反比例函数的图象和性质

合集下载

反比例函数的图像与性质

反比例函数的图像与性质

反比例函数的图像与性质一、反比例函数的概念:形如(0)ky k x=≠的函数,叫做反比例函数.其中x 是自变量,y 是函数 ,k 叫做比例系数. 【注】1、自变量x 的取值范围是不等于0的一切实数,y 的取值范围也是不等于0的一切实数.2、在反比例函数ky x=(k≠0)的左边是函数y ,右边是分母为自变量x 的分式,也就是说,分母不能是多项式,只能是x 的一次单项式,如1y x =,312y x =等都是反比例函数,但21y x =+就不是关于x 的反比例函数. 3、反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此可以写成y =kx -1或xy =k 的形式.4、反比例函数中,两个变量成反比例关系. 二、反比例函数的图形与性质与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.时,图象的两支分别位于一、三象限;在每个象限内,y 随x 的增大而减小; 时,图象的两支分别位于二、四象限;在每个象限内,y 随x 的增大而增大.,b )在双曲线的一支上,则(),a b --在双曲线的即过双曲线上任意一点作x 轴、y 轴的垂线,所得矩形的面积为|k |.所以已知反比例函数可求矩形面积,反之,已知矩形面积可求反比例函数.【规律方法小结】正比例函数与反比例函数的区别与联系.【练】1、下列函数中,哪些是反比例函数?(1)31y x =-;(2)22y x =;(3)1y x =;(4)23x y =;(5)3y x =; (6)23y x =-;(7)12y x -=;(8)41y x =+;2、已知函数()231m m y m x +-=-中,y 是x 的反比例函数,求当3x =时,y 的值.反比例函数的图像与性质专项练习解答题1. 若变量y 与x 成正比例变量x 与z 成反比例,则 ( )A.y 与z 成反比例函数关系B.y 与z 成正比例函数关系C.y 与z 2成正比例函数关系D.y 与z 2成反比例函数关系2. 点P (1,3)在反比例函数ky x=(k≠0)的图象上,则k 的值是) A.13 B.3 C. 13- D.-3 3. 在反比例函数1ky x-=的图象的每一条曲线上,y x 都随的增大而增大,则k 的值可以是( ) A .1- B .0 C .1 D .24. 如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC∥x 轴,AC ∥y 轴,△ABC 的面积为S ,则( )A. S=2B. S=4C. 2<S<4D. S>45. 在函数22a y x--=(a 为常数)的图象上有三点()()()112233,,,,,x y x y x y ,且1230x x x <<<,则123,,y y y 的大小关系是 。

反比例函数反比例函数的图象与性质

反比例函数反比例函数的图象与性质
反比例函数反比例函数的图 象与性质
2023-11-06
contents
目录
• 反比例函数概述 • 反比例函数的图象 • 反比例函数的性质 • 反比例函数的应用 • 反比例函数的扩展知识
01
反比例函数概述
反比例函数的定义
反比例函数定义
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数 。
反比例函数的积分特性
反比例函数在区间(-∞,0)和(0,+∞) 上的积分等于常数k。
VS
反比例函数在区间(-∞,x)和(x,+∞)上 的积分等于常数k乘以x。
04
反比例函数的应用
用反比例函数解决实际问题
电力分布
在电力分布问题中,常常 需要使用反比例函数来计 算电力的分布情况,以便 合理规划电力设施。
反比例函数的定义域和值域
定义域为{x|x≠0},值域为{y|y≠0}。
反比例函数的单调性
在区间(-∞,0)和(0,∞)上单调递减。
反比例函数的基本形式
反比例函数的基本形式
01
一般地,形如y=k/x(k为常数,k≠0)的函数称为反比例函数。Biblioteka 反比例函数的解析式02
反比例函数通常被表示为y = k / x的形式,其中k是常数且不
热传导
在热传导中,可以使用反比例函数 来描述热量在介质中的传导规律。
在几何中的应用
圆的面积
在计算圆的面积时,可以使用 反比例函数来描述圆的面积与
半径之间的关系。
球的体积
在计算球的体积时,可以使用 反比例函数来描述球的体积与
半径之间的关系。
光线反射
在光线反射问题中,可以使用 反比例函数来描述光线反射的

反比例函数的图像和性质

反比例函数的图像和性质
y
A S1 B
A. B. C. D.
S1 S1 S3 S1
= < < >
S2 S2 S1 S2
= S3 < S3 < S2 >S3
C
o
S2 S3 A1 B1 C1
x
7.如图,过平面直角坐标系中的x轴上的整数 点1、2、3、4、5作x轴的垂线,分别交反比例函数 D、E作y轴的垂线。则图中阴影部分的面积是___.
1 4.如图在坐标系中,直线y=x+ 2
k与ห้องสมุดไป่ตู้
4.如图,点A、C是反比例函数
的图
像上的任意两点,过点A作x轴的垂线,过点C 作y轴的垂线,连接OA、OC,设Rt△OAB和 Rt△OCD(O为坐标原点)的面积分别是M和N, y 则M、N的大小关系是( ) A.M>N B.M<N C.M=N D.M和N的大小关系不能确定.
S1
A
B
o
S2
x
C
D
1 5. .如图, 在 y ( x > 0 )的图像上有三点 A , B , C , x 经过三点分别向 x 轴引垂线 , 交 x 轴于 A1 , B1 , C 1 三点 , 边结 OA , OB , OC , 记 OAA 1 , OBB 1 , OCC 1的 面积分别为 S 1 , S 2 , S 3 , 则有 __ .
3 2
5 D. 2
y A D C O B
x
例1.如图:一次函数y=ax+b的图象与 k 反比例函数y= x 交于M (2,m) 、N (1,-4)两点。(1)求反比例函数和一次 函数的解析式;(2)根据图象写出反比 例函数的值大于一次函数 y 的值的x的取值范围。

反比例函数的图象和性质

反比例函数的图象和性质

开动脑筋: 开动脑筋:
(1)在一个反比例函数图象上任取两点 ) P、Q,过P、Q点分别作 轴、y轴的平行线 点分别作x轴 、 , 、 点分别作 轴的平行线 或垂线), ),与坐标轴围成的矩形面积为 (或垂线),与坐标轴围成的矩形面积为 S1、S2,那么 1与S2有什么大小关系呢? 那么S 有什么大小关系呢?
反比例函数的性质: 反比例函数的性质: 反比例函数y=k/x的图象,当k>0时,图象位于第一、三 的图象, 图象位于第一 反比例函数 的图象 图象位于第一、 象限,在每一象限内, 的值随 的值随x的增大而减小; 象限,在每一象限内,y的值随 的增大而减小; 当k<0 图象位于第二 第二、 象限, 的值随 的值随x的 时,图象位于第二、四象限,y的值随 的增大而增大 象限
反比例函数的图象和性质
青岛第五十中学 赵英
y=2/x,y=4/4,y=6/x,y=-2/x,y=-4/x,-6/x • y=2/x,y=4/4,y=6/x的图象位于第一、三象限 y=-2/x,y=-4/x,-6/x的图象位于第二、四象限
讨论: 讨论 (1)在每个象限内,随x的增大 y值是怎样变化的 你能说明为什么 在每个象限内, 的增大 值是怎样变化的 你能说明为什么? 的增大, 值是怎样变化的?你能说明为什么 在每个象限内 k>0, 在每个象限内,随x的增大 y值逐渐减小 在每个象限内, 的增大, 的增大 值逐渐减小 k<0, 在每个象限内,随x的增大 y值逐渐增大 的增大, 在每个象限内, 的增大 值逐渐增大 ( 2)它的图象可能与 轴相交吗?可能与 轴相交吗?你能说明为什么 它的图象可能与x轴相交吗 轴相交吗? 它的图象可能与 轴相交吗?可能与y轴相交吗 你能说明为什么? 它的图象与x轴不可能有交点 它的图象与 轴不可能有交点, 与y轴也不可能有交点 轴不可能有交点 轴也不可能有交点

反比例函数图象和性质

反比例函数图象和性质

对称性
反比例函数的图象关于原点对称,即 如果点 (x, y) 在图象上,那么点 (-x, y) 也在图象上。利用这一性质,可以 更快地描出图象。
图象特点总结
图象形状
反比例函数的图象是一条双 曲线,且以原点为中心对称 。
渐近线
当 x 趋向于正无穷或负无穷 时,y 趋向于 0。因此,x 轴和 y 轴是反比例函数的渐 近线。
在生物学领域,反比例 关系可以描述生物体内 部某些生理过程之间的 平衡关系。例如,在生 态系统中,捕食者和猎 物之间的数量关系可能
呈现出反比例关系。
THANK YOU
解析法
对于反比例函数f(x)=k/x (k≠0),可以通过求导来判断其增减性。当k>0时,f'(x)=-k/x^2<0,函数在定义域内 单调递减;当k<0时,f'(x)=-k/x^2>0,函数在定义域内单调递增。
对称性表现形式
中心对称性
反比例函数的图象关于原点对称。即对于任意一点(x,y)在反比例函数的图象上, 其关于原点的对称点(-x,-y)也在反比例函数的图象上。
06
函数图象位于第二象限和第四象限,且关于原点对称。
02
反比例函数图象绘制
列表法绘制步骤
确定函数表达式
列表取值
首先确定反比例函数的表达式 y = k/x (k ≠ 0)。
在自变量 x 的取值范围内,选取一些具有 代表性的点,计算对应的函数值 y。
绘制坐标点
连线成图
在坐标系中,将选取的点用坐标 (x, y) 表示 出来。
变速直线运动
在某些变速直线运动中,速度与时间的关系也可以近似为反 比例关系。此时,可以利用反比例函数来分析和求解相关问 题。

反比例函数的图象和性质

反比例函数的图象和性质

反比例函数的图象和性质(No.4)一、知识要点 1、反比例函数(1)定义:一般地,形如xky =(k 为常数,k≠0)的函数. 说明:①自变量x 在分母上,指数为1;②比例系数k ≠0;③自变量x 的取值为一切非零实数,函数值的取值范围是y ≠0;④反比例函数的其他形式:k xy =,1-⋅=x k y . (2)图象:反比例函数的图象是双曲线,也称为双曲线x ky =(k≠0). (3)性质2、待定系数法求反比例函数的解析式——只需图象上一个点的坐标即可求出k 值.3、反比例函数的图象的对称性 (1)中心对称:对称中心是原点;(2)轴对称:对称轴是直线y=x 和直线y=-x.二、基础演练1、如果y 是m 的反比例函数,m 是x 的正比例函数,那么y 是x 的( ) A.反比例函数 B.正比例函数 C.一次函数 D.反比例或正比例函数2、若反比例函数y=(2m -1)22-m x 的图象在第二、四象限,则m 的值是( )A.-1或1B.小于21的任意实数 C.-1 D.1 3、反比例函数xky =(k >0)的部分图象如图所示,A 、B 是图象上两点,AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,若△AOC 的面积为S 1,△BOD 的面积为S 2,则S 1和S 2的大小关系为___________.第3题图 第5题图 第6题图4、若函数||1m xm y -=为反比例函数,则m=___________. 5、如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=xk k 122++的图象上.若点A 的坐标为(-2,-2),则k的值为() A .1 B .-3 C .4 D .1或-36、如图是三个反比例函数的图象的分支,其中k 1,k 2,k 3的大小关系是_____________________.7、已知y=y 1+y 2,而y 1与x +1成反比例,y 2与x 2成正比例,并且x=1时,y=2;x=0时,y=2,求y 与x 的函数关系式.8、如图所示,一次函数y=kx+b 的图象与反比例函数y =xm的图象交于M 、N 两点. (1)根据图中条件求出反比例函数和一次函数的解析式;(2)当x 为何值时一次函数的值大于反比例函数的值.二、能力提升9、下列选项中,阴影部分面积最小的是( )A .B .C .D . 10、(1)若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是_____________.(2)直线y=kx (k <0)与双曲线y=x2-交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1的值为______. 11、如图,在直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行.点P (3a ,a )是反比例函数y=xk(k >0)的图象上与正方形的一个交点,若图中阴影部分的面积等于9,则这个反比例函数的解析式为_____________.第11题图 第12题图 第13题图12、如图,点A 、B 是函数y=x 与y=x1的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为_________. 13、如图,已知反比例函数)0(>=k xky 的图象经过直角△OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为12,则k 的值为_______________.14、如图,□AOBC 中,对角线交于点E ,双曲线)0(>=k xky 经过A 、E 两点,若□AOBC 的面积为12,则k=_______.第14题图 第15题图 第16题图 第17题图15、如图,在函数)0(8>=x xy 的图象上有点P 1、P 2、P 3…、P n 、P n+1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1、P 2、P 3…、P n 、P n+1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1、S 2、S 3…、S n ,则S 1=________,S n =______________.(用含n 的代数式表示) 16、如图,双曲线x k y =经过Rt △BOC 斜边上的点A ,且满足32=AB AO ,与BC 交于点D ,S △BOD =21,求k= .17、如图,已知点A 在反比例函数)0(<=x xky 上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若△BCE 的面积为8,则k=_______.18、如图,直线2-=kx y (k >0)与双曲线xky =在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,求k 的值.。

反比例函数的图象和性质课件

反比例函数的图象和性质课件
反比例函数的图象和性质 ppt课件
反比例函数的图象和性质ppt课件介绍了反比例函数的定义、性质、图象以及 应用。通过课件,你将了解反比例函数的基本概念和特点,并掌握其在实际 问题中的应用。
I. 反比例函数的定义及性质
定义
反比例函数是一种特殊的函 数关系,其变量之间的比例 关系是相反的。
解析式
反比例函数的解析式一般为y = k/x,其中k为常数。
练习题演练
通过练习题的演练,加深对反比例函数的理解,并提高解决实际问题的能力。
IV. 总结与思考
特点回顾
反比例函数具有对称轴、渐近线等特点,是一种重要的函数类型。
图象对实际问题的帮助
反比例函数的图象可以帮助我们理解和解决实际问题,提供定性和定量的分析。
进一步思考
通过深入思考和探索,我们可以将反比例函数应用于更复杂的优化问题中。
反比例函数的图象可以通过平移、 伸缩等变换得到不同的形态。
反比例函数的图象包括关键点, 如顶点、渐近线和交点。
III. 反比例函数的应用
与正比例函数的关系
反比例函数和正比例函数是互为倒数的关系,它们在实际问题中经常同时出现。
实际问题中的应用
反比例函数在经济、物理和工程等领域中有广泛的应用,例如弹簧的伸长和台阶的高度与数 量关系。
定义域和值域
反比例函数的定义域为除数 不为0的实数集合,值域为不 等于0的实数集合。
单调性
反比例函数在定义域内通常是单调递减或单调增 函数。
渐近线
反比例函数在x轴和y轴上都有渐近线,分别为y = 0和x = 0。

II. 反比例函数的图象
基本形态
变形
特征点
反比例函数的图象通常为双曲线, 具有一个对称轴。

反比例函数图象及性质

反比例函数图象及性质

2x
2x
4x
800x
3、下列反比例函数图像的一个分支,在第三象限的是( B )
3
21k3(A) y (B)y (C) y (D) y
x
x
x
x
4、函数 y 1 a2 的图象在第 二、四 象限.
x
例题讲解
2 例1:在反比例函数 y x 的图象上有两点(x1,y1)、
(x2,y2),若x1>x2 ,则y1>y2吗?
x 当k>0时,双曲线的两支分别位于第一、第三象限, 在每个 象限内y值随x值的增大而减小.
当k<0时,双曲线的两支分别位于第二、第四象限, 在每个 象限内y值随x值的增大而增大.
y
6
y=
6 x
5 4
3
2
1
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
-2 -3
-4 -5
-6
观察y 6 和y 6 的图象
x
x
发现函数值y怎样随着自变量x的变化而变化?
1、在每一个象限内 2、在整个自变量的取值范围内
如图xB< xA 但yB< yA
y
6
6
5
y x
4
· 3
A
y
· C 6
6
5
y
x
4
3
2
2
xB
1
x -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 x
-1
A
· -2
B
-3
-4 -5
1
-6 -5 -4 -3 -2 -1 0 1 2
3
-1
-2

反比例函数的图像和性质

反比例函数的图像和性质

反比函数的图象和性质是什么?
反比函数的图象是什么?反比函数的图像是在一个坐标轴上有两根相互对称的曲线而组成,性质分别为:①单调性、②面积、③图想表达、④对称性,以上就是反比函数的图象和性质。

接下来详细的看一下其中的内容吧!
①单调性:反比函数是具有单调性的,当函数内容k大于零的时候,图像分别位于第一三象限,而在每一个象限的内部,从左往右来数,y 是随着x的增大而减少,如果K小于零的时候,图像分别位于第二四象限,在每一个象限的内部,y随着x的增大而增大。

当K大于零的时候,函数在x小于零上是一个减函数,而在x大于零的时候,也是为减函数。

在k小于零的时候,函数在x小于零上为增函数,在x大于零的时候同为增函数。

②面积:在一个反比例函数上面取两个点,这两个点可以随意的取,然后过点分别做一个x轴和一个y轴的平行线,而这个平行线是可以和坐标轴围成一个矩形,而这一个矩形的面积为绝对值得K。

而在反比例函数上,找到一个点,向X/Y轴分别做一个垂线,设置一个围好的矩形,而这个矩形则为QOWM,这个垂线分别位于y轴和x 轴,则围成形状的这个面积为绝对值得K,则连接这个矩形的对角线为OM,则满足RT△OMQ的面积等于二分之一绝对值得K。

③图像表达:对于反比例函数的图像来说的话,不和x轴或者是y轴的相交渐近线为x轴和y轴,K值相等的反比例函数图像是相互重合的,k值不相等的反比例函数图像是永远都不会相交的,而绝对值得K 越大的话,反比例函数距离坐标轴就会越来越远。

④对称性:反比例函数是一种中心对称的图形,对称中心是原点,而正是这样的一个反比例函数的图像也是轴对称图形,随意反比例函数上的点是关于原点坐标对称的,图像关于原点对称。

反比例函数的概念的图象的性质

反比例函数的概念的图象的性质

反比例函数的概念及图像和性质★反比例函数的概念1.反比例函数:如果两个变量x、y 之间的关系可以表示成y=k x(k•为常数,k ≠0)的形式,那么称y 是x的反比例函数.2.反比例函数解析式的变形:反比例函数y=k x(k ≠0)还可以写成1-=kx y (k ≠0)或k xy =(k ≠0). 注意:(1)k 为常数,k≠0;(2)k x中分母x 的指数为1; (3)自变量x 的取值范围是x ≠0的一切实数;(4)因变量y的取值范围是y ≠0的一切实数.例1.若函数1322)(+--=m mx m m y 是反比例函数,则m 的值是?【变式训练】1.函数122-++=m m x m y 是反比例函数,求解析式.2.已知函数122)(--+=m m x m m y .(1)若y 是x 的正比例函数,求m 的值;(2)若y 是x 的反比例函数,求m 的值,并写出此时y 与x 的函数关系式.例 2.已知y y y y 121,+=与x 2成正比例,y 2与x 成反比例,且1=x 时,1;3-==x y 时,1=y ,求当21-=x 时y 的值。

【变式训练】已知y y y 21-=,y 1与x 成反比例,y 2与2-x 成正比例,并且当3=x 时,5=y ;当1=x 时,1-=y ,求 y 与x 之间的函数关系式。

例3.在平行四边形ABCD 中,E AD AB ,6,8==为AB 上一动点(不与B A 、重合),设DE x AE ,=的延长线交CB 的延长线于点F ,设y CF =,求y 与x 之间的函数关系,并写出自变量x 的取值范围。

【变式训练】如图,平行四边形ABCD 中,E cm BC cm AB ,1,4==是CD 边上一动点,BC AE 、的延长线交于F 点,设ycm BF xcm DE ==,.求y 与x 之间的函数关系式,并写出自变量x 的取值范围。

A DEB C F★反比例函数图像和性质利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,①当0>k 时,函数的图象在第一、三象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加而减小;②当0<k 时,函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.4.画反比例函数的图象时要注意的问题:(1)画反比例函数图象的方法是描点法;(2)画反比例函数的图象要注意自变量的取值范围是0≠x ,因此,不能把两个分支连接起来;(3)由于在反比例函数中,x 和y 的值都不能为0,所以,画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势.例1.已知反比例22223-+-+=m m x m m y 的图像的两个分支分布在第二、四象限,求m 的值【变式训练】1.已知反比例函数72)2(---=m xx m y 的图像位于第一、三象限,求m的值。

反比例函数的图象和性质

反比例函数的图象和性质

忆一忆
面积性质(一)
y P(m,n)
oA
x
y
P(m,n)
oA
x
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
年VIP
月VIP
连续包月VIP
(1)求反比例函数和一次函数的解析式。 (2)根据图象写出使反比例函数的值大于一 次函数的值的x的取值范围。
y
M (2,m)
o
x
N (-1,-4)
求(1)一次函数的解析式
(2)根据图像写出使一 次函数的值小于反比例函 数的值的x的取值范围。
y A
O
xBΒιβλιοθήκη 例:已知,关于x的一次函数

反比例函数
的图象都经过点(1,-
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
阅读页去广告
VIP有效期内享有搜索结果页以及文档阅读页免广告特权,清爽阅读没有阻碍。
多端互通
抽奖特权 福利特权
其他特 VIP专享精彩活动

VIP专属身份标识
VIP有效期内可以无限制将选中的文档内容一键发送到手机,轻松实现多端同步。 开通VIP后可以在VIP福利专区不定期抽奖,千万奖池送不停! 开通VIP后可在VIP福利专区定期领取多种福利礼券。 开通VIP后可以享受不定期的VIP优惠活动,活动多多,优惠多多。

反比例函数图象及性质

反比例函数图象及性质

反比例函数图象及性质【知识点】定义:一般的,如果两个变量x ,y 之间的关系可以表示成(k 为常数,k≠0,x≠0),其中k 叫做反比例系数,x 是自变量,y 是x 的函数,x 的取值范围是不等于0的一切实数,且y 也不能等于0。

表达式:y*x=-1,y=x^(-1)*k ,y=kx^-1(k 为常数(k≠0),x 不等于0)函数的图像:当k>0时,两支曲线分别位于第一、三象限内;当k<0时,两支曲线分别位于第二、四象限内,两个分支无限接近x 和y 轴,但永远不会与x 轴和y 轴相交.函数的性质:Y 与x 的变化:当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y 随x 的增大而减小; 当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y 随x 的增大而增大。

因为在(k≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交,只能无限接近x 轴,y 轴。

面积:在一个反比例函数图像上任取两点,过点分别作x 轴,y 轴的平行线,与坐标轴围成的矩形面积为|k|, 反比例函数上一点 向x 、y 轴分别作垂线,分别交于y 轴和x 轴,则QOWM 的面积为|k|,则连接该矩形的对角线即连接OM,则RT △OMQ 的面积=½|k|。

对称性:类型一:函数性质,比较大小例1.如果两点P 1(1,y 1)和P 2(2,y 2)在反比例函数xy 1=的图象上,那么y 1与y 2间的关系是( ) A. y 2<y 1<0 B.y 1<y 2<0 C.y 2>y 1>0 D.y 1>y 2>0 例2.对于函数3x ky x+=(k >0)有以下四个结论: ①这是y 关于x 的反比例函数;②当x >0时,y 的值随着x 的增大而减小; ③函数图象与x 轴有且只有一个交点;④函数图象关于点(0,3)成中心对称.其中正确的是 。

反比例函数的图象和性质课件

反比例函数的图象和性质课件
02
当 k > 0 时,反比例函数的图像 分布在第一象限和第三象限;当 k < 0 时,反比例函数的图像分 布在第二象限和第四象限。
反比例函数的基本形式
反比例函数的基本形式是 y = k/x (k ≠ 0),也可以表示为 xy = k。
在这个函数中,x 和 y 的乘积始终等 于 k,而 k 的值决定了函数的图像在 哪个象限分布。
反比例函数的图像
反比例函数的图像通常是以原点为中心的双曲线,分布在四个象限。
当 k > 0 时,图像在第一象限和第三象限;当 k < 0 ,图像在第二象限和第四象 限。
反比例函数的图像不会与坐标轴相交,因为当 x 或 y 趋于无穷大时,y 或 x 将趋于 0。
CHAPTER 02
反比例函数的图像性质
人口增长与资源消耗的关 系
随着人口的增长,资源消耗也相应增加,但 这种增加并不是线性的,而是呈现出反比例 关系。这意味着人口增长得越快,资源消耗 得也越快,进一步加剧了资源紧张的局面。
在数学问题中的应用
解决几何问题
在几何学中,反比例函数经常被用来描述和解决与面积、体积和角度等相关的数学问题 。通过利用反比例关系,可以简化复杂问题的求解过程。
压强与体积的关系
在气体压力问题中,压强与体积成反比,即当体积增大时, 压强减小;反之亦然。这是解释和预测气体压力和体积关系 的基础。
在实际生活中的应用
药物剂量与效果的关系
在药物研究中,药物的剂量与其效果之间往 往存在反比例关系。这意味着当剂量增加时 ,效果可能减弱;反之亦然。了解这种关系 对于药物设计和使用非常重要。
反比例函数的图象和 性质ppt课件
contents
目录
• 反比例函数简介 • 反比例函数的图像性质 • 反比例函数的数学性质 • 反比例函数的应用 • 反比例函数与其他知识点的联系

26.2.4反比例函数图像和性质

26.2.4反比例函数图像和性质
x ①说明四边形APBQ一定是平行四边形; ②设点A,P的横坐标分别为m,n, 四边形 APBQ可能是矩形吗?可能是正方形吗? 若可能, 直接写出m,n应满足的条件;若
不可能,请说明理由.
(08义乌市)已知:等腰三角形OAB在直角坐标系中的位置
如图,点A的坐标为(3 3,3 ),点B的坐标为(-6,0)
如图点A在双曲线y=5/x上,点B在双曲线y=8/x 上,且AB//x轴,则△OAB的面积= 3/2 。
如图,A,B两点在反比例函数y=K1/x的图象上, C,D两点在反比例函数y=k2/x的图象上,AC⊥y 轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,
则k1-k2的值是( )
2
-k2 k1
如图1,已知双曲线
y

k x
(k

0)与直线
y

kx
交于A,B两点,点A在第一象限.试解答下列问题:
(1)若点A的坐标为(4,2),则点B的坐标
y A

;若点A的横坐标为m, 则点B的坐
O
x
标可表示为

B
图1
(2)如图2,过原点O作另一条直线l,交双曲 线 y k (k 0) 于P,Q两点,点P在第一象限.
OB//AD
E
如图直线y=k1x+b与x、y轴相交于P,Q两点,与
y连③的=接 S解k△2/O集AxAOP的是,=OS图XB△<,B像-O2下Q相;或列④交0结<不于x论<等A1(:,式其-①2中,kk1正km1x2)确<0B的;b(有②1,kx2nm)②两③12 n点④。0,
如图正比例函数y=2x和反比例函数的图像交于点 A(m,-2). (1)求反比例函数解析式; (2)观察图像,直接写出正比例函数值大于反 比例函数值时自变量x的取值范围; (3)若反比例函数的图像 上点C(2,n)沿OA方向平 移 5 个单位长度得到 点B,判断四边形OABC的 形状并证明你的结论。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章反比例函数2.反比例函数的图象与性质(二)一、学生知识状况分析函数是研究现实世界变化规律的一个重要数学模型,学生曾在七年级下册和八年级上册学习过“变量之间的关系”和“一次函数”等相关知识,对函数的概念和研究函数的方法有了初步的认识和了解.特别是在学习一次函数时,学生已经掌握了如何画一次函数的图象,探究过一次函数的性质,积累了一定的活动经验和方法感悟,在此基础上学习反比例函数的图象与性质,可以让学生进一步领悟函数的概念,进一步积累探究函数图象和性质的方法,为后续探究二次函数的图像和性质做好知识上和方法上的铺垫.二、教学任务分析《反比例函数的图象与性质》安排在北师大版教材九年级上册,共分两课时,本节课是第二课时.在第一课时中,学生已经学会如何画反比例函数的图象,并对0k<时函数图象的特点有了初步的认识,本节课主要是在第一课时的k>和0基础上,通过对反比例函数图象的全面观察和比较,发现函数的自身规律,在质理解和掌握。

由此,本节课的教学目标制定如下:知识与技能目标:能画出反比例函数的图象,根据图象和解析表达式探索并理解反比例函数的主要性质.提高学生观察、分析能力和对图象的感知水平,领会研究函数的一般要求.过程和方法目标:让学生经历知识的探究过程,通过全面的观察和比较,积累数学方法和活动经验.逐步提高观察和归纳分析能力,体验数形结合和分类讨论的数学思想.情感、态度和价值观目标:经历小组合作与交流活动,在质疑、追问、讨论中达成共识,发展合作能力和语言表达能力.在教学目标的基础上制定如下的教学重点、教学难点:重点:探索反比例函数的主要性质.难点:理解反比例函数性质的探索过程,从“数”和“形”两方面综合考虑问题.三、教学过程分析本节课设计了七个教学环节:第一环节:要点回顾铺平道路;第二环节:设问质疑探究尝试;第三环节:实际运用巩固新知;第四环节:激趣质疑再探新知;第五环节:活学活用巩固提高;第六环节:总结串联纳入系统;第七环节:分层达标课后延伸.第一环节:要点回顾铺平道路内容:1. 下列函数中,哪些是反比例函数?教学策略:让学生找出题目中的反比例函数,运用空间想象能力,勾勒出反比例函数例函数定义以及图象的再认知.设计意图:反比例函数的定义以及函数图象的特点,是继续进行本节内容学习的重要知识储备.本环节避免单纯的复习定义以及对知识的简单复述,力图通过具体问题,让学生在解决问题的过程中加深对知识本身的理解,培养学生的空间想象能力和对知识的实际运用能力.第二环节:设问质疑探究尝试内容1:试一试观察反比例函数2yx=,4yx=,6yx=的图象,你能发现它们的共同特征吗?(1)函数图象分别位于哪几个象限内?(2)在每一个象限内,随着x值的增大,y的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?教学策略:1.本环节的问题串,能有效的激发学生的思考热情,教师要善于运用启发性的语言,调动起学生思维的“小宇宙”.2.对于问题(2)、(3),教师要给学生留有充分的讨论、交流的时间和空间,让学生对图象进行细致的观察、类比、分析、交流,鼓励学生尽可能多的从图象中获取信息,并对信息进行分析、综合、概括、归纳,形成知识系统.3.在讨论、交流过程中,教师要指导学生勇于表达自己的想法,善于倾听他人的见解,让讨论在质疑、追问中进行.设计意图:本环节意在通过观察三个反比例函数的图象,分析、归纳、概括出反比例函数的主要性质.在问题的设置上,引导学生从对图象的直观观察开始,逐步上升到理性的分析,顺应学生思维的发展,在有效的问题引领下,培养学生的逻辑思维能力和数形结合能力.内容2:议一议x教学策略:前面已经对0k>时,反比例函数图象的特征进行了分析,此处可以完全放手给学生,让学生通过类比,分析、归纳、概括出0k<时图象的共同特征,教师只需进行适时的点拨.设计意图:通过对0k<时反比例函数图像特征的探究,培养学生利用数形结合探究问题的意识,发展学生类比分析问题的能力,使学生在知识上更加完善,在能力上逐步提高.内容3:说一说教学策略:1.在具体问题探究的基础上,让学生尝试着总结反比例函数从具体问题的分析进一步上升到理性的概括、归纳.2.鼓励学生大胆表述自己的想法,语言即使不规范、不完整,教师也要给以充分的肯定、表扬,在讨论、交流的基础上使语言更加完善.设计意图:“试一试”、“议一议”已经对反比例函数的图象特征进行了细致的分析,内容3主要是将知识进行了系统的归纳、概括,通过讨论、交流,形成完整、规范的结论,培养了学生的语言表达能力和对知识的归纳、概括能力.第三环节:实际运用巩固新知内容:练一练(1)图象位于二、四象限的有;(2)在每一象限内,y 随x 的增大而增大的有; (3)在每一象限内,y 随x 的增大而减小的有.2. x 的增大而增大,则m 的取值范围是.3.点1,1()A x y ,2,2()B x y 120x <<,则1,2y y 的大小关系是. 变式:点1,1()A x y ,2,2()B x y 1,2y y 的大小关系是. 教学策略:1.留有充分的时间,让学生独立完成。

在此基础上,小组交流,每名成员完成一个题目的讲解,力争让所有学生都积极地投入到知识的学习中.2.问题3的变式中蕴含分类讨论思想,教学中让学生独立思考,然后交流各自的想法,关注学生思维的广度和深度. 设计意图:1.通过几个小题目的练习,及时运用、巩固所学的知识,使学生加深对反比例函数性质的理解.2.运用变式训练,拓展学生思维的广度,渗透分类讨论的数学思想.3.课堂上以小组合作讲解的形式,让每个学生都融入到表达与倾听中,调动每个学生的主观能动性,夯实基础.第四环节:激趣质疑 再探新知内容1:想一想在一个反比例函数图象任取两点P 、Q ,过点P 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为1S ;过点Q 分别作x 轴、y 轴的平行线,与坐标轴围成的矩形面积为2S ,1S 与2S 有什么关系?为什么? (1)让我们从具体的反比例函数xy 2=开始考虑:此时,1S 与2S 有什么关系?为什么? (2)对于一般的反比例函数xky =呢?教学策略:1. 给出具体的反比例函数y =1、2S ,自主探究1S 与2S 之间的关系,然后由学生讲解,教师进行方法的总结和点拨. 2.在前面探究的基础上,对于一般的反比例函数xky =,可以完全放手给学生,充分利用小组成员间的合作,探究、归纳、概括出一般性的结论——矩形面积总等于k ,教师在整个过程中要给以适时的点拨和及时的总结. 设计意图:如果直接探究函数xky =,对于有些学生来说有一定的困难.为了突破这一难点,先给出简单的反比例函数xy 2=,在探究了具体函数的基础上,再由特殊到一般,进一步探究xky =,符合学生的认知规律. 内容2:变一变在一个反比例函数图象任取两点P 、Q ,过点P 作x 轴的垂线,连接PO (O 为原点),与坐标轴围成的三角形面积为1S ;过点Q 作x 轴的垂线,连接QO ,与坐标轴围成的三角形面积为2S ,1S 与2S 有什么关系?为什么? 教学策略:将问题直接抛给学生,类比前面探究问题的方法,让学生来寻求解决问题的策略. 设计意图:通过变式探究,开阔学生的思路,促进学生思维的发展,形成有效的知识建构.第五环节:活学活用 巩固提高1.如图,),(y x P 是反比例函数xy 3=的图象在第一象限分支上的一个动点,,轴于点A x PA ⊥,轴于点B y PB ⊥ 随着自变量x 的增大,矩形OAPB 的面积( ) A .不变 B.增大 C.减小 D.无法确定2.如图,),(y x P 是反比例函数xy 3=的图象在第一象限分支上的一个动点,过点P 作A PA x ⊥轴于点,连接PO ,则△PAO 的面积为.3.已知点)2,3(P 、点),2(a Q -都在反比例函数xky =的图象上.过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的面积是1S ;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的面积是2S .求21S S 、、a 的值. 教学策略:3个题目都比较基础,教师可以让学生独立完成,然后共同交流,总结知识,提炼方法. 设计意图:巩固所学知识,加深对反比例函数性质的理解.第六环节:归纳总结 纳入系统内容:本节课你学到了反比例函数的哪些新知识?你有哪些感悟和收获?你还有想继续探究的问题吗? 你对小组成员有什么评价和建议呢? 教学策略:引导学生对自己的学习过程进行提炼、反思,从知识上和方法上进行总结. 设计意图:引导学生关注数学的学习过程,及时总结、反思、交流,同时重视小组内的合作和交流,倾听小组成员的评价、建议,取长补短,共同提高.第七环节:分层达标 课后延伸A 层:1.下列函数中,图象位于第一、三象限的有;在图象所在象限内,y 的值随x 的增大而增大的有.(1)x y 32=;(2)x y 1.0=;(3)x y 5=;(4)xy 752-= 2.已知点A (-1,1y )、B (-2,2y )在双曲线1y x=上,则1y 2y (填“>、<或=”).B 层:已知点1(2,)y ,2(1,)y ,3(1,)y -,4(2,)y -都在反比例函数1y x=的图象上,比较1y 、2y 、3y 与4y 的大小.C 层:已知点1(2,)y -,2(1,)y -,3(3,)y 都在反比例函数ky x=的图象上,比较1y 、2y 、3y 的大小.教学策略:让学生根据自身的学习情况,自主选择适合的题目。

尽可能当堂反馈检测结果,如果时间不允许,可以课后反馈,但一定要及时.设计意图:设置不同层次、具有选择性的题目,供不同的学生选择,实现“不同的人在数学上得到不同的发展”. 作业:A 层:习题1、2B 层:习题3、4C 层:习题5附:板书设计反比例函数的图象与性质(二)一、探究过程 二、性质提炼结论:;三、练一练结论:;四、教学设计反思1.学生在学习本节课前经历过一次函数图象和性质的探索过程,对函数图象和性质的探究方法有了初步的认识,这些对本节课知识的学习起到了很好的铺垫作用.本节课又不同于研究一次函数,由于反比例函数的图象相对于一次函数图象的特殊性,使得对反比例函数图象和性质的探索过程更加细致、全面.教学设计中,特别注重了比例函数性质的探索过程,通过问题的引领让生更全面的对函数进行观察和比较,给学生创设了充足的讨论时间和空间,鼓励学生用自己的语言对观察和概括的结论进行充分的表达和描述.2.学生能做的让学生做,学生能说的让学生来说,教学设计中关注了学生主体作用的发挥,教师进行适时的引领和点拨,教学中教师要用鼓动性的语言,激发学生探究的热情,点燃学生学习的激情.3.本节课学生的参与度较高,教师要了解学生参与活动中情感与智力的参与程度,及时进行多角度的积极评价,帮助学生建立自信,发挥评价的教育功能.。

相关文档
最新文档