三角函数公式大全表格

合集下载

三角函数公式表(免费)

三角函数公式表(免费)

鄙视下载资料还要财富值的!
一:指数函数
二:对数函数
三:指数函数与对数函数有什么关系?(关于y=x 对称)
x
y 2=x
y 3=x
y ⎪⎭
⎫ ⎝⎛=21x
y ⎪⎭
⎫ ⎝⎛=31x
y 2log =x
y 2
1log =x
y 3log =x
y 3
1log =x
y 2=x
y =x
y 2log =
二、基本初等函数及其图像
1
2
3
,奇函数
无界,周期为余割函数
,偶函数无界,周期为正割函数,奇函数无界,周期为余切函数,奇函数无界,周期为正切函数,偶函数有界,周期为余弦函数,奇函数有界,周期为正弦函数性质
表达式名称ππππππ2csc 2sec cot tan 2cos 2sin x
y x y x y x y x y x y ======)
R (sin ∈=x x y 的图象)
R (cos ∈=x x y 的图象tan (π0.5π)
y x x k =≠+的图像
4
cot (π)
y x x k =≠的图像)
0()
(cot arc 22)(arctan ]0[]11[arccos 22]11[arcsin ππππππ,,反余切函数
,,反正切函数,,反余弦函数,,反正弦函数值域定义域表达式名称∞+-∞=⎪⎭⎫ ⎝⎛-∞+-∞=-=⎥⎦⎤
⎢⎣⎡--=x
y x y x y x y。

完整三角函数公式表

完整三角函数公式表

完整三角函数公式表三角函数公式表是数学中常用的一个工具,用于计算三角函数的数值。

它包含了各种三角函数的定义和性质,能够帮助我们在解决三角函数相关问题时,快速找到所需的公式和计算方法。

以下是一个完整的三角函数公式表,包含了常见的正弦、余弦、正切、余切、正割和余割函数的公式:1. 正弦函数(sin):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的y坐标。

- 基本关系:sin θ = y/r,其中θ是角度,y是对应的y坐标,r是单位圆的半径(常为1)。

- 周期性:sin (θ + 2π) = sin θ。

- 奇偶性:sin (-θ) = -sin θ。

2. 余弦函数(cos):- 定义:在单位圆上,从原点到圆上一点与x轴的正角对应的x坐标。

- 基本关系:cos θ = x/r,其中θ是角度,x是对应的x坐标,r是单位圆的半径(常为1)。

- 周期性:cos (θ + 2π) = cos θ。

- 奇偶性:cos (-θ) = cos θ。

3. 正切函数(tan):- 定义:tan θ = sin θ / cos θ。

- 周期性:tan (θ + π) = tanθ。

- 奇偶性:tan (-θ) = -tan θ。

4. 余切函数(cot):- 定义:cot θ = 1 / tan θ = cos θ / sin θ。

- 周期性:cot (θ + π) = cot θ。

- 奇偶性:cot (-θ) = -cot θ。

5. 正割函数(sec):- 定义:sec θ = 1 / cos θ。

- 周期性:sec (θ + 2π) = sec θ。

- 奇偶性:sec (-θ) = sec θ。

6. 余割函数(csc):- 定义:csc θ = 1 / sin θ。

- 周期性:csc (θ + 2π) = csc θ。

- 奇偶性:csc (-θ) = -csc θ。

此外,三角函数还有一些重要的性质:1. 三角函数的范围:sin、cos、csc、sec的值在[-1, 1]之间,tan、cot的值在整个实数范围内。

三角函数公式表(全)

三角函数公式表(全)

三角函数公式表同角三角函数的基本关系式倒数关系: 商的关系:平方关系:tanα·cotα=1sinα·cscα=1 sinα/cosα=tanαsin2α+cos2α=11+tan2α=sec2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=———----———1-tanα·tanβtanα-tanβtan(α-β)=—————-------—1+tanα·tanβ2tan(α/2) sinα=——————1+tan2(α/2)1-tan2(α/2) cosα=——————1+tan2(α/2)2tan(α/2) tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式Sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]1sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=— -[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)THANKS致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。

(完整版)三角函数三角函数公式表

(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。

公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。

公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。

公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。

公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。

公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。

三角函数公式总表(完美版)

三角函数公式总表(完美版)

三角函数公式总表一、角的概念的拓展1.与α终边相同的角的集合:{}|2,k k Z ββαπ=+∈ 二、弧度制1.长度等于半径长的弧所对的圆心角叫做1弧度的角,在弧度制下,1弧度记作1rad (rad 可以省略). 弧度制下的弧长公式:l rα=,即l r α=.扇形面积公式: 222111.||22222l S r r r lr r απααππ====≤. ㈠将角度化为弧度:3602rad π=;180rad π=;11rad 0.01745rad 180π=≈㈡将弧度化为角度:2rad 360π=;rad 180π=;1801rad 57.3π=≈三、三角函数的定义1.sin cos tan cot sec csc y x y x r r r r x y x yαααααα======、、、、、 2.三角函数线:角α与单位圆的交点P (x ,y )过P 点向x 轴引垂线,垂足叫M ,过A 点向x 轴 引垂线,交角的终边或反向延长线与点T ,则sin 1y yy MP r α====,cos 1x x x OM r α====,tan y MP ATAT x OM OAα====.有向线段MP ,OM ,AT 分别称为正弦线,余弦线,正切线.3. 三角函数符号:一正二正弦,三切四余弦. 四、同角三角函数基本关系式六边形记忆法图形结构“上弦中切下割左正右余中间1”xy oMTPA(1)oxy MTPA(2) xyoMTPA(3) oxyM TP A(4)1.记忆方法“对角线上两个函数的积为12.阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方3.任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积 四、诱导公式公式组一 (k Z ∈):sin(2)sin ,cos(2)cos ;tan(2)tan k x x k x x k x x πππ+=+=+=公式组二:sin()sin tan()tan ,cos()cos x xx x x x -=--=--=公式组三:sin()sin ,cos()cos ,tan()tan x x x x x x πππ+=-+=-+= 公式组四:sin()sin ,tan()tan ,cos()cos x x x x x x πππ-=-=--=-公式组五:sin(2)sin ,cos(2)cos ,tan(2)tan x x x x x x πππ-=--=-=-公式组六:sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭公式组七:sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫+=+=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭公式组八:333sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫-=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 公式组九:333sin cos ,cos sin ,tan cot 222πππαααααα⎛⎫⎛⎫⎛⎫+=-+=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭四、两角和与差公式 βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-= ααα2tan 1tan 22tan -= 常用数据: 30456090、、、的三角函数值6sin15cos 754-==,42615cos 75sin +==3275cot 15tan -== ,3215cot 75tan +==注: ⑴以上公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如tan()(1tan tan )tan tan αβαβαβ+-=+221cos 1cos cos ,sin 2222αααα+-==等. 从而可做到:正用、逆用、变形用自如使用各公式.⑵三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备. ⑶三角函数恒等变形的基本策略。

三角函数公式大全表格数学最全公式整理

三角函数公式大全表格数学最全公式整理

三角函数公式大全表格数学最全公式整理三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。

三角函数公式大全表格一、倍角公式1、Sin2A=2SinA*CosA2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-13、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))二、降幂公式1、sin^2(α)=(1-cos(2α))/2=versin(2α)/22、2cos^2(α)=(1+cos(2α))/2=covers(2α)/23、tan^2(α)=(1-cos(2α))/(1+cos(2α))三、推导公式1、1tanα+cotα=2/sin2α2、tanα-cotα=-2cot2α3、1+cos2α=2cos^2α4、、4-cos2α=2sin^2α5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina四、两角和差1、1cos(α+β)=cosα·cosβ-sinα·sinβ2、cos(α-β)=cosα·cosβ+sinα·sinβ3、sin(α±β)=sinα·cosβ±cosα·sinβ4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、和差化积1、sinθ+sinφ =2 sin[(θ+φ)/2] cos[(θ-φ)/2]2、sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]3、cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]4、cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)六、积化和差1、sinαsinβ = [cos(α-β)-cos(α+β)] /22、sinαcosβ = [sin(α+β)+sin(α-β)]/23、cosαsinβ = [sin(α+β)-sin(α-β)]/2七、诱导公式1、(-α) = -sinα、cos(-α) = cosα2、tan (—a)=-tanα、sin(π/2-α) = cosα、cos(π/2-α) = sinα、sin(π/2+α) = cosα3、3cos(π/2+α) = -sinα4、(π-α) = sinα、cos(π-α) = -cosα5、5tanA= sinA/cosA、tan(π/2+α)=-cotα、tan(π/2-α)=cotα6、tan(π-α)=-tanα、tan(π+α)=tanα八、锐角三角函数公式1、sin α=∠α的对边 / 斜边2、α=∠α的邻边 / 斜边3、tan α=∠α的对边/ ∠α的邻边4、cot α=∠α的邻边/ ∠α的对边高中数学最全公式1.几何与常用逻辑用语2.复数3.平面向量4.算法、推理与证明5.不等式、线性规划6.排列组合与二项式定理7.函数、基本初等函数的图像与性质8.函数与方程,函数模型及其应用9.导数及其应用10.三角函数的图形与性质11.三角恒等变化与解三角形12.等差数列、等比数列13.数列求和及数列的简单应用14.空间几何体15.空间点、直线、平面位置关系16.空间向量与立体几何17.直线与圆的方程18.圆锥曲线的定义、方程与性质19.圆锥曲线的热点问题20.概率21.离散型随机变量及其分布22.统计与统计案例23.函数与方程思想,数学结合思想24.分类与整合思想,化归与转化思想25.坐标系与参数方程26.不等式选讲。

三角函数公式大全(表格分类)

三角函数公式大全(表格分类)

三角函数的和差化积公式
三角函数的积化和差公式
sin sin 2sin

2 2 sin sin 2 cos sin 2 2 cos cos 2 cos cos 2 2 cos cos 2sin sin 2 2


sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin

sin( ) sin cos( ) cos tan( ) tan cot( ) cot
sin(



3 ) cos 2 3 cos( ) sin 2 3 tan( ) cot 2 3 cot( ) tan 2 3 ) cos 2 3 cos( ) sin 2 3 tan( ) cot 2 3 cot( ) tan 2
化 asinα ±bcosα 为一个角的一个三角函数的形式(辅助角的三角函数的公式)
a sin x b co中 角所在的象限由 a 、 b 的符号确定, 角的值由 tan
b 确定 a
六边形记忆法:图形结构“上弦中切下割,左正右余中间 1”;记忆方法“对角线上两个函数的积为 1;阴影三角形 上两顶点的三角函数值的平方和等于下顶点的三角函数 值的平方;任意一顶点的三角函数值等于相邻两个顶点的 三角函数值的乘积。”
万能公式
sin(2 ) sin cos(2 ) cos tan(2 ) tan cot(2 ) cot

三角函数公式大全表格304560

三角函数公式大全表格304560

三角函数公式大全表格304560
三角函数是数学中极为重要的一部分,涉及到三角关系的求解和它们之间的关系。

以下是30度、45度和60度的三角函数公式的详细表格。

1. 正弦函数(sin):
角度,正弦值
30度,0.5
45度,√2/2(约等于0.707)
60度,√3/2(约等于0.866)
2. 余弦函数(cos):
角度,余弦值
30度,√3/2(约等于0.866)
45度,√2/2(约等于0.707)
60度,0.5
3. 正切函数(tan):
角度,正切值
30度,√3/3(约等于0.577)
45度,1
60度,√3(约等于1.732)
4. 反正弦函数(arcsin):
正弦值,角度
0.5,30度
√2/2,45度
√3/2,60度
5. 反余弦函数(arccos):
余弦值,角度
√3/2,30度
√2/2,45度
0.5,60度
6. 反正切函数(arctan):
正切值,角度
√3/3,30度
1,45度
√3,60度
7.对于余切函数、反余切函数等其他三角函数,可以通过这些已知的三角函数来计算。

这是一个简单的三角函数表格,包括了常见的30度、45度和60度的三角函数值和对应的反函数值。

通过这些值,我们可以在解决三角关系和问题时进行计算和推导。

需要注意的是,三角函数的值和角度都可以根据单位圆和三角恒等式进行推导,例如平方和恒等式、余切与正弦和余弦的关系等等。

这些三角函数的值和关系在数学和物理等领域有广泛的应用,特别是在解决三角关系、图像处理、信号处理等方面。

常用三角函数公式表格总结

常用三角函数公式表格总结

常用三角函数公式表格总结在数学中,三角函数是研究角与角的关系的一门学科,其中最基础和常用的三角函数包括正弦函数、余弦函数和正切函数。

这些函数在数学、物理、工程等领域都有广泛的应用。

下面将常用的三角函数公式总结在表格中,以便读者更快速地查找和应用。

三角函数定义公式正弦函数$sin\\theta$$sin\\theta = \\frac{对边}{斜边}$余弦函数$cos\\theta$$cos\\theta = \\frac{邻边}{斜边}$正切函数$tan\\theta$$tan\\theta = \\frac{对边}{邻边}$余切函数$cot\\theta$$cot\\theta = \\frac{邻边}{对边}$正割函数$sec\\theta$$sec\\theta = \\frac{斜边}{邻边}$余割函数$csc\\theta$$csc\\theta = \\frac{斜边}{对边}$上表中列出了常用的三角函数以及它们的定义和计算公式。

其中,正弦函数表示一个角的对边与斜边的比值,余弦函数表示一个角的邻边与斜边的比值,正切函数表示一个角的对边与邻边的比值,余切函数是正切函数的倒数,正割函数是余弦函数的倒数,余割函数是正弦函数的倒数。

这些函数在解决各种三角形和角度相关问题时都有重要的作用。

除了上述基本的三角函数公式外,三角函数还有一些常用的性质和关系: - 正弦函数的周期为$2\\pi$ - 余弦函数的周期为$2\\pi$ - 正切函数的周期为$\\pi$ - 正弦函数与余弦函数的和差化积公式 - 二倍角公式、半角公式等总的来说,三角函数是数学中非常重要的一部分,掌握好三角函数的定义和常用公式是解决各种数学问题的基础。

在实际的科学研究和工程应用中,三角函数广泛应用于信号处理、振动分析、导航系统等方面。

希望本文总结的三角函数公式表格能对读者有所帮助。

数学三角函数公式表

数学三角函数公式表

数学三角函数公式表三角函数公式是数学中常用的公式之一,它们描述了三角函数之间的关系和性质。

在数学领域,三角函数是一个重要的研究对象,广泛应用于几何、物理、工程以及其他领域的计算中。

下面将给出一些常见的三角函数公式表。

一、正弦函数(Sine Function):1.正弦函数的定义域是实数集,其值域是[-1,1]之间的实数。

2.基本关系:- sin(a + b) = sin a * cos b + cos a * sin b- sin(a - b) = sin a * cos b - cos a * sin b- sin(2a) = 2 * sin a * cos a- sin(a) = 2 * sin(a/2) * cos(a/2)二、余弦函数(Cosine Function):1.余弦函数的定义域是实数集,其值域是[-1,1]之间的实数。

2.基本关系:- cos(a + b) = cos a * cos b - sin a * sin b- cos(a - b) = cos a * cos b + sin a * sin b- cos(2a) = cos^2 a - sin^2 a- cos^2 a + sin^2 a = 1三、正切函数(Tangent Function):1.正切函数的定义域是实数集,其值域是全体实数。

2.基本关系:- tan(a + b) = (tan a + tan b) / (1 - tan a * tan b)- tan(a - b) = (tan a - tan b) / (1 + tan a * tan b)- tan(2a) = 2 * tan a / (1 - tan^2 a)四、余切函数(Cotangent Function):1.余切函数的定义域是实数集,其值域是全体实数。

2.基本关系:- cot(a) = 1 / tan(a)五、正割函数(Secant Function):1.正割函数的定义域是实数集,其值域是(-∞,-1]∪[1,+∞)之间的实数。

高中必背三角函数公式表

高中必背三角函数公式表

高中必背三角函数公式表高中必背三角函数公式表作为高中数学的重要部分,三角函数是很多学生所苦恼的部分,需要反复理解和重复记忆才能掌握好。

今天,我们就来看一下高中必背的三角函数公式表,相信对你的学习有所帮助。

I. 基本三角函数公式1. 正弦函数(sin)sinA = 对边 / 斜边sin A = a/c2. 余弦函数(cos)cos A = 邻边 / 斜边cos A = b/c3. 正切函数(tan)tan A = 对边 / 邻边tan A = a/b4. 正割函数(sec)sec A = 斜边 / 邻边sec A = c/b5. 余割函数(csc)csc A = 斜边 / 对边csc A = c/a6. 割正切函数(cot)cot A = 邻边 / 对边cot A = b/aII. 商数与余数公式1. 正弦函数的商数与余数公式sin (A ± B) = sin A cos B ± cos A sin Bsin 2A = 2sin A cos Asin (π/2 - A) = cos Asin (π + A) = -sin Asin (π - A) = sin Asin (2π - A) = -sin A2. 余弦函数的商数与余数公式cos (A ± B) = cos A cos B ∓ sin A sin B cos 2A = cos² A - sin² Acos (π/2 - A) = sin Acos (π + A) = -cos Acos (π - A) = -cos Acos (2π - A) = cos A3. 正切函数的商数与余数公式tan (A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B) tan² A + 1 = sec² AIII. 其他常用公式1. 三角函数同角变换公式sin (-A) = -sin Acos (-A) = cos Atan (-A) = -tan A2. 三角函数的平方和差公式sin² (A ± B) = sin² A ± 2sin A sin B + sin² B cos² (A ± B) = cos² A ∓ 2cos A cos B + cos² B 3. 三角函数的倍角公式sin 2A = 2sin A cos Acos 2A = cos² A - sin² Atan 2A = (2tan A) / (1 - tan² A)4. 半角公式sin (A/2) = ± √[(1 - cos A) / 2]cos (A/2) = ± √[(1 + cos A) / 2]tan (A/2) = ± √[(1 - cos A) / (1 + cos A)]总结高中数学中,三角函数是考试不可避免的一部分,而掌握好三角函数公式,则是解题的必要条件。

三角函数公式表(全)

三角函数公式表(全)

(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法"对角线上两个函数的积为1 ;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

”)诱导公式(口诀:奇变偶不变,符号看象限。

)sin (— a )= —sin a COS (― a )= COs a tan (— a )= —tanaCOt (— a )=—COt asin ( n /2 — a)= COS a COS ( n /2 — a)= sin a tan (n /2 — a)= COt a COt ( n /2 —a)= tan a sin ( n — a )= sin aCOS ( n — a )=—COSatan ( n — a)=—tan aCOt ( n— a )=—COt asin( 3 n /2 — a)=—COS aCOS (3 n /2 —a)=—sin atan (3 n /2 —a)= cot aCOt (3 n /2 —a)= tan asin (2 n — a ) =—sin aCOS (2 n — a )= COS atan (2 n — a ) =—tan aCOt (2 n — a ) = —COt a倒数关系:tan a • cot a =1Sin a • CSC a =1 三角函数公式表同角三角函数的基本关系式商的关系: 平方关系: sin a /cos a = tanaSin 2a + COS 2a=1 1 + tan 2a =sec2asin ( n /2 +a)= COS a sin ( n + a )=—sina sin( 3 n /2 + a)=—COS asin (2k n + a )= sin acos ( n /2 + a ) =— sin a cos ( n + a )=— cos a cos (3 n /2 + a )= sin a cos (2k n + a ) = cosatan (n /2 + a) = — cota tan ( n + a)= tan a tan (3 n /2 + a )=— cot a tan (2k n + a ) = tanacot ( n /2 + a ) =— tana cot ( n+ a )= cot a cot (3 n /2 + a )=— tan acot (2k n + a ) = cota(其中k € Z)两角和与差的三角函数公式 sin ( a+B )= sin a cos 3 + cos a sin 3 sin ( a — 3 )= sin a cos 3 — cos asin 3 cos (a+ 3)= cos a cos 3 — sin a sin 3 cos (a — 3)= cos a cos 3 + sin a sin 3 tan a + tan 3 tan ( a+ 3 )= — 1 — tan a • tan 3 tan a — tan 3 tan ( a — 3 )= -------- ----- 1 + tan a • tan 3半角的正弦、余弦和正切公式 万能公式2tan( a /2)sin a = ----------1 + tan 2(a /2)1 — tan 2( a /2)cos a = ----------1 + tan 2(a /2)2tan( a /2)tan a = ----------1 — tan 2(a/2)三角函数的降幕公式二倍角的正弦、余弦和正切公式sin2 a = 2sin a COS a cos2 a = cos 2 a — sin 2 a= 2cos 2a — 1 = 1 — 2sin 2 a 2ta n a tan2 a = --------- 1 — tan 2a 三角函数的和差化积公式Sin a +sin 3 =2sin[( a + 3 )/2] • cos[( a - 3 )/2] sin a -sin 3 =2cos[( a + 3 )/2] • sin[ ( a - 3 )/2] cos a +cos 3 =2cos[( a + 3 )/2] • COS[ ( a - 3)/2] cos a -cos 3 =-2sin[( a + 3 )/2] • sin[( a -3 )/2] .2 1 - cos2otsin & = -------------231+ cos 2acos ot = --- --2三倍角的正弦、余弦和正切公式sin3 a = 3sin a — 4sin 3acos3 a = 4cos 3a — 3cosa3tan a — tan 3atan3 a = ----------1 — 3ta n 2a三角函数的积化和差公式sinacoscos a cos 3 = -[sin (a + B)+ sin (a — 3)]2 1sin 3 = -[sin (a + 3)— sin (a — 3)]2 1-cos 3 = -[cos (a + 3)+ cos (a — 3 )]sin a • sin 3=—-[cos (a+ B )—cos (a — 3 )]2化asin a ± bcos a为一个角的一个三角函数的形式(辅助角的三角函数的公式)(其中①角所在象限由尔占的符号确定4角的值*tar^=-确定) aTHANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求。

三角函数公式表及其图表

三角函数公式表及其图表

三角函数公式表及其图表三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ =1-cosθ余矢函数vercosθ =1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb)cot(a+b)=(cotacotb-1)/(cotb+cota)cot(a-b)=(cotacotb+1)/(cotb-cota)倍角公式tan2a=2tana/[1-(tana)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2sin2a=2sina*cosa半角公式sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa)) cot(a/2)=√((1+cosa)/((1-cosa)) cot(a/2)=-√((1+cosa)/((1-cosa)) tan(a/2)=(1-cosa)/sina=sina/(1+cosa)和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b) )2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2)tana+tanb=sin(a+b)/cosacosb积化和差公式sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]诱导公式sin(-a)=-sin(a)cos(-a)=cos(a)sin(pi/2-a)=cos(a)cos(pi/2-a)=sin(a)sin(pi/2+a)=cos(a)cos(pi/2+a)=-sin(a)sin(pi-a)=sin(a)cos(pi-a)=-cos(a)sin(pi+a)=-sin(a)cos(pi+a)=-cos(a)tga=tana=sina/cosa万能公式sin(a)= (2tan(a/2))/(1+tan^2(a/2))cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))tan(a)= (2tan(a/2))/(1-tan^2(a/2))其它公式a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^21-sin(a)=(sin(a/2)-cos(a/2))^2其他非重点三角函数csc(a)=1/sin(a)sec(a)=1/cos(a)双曲函数sinh(a)=(e^a-e^(-a))/2cosh(a)=(e^a+e^(-a))/2tgh(a)=sinh(a)/cosh(a)。

高中三角函数公式大全表格

高中三角函数公式大全表格

高中三角函数公式大全表格常用三角函数:离心率 (Eccentricity):e = √(1 - (b²/a²))长轴 (Major Axis):2a短轴 (Minor Axis):2b平面直角坐标系下的位置关系:单位圆 (Unit Circle):x² + y² = 1正弦 (Sine):sinθ = y余弦 (Cosine):cosθ = x正切 (Tangent):tanθ = y/x余切 (Cotangent):cotθ = 1/tanθ = x/y正割 (Secant):secθ = 1/cosθ = 1/x余割 (Cosecant):cscθ = 1/sinθ = 1/y和差公式:正弦和差公式 (Sum and Difference of Sines):sin(α ± β) = sinαcosβ ± cosαsinβ余弦和差公式 (Sum and Difference of Cosines):cos(α ± β) = cosαcosβ ∓ sinαsinβ正切和差公式 (Sum and Difference of Tangents):ta n(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)倍角公式:正弦倍角公式 (Double-Angle Identity for Sine):sin(2θ) = 2sinθcosθ余弦倍角公式 (Double-Angle Identity for Cosine):cos(2θ) = cos²θ - sin²θ正切倍角公式 (Double-Angle Identity for Tangent):tan(2θ) = 2tanθ / (1 - tan²θ)半角公式:正弦半角公式 (Half-Angle Identity for Sine):sin(θ/2) = ±√((1 - cosθ) / 2)余弦半角公式 (Half-Angle Identity for Cosine):cos(θ/2) = ±√((1 + cosθ) / 2)正切半角公式 (Half-Angle Identity for Tangent):tan(θ/2) = ±√((1 - cosθ) / (1 + cosθ))和差化积公式:正弦和差化积公式 (Product-to-Sum Identity for Sine):sinα + sinβ = 2sin((α + β)/2)cos((α - β)/2)正弦差和化积公式 (Sum-to-Product Identity for Sine):sinα - sinβ = 2cos((α + β)/2)sin((α - β)/2)余弦和差化积公式 (Product-to-Sum Identity for Cosine):cosα + cosβ = 2cos((α + β)/2)cos((α - β)/2)余弦差和化积公式 (Sum-to-Product Identity for Cosine):cosα - cosβ = -2sin((α + β)/2)sin((α - β)/2)正弦化积公式:正弦化积公式 (Product-to-Sum Identity for Sine):sinαsinβ = (1/2)[cos(α - β) - cos(α + β)]余弦化积公式:余弦化积公式 (Product-to-Sum Identity for Cosine):cosαcosβ = (1/2)[cos(α - β) + cos(α + β)]和差化积公式:和差化积公式 (Sum-to-Product Identity):sinα + sinβ = 2sin[(α + β)/2]cos[(α - β)/2]sinα - sinβ = 2cos[(α + β)/2]sin[(α - β)/2]cosα + cosβ = 2cos[(α + β)/2]cos[(α - β)/2]cosα - cosβ = -2sin[(α + β)/2]sin[(α - β)/2]。

三角函数常用公式表

三角函数常用公式表

1、角:1、正角、负角、零角:逆时针方向旋转正角,顺时针方向旋转负角,不做任何旋转零角;2、与α终边相同的角,连同角α在内,都可以表示为集合{Z k k ∈⋅+=,360|αββ}3、象限的角:在直角坐标系内,顶点与原点重合,始边与x 轴的非负半轴重合,角的终边落在第几象限,就是第几象限的角;角的终边落在坐标轴上,这个角不属于任何象限;2、弧度制:1、定义:等于半径的弧所对的圆心角叫做1弧度的角,用弧度做单位叫弧度制; 2、度数与弧度数的换算:π=180弧度,1弧度57)180( ≈=π3、弧长公式:r l ||α= α是角的弧度数扇形面积:2||2121r lr S α===3、三角函数1、定义:如图2、各象限的符号:yry x r x xrx y r y ======ααααααcsc cot cos sec tan sin 4、同角三角函数基本关系式1平方关系: 2商数关系: 3倒数关系:1cos sin 22=+αα αααcos sin tan = 1cot tan =αα αα22sec tan 1=+ αααsin cos cot =1csc sin =αα αα22csc cot 1=+ 1sec cos =αα4同角三角函数的常见变形:活用“1” ①、αα22cos 1sin-=, αα2cos 1sin -±=;αα22sin 1cos -=, αα2sin 1cos -±=;②θθθθθθθ2sin 2cos sin sin cos cot tan 22=+=+,αααααααθθ2cot 22sin 2cos 2cos sin sin cos tan cot 22==-=-③ααααα2sin 1cos sin 21)cos (sin 2±=±=±, |cos sin |2sin 1ααα±=±xy+ + __O xy++__ Oαtanxy+ +__O=r αsecαsinαtan αcotcsc5、诱导公式:奇变偶不变,符号看象限公式一: ααααααtan )360tan(cos )360cos(sin )360sin(=︒⋅+=︒⋅+=︒⋅+k k k公式二: 公式三: 公式四: 公式五:ααααααtan )180tan(cos )180cos(sin )180sin(-=-︒-=-︒=-︒ ααααααtan )180tan(cos )180cos(sin )180sin(=+︒-=+︒-=+︒ ααααααtan )tan(cos )cos(sin )sin(-=-=--=- ααααααtan )360tan(cos )360cos(sin )360sin(-=-︒=-︒-=-︒ 补充:ααπααπααπcot )2tan(sin )2cos(cos )2sin(=-=-=- ααπααπααπcot )2tan(sin )2cos(cos )2sin(-=+-=+=+ ααπααπααπcot )23tan(sin )23cos(cos )23sin(=--=--=- ααπααπααπcot )23tan(sin )23cos(cos )23sin(-=+=+-=+6、两角和与差的正弦、余弦、正切 7 .辅角公式 ⎪⎪⎭⎫ ⎝⎛++++=+x b a b x b a a b a xb x a cos sin cos sin 222222 )sin()sin cos cos (sin 2222ϕϕϕ+⋅+=⋅+⋅+=x b a x x b a其中ϕ称为辅助角,ϕ的终边过点),(b a ,ab =ϕtan 多用于研究性质 8、二倍角公式:1、α2S : αααcos sin 22sin = 2、降次公式:多用于研究性质 α2C : ααα22sin cos 2cos -= ααα2sin 21cos sin =1cos 2sin 2122-=-=αα 212cos 2122cos 1sin 2+-=-=αααα2T : ααα2tan 1tan 22tan -= 212cos 2122cos 1cos 2+=+=ααα 3、二倍角公式的常用变形:①、|sin |22cos 1αα=-, |cos |22cos 1αα=+;②、|sin |2cos 2121αα=-, |cos |2cos 2121αα=+③22sin 1cos sin 21cos sin 22244ααααα-=-=+; ααα2cos sin cos 44=-;④半角:2cos 12sin αα-±=,2cos 12cos αα+±=,αααcos 1cos 12tan +-±=ααααcos 1sin sin cos 1+=-=9、三角函数的图象性质1、函数的周期性:①、定义:对于函数fx ,若存在一个非零常数T,当x 取定义域内的每一个值时,都有:fx +T = fx ,那么函数fx 叫周期函数,非零常数T 叫这个函数的周期;②、如果函数fx 的所有周期中存在一个最小的正数,这个最小的正数叫fx 的最小正周期; 2、函数的奇偶性:①、定义:对于函数fx 的定义域内的任意一个x , 都有:f-x= - fx ,则称fx 是奇函数,f-x= fx ,则称fx 是偶函数②、奇函数的图象关于原点对称,偶函数的图象关于y 轴对称; ③、奇函数,偶函数的定义域关于原点对称;x y sin =图象的五个关键点:0,0,2,1,π,0,2,-1,π2,0;π3πx y sin =的对称中心为0,πk ;对称轴是直线2ππ+=k x ; )sin(ϕω+=x A y 的周期ωπ2=T ;x y cos =的对称中心为0,2ππ+k ;对称轴是直线πk x =; )cos(ϕω+=x A y 的周期ωπ2=T ; x y tan =的对称中心为点0,πk 和点0,2ππ+k ; )tan(ϕω+=x A y 的周期ωπ=T ;4、函数)0,0)(sin(>>+=ωϕωA x A y 的相关概念:)sin(ϕω+=x A y 的图象与x y sin =的关系:①、振幅变换:x y sin = x A y sin =②、周期变换:x y sin = x y ωsin =③、相位变换:x y sin = )sin(ϕ+=x y④、平移变换:x A y ωsin = )sin(ϕω+=x A y 常叙述成: ①、把x y sin =上的所有点向左0>ϕ时或向右0<ϕ时平移|ϕ|个单位得到)sin(ϕ+=x y ; ②、再把)sin(ϕ+=x y 的所有点的横坐标缩短1>ω或伸长<01<ω到原来的ω1倍纵坐标不变得到)sin(ϕω+=x y ;③、再把)sin(ϕω+=x y 的所有点的纵坐标伸长1>A 或缩短<01<A 到原来的A 倍横坐标不变得到)sin(ϕω+=x A y 的图象; 先平移后伸缩的叙述方向:)sin(ϕω+=x A y先平移后伸缩的叙述方向: )](sin[)sin(ωϕωϕω+=+=x A x A y 10、三角函数求值域当A 1>时,图象上各点的纵坐标伸长到原来的A 倍当<0A 1<时,图象上各点的纵坐标缩短到原来的A 倍 当1>ω时,图象上各点的纵坐标缩短到原来的ω1倍当<01<ω时,图象上各点的纵坐标伸长到原来的ω1倍当0>ϕ时,图象上的各点向左平移ϕ个单位倍当0<ϕ时,图象上的各点向右平移||ϕ个单位倍当0>ϕ时,图象上的各点向左平移ωϕ个单位倍 当0<ϕ时,图象上的各点向右平移||ωϕ个单位倍1一次函数型:B x A y +=sin ,例:5)123sin(2+--=πx y ,x x y cos sin =用辅助角公式化为:=+=x b x a y cos sin )sin(22ϕ+⋅+x b a ,例:x x y cos 3sin 4-=2二次函数型:①、二倍角公式的应用:x x y 2cos sin += ②、代数代换:x x x x y cos sin cos sin ++=第五章、平面向量1、空间向量:1、定义:既有大小又有方向的量叫做向量,向量都可用同一平面内的有向线段表示;2、零向量:长度为0的向量叫零向量,记作0;零向量的方向是任意的;3、单位向量:长度等于1个单位长度的向量叫单位向量;与向量a 平行的单位向量:||a a e =;4、平行向量:方向相同或相反的非零向量叫平行向量也叫共线向量,记作b a //;规定0与任何向量平行;5、相等向量:长度相同且方向相同的向量叫相等向量,零向量与零向量相等;任意两个相等的非零向量,都可以用同一条有向线段来表示,并且与有向线段的起点无关; 2、向量的运算:1、向量的加减法:2、实数与向量的积:①、定义:实数λ与向量a 的积是一个向量,记作:a λ; ②:它的长度:||||||a a ⋅=λλ;③:它的方向:当0>λ,a λ与向量a 的方向相同;当0<λ,a λ与向量a 的方向相反;当0=λ时,a λ=0; 3、平面向量基本定理:如果21,e e 是同一平面内的两个不共线的向量,那么对平面内的任一向量a ,有且只有一对实数21,λλ,使2211e e a λλ+=;不共线的向量21,e e 叫这个平面内所有向量的一组基向量,{21,e e }叫基底;4、平面向量的坐标运算:1、运算性质:()()a a a cb ac b a a b b a =+=+++=+++=+00,, 2、坐标运算:设()()2211,,,y x b y x a ==→→,则()2121,y y x x b a ±±=±→→设A 、B 两点的坐标分别为x 1,y 1,x 2,y 2,则()1212,y y x x AB --=→. 3、实数与向量的积的运算律: 设()y x a ,=→,则λ()()y x y x a λλλ,,==→,4、平面向量的数量积:①、 定义:⎪⎭⎫ ⎝⎛≤≤≠≠⋅=⋅→→→→→→→→001800,0,0cos θθb a b a b a , 00=⋅→→a . ①、平面向量的数量积的几何意义:向量a 的长度|a |与b 在a 的方向上的投影|b |θcos 的乘积; ③、坐标运算:设()()2211,,,y x b y x a ==→→,则2121y y x x b a +=⋅→→ ;向量a 的模|a |:a a a ⋅=2||22y x +=;模|a |22y x +=④、设θ是向量()()2211,,,y x b y x a ==→→的夹角,则222221212121cos y x y x y y x x +++=θ,a ⊥b 0=⋅⇔b a5、重要结论:1、两个向量平行的充要条件: →→→→=⇔b a b a λ// )(R ∈λ设()()2211,,,y x b y x a ==→→,则⇔→→b a // 01221=-y x y x 2、两个非零向量垂直的充要条件:0=⋅⇔⊥→→→→b a b a设 ()()2211,,,y x b y x a ==→→,则 02121=+⇔⊥→→y y x x b a 3、两点()()2211,,,y x B y x A 的距离:221221)()(||y y x x AB -+-=4、P 分线段P 1P 2的:设Px,y ,P 1x 1,y 1 ,P 2x 2,y 2 ,且→→=21PP P P λ ,即||21PP P P =λ则定比分点坐标公式⎪⎪⎩⎪⎪⎨⎧++=++=λλλλ112121y y y x x x , 中点坐标公式⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 5、平移公式:如果点 Px,y 按向量()k h a ,=→平移至P ′x ′,y ′,则⎪⎩⎪⎨⎧+=+=.,''k y y h x x。

完整版)完整三角函数公式表

完整版)完整三角函数公式表

完整版)完整三角函数公式表三角函数公式表同角三角函数的基本关系式三角函数是数学中的重要概念,它们在数学和物理学中都有广泛的应用。

同角三角函数的基本关系式包括倒数关系、商的关系和平方关系。

其中,倒数关系式如下:tan\alpha\cdot\cot\alpha=1$$sin\alpha\cdot\csc\alpha=1$$cos\alpha\cdot\sec\alpha=1$$商的关系式如下:frac{\sin\alpha}{\cos\alpha}=\tan\alpha=\frac{\sec\alpha}{\csc\alpha}$$frac{\cos\alpha}{\sin\alpha}=\cot\alpha=\frac{\csc\alpha}{\sec\alpha}$$平方关系式如下:sin^2\alpha+\cos^2\alpha=1$$2^2+ \tan^2\alpha=\sec^2\alpha$$1+\cot^2\alpha=\csc^2\alpha$$这些关系式可以用六边形记忆法和记忆方法来记忆。

其中,六边形记忆法是指图形结构“上弦中切下割,左正右余中间1”,而记忆方法是指对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

诱导公式诱导公式是指通过已知的三角函数值来推导其他角度的三角函数值的公式。

它们可以用口诀“奇变偶不变,符号看象限”来记忆。

具体来说,诱导公式包括三角函数的奇偶性和象限问题。

奇偶性公式如下:sin(-\alpha)=-\sin\alpha$$cos(-\alpha)=\cos\alpha$$tan(-\alpha)=-\tan\alpha$$cot(-\alpha)=-\cot\alpha$$象限问题公式如下:sin\left(\frac{3\pi}{2}-\alpha\right)=-\cos\alpha$$ cos\left(\frac{3\pi}{2}-\alpha\right)=-\sin\alpha$$ sin(2\pi-\alpha)=-\sin\alpha$$cos(2\pi-\alpha)=\cos\alpha$$tan\left(\frac{3\pi}{2}-\alpha\right)=\cot\alpha$$ tan(2\pi-\alpha)=-\tan\alpha$$cot\left(\frac{3\pi}{2}-\alpha\right)=\tan\alpha$$ cot(2\pi-\alpha)=-\cot\alpha$$另外,还有两个特殊的角度:sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$$cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha$$ tan\left(\frac{\pi}{2}-\alpha\right)=\cot\alpha$$ cot\left(\frac{\pi}{2}-\alpha\right)=\tan\alpha$$ sin\left(\frac{\pi}{2}+\alpha\right)=\cos\alpha$$ cos\left(\frac{\pi}{2}+\alpha\right)=-\sin\alpha$$ tan\left(\frac{\pi}{2}+\alpha\right)=-\cot\alpha$$ cot\left(\frac{\pi}{2}+\alpha\right)=-\tan\alpha$$ sin(\pi-\alpha)=\sin\alpha$$cos(\pi-\alpha)=-\cos\alpha$$tan(\pi-\alpha)=-\tan\alpha$$cot(\pi-\alpha)=-\cot\alpha$$sin(\pi+\alpha)=-\sin\alpha$$cos(\pi+\alpha)=-\cos\alpha$$tan(\pi+\alpha)=\tan\alpha$$cot(\pi+\alpha)=\cot\alpha$$两角和与差的三角函数公式最后,还有两角和与差的三角函数公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档