,∵ABC△绕点A 顺时针旋转45°得到AB C ''△,90BAC ∠=°,AB AC =2BC =,45C B CAC C ''∠=∠=∠=∠=°,∴AD BC ⊥,B C AB ''⊥,∴112AD BC ==,1AF FC AC ''===,∴图中阴影部分的面积211111)122AFC DEC S S ''=-=⨯⨯-⨯△△.【考点】旋转的性质,等腰直角三角形的性质. 三、解答题 17.【答案】6【解析】解:原式34126=++-=【考点】实数的综合运算能力.18.【答案】31x +【解析】解:原式2(1)(1)(1)(1)(1)(1)x x x x x x ++-=+-+-g 2(1)(1)x x =++-31x =+当13x =时,原式1313=⨯+=【考点】分式的化简求值.19.【答案】(1)作图正确(实线、虚线均可).结论:DE 即为所求. (2)DE AC ∥【考点】基本作图,平行线的判定.20.【答案】解:∵30CAB ∠=°,60CBD ∠=°,∴603030ACB ∠=-=°°°,∴CAB ACB ∠=∠, ∴10BC AB ==.在Rt CBD △中,sin60=CD°,∴sin 60108.7(m)2CD BC ==⨯=°g .答:这棵树高约8.7m .【考点】直角三角形的应用,仰角俯角问题. 21.【答案】(1)设该款空调机每台的进价是x 元, 根据题意,得16350.89x x ⨯-=%g ,解得1200x =.答:该款空调机每台的进价是1200元.(2)101200910800⨯⨯=%(元). 答:商场盈利10800元.数学试卷 第13页(共20页) 数学试卷 第14页(共20页)【考点】分式方程的应用. 22.【答案】(1)1000名.(2)剩少量饭菜的人数为1000(400250150)200-++=(人)。
2014年广东省中考数学试卷
2014年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣32.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a4.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)5.(3分)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.76.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.7.(3分)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC8.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1710.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x3÷x=.12.(4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE=.14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为.15.(4分)不等式组的解集是.16.(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.18.(6分)先化简,再求值:(+)•(x2﹣1),其中x=.19.(6分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P 坐标.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.2014年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.(3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,也不是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)计算3a﹣2a的结果正确的是()A.1 B.a C.﹣a D.﹣5a【分析】根据合并同类项的法则,可得答案.【解答】解:原式=(3﹣2)a=a,故选:B.【点评】本题考查了合并同类项,系数相加字母部分不变是解题关键.4.(3分)把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5.(3分)一个多边形的内角和是900°,这个多边形的边数是()A.10 B.9 C.8 D.7【分析】根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=7.故选:D.【点评】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.6.(3分)一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.【分析】直接根据概率公式求解即可.【解答】解:∵装有7个只有颜色不同的球,其中3个红球,∴从布袋中随机摸出一个球,摸出的球是红球的概率=.故选:B.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.7.(3分)如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.8.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.9.(3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.10.(3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0【分析】根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A 选项不符合题意;B、由图象可知,对称轴为x=,正确,故B选项不符合题意;C、因为a>0,所以,当x<时,y随x的增大而减小,正确,故C选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故D选项符合题意.故选:D.【点评】本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)计算:2x3÷x=2x2.【分析】直接利用整式的除法运算法则求出即可.【解答】解:2x3÷x=2x2.故答案为:2x2.【点评】此题主要考查了整式的除法运算法则,正确掌握运算法则是解题关键.12.(4分)据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学记数法表示为 6.18×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将618 000 000用科学记数法表示为:6.18×108.故答案为:6.18×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)如图,在△ABC中,D,E分别是边AB,AC的中点,若BC=6,则DE= 3.【分析】由D、E分别是AB、AC的中点可知,DE是△ABC的中位线,利用三角形中位线定理可求出DE.【解答】解:∵D、E是AB、AC中点,∴DE为△ABC的中位线,∴ED=BC=3.故答案为:3.【点评】本题用到的知识点为:三角形的中位线等于三角形第三边的一半.14.(4分)如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为3.【分析】作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=AB=4,然后在Rt△AOC中利用勾股定理计算OC即可.【解答】解:作OC⊥AB于C,连结OA,如图,∵OC⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=5,∴OC===3,即圆心O到AB的距离为3.故答案为:3.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.15.(4分)不等式组的解集是1<x<4.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x<4;由②得:x>1,则不等式组的解集为1<x<4.故答案为:1<x<4.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.16.(4分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.【分析】根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=sin45°AC′=AC′=1,进而求出阴影部分的面积.【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=sin45°AC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.【点评】此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:+|﹣4|+(﹣1)0﹣()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+4+1﹣2=6.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(6分)先化简,再求值:(+)•(x2﹣1),其中x=.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•(x2﹣1)=2x+2+x﹣1=3x+1,当x=时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.【点评】此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)【分析】首先利用三角形的外角的性质求得∠ACB的度数,得到BC的长度,然后在直角△BDC中,利用三角函数即可求解.【解答】解:∵∠CBD=∠A+∠ACB,∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,∴∠A=∠ACB,∴BC=AB=10(米).在直角△BCD中,CD=BC•sin∠CBD=10×=5≈5×1.732=8.7(米).答:这棵树CD的高度为8.7米.【点评】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(7分)某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【分析】(1)利用利润率==这一隐藏的等量关系列出方程即可;(2)用销售量乘以每台的销售利润即可.【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.【点评】本题考查了分式方程的应用,解题的关键是了解利润率的求法.22.(7分)某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有1000名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?【分析】(1)用没有剩的人数除以其所占的百分比即可;(2)用抽查的总人数减去其他三类的人数,再画出图形即可;(3)根据这次被调查的所有学生一餐浪费的食物可以供200人用一餐,再根据全校的总人数是18000人,列式计算即可.【解答】解:(1)这次被调查的同学共有400÷40%=1000(名);故答案为:1000;(2)剩少量的人数是;1000﹣400﹣250﹣150=200,补图如下;(3)18000×=3600(人).答:该校18000名学生一餐浪费的食物可供3600人食用一餐.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数y=(m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P 坐标.【分析】(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得××(x+4)=×|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).【点评】本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.24.(9分)如图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF.(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)求证:PF是⊙O的切线.【分析】(1)根据弧长计算公式l=进行计算即可;(2)证明△POE≌△ADO可得DO=EO;(3)方法1、连接AP,PC,证出PC为EF的中垂线,再利用△CEP∽△CAP找出角的关系求解.方法2、先计算判断出PD=BF,进而判断出四边形PDBF是矩形即可得出结论;方法3、利用三个内角是90度的四边形是矩形判断出四边形PDBF是矩形即可得出结论.【解答】(1)解:∵AC=12,∴CO=6,∴==2π;答:劣弧PC的长为:2π.(2)证明:∵PE⊥AC,OD⊥AB,∠PEA=90°,∠ADO=90°在△ADO和△PEO中,,∴△POE≌△AOD(AAS),∴OD=EO;(3)证明:法一:如图,连接AP,PC,∵OA=OP,∴∠OAP=∠OPA,由(2)得OD=EO,∴∠ODE=∠OED,又∵∠AOP=∠EOD,∴∠OPA=∠ODE,∴AP∥DF,∵AC是直径,∴∠APC=90°,∴∠PQE=90°∴PC⊥EF,又∵DP∥BF,∴∠ODE=∠EFC,∵∠OED=∠CEF,∴∠CEF=∠EFC,∴CE=CF,∴PC为EF的中垂线,∴∠EPQ=∠QPF,∵△CEP∽△CAP∴∠EPQ=∠EAP,∴∠QPF=∠EAP,∴∠QPF=∠OPA,∵∠OPA+∠OPC=90°,∴∠QPF+∠OPC=90°,∴OP⊥PF,∴PF是⊙O的切线.法二:设⊙O的半径为r.∵OD⊥AB,∠ABC=90°,∴OD∥BF,∴△ODE∽△CFE又∵OD=OE,∴FC=EC=r﹣OE=r﹣OD=r﹣BC∴BF=BC+FC=r+BC∵PD=r+OD=r+BC∴PD=BF又∵PD∥BF,且∠DBF=90°,∴四边形DBFP是矩形∴∠OPF=90°∴OP⊥PF,∴PF是⊙O的切线.方法3、∵AC为直径,∴∠ABC=90°又∵∠ADO=90°,∴PD∥BF∴∠PCF=∠OPC∵OP=OC,∴∠OCP=∠OPC∴∠OCP=∠PCF,即∠ECP=∠FCP ∵PD∥BF,∴∠ODE=∠EFC∵OD=OE,∴∠ODE=∠OED又∵∠OED=∠FEC,∴∠FEC=∠EFC∴EC=FC在△PEC与△PFC中∴△PEC≌△PFC(SAS)∴∠PFC=∠PEC=90°∴四边形PDBF为矩形∠DPF=90°,即PF为圆的切线.【点评】本题主要考查了切线的判定,解题的关键是适当的作出辅助线,准确的找出角的关系.25.(9分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.【分析】(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.【解答】(1)证明:当t=2时,DH=AH=4,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥BC于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10(0<t<),存在最大值,最大值为10cm2,此时BP=3t=6cm.∴当t=2秒时,S△PEF(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PF∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.【点评】本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.。
广东省深圳市2014年中考数学试题及答案【word版】
2014年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014年广东深圳)9的相反数是()A.﹣9 B.9 C.±9 D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2014年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2014年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2014年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2014年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2014年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.A C=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2014年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2014年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D.500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2014年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2014年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2014•怀化)分解因式:2x2﹣8=2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD= 3.考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.15.(3分)(2014年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=8.考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2014年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2014年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2014年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a=200,b=0.4,c=60.(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2014年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2014年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据B,D 两点求出BD 表达式为y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为y=x 又在直线DO 上的点P的横坐标为2,所以p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且MC=,故C(2,﹣1)过D 作DH⊥x 轴于H,设MC 与x 轴交于K,则△ACK∽△ADH,又∵DC=4AC,故DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。
2014年广东省广州市中考数学试卷-答案
广东省广州市2014年初中毕业生学业考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】因为任何一个数a 的相反数都为a -,故选A . 2.【答案】D 【考点】相反数.【解析】判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是寻找对称中心,旋转180度后与原图重合.选项A ,B 既不是轴对称图形也不是中心对称图形;选项C 是轴对称图形,不是中心对称图形;选项D 是中心对称图形不是轴对称图形,故选D. 【考点】轴对称图形,中心对称图形. 3.【答案】D【解析】由图可知,在Rt ABC △中,4tan 3BC A AB ==,故选D. 【考点】正切 4.【答案】C【解析】因为54ab ab ab -=,A 错误;11a ba b ab++=,B 错误;62624a a a a -÷==,C 正确;2363()a b a b =,D 错误,故选C. 【考点】整式运算 5.【答案】A【解析】因为2357+=<,根据两圆圆心距大于两半径之和,两圆外离,故选A. 【考点】圆,圆的位置关系. 6.【答案】B【解析】先将分式的分子因式分解,再约分,即原式(2)(2)22x x x x +-==+-,故选B.【考点】分式的化简. 7.【答案】B【解析】中位数是将一组数据按从大到小或从小到大的顺序排列后,最中间的一个数据或中间两个数据的平均数;众数是一组数据中出现次数最多的数;求平均数的方法是将这组数据的总和除以这组数据的个数;求极差的方法是用最大值减去最小值.故这组数据的中位数是8.5;众数是9;平均数是8.375;极差是3,故选B.【考点】中位数,众数,平均数,极差. 8.【答案】A【解析】由正方形的对角线长为2可知正方形和菱形的边长为AB 当60B ∠=°时,ABC △是等边三角形,所以AC AB = A.【考点】正方形,有60°内角的菱形的对角线与边长的关系. 9.【答案】C【解析】正比例函数y kx =,当0k <时,y 随x 的增大而减小,因为12x x <,故12y y >,所以120y y ->,故选C.【考点】正比例函数. 10.【答案】B【解析】①由BC DC =,CG CE =,BCG DCE ∠=∠可证(SAS)BCG DCG △≌△,故①正确;②延长BG 交DE 于点H ,由①可得CDE CBG ∠=∠,DGH BGC ∠=∠(对顶角相等),∴90BCG DHG ∠=∠=°,即BG DE ⊥,故②正确;③由DGO DCE △∽△可得DG GODC CE=,故③不正确;④EFO DGO △∽△,∴222()()EFO DGO S EF b S DG a b ==-△△,∴22()EFO DGO a b S b S -=△△,故④正确.所以正确的结论有3个,故选B. 【考点】正方形的性质,全等三角形,相似三角形.第Ⅱ卷二、填空题 11.【答案】140°【解析】根据三角形的一个外角等于它不相邻的两个内角的和,因此C ∠的外角6080=140A B =∠+∠=+°°°,故答案是140°. 【考点】三角形外角的计算. 12.【答案】10【解析】根据角平分线的点到角的两边距离相等,所以10PE PD ==,故答案是10. 【考点】角平分线的性质. 13.【答案】1x ≠±【解析】由题意知分母不能为0,即||10x -≠,解得1x ≠±,故答案是1x ≠±. 【考点】绝对值,分式成立的意义. 14.【答案】24π【解析】从三视图得到该几何体为圆锥,全面积=侧面积+底面积,由三视图得圆锥的底面半径3r =,底面周长2π6πl r ==,圆锥的母线长为R ,根据勾股定理5R ==,底面积为圆的面积22ππ39πr ==g ,侧面积为扇形的面积116π515π22lR =⨯⨯=,全面积为9π15π24π+=,故答案是24π.【考点】三视图,圆锥面积的计算.15.【答案】如果两个三角形的面积相等,那么这两个三角形全等; 假【解析】将命题的条件与结论互换可得到它的逆命题;判断该逆命题的真假可举一个反例,如同底等高的三角形面积相等,却不一定全等.【考点】命题与逆命题的转换,判断真假命题. 16.【答案】54【解析】由根与系数的关系得122x x m +=-,21232x x m m =+-,原式222212121212121212()2()x x x x x x x x x x x x x x =++=++-=+-,代入得原式222215(2)(32)3323()24m m m m m m =--+-=-+=-+, 因为方程有实数根,∴0∆≥,即22(2)4(32)0m m m -+-≥,解得23m ≤,因为1223<,所以当12m =时,2153()24m -+取到最小值,最小值是54.【考点】一元二次方程根与系数的关系,最值的求法.【提示】本题应利用根与系数的关系解题,利用根的判别式求最值;不少考生找不到解题思路,另外计算也易错误. 三、解答题17.【答案】移项得532x x -≤. 合并同类项得22x ≤. ∴ 1x ≤解集在数轴上表示如下:【考点】一元一次不等式的解法,数轴,代数运算能力. 18.【答案】证法一:在平行四边形ABCD 中,AB CD ∥, ∴EAO FCO ∠=∠,AEO CFO ∠=∠.∵EAO FCO ∠=∠,AEO CFO ∠=∠,AO CO =. ∴(AAS)AOE COF △≌△.证法二:在平行四边形ABCD 中,AB CD ∥, ∴AEO CFO ∠=∠.∵AEO CFO ∠=∠,AOE COF ∠=∠,AO CO =. ∴(AAS)AOE COF △≌△.证法三:在平行四边形ABCD 中,AB CD ∥, ∴EAO FCO ∠=∠.∵EAO FCO ∠=∠,AO CO =,AOE COF ∠=∠. ∴(AAS)AOE COF △≌△.【考点】平行四边形的性质,全等三角形的判定,考查几何推理能力和空间观念.19.【答案】(1)解法一:2(2)(1)(2)3A x x x =++-+-2244223x x x x x =++++---33x =+.解法二:2(2)(1)(2)3A x x x =++-+-(2)(21)3x x x =+++--3(2)3x =+-33x =+(2)解法一:∵2(1)6x +=,∴1x +=∴333(1)A x x =+=+=±解法二:∵2(1)6x +=,∴1x =-±,∴333(13A x =+=-+=±.【考点】整式的运算,完全平方公式,一元二次方程解法等.20.【答案】(1)解法一:10.180.160.320.100.24a =----=,501285916b =----=. 解法二:∵9120.18a=, ∴0.24a =, ∵90.180.32b =, ∴16b =.(2)“一分钟跳绳”对应的扇形的圆心角度数为3600.1657.6°°⨯=. (3)解法一:分别用男1、男2、男3、女1、女2表示这5位同学.从中抽取2名,所有可能出现的结果有(男1,男2),(男1,男3),(男1,女1),(男1,女2),(男2,男3),(男2,女1),(男2,女2),(男3,女1),(男3,女2),(女1,女2),共有10种,它们出现的可能性相同.所有的结果中,满足抽取两名,至多有一名女生的结果有9种. ∴9()=10P 至多有一名女生.由表知所有出现等可能的结果有20种,其中满足条件的结果有8种. ∴9()=10P 至多有一名女生 【考点】统计,概率等.21.【答案】(1)解法一:∵两个函数图像相交于A ,B ,且点A 的横坐标为2, ∴把2x =分别代入两个函数解析式,得26,2,2y k k y =-⎧⎪⎨=-⎪⎩解得2,2,k y =⎧⎨=-⎩∴k 的值为2,点A 坐标为(2,2)-. 解法二:依题意,得2262k k -=-, 解得2k =,∴一次函数的解析式为26y x =-. 再将2x =代入得2y =-, ∴点A 坐标为(2,2)-.(2)由(1)得,一次函数的解析式为26y x =-,反比例函数的解析式为4y x=-,判断点B 所在象限有以下两种解法:解法一:∵一次函数26y x =-的图像经过第一、三、四象限,反比例函数4y x=-的图像经过第二、四象限,∴它们的交点只能在第四象限,即点B 在第四象限.解法二:解方程组26,4,y x y x =-⎧⎪⎨=-⎪⎩,得112,2,x y =⎧⎨=-⎩221,4,x y =⎧⎨=-⎩ ∴点B 坐标为(1,4)-. ∴交点B 在第四象限.【考点】一次函数,反比例函数的图像及性质等,待定系数法,数形结合. 22.【答案】(1)400 1.3520⨯=, 答:普通列车的行驶路程是520千米.(2)解法一:设普通列车的平均速度为/x 千米时,则高铁的平均速度为2.5/x 千米时,根据题意列方程得52040032.5x x-=, 解得120x =.经检验,120x =是原方程的解且符合题意, 所以2.5300x =.答:高铁的平均速度为300/千米时. 解法二:设普通列车的行驶时间为y 小时, 则高铁的行驶时间为(3)y -小时,根据题意列方程得5204002.53y y ⨯=-,解得143 y=.经检验,143y=是原方程的解且符合题意,所以4003003y=-.答:高铁的平均速度为300/千米时.解法三:设高铁的平均速度为/z千米时,依题意,得5204003 2.5z z-=,解得300z=.经检验,300z=是原方程的解且符合题意. 答:高铁的平均速度为300/千米时.【考点】行程问题,解分式方程.23.【答案】(1)如图1,⊙O为所求.图1(2)①证明:如图2,连接AE,图2∵AC 为⊙O 的直径,点E 在⊙O 上, ∴90AEC ∠=°, ∵AB AC =, ∴BAE CAE ∠=∠, ∴DE CE =.②如图3,过点D 作DF BC ⊥,垂足为F ,连接CD ,图3∵在Rt ACE △中,cos CE ACB AC ∠==,AC =∴cos 4CE AC ACB =∠==g . ∵AB AC =,90AEC ∠=°, ∴4BE CE ==,B ACB ∠=∠, ∵AC 为⊙O 的直径,点D 在⊙O 上, ∴90ADC ∠=°. 求点D 到BC 的距离DF 有以下两种解法: 解法一:在Rt BCD △中,cos BDB BC∠=,∵cos cos B ACB ∠=∠=,8BC =,∴cos 8BD BC B =∠==g ∵在Rt BDF △中,cos BFB BD∠=,∴8cos 5BF BD B =∠==g ,∴165DF ==.解法二:∵90BDC AEC ∠=∠=°,=B ACB ∠∠, ∴CDB AEC △∽△. ∴BD CB CDCE AC AE==,即4BD ==,∴BD =,CD . 在Rt BCD △中,利用面积法可得1122BD CD BC DF =g g ,8DF =g , 解得165DF =. 【考点】尺规作图,等腰三角形性质,圆的有关性质,三角函数等基础知识. 24.【答案】(1)把(1,0)A -,(4,0)B 分别代入22y ax bx =+-得02,01642,a b a b =--⎧⎨=+-⎩解得1,23.2a b ⎧=⎪⎪⎨⎪=-⎪⎩∴抛物线的解析式为213222y x x =--. 求顶点C 的坐标有以下三种解法:解法一:∵221313252()22228y x x x =--=--, ∴顶点C 的坐标为325(,)28-.解法二:由对称性可得,顶点C 的横坐标为14322-+=. 当32x =时,2133325()222228y =--=-g g . ∴点C 的坐标为325(,)28-.解法三:顶点C 的横坐标为33212222b a --=-=⨯.纵坐标为22134(2)()4252214842ac b a ⨯⨯----==-⨯. ∴点C 的坐标为325(,)28-. (2)解法一:证明DM =半径. 如图1,设AB 的中点为点M ,图1∵5AB =, ∴52AM =, ∴点M 的坐标为3(,0)2.∵抛物线213222y x x =--与y 轴交于点(0,2)D -,连接DM ,AD ,BD ,∴在Rt ODM △中,52DM AM ===,∴点D 在以AB 为直径的⊙M 上,这时90ADB ∠=°. 根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上.∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<. 解法二:证明ADB △是直角三角形. 如图2,∵抛物线213222y x x =--与y 轴交于点(0,2)D -, 连接AD ,BD ,又∵x 轴y ⊥轴,∴22222125AD OA OD =+=+=,222224220BD OB OD =+=+=,222AB AD BD =+,∴90ADB ∠=°根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°. ∵点P m n (,)在抛物线上. ∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.图2解法三:证明AOD DOB △∽△是直角三角形.如图2, ∵抛物线213222y x x =--与y 轴交于点(0,2)D -, 连接AD ,BD , ∴12OA OD =,2142OD OB ==, ∴OA OD OD OB =, 又∵90AOD DOB ∠=∠=°,∴AOD DOB △∽△,∴ADO DBO ∠=∠,又∵ODB DBO ∠=∠,∴90ODB ADO ∠+∠=°,即=90ADB ∠°. 根据抛物线的对称性可知抛物线上还存在点D 关于直线32x =的对称点(3,2)E -,也在以AB 为直径的⊙M 上,这时90AEB ∠=°.∵点P m n (,)在抛物线上.∴当APB ∠为钝角时,m 的取值范围是10M -<<或34m <<.(3)存在t .求t 有以下三种解法: 解法一:若32m <,且APB ∠为直角时,3m =, ∴点P 的坐标为(3,2)P -. ① 当抛物线向左平移t 个单位时,得325(,)28C t '--,(3,2)P t '--,连接AC ',C P '',BP ',图3在四边形AC P B ''中,由于线段AB ,C P ''(即CP )都是定值,则当AC P B ''+最短时,该四边形的周长最小.如图3,把线段AC '向右平移1个单位长度得线段OC '',把线段P B '向左平移4个单位长度得线段OP '',则有525(,)28C t ''--,(1,2)P t ''---, 以x 轴为对称轴作点P ''的对称点(1,2)P t '''--,当AC P B ''+最短时,即OC OP ''''+最短,则点C '',O ,P '''三点共线.设正比例函数y kx =经过点C '',O ,P '''三点,则分别代入点C '',P '''两点的坐标得255(),822(1),t k t k ⎧-=-⎪⎨⎪=--⎩解得1541t =. ∴当抛物线向左平移1541个单位时,存在由A ,B ,P ',C '四点构成的多边形的周长最短. ②当抛物线向右平移t 个单位时,得325(,)28C t '+-,(36,2)P '+-,与①的解法相同,可解得1541t =-, 因为502t <<,所以抛物线向右平移时,t 不存在. 综上所述,当抛物线向左平移1541个单位时,存在由A ,B ,P ',C '四点构成的多边形的周长最短. 解法二:由(2)知,若32m >,当APB ∠为直角时,(3,2)P -,所求多边形周长为AB BP P C C A ''''+++,而5AB =,52P C ''==,这两边长均为定值.所以只需BP C A ''+最小时,周长最短. 如图4,设将点P '向左平移5个单位长度得到P '',则恒有AP BP '''=.图4反设抛物线不动,将点A 在x 轴上左右平移,由“将军饮马”模型,(2,2)P ''--关于x 轴对称的点(2,2)P '''-,连接CP ''',交x 轴于点F ,过P '''作x 轴于点G ,则可得P G GF CE FE '''=,即225582GF GF =-, 解得5641GF =,1GA GF =<, 所以点F 在点A 的右侧561514141-=处, 即,抛物线向左平移1541, 故1541t =,方向向左. 解法三:由(2)知,若32m >,当APB ∠为直角时,(3,2)P -, ①当抛物线向左平移5(0)2t t <<个单位时, 得325(,)28C t '--,(3,2)P t '--,如图5,连接AC ',C P '',BP ',在四边形AC P B ''中,由于线段AB ,C P CP ''=都是定值,则当AC P B ''+最短时,该四边形的周长最小.图5325(t,)28C '--关于x 轴对称的点为325(t,)28C ''-, 则AC AC '''=,由“将军饮马”模型,当AC P B '''∥时,AC P B ''+最短, ∴25283112t t =+-+, 解得1541t =,符合题意. ②当抛物线向右平移5(0t )2t <<个单位时, 得325(,)28C t '+-,(3,2)P t '+-, 连接AC ',C P '',BP ',在四边形AC P B ''中,由于线段AB ,C P CP ''=都是定值, 则当AC P B ''+最短时,该四边形的周长最小.325(t,)28C '--关于x 轴对称的点为325(t,)28C ''-,则AC AC '''=, 由“将军饮马”模型,当AC P B '''∥时,AC P B ''+最短, ∴25283112t t =-++, 解得1541t =-. 因为502t <<, 所以抛物线向右平移时,t 不存在.综上所述,当抛物线向左平移1541个单位时,存在由A ,B ,P '',C '四点构成的多边形的周长最短. 【考点】二次函数的有关知识,图形的平移与坐标的变化,“将军饮马”模型求周长最小值问题. 25.【答案】(1)解法一:∵ AB CD ∥,∴90BCD ABC ∠=∠=°,∵BCE △以BE 为对称轴的对称图形是BFE △,∴BCE BFE △≌△,∴4BF BC ==,CE EF x ==,CBE FBE ∠=∠,如图1,设点G 为BC 的中点,点F 在梯形ABCD 的中位线上,图1∴GF CD ∥,122BG BC ==, ∴90BGF BCD ∠=∠=°, ∴21cos 42BG GBF BF ∠===, ∴60CBF ∠=°,则30CBF ∠=°. ∵在Rt BCE △中,tan CE CBE BC ∠=, 即tan304x =°,∴3x =. 解法二:∵ AB CD ∥,∴90BCD ABC ∠=∠=°,∵BCE △以BE 为对称轴的对称图形是BFE △,∴BCE BFE △≌△,∴4BF BC ==,CE EF x ==,CBE FBE ∠=∠,如图1,设点G 为BC 的中点,点F 在梯形ABCD 的中位线上,图2 ∴22BC CG BG ===,4BF BC ==.∴GF ===过点F 作FH CD ⊥于点H ,则2FH =,EF x =.在Rt EFH △中,222)2x x +=,解得x =. (2)解法一:如图3,∵点C ,F 关于BE 成对称点,∴BE CF ⊥,垂足H ,图3又∵90BCD ∠=°,∴90BCH ECH CEH ECH ∠+∠=∠+∠=°,∴BCH CEH ∠=∠,∴BCH CEH △∽△,∴222()()416CEH BCH S CE x x S BC ===△△, 由对称性可知22CEH S S =△,12BCH S S =△, ∴221(05)16S x x S =<≤. 解法二:设CF 与BE 的交点为H ,由对称性可得21CEH CBH S S EH S S HB ==△△,90EHC ∠=°. ∵222216BE BC CE x =+=+,BC CE CH BE ==g ∴22222221625641616x BH BC HC x x =-=-=++, ∴24222222161616x x HE CE CH x x x =-=-=++.∴221(0x 5)16S EH x S HB ===<≤. (3)解法一:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图4,作OP AD ⊥,垂足为P ,连接OA ,OD ,图4设⊙O 半径为r ,则有OB OE OP r ===,∴在Rt BCE △中,222BE BC CE =+,即222(2)4r x =+, 化简得2244x r =+,① 过点D 作DQ AB ⊥,交AB 的延长线于点Q ,∴4QD BC ==,5BQ CD ==,∴532AQ BQ AB =-=-=,∴在Rt ADQ △中,AD =∵OAD BCE OAB ODE ABCD S S S S S =---△△△△梯形,∴11111(35)4432(5)222222r x x ⨯=⨯+⨯-⨯-⨯⨯--⨯g g g ,化简得8x =-,②把②代入①得2641760x x +-=,解得132x =-+232x =--.∴22113916S x S ===-解法二:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图5,中位线长35422AB CD MN ++===.图5 ∴42x ON MN MO =-=-. 过点O 作OR AD ⊥于点R ,因为圆O 与AD 相切,∴122OR BE ==. 2sin 842OR RNO x ON x ∠===--,sin BC D AD ∠==,易知RNO D ∠=∠,则85x =-, 化简得2641760x x +-=.解得132x =-+232x =--.∴22113916S x S ===-解法三:∵90AFE ∠=°,∴AFE △的外接圆圆心为AE 的中点O ,则O 必过梯形中位线, 如图6,中位线长35422AB CD MN ++===.图6 ∴42x ON MN MO =-=-. 过点A 作AK NO ⊥于点K ,则2AK =,过点O 作OR AD ⊥于点R ,因为圆O 与AD 相切,∴OR r =,12AN AD =22ANO AK NO OR AN S ==△g g .∴2(4)2x -g ,化简得8x =-.在Rt CBE △中,222(2)4x r =-,(*)将8x =代入(*)得22(8)416r =-.解得1r =2r =.将1r =8x =-得832x ==-+∴22113916S x S ===-【考点】梯形的概念,轴对称,直线与圆相切,三角形相似,勾股定理.。
2014年广东佛山中考数学试卷及答案(WORD版)
2014年佛山市高中阶段阶段招生考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,答案选项填涂在答题卡上) 1、2-等于( ) A .2 B .-2 C .21 D .21- 2、一个几何体的展开图如图所示,这个几何本是( )A .三棱柱B .三棱锥C .四棱柱D .四棱锥 3、下列调查中,适合用普查方式的是( ) A .调查佛山市市民的吸烟情况B .调查佛山市电视台某节目的收视率C .调查佛山市民家庭日常生活支出情况D .调查佛山市某校某班学生对“文明佛山”的知晓率4、若两个相似多边形的面积之比为1︰4,则它们的周长之比为( ) A .1︰4 B .1︰2 C .2︰1 D .4︰15、若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是( ) A .15° B .30° C .45° D .75°6、下列函数中,当0>x 时,y 值随x 值的增大而减小的是( ) A .x y = B .12-=x y C .xy 1=D .2x y = 7、根据佛山日报2014年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学计数法表示民生项目资金是( ) A .81070⨯元 B .9107⨯元 C .81093.6⨯元 D .91093.6⨯元 8、多项式ab b a b a --222的项数及次数分别是( ) A .3,3 B .3,2 C .2,3 D .2,2 9、下列说法正确的是( )A .10=a B .夹在两条平行线间的线段相等 C .勾股定理是222c b a =+ D .若21--x x 有意义,则x ≥1且x ≠2 10、把24个边长为1的小正方体木块拼成一个长方体(要全部用完),则不同的拼法(不考虑放置的位置,形状和大小一样的拼法即为相同的拼法)的种数是( ) A .5 B .6 C .7 D .8二、填空题(本大题共5小题,每小题3分,共15分,把答案填在答题卡上) 11、如图,线段的长度大约是__________厘米(精确到0.1米); 12、计算:=⋅322)(a a __________;OA13、不等式组⎪⎩⎪⎨⎧-<>-32123x x x 的解集是__________;14、如图是一副三角板叠放的示意图,则∠α=__________;15、如图,AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为O ,以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是__________;三、解答题(在答题卡上作答,写出必要的解题步骤,另有要求的则按要求作答;16~20题每小题6分,21~23题第小题8分,24题10分,25题11分,共75分) 16、计算])2(2[2728331-+⋅+÷-17、解分式方程242a +=(在表格中的下划线处填空)18、一个不透明的袋里有两个白球和三个红球,它们除颜色外其它都一样 ⑴求“从袋中任意摸出一个球,摸出的一个球是白球”的概率;⑵直接写出“从袋中同时任意摸出两个球,摸出的两个球都是红球”的概率;19、如图,已知⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围;20、函数12+=x y 的图象经过哪几个象限?要求:不能直接写出答案,要有解题过程; 注:“图象经过某象限”是指“图象上至少有一点在某象限内”21⑴根据以上数据填表:22、现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变; ②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变。
2014年广东省中考数学试卷及答案
2014年广东省中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)(2014•广东)若二次根式有意义,则x 的取值范围是( )2.(3分)(2014•广东)下列标志中,可以看作是中心对称图形的是( )A B C D 3.(根据表中数据可知,全班同学答对的题数所组成的样本的中位数和众数分别是( ) A .8、8 B . 8、9 C .9、9 D .9、8 4.(3分)(2014•广东)下列函数:①y x =-;②2y x =;③1y x=-;④2y x =.当0x <时,y 随x 的增大而减小的函数有( )A .1 个B .2 个C .3 个D .4 个 5.(3分)(2014•广东)圆锥的底面直径是80cm ,母线长90cm ,则它的侧面展开图的圆心角是( ) A. 320° B. 40° C. 160° D. 80° 6.(3分)(2014•广东)下列四个几何体中,俯视图为四边形的是( )A B C D7.(3分)(2014•广东)据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D.12.6×1011元 8.(3分)(2014•广东)已知实数a 、b ,若a >b ,则下列结论正确的是( )A. a ﹣5<b ﹣5B. 2+a <2+bC.D. 3a >3b9.(3分)(2014•广东)如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( )A.30°B.40° C .50° D.60°10.(3分)(2014•广东)已知k1<0<k2,则函数y=k1x﹣1和y=的图象大致是()A B C D二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上. 11.(4分)(2014•广东).计算:2()a a-÷=.12.(4分)(2014•广东)如图1,在O⊙中,20ACB∠=°,则AOB∠=_______度.13.(4分)(2014•广东)如图2 所示,五角星的顶点是一个正五边形的五个顶点.这个五角星可以由一个基本图形(图中的阴影部分)绕中心O至少经过____________次旋转而得到,每一次旋转_______度.14.(4分)(2014•广东)小张和小李去练习射击,第一轮10发子弹打完后,两人的成绩如图3所示.根据图中的信息,小张和小李两人中成绩较稳定的是.15.(4分)(2014•广东)如图4,把一个长方形纸片沿EF折叠后,点D C、分别落在11D C、的位置.若65EFB∠=°,则1AED∠等于_______度.16.(4分)(2014•广东)如图5,每一幅图中有若干个大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第4幅图中有个,第n幅图中共有个.C图1……第1幅第2幅第3幅第n幅图5图3A E DCFBD1C1图4三、解答题(一)(本大题3小题,每小题5分,共15分)17.(5分)(2014•广东)如图 6,已知线段AB ,分别以A B 、为圆心,大于12AB长为半径画弧,两弧相交于点C 、Q ,连结CQ 与AB 相交于点D ,连结AC ,BC .那么: (1)∠ ADC =________度; (2)当线段460AB ACB =∠=,°时,ACD ∠= ______度,ABC △的面积等于_________(面积单位). 18.(5分)(2014•广东):1012)4cos30|3-⎛⎫++- ⎪⎝⎭°19.(5分)(2014•广东)先化简,再求值:2224441x x xx x x x --+÷-+-,其中32x =.四、解答题(二)(本大题3小题,每小题8分,共24分) 20.(8分)(2014•广东)如图 8,梯形ABCD 中,AB CD ∥,点F 在BC 上,连DF 与AB 的延长线交于点G .(1)求证:CDF BGF △∽△;(2)当点F 是BC 的中点时,过F 作EF CD ∥交AD 于点E ,若6cm 4cm AB EF ==,,求CD 的长.CBDA 图6D C F EA G图821.(8分)(2014•广东)“五·一”假期,某公司组织部分员工到A、B、C三地旅游,公司购买前往各地的车票种类、数量绘制成条形统计图,如图9.根据统计图回答下列问题:(1)前往A地的车票有_____张,前往C地的车票占全部车票的________%;(2)若公司决定采用随机抽取的方式把车票分配给100 名员工,在看不到车票的条件下,每人抽取一张(所有车票的形状、大小、质地完全相同且充分洗匀),那么员工小王抽到去B地车票的概率为______;(3)若最后剩下一张车票时,员工小张、小李都想要,决定采用抛掷一枚各面分别标有数字1,2,3,4的正四面体骰子的方法来确定,具体规则是:“每人各抛掷一次,若小张掷得着地一面的数字比小李掷得着地一面的数字大,车票给小张,否则给小李.”试用“列表法或画树状图”的方法分析,这个规则对双方是否公平?22.(8分)(2014•广东)如图10,已知抛物线233y x x=-+x轴的两个交点为A B、,与y轴交于点C.(1)求A B C,,三点的坐标;(2)求证:ABC△是直角三角形;(3)若坐标平面内的点M,使得以点M和三点A B C、、为顶点的四边形是平行四边形,求点M的坐标.(直接写出点的坐标,不必写求解过程)x四、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)(2014•广东)菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.24.已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)求证:AC与⊙O相切;(2)当BD=6,sinC=时,求⊙O的半径.25.(9分)(2014•广东)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;②若⊙M的半径为,求点M的坐标.部分答案:解:(1)30;20. ·················································································································· 2 分 (2)12. ·································································································································· 4 分 (3)可能出现的所有结果列表如下:或画树状图如下:共有 16 种可能的结果,且每种的可能性相同,其中小张获得车票的结果有6种: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3), ∴小张获得车票的概率为63168P ==;则小李获得车票的概率为35188-=. ∴这个规则对小张、小李双方不公平. 8 分22. (1)解:令0x =,得y =(0C . ··················································· 1分 令0y =,得20x =,解得1213x x =-=,, ∴(10)(30)A B -,,,. ······································································································ 3分(2)法一:证明:因为22214AC =+=, 222231216BC AB =+==,, ·························· 4分 ∴222AB AC BC =+, ················································· 5分 ∴ABC △是直角三角形. ············································ 6分 法二:因为13OC OA OB ===,,∴2OC OA OB =, ··················································································································· 4分1 2 3 4 1 1 2 3 4 2 1 2 3 4 3 1 2 3 44开始小张 小李 x21题图M 1 3∴OC OBOA OC=,又AOC COB ∠=∠, ∴Rt Rt AOC COB △∽△. ···································································································· 5分 ∴90ACO OBC OCB OBC ∠=∠∠+∠=,°, ∴90ACO OCB ∠+∠=°,∴90ACB ∠=°, 即ABC △是直角三角形. ······················································· 6 分(3)1(4M ,2(4M -,3(2M .(只写出一个给1分,写出2个,得1.5分) 8分sinC=求出sinA=sinC===,即可求出半径.sinC=sinA=sinC=,sinA==,r=,的半径是,OP=,)的坐标代入,得k,y=x×﹣,(,DE= AC===∴,,,3+)或(﹣。
2014年广东省广州市中考数学试卷及答案解析
2014年广东省广州市中考数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)a (a ≠0)的相反数是( ) A .﹣aB .a 2C .|a |D .1a2.(3分)下列图形中,是中心对称图形的是( )A .B .C .D .3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .434.(3分)下列运算正确的是( ) A .5ab ﹣ab =4 B .1a +1b=2a+bC .a 6÷a 2=a 4D .(a 2b )3=a 5b 35.(3分)已知⊙O 1和⊙O 2的半径分别为2cm 和3cm ,若O 1O 2=7cm ,则⊙O 1和⊙O 2的位置关系是( ) A .外离 B .外切 C .内切 D .相交6.(3分)计算x 2−4x−2,结果是( )A .x ﹣2B .x +2C .x−42D .x+2x7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是( )A .中位数是8B .众数是9C .平均数是8D .极差是78.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变,当∠B =90°时,如图1,测得AC =2,当∠B =60°时,如图2,AC =( )A .√2B .2C .√6D .2√29.(3分)已知正比例函数y =kx (k <0)的图象上两点A (x 1,y 1)、B (x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( ) A .y 1+y 2>0B .y 1+y 2<0C .y 1﹣y 2>0D .y 1﹣y 2<010.(3分)如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB =a ,CG =b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③DG GC=GO CE;④(a ﹣b )2•S △EFO =b 2•S △DGO .其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC 中,已知∠A =60°,∠B =80°,则∠C 的外角的度数是 °. 12.(3分)已知OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E ,PD =10,则PE 的长度为 . 13.(3分)代数式1|x|−1有意义时,x 应满足的条件为 .14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为 .(结果保留π)15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:,该逆命题是命题(填“真”或“假”).16.(3分)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x﹣2≤3x,并在数轴上表示解集.18.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD分别相交于点E、F,求证:△AOE≌△COF.19.(10分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.18三级蛙跳12a一分钟跳绳80.16投掷实心球b0.32推铅球50.10合计501(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.21.(12分)已知一次函数y=kx﹣6的图象与反比例函数y=−2kx的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.23.(12分)如图,△ABC中,AB=AC=4√5,cos C=√55.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:DÊ=CÊ;②求点D到BC的距离.24.(14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a ≠0)过点A ,B ,顶点为C ,点P (m ,n )(n <0)为抛物线上一点. (1)求抛物线的解析式和顶点C 的坐标; (2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得首位依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.25.(14分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =3,BC =4,CD =5.点E 为线段CD 上一动点(不与点C 重合),△BCE 关于BE 的轴对称图形为△BFE ,连接CF .设CE =x ,△BCF 的面积为S 1,△CEF 的面积为S 2. (1)当点F 落在梯形ABCD 的中位线上时,求x 的值; (2)试用x 表示S 2S 1,并写出x 的取值范围;(3)当△BFE 的外接圆与AD 相切时,求S 2S 1的值.2014年广东省广州市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1.(3分)a (a ≠0)的相反数是( ) A .﹣aB .a 2C .|a |D .1a【解答】解:a 的相反数为﹣a . 故选:A .2.(3分)下列图形中,是中心对称图形的是( )A .B .C .D .【解答】解:A 、不是中心对称图形,故本选项不符合题意; B 、不是中心对称图形,故本选项不符合题意; C 、是中心对称图形,故本选项符合题意; D 、不是中心对称图形,故本选项不符合题意; 故选:C .3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan A =( )A .35B .45C .34D .43【解答】解:在直角△ABC 中,∵∠ABC =90°, ∴tan A =BC AB =43.4.(3分)下列运算正确的是( ) A .5ab ﹣ab =4 B .1a +1b=2a+bC .a 6÷a 2=a 4D .(a 2b )3=a 5b 3【解答】解:A 、原式=4ab ,故A 选项错误; B 、原式=a+bab ,故B 选项错误; C 、原式=a 4,故C 选项正确; D 、原式=a 6b 3,故D 选项错误. 故选:C .5.(3分)已知⊙O 1和⊙O 2的半径分别为2cm 和3cm ,若O 1O 2=7cm ,则⊙O 1和⊙O 2的位置关系是( ) A .外离B .外切C .内切D .相交【解答】解:∵⊙O 1与⊙O 2的半径分别为3cm 、2cm ,且圆心距O 1O 2=7cm , 又∵3+2<7,∴两圆的位置关系是外离. 故选:A . 6.(3分)计算x 2−4x−2,结果是( )A .x ﹣2B .x +2C .x−42D .x+2x【解答】解:x 2−4x−2=(x+2)(x−2)x−2=x +2,故选:B .7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是( ) A .中位数是8B .众数是9C .平均数是8D .极差是7【解答】解:A 、按从小到大排列为:7,7,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故A 选项错误;B 、9出现了3次,次数最多,所以众数是9,故B 选项正确;C 、平均数=(7+10+9+8+7+9+9+8)÷8=8.375,故C 选项错误;D 、极差是:10﹣7=3,故D 选项错误.8.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.√2B.2C.√6D.2√2【解答】解:如图1,∵AB=BC=CD=DA,∠B=90°,∴四边形ABCD是正方形,连接AC,则AB2+BC2=AC2,∴AB=BC=√12AC2=√12×22=√2,如图2,∠B=60°,连接AC,∴△ABC为等边三角形,∴AC=AB=BC=√2,故选:A.9.(3分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0B.y1+y2<0C.y1﹣y2>0D.y1﹣y2<0【解答】解:∵直线y=kx的k<0,∴函数值y随x的增大而减小,∵x1<x2,∴y 1﹣y 2>0. 故选:C .10.(3分)如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB =a ,CG =b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③DG GC=GO CE;④(a ﹣b )2•S △EFO =b 2•S △DGO .其中结论正确的个数是( )A .4个B .3个C .2个D .1个【解答】证明:①∵四边形ABCD 和四边形CEFG 是正方形, ∴BC =DC ,CG =CE ,∠BCD =∠ECG =90°, ∴∠BCG =∠DCE , 在△BCG 和△DCE 中, {BC =DC∠BCG =∠DCE CG =CE, ∴△BCG ≌△DCE (SAS ), 故①正确;②延长BG 交DE 于点H , ∵△BCG ≌△DCE , ∴∠CBG =∠CDE , 又∵∠CBG +∠BGC =90°, ∴∠CDE +∠DGH =90°, ∴∠DHG =90°, ∴BH ⊥DE ; ∴BG ⊥DE . 故②正确;③∵四边形GCEF 是正方形, ∴GF ∥CE , ∴DG DC =GO CE , ∴DG GC=GO CE是错误的.故③错误;④∵DC ∥EF , ∴∠GDO =∠OEF , ∵∠GOD =∠FOE , ∴△OGD ∽△OFE , ∴S △DGO S △EFO=(DG EF)2=(a−b b)2=(a−b)2b2,∴(a ﹣b )2•S △EFO =b 2•S △DGO . 故④正确;故选:B .二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC 中,已知∠A =60°,∠B =80°,则∠C 的外角的度数是 140 °. 【解答】解:∵∠A =60°,∠B =80°, ∴∠C 的外角=∠A +∠B =60°+80°=140°. 故答案为:140.12.(3分)已知OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E ,PD =10,则PE 的长度为 10 .【解答】解:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥OB ,∴PE=PD=10.故答案为:10.13.(3分)代数式1|x|−1有意义时,x应满足的条件为x≠±1.【解答】解:由题意得,|x|﹣1≠0,解得x≠±1.故答案为:x≠±1.14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6,∴圆锥的母线为:5,∴根据圆锥的侧面积公式:πrl=π×3×5=15π,底面圆的面积为:πr2=9π,∴该几何体的表面积为24π.故答案为:24π.15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).【解答】解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题,故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.16.(3分)若关于x 的方程x 2+2mx +m 2+3m ﹣2=0有两个实数根x 1、x 2,则x 1(x 2+x 1)+x 22的最小值为54.【解答】解:由题意知,方程x 2+2mx +m 2+3m ﹣2=0有两个实数根, 则Δ=b 2﹣4ac =4m 2﹣4(m 2+3m ﹣2)=8﹣12m ≥0, ∴m ≤23, ∵x 1(x 2+x 1)+x 22 =(x 2+x 1)2﹣x 1x 2=(﹣2m )2﹣(m 2+3m ﹣2) =3m 2﹣3m +2=3(m 2﹣m +14−14)+2 =3(m −12)2+54; ∴当m =12时,有最小值54;∵12<23,∴m =12成立; ∴最小值为54;故答案为:54.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x ﹣2≤3x ,并在数轴上表示解集.【解答】解:5x ﹣2≤3x , 移项,得5x ﹣3x ≤2, 合并同类项,得2x ≤2, 系数化成1,x ≤1, 在数轴上表示为:.18.(9分)如图,▱ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB ,CD 分别相交于点E 、F ,求证:△AOE ≌△COF .【解答】证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,AB ∥CD , ∴∠EAO =∠FCO , 在△AOE 和△COF 中, {∠EAO =∠FCO AO =CO ∠EOA =∠FOC, ∴△AOE ≌△COF (ASA ).19.(10分)已知多项式A =(x +2)2+(1﹣x )(2+x )﹣3. (1)化简多项式A ;(2)若(x +1)2=6,求A 的值.【解答】解:(1)A =(x +2)2+(1﹣x )(2+x )﹣3 =x 2+4x +4+2+x ﹣2x ﹣x 2﹣3 =3x +3;(2)∵(x +1)2=6, ∴x +1=±√6, ∴A =3x +3 =3(x +1) =±3√6. ∴A =±3√6.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远90.18三级蛙跳12a一分钟跳绳80.16投掷实心球b0.32推铅球50.10合计501(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多有一名女生的概率.【解答】解:(1)根据题意得:a=1﹣(0.18+0.16+0.32+0.10)=0.24;b=90.18×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E,由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合,∴抽取的两名学生中至多有一名女生的概率为:910.21.(12分)已知一次函数y =kx ﹣6的图象与反比例函数y =−2kx的图象交于A 、B 两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在象限,并说明理由. 【解答】解:(1)把x =2代入y =−2kx, 得:y =﹣k ,把A (2,﹣k )代入y =kx ﹣6, 得:2k ﹣6=﹣k , 解得k =2,所以一次函数与反比例函数的解析式分别为y =2x ﹣6,y =−4x , 则A 点坐标为(2,﹣2);(2)B 点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y =2x ﹣6,y =−4x , 解方程组{y =2x −6y =−4x,得:{x =1y =−4 或 {x =2y =−2,所以B 点坐标为(1,﹣4), 所以B 点在第四象限.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍. (1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度. 【解答】解:(1)根据题意得: 400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:520 x −4002.5x=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.23.(12分)如图,△ABC中,AB=AC=4√5,cos C=√55.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:DÊ=CÊ;②求点D到BC的距离.【解答】解:(1)如图(2)如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE =∠CAE , ∴DE ̂=CE ̂;(3)如图,连接AE ,DE ,作DM ⊥BC 交BC 于点M ,∵AC 为直径, ∴∠AEC =90°, ∵AB =AC =4√5,cos C =√55.∴EC =BE =4, ∴BC =8,∵点A 、D 、E 、C 共圆 ∴∠ADE +∠C =180°, 又∵∠ADE +∠BDE =180°, ∴∠BDE =∠C , ∴△BDE ∽△BCA , ∴BD BC=BE AB,即BD •BA =BE •BC∴BD ×4√5=4×8 ∴BD =8√55, ∵∠B =∠C∴cos ∠C =cos ∠B =√55,∴8√55=√55,∴BM =85,∴DM =√BD 2−BM 2=(8√55)2−(85)2=165.24.(14分)已知平面直角坐标系中两定点A (﹣1,0)、B (4,0),抛物线y =ax 2+bx ﹣2(a ≠0)过点A ,B ,顶点为C ,点P (m ,n )(n <0)为抛物线上一点. (1)求抛物线的解析式和顶点C 的坐标; (2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得首位依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值并说明抛物线平移的方向;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+bx ﹣2(a ≠0)过点A ,B , ∴{a −b −2=016a +4b −2=0, 解得:{a =12b =−32, ∴抛物线的解析式为:y =12x 2−32x ﹣2; ∵y =12x 2−32x ﹣2=12(x −32)2−258, ∴C (32,−258).(2)如图1,以AB 为直径作圆M ,则抛物线在圆内的部分,能使∠APB 为钝角, ∴M (32,0),⊙M 的半径=52.∵P ′是抛物线与y 轴的交点, ∴OP ′=2,∴MP ′=√OP′2+OM 2=52, ∴P ′在⊙M 上,∴P ′的对称点(3,﹣2),∴当﹣1<m <0或3<m <4时,∠APB 为钝角.(3)方法一: 存在;抛物线向左或向右平移,因为AB 、P ′C ′是定值,所以A 、B 、P ′、C ′所构成的多边形的周长最短,只要AC ′+BP ′最小;第一种情况:抛物线向右平移,AC ′+BP ′>AC +BP ,第二种情况:向左平移,如图2所示,由(2)可知P (3,﹣2),又∵C (32,−258) ∴C '(32−t ,−258),P '(3﹣t ,﹣2), ∵AB =5,∴P ″(﹣2﹣t ,﹣2),要使AC ′+BP ′最短,只要AC ′+AP ″最短即可, 点C ′关于x 轴的对称点C ″(32−t ,258),设直线P ″C ″的解析式为:y =kx +b , {−2=(−2−t)k +b 258=(32−t)k +b , 解得{k =4128b =4128t +1314∴直线y =4128x +4128t +1314,当P ″、A 、C ″在一条直线上时,周长最小,∴−4128+4128t +1314=0 ∴t =1541.故将抛物线向左平移1541个单位连接A 、B 、P ′、C ′所构成的多边形的周长最短.方法二:∵AB 、P ′C ′是定值,∴A 、B 、P ′、C ′所构成的四边形的周长最短,只需AC ′+BP ′最小, ①若抛物线向左平移,设平移t 个单位, ∴C ′(32−t ,−258),P ″(﹣2﹣t ,﹣2), ∵四边形P ″ABP ′为平行四边形, ∴AP ″=BP ′,AC ′+BP ′最短,即AC ′+AP ″最短, C ′关于x 轴的对称点为C ″(32−t ,258),C ″,A ,P ″三点共线时,AC ′+AP ″最短, K AC ″=K AP ″,25832−t+1=0+2−1+2+t,∴t =1541. ②若抛物线向右平移,同理可得t =−1541, ∴将抛物线向左平移1541个单位时,A 、B 、P ′、C ′所构成的多边形周长最短.25.(14分)如图,梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =3,BC =4,CD =5.点E 为线段CD 上一动点(不与点C 重合),△BCE 关于BE 的轴对称图形为△BFE ,连接CF .设CE =x ,△BCF 的面积为S 1,△CEF 的面积为S 2.(1)当点F 落在梯形ABCD 的中位线上时,求x 的值;(2)试用x 表示S 2S 1,并写出x 的取值范围; (3)当△BFE 的外接圆与AD 相切时,求S 2S 1的值.【解答】解:(1)当点F 落在梯形ABCD 中位线上时,如答图1,过点F 作出梯形中位线MN ,分别交AD 、BC 于点M 、N .由题意,可知ABCD 为直角梯形,则MN ⊥BC ,且BN =CN =12BC .由轴对称性质,可知BF =BC ,∴BN =12BF ,∴∠BFN =30°,∴∠FBC =60°,∴△BFC 为等边三角形.∴CF =BC =4,∠FCB =60°,∴∠ECF =30°.设BE 、CF 交于点G ,由轴对称性质可知CG =12CF =2,CF ⊥BE .在Rt △CEG 中,x =CE =CG cos30°=√32=4√33.∴当点F 落在梯形ABCD 的中位线上时,x 的值为4√33.(2)如答图2,由轴对称性质,可知BE ⊥CF .∵∠GEC +∠ECG =90°,∠GEC +∠CBE =90°,∴∠GCE =∠CBE ,又∵∠CGE =∠ECB =90°,∴Rt △BCE ∽Rt △CGE ,∴BE CE =CE EG ,∴CE 2=EG •BE ①同理可得:BC 2=BG •BE ②①÷②得:EG BG =CE 2BC 2=x 216. ∴S 2S 1=S △CEF S △BCF =12CF⋅EG 12CF⋅BG =EG BG =x 216. ∴S 2S 1=x 216(0<x ≤5).(3)当△BFE 的外接圆与AD 相切时,依题意画出图形,如答图3所示.设圆心为O ,半径为r ,则r =12BE =√x 2+162. 设切点为P ,连接OP ,则OP ⊥AD ,OP =r =√x 2+162.过点O 作梯形中位线MN ,分别交AD 、BC 于点M 、N ,则OM 为梯形ABED 的中位线,∴OM =12(AB +DE )=12(3+5﹣x )=12(8﹣x ). 过点A 作AH ⊥CD 于点H ,则四边形ABCH 为矩形,∴AH =BC =4,CH =AB =3,∴DH =CD ﹣CH =2.在Rt △ADH 中,由勾股定理得:AD =√AH 2+DH 2=√42+22=2√5.∵MN ∥CD ,∴∠ADH =∠OMP ,又∵∠AHD =∠OPM =90°,∴△OMP ∽△ADH ,∴OM AD =OP AH ,即12(8−x)2√5=√x 2+1624,化简得:16﹣2x =√5x 2+80,两边平方后,整理得:x 2+64x ﹣176=0,解得:x 1=﹣32+20√3,x 2=﹣32﹣20√3(舍去)∵0<﹣32+20√3<5∴x =﹣32+20√3符合题意,∴S 2S 1=x 216=139﹣80√3.。
2014年广东佛山中考数学试卷及答案(WORD版)
2014年佛山市高中阶段阶段招生考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的,答案选项填涂在答题卡上) 1、2-等于( ) A .2 B .-2 C .21 D .21- 2、一个几何体的展开图如图所示,这个几何本是( )A .三棱柱B .三棱锥C .四棱柱D .四棱锥 3、下列调查中,适合用普查方式的是( ) A .调查佛山市市民的吸烟情况B .调查佛山市电视台某节目的收视率C .调查佛山市民家庭日常生活支出情况D .调查佛山市某校某班学生对“文明佛山”的知晓率4、若两个相似多边形的面积之比为1︰4,则它们的周长之比为( ) A .1︰4 B .1︰2 C .2︰1 D .4︰15、若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是( ) A .15° B .30° C .45° D .75°6、下列函数中,当0>x 时,y 值随x 值的增大而减小的是( ) A .x y = B .12-=x y C .xy 1=D .2x y = 7、根据佛山日报2014年4月4日报道,佛山市今年拟投入70亿元人民币建设人民满意政府,其中民生项目资金占99%,用科学计数法表示民生项目资金是( ) A .81070⨯元 B .9107⨯元 C .81093.6⨯元 D .91093.6⨯元 8、多项式ab b a b a --222的项数及次数分别是( ) A .3,3 B .3,2 C .2,3 D .2,2 9、下列说法正确的是( )A .10=a B .夹在两条平行线间的线段相等 C .勾股定理是222c b a =+ D .若21--x x 有意义,则x ≥1且x ≠2 10、把24个边长为1的小正方体木块拼成一个长方体(要全部用完),则不同的拼法(不考虑放置的位置,形状和大小一样的拼法即为相同的拼法)的种数是( ) A .5 B .6 C .7 D .8二、填空题(本大题共5小题,每小题3分,共15分,把答案填在答题卡上) 11、如图,线段的长度大约是__________厘米(精确到0.1米); 12、计算:=⋅322)(a a __________;OA13、不等式组⎪⎩⎪⎨⎧-<>-32123x x x 的解集是__________;14、如图是一副三角板叠放的示意图,则∠α=__________;15、如图,AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为O ,以点C 为圆心,BC 为半径作弧AB ,过点O 作AC 的平行线交两弧于点D 、E ,则阴影部分的面积是__________;三、解答题(在答题卡上作答,写出必要的解题步骤,另有要求的则按要求作答;16~20题每小题6分,21~23题第小题8分,24题10分,25题11分,共75分) 16、计算])2(2[2728331-+⋅+÷-17、解分式方程242a +=(在表格中的下划线处填空)18、一个不透明的袋里有两个白球和三个红球,它们除颜色外其它都一样 ⑴求“从袋中任意摸出一个球,摸出的一个球是白球”的概率;⑵直接写出“从袋中同时任意摸出两个球,摸出的两个球都是红球”的概率;19、如图,已知⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围;20、函数12+=x y 的图象经过哪几个象限?要求:不能直接写出答案,要有解题过程; 注:“图象经过某象限”是指“图象上至少有一点在某象限内”21⑴根据以上数据填表:22、现有不等式的两个性质:①在不等式的两边都加上(或减去)同一个整式,不等号的方向不变; ②在不等式的两边都乘以同一个数(或整式),乘的数(或整式)为正时不等号的方向不变,乘的数(或整式)为负时不等号的方向改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年广东数学中考试卷一、选择题(本大题10小题,每小题3分,共30分)1、在1,0,2,-3这四个数中,最大的数是()A、1B、0C、2D、-32、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A、B、C、D、3、计算3a-2a的结果正确的是()A、1B、aC、-aD、-5a4、把39x x-分解因式,结果正确的是()A、()29x x-B、()23x x-C、()23x x+D、()()33x x x+-5、一个多边形的内角和是900°,这个多边形的边数是()A、10B、9C、8D、76、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A、47B、37C、34D、137、如图7图,□ABCD中,下列说法一定正确的是()A、AC=BDB、AC⊥BDC、AB=CDD、AB=BC 题7图8、关于x的一元二次方程230x x m-+=有两个不相等的实数根,则实数m的取值范围为()A、94m>B、94m<C、94m=D、9-4m<9、一个等腰三角形的两边长分别是3和7,则它的周长为()A、17B、15C、13D、13或1710、二次函数()20y ax bx c a=++≠的大致图象如题10图所示,关于该二次函数,下列说法错误的是()A、函数有最小值B、对称轴是直线x=21C、当x<21,y随x的增大而减小D、当-1 < x < 2时,y>0ABD题10图二、填空题(本大题6小题,每小题4分,共24分)11、计算32x x ÷= ;12、据报道,截止2013年12月我国网民规模达618 000 000人.将618 000 000用科学计数法表示为 ;13、如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若BC=6,则DE= ;题13图 题14图 14、如题14图,在⊙O 中,已知半径为5,弦AB 的长为8,那么圆心O 到AB 的距离为 ;15、不等式组2841+2x x x ⎧⎨-⎩<>的解集是 ;16、如题16图,△ABC 绕点A 顺时针旋转45°得到△'''A B C ,若∠BAC=90°,AB=AC=2, 题16图 则图中阴影部分的面积等于 。
三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:()119412-⎛⎫+-+-- ⎪⎝⎭18、先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中31x -= 19、如题19图,点D 在△ABC 的AB 边上,且∠ACD=∠A.(1)作△BDC 的平分线DE ,交BC 于点E(用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE AC 的位置关系(不要求证明).题19图A E DB O A BB'C'CABBAD四、解答题(二)(本大题3小题,每小题7分,共21分)20、如题20图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(A 、B 、D 三点在同一直线上)。
请你根据他们测量数据计算这棵树CD 的高度(结果精确到0.1m )。
(参考数据:2≈1.414,3≈1.732)题20图21、某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价:-==⎛⎫ ⎪⎝⎭利润售价进价利润率进价进价 (2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?22、某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如题22-1图和题22-2图所示的不完整的统计图。
(1) 这次被调查的同学共有 名; (2) 把条形统计图(题22-1图)补充完整;10m60°30°DAB 没有剩40%剩大量剩少量剩一半左右450500剩大量类型人数(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐。
据此估算,该校18 000名学生一餐浪费的食物可供多少人食用一餐?五、解答题(三)(本大题3小题,每小题9分,共27分)23、如题23图,已知A14,2⎛⎫- ⎪⎝⎭,B(-1,2)是一次函数y kx b=+与反比例函数myx=(0,0m m≠<)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D。
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值? (2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标。
题23图题24图24、如题24图,⊙O是△ABC的外接圆,AC是直径,过点O作OD⊥AB于点D,延长DO交⊙O于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于F点,连接PF。
(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)(2)求证:OD=OE;(3)PF是⊙O的切线。
25、如题25-1图,在△ABC中,AB=AC,AD⊥AB点D,BC=10cm,AD=8cm,点P从点B 出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P 到达点C时,点P与直线m同时停止运动,设运动时间为t秒(t>0)。
(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时刻t 的值,若不存在,请说明理由。
题25-1图 题25备用图FHEA BD P一、选择题:1~10:CCBDD BCBAD 二、填空题:11、22x 12、81018.6⨯ 13、3 14、3 15、41<<x 16、12- 三、解答题(一)17、6 18、13+x ;3 19、(1)图略;(2)平行 四、解答题(二)20、解:由题意可知:CD ⊥AD ,设CD=x m 在Rt △BCD 中,x CBD CD BD BD CD CBD 33tan tan =∠=⇒=∠ 在Rt △ACD 中,x ACD AD AD CD A 3tan tan =∠=⇒=∠ 又∵AD=AB +BD ,∴x x 33103+= 解得:7.835≈=x21、(1)1200; (2)1080022、(1)1000; (2)如图;(3)3600 五、解答题(三)23、解:(1)由图象,当14-<<-x 50(2)把A 14,2⎛⎫- ⎪⎝⎭,B (-1,2)代入y kx b =+得,⎪⎩⎪⎨⎧=+-=+-2214b k b k ,解得⎪⎪⎩⎪⎪⎨⎧==2521b k ∴ 一次函数的解析式为2521+=x y 把B (-1,2)代入my x =得2-=m ,即m 的值为-2。
(3)如图,设P 的坐标为(x ,2521+x ),由A 、B 的坐标可知AC=21,OC=4,BD=1,OD=2,易知△PCA 的高为4+x ,△PDB 的高)2521(2+-x ,由PDB PCA S S ∆∆=可得)25212(121)4(2121--⨯⨯=+⨯x x ,解得25-=x ,此时452521=+x∴ P 点坐标为(25-,45)24、(1)解:由直径AC=12得半径OC=6劣弧PC 的长为ππ2180660=⋅⋅=l(2)证明:∵ OD ⊥AB ,PE ⊥AC ∴ ∠ADO=∠PEO=90° 在△ADO 和△PEO 中,⎪⎩⎪⎨⎧=∠=∠∠=∠OP OA POE AOD PEO ADO∴ △ADO ≌△PEO∴ OD=OE(3)解:连接PC ,由AC 是直径知BC ⊥AB ,又OD ⊥AB , ∴ PD ∥BF∴ ∠OPC=∠PCF ,∠ODE=∠CFE由(2)知OD=OE ,则∠ODE=∠OED ,又∠OED=∠FEC ∴ ∠FEC=∠CFE ∴ EC=FCxCO B DPE P由OP=OC 知∠OPC=∠OCE ∴ ∠PCE =∠PCF 在△PCE 和△PFC 中,⎪⎩⎪⎨⎧=∠=∠=PC PC PCF PCE FC EC ∴ △PCE ≌△PFC ∴ ∠PFC =∠PEC=90°由∠PDB=∠B=90°可知∠ODF=90°即OP ⊥PF ∴ PF 是⊙O 的切线25、解:(1)当t=2时,DH=AH=4,由AD ⊥AB ,AD ⊥EF 可知EF ∥BC∴ BD EH 21=,CD FH 21=又∵ AB=AC ,AD ⊥BC ∴ BD=CD ∴ EH=FH∴ EF 与AD 互相垂直平分 ∴ 四边形AEDF 为菱形(2)依题意得DH=2t ,AH=8-2t ,BC=10cm ,AD=8cm ,由EF ∥BC 知△AE F ∽△ABC∴BC EF AD AH =即10828EF t =-,解得t EF 2510-= ∴ 10)2(2510252)2510(2122+--=+-=⋅-=∆t t t t t S PEF即△PEF 的面积存在最大值10cm 2,此时BP=3×2=6cm 。
(3)过E 、F 分别作EN ⊥BC 于N ,EM ⊥BC 于M ,易知EF=MN=t 2510-EN=FM ,由AB=AC 可知BN=CM=t t 452)2510(10=-- 在ACD Rt ∆和FCM Rt ∆中,由CM FM CD AD C ==tan , 即5845=t FM ,解得t EN FM 2==,又由t BP 3=知t CP 310-=,t t t PN 47453=-=,t t t Pm 4171045310-=--=则 222216113)47()2(t t t EP =+=, 1008516353)41710()2(2222+-=-+=t t t t FP1005016100)2510(222+-=-=t t t EF 分三种情况讨论:①若∠EPF=90°,则216113t =+-+10085163532t t 10050161002+-t t ,解得1832801=t ,02=t (舍去) ②若∠EFP=90°,则10050161002+-t t =+-+10085163532t t 216113t ,解得17401=t ,42=t (舍去) ③若∠FEP=90°,则216113t =+-+10050161002t t 10085163532+-t t ,解得41=t ,02=t (均舍去) 综上所述,当183280=t 或1740时,△PEF 为直角三角形。