七年级数学因式分解练习题及答案
七年级数学下册《因式分解》单元测试卷(附带答案解析)
七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。
青岛版七年级下册数学因式分解专题练习及答案
七年级下册数学因式分解专题练习1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(3)x5+x+1;(4)x3+5x2+3x﹣9;。
初一因式分解试题及答案
初一因式分解试题及答案一、选择题1. 将多项式 \(2x^2 + 4x + 2\) 因式分解后,正确的结果是:A. \(2x(x + 2) + 2\)B. \(2(x^2 + 2x + 1)\)C. \(2(x + 1)^2\)D. \(2x^2 + 4x + 2\)答案:C2. 多项式 \(x^2 - 4\) 因式分解后为:A. \((x - 2)(x + 2)\)B. \((x + 2)^2\)C. \(x(x - 4)\)D. \((x - 2)^2\)答案:A3. 将 \(3x^2 - 12\) 因式分解,正确的选项是:A. \(3x(x - 4)\)B. \(3x(x + 4)\)C. \(3(x^2 - 4)\)D. \(3(x - 2)(x + 2)\)答案:D4. 多项式 \(x^2 + 5x + 6\) 因式分解后为:A. \((x + 2)(x + 3)\)B. \((x - 2)(x - 3)\)C. \((x + 2)(x - 3)\)D. \((x - 2)(x + 3)\)答案:A二、填空题1. 将 \(4x^2 - 12x + 9\) 因式分解,结果为 \(\boxed{(2x - 3)^2}\)。
2. 将 \(x^2 - 6x + 9\) 因式分解,结果为 \(\boxed{(x - 3)^2}\)。
3. 将 \(2x^2 + 8x + 8\) 因式分解,结果为 \(\boxed{2(x + 2)^2}\)。
4. 将 \(x^2 - 10x + 25\) 因式分解,结果为 \(\boxed{(x - 5)^2}\)。
三、解答题1. 因式分解 \(x^2 - 7x + 12\)。
答案:\((x - 3)(x - 4)\)2. 因式分解 \(4x^2 - 20x + 25\)。
答案:\((2x - 5)^2\)3. 因式分解 \(3x^2 - 12x + 12\)。
答案:\(3(x - 2)^2\)4. 因式分解 \(a^2 - 4b^2\)。
初一数学因式分解试题答案及解析
初一数学因式分解试题答案及解析1.把多项式ac﹣bc+a2﹣b2分解因式的结果是()A.(a﹣b)(a+b+c)B.(a﹣b)(a+b﹣c)C.(a+b)(a﹣b﹣c)D.(a+b)(a﹣b+c)【答案】A【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2﹣b2正好符合平方差公式,应考虑为一组,ac﹣bc可提公因式,为一组.解:ac﹣bc+a2﹣b2=c(a﹣b)+(a﹣b)(a+b)=(a﹣b)(a+b+c).故选A.2.将多项式a2﹣9b2+2a﹣6b分解因式为()A.(a+2)(3b+2)(a﹣3b)B.(a﹣9b)(a+9b)C.(a﹣9b)(a+9b+2)D.(a﹣3b)(a+3b+2)【答案】D【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.多项式a2﹣9b2+2a﹣6b 可分成前后两组来分解.解:a2﹣9b2+2a﹣6b=a2﹣(3b)2+2(a﹣3b)=(a﹣3b)(a+3b)+2(a﹣3b)=(a﹣3b)(a+3b+2).故选D.3.把ab+a﹣b﹣1分解因式的结果为()A.(a+b)(b+1)B.(a﹣1)(b﹣1)C.(a+1)(b﹣1)D.(a﹣1)(b+1)【答案】D【解析】分别将前两项、后两项分为一组,然后用提取公因式法进行分解.解:ab+a﹣b﹣1=(ab+a)﹣(b+1)=a(b+1)﹣(b+1)=(a﹣1)(b+1).故选D.4.分解因式a2﹣b2+4bc﹣4c2的结果是()A.(a﹣2b+c)(a﹣2b﹣c)B.(a+2b﹣c)(a﹣2b+c)C.(a+b﹣2c)(a﹣b+2c)D.(a+b+2c)(a﹣b+2c)【答案】C【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中后三项正好符合完全平方式的公式,即(a﹣b)2=a2+b2﹣2ab.所以要考虑﹣b2+4bc﹣4c2为一组.然后再分解.解:a2﹣b2+4bc﹣4c2=a2﹣b2+4bc﹣4c2=a2﹣(b2﹣4bc+4c2)=a2﹣(b﹣2c)2=(a﹣b+2c)(a+b﹣2c).故选C.5.分解因式a2﹣2a+1﹣b2正确的是()A.(a﹣1)2﹣b2B.a(a﹣2)﹣(b+1)(b﹣1)C.(a+b﹣1)(a﹣b﹣1)D.(a+b)(a﹣b)﹣2a+1【答案】C【解析】多项式前三项利用完全平方公式分解,再利用平方差公式分解即可得到结果.解:原式=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).故选C.6.把多项式x2﹣y2﹣2x﹣4y﹣3因式分解之后,正确的结果是()A.(x+y+3)(x﹣y﹣1)B.(x+y﹣1)(x﹣y+3)C.(x+y﹣3)(x﹣y+1)D.(x+y+1)(x﹣y﹣3)【答案】D【解析】先把x2﹣y2﹣2x﹣4y﹣3转化为(x2﹣2x+1)﹣(y2+4y+4),因为前三项、后三项符合完全平方公式,然后根据平方差公式进一步分解.解:x2﹣y2﹣2x﹣4y﹣3=(x2﹣2x+1)﹣(y2+4y+4)=(x﹣1)2﹣(y+2)2=[(x﹣1)+(y+2)][(x﹣1)﹣(y+2)]=(x+y+1)(x﹣y﹣3).故选D.7.多项式中,不含(x﹣1)因式的是()A.x3﹣x2+1﹣xB.x+y﹣xy﹣x2C.x2﹣2x﹣y2+xD.(x2+3x)﹣(2x+2)【答案】C【解析】把能分解的选项分解因式,利用排除法即可求解.解:A、x3﹣x2+1﹣x=(x﹣1)2(x+1),故不合题意;B、x+y﹣xy﹣x2=﹣(x﹣1)(x+y),故不合题意;C、不能分解,符合题意;D、(x2+3x)﹣(2x+2)=x2+x﹣2=(x+2)(x﹣1),故不合题意.故选C.8.若m>﹣1,则多项式m3﹣m2﹣m+1的值为()A.正数B.负数C.非负数D.非正数【答案】C【解析】解此题时可把多项式m3﹣m2﹣m+1分解因式,根据分解的结果即可判断.解:多项式m3﹣m2﹣m+1=(m3﹣m2)﹣(m﹣1)=m2(m﹣1)﹣(m﹣1)=(m﹣1)(m2﹣1)=(m﹣1)2(m+1),∵m>﹣1,∴(m﹣1)2≥0,m+1>0,∴m3﹣m2﹣m+1=(m﹣1)2(m+1)≥0,故选C.9.把多项式4x2﹣2x﹣y2﹣y用分组分解法分解因式,正确的分组方法应该是()A.(4x2﹣y)﹣(2x+y2)B.(4x2﹣y2)﹣(2x+y)C.4x2﹣(2x+y2+y)D.(4x2﹣2x)﹣(y2+y)【答案】B【解析】把第一、三项为一组,利用平方差公式分解因式,二四项为一组,整理后再利用提公因式法分解因式即可.解:原式=4x2﹣2x﹣y2﹣y=(4x2﹣y2)﹣(2x+y)=(2x﹣y)(2x+y)﹣(2x+y)=(2x+y)(2x﹣y﹣1).故选B.10.下列多项式已经进行了分组,能接下去分解因式的有()(1)(m3+m2﹣m)﹣1;(2)﹣4b2+(9a2﹣6ac+c2);(3)(5x2+6y)+(15x+2xy);(4)(x2﹣y2)+(mx+my)A.1个B.2个C.3个D.4个【答案】D【解析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.解:(1)(m3+m2﹣m)﹣1去括号再合并,提公因式即可;(2)﹣4b2+(9a2﹣6ac+c2)可用完全平方公式和平方差公式分解;(3)(5x2+6y)+(15x+2xy)先去括号,再提取公因式,能继续分解因式;(4)(x2﹣y2)+(mx+my)用平方差公式和提公因式法继续分解因式.故选D.11.下列多项式中,不能用分组分解法分解因式的是()A.5x+mx+5y+myB.5x+mx+3y+myC.5x﹣mx+5y﹣myD.5x﹣mx+10y﹣2my【答案】B【解析】利用分组分解可把A、C、D分解因式,但B分组无公因式,所以不能用分组分解法分解因式.解:5x+mx+5y+my=(5x+5y)+(mx+my)=5(x+y)+m(x+y)=(x+y)(5+m);5x﹣mx+5y﹣my=(5x+5y)﹣(mx+my)=5(x+y)﹣m(x+y)=(x+y)(5﹣m)=﹣(x+y)(m﹣5);5x﹣mx+10y﹣2my=(5x+10y)﹣(mx+2my)=5(x+2y)﹣m(x+y)=5(x+2y)(5﹣m)=﹣5(x+2y)(m﹣5).故选B.12.把多项式ax2﹣ax﹣2a分解因式,下列结果正确的是()A.a(x﹣2)(x+1)B.a(x+2)(x﹣1)C.a(x﹣1)2D.(ax﹣2)(ax+1)【答案】A【解析】先提取公因式a,再根据十字相乘法的分解方法分解即可.解:ax2﹣ax﹣2a=a(x2﹣x﹣2)=a(x﹣2)(x+1).故选A.13.把二次三项式x2﹣3x+4分解因式,结果是()A.(x+)(x+2)B.(x﹣)(x﹣2)C.(x+)2D.(x﹣)2【答案】B【解析】利用十字相乘法分解即可.解:x2﹣3x+4=(x﹣)(x﹣2).故选B14.分解因式x2﹣5x﹣6的结果为()A.(x﹣6)(x+1)B.(x﹣6)(x﹣1)C.(x+6)(x﹣1)D.(x+6)(x+1)【答案】A【解析】因为﹣6×1=﹣6(常数项),﹣6+1=﹣5(一次项系数),所以利用十字相乘法分解因式即可.解:x2﹣5x﹣6=(x﹣6)(x+1).故选A.15.如果多项式x2+px+12可以分解成两个一次因式的积,那么整数p的值可取多少个()A.4B.5C.6D.8【答案】C【解析】先把12分成2个因数的积的形式,共有6总情况,所以对应的p值也有6种情况.解:设12可分成m•n,则p=m+n(m,n同号),∵m=±1,±2,±3,n=±12,±6,±4,∴p=±13,±8,±7,共6个值.故选C.16.对x2﹣xy﹣156y2分解因式正确的是()A.(x﹣12y)(x﹣13y)B.(x+12y)(x﹣13y)C.(x﹣12y)(x+13y)D.(x+12y)(x+13y)【答案】B【解析】将原式看做关于x的二次三项式,利用十字相乘法解答即可.解:∵﹣156y2可分解为12y,﹣13y,∴x2﹣xy﹣156y2=(x+12y)(x﹣13y).故选B.17.将多项式x2+3x+2分解因式,正确的结果是()A.(x+1)(x+2)B.(x﹣1)(x+2)C.(x+1)(x﹣2)D.(x﹣1)(x﹣2)【答案】A【解析】根据十字相乘法的分解方法分解即可.解:x2+3x+2=(x+1)(x+2).故选A.18.把多项式x2﹣x﹣2分解因式得.【答案】(x﹣2)(x+1)【解析】可根据二次三项式的因式分解法对原式进行分解,把﹣2分为1×(﹣2),﹣1为1+(﹣2),利用十字相乘法即可求得.解:x2﹣x﹣2=(x﹣2)(x+1).故答案为:(x﹣2)(x+1).19.把二次三项式2x2+4x﹣6分解因式,其结果是.【答案】2(x+3)(x﹣1)【解析】首先要提取公因式2,然后利用十字相乘法分解因式.解:2x2+4x﹣6=2(x2+2x﹣3)=2(x+3)(x﹣1).故答案为:2(x+3)(x﹣1).20.要使二次三项式x2+mx﹣6能在整数范围内分解因式,则m可取的整数为.【答案】±1,±5【解析】把﹣6分解成两个因数的积,m等于这两个因数的和.解:∵﹣6=2×(﹣3)=(﹣2)×3=1×(﹣6)=(﹣1)×6,∴m=2+(﹣3)=﹣1,m=﹣2+3=1,m=1+(﹣6)=﹣5,m=(﹣1)+6=5,故本题答案为:±1,±5.。
因式分解专项练习题(含答案)
因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+82.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.3.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y24.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)25.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2 7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.2.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.3.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.4.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
因式分解习题50道及答案
因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。
通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。
下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。
1. 将x^2 + 4x + 4因式分解。
答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。
答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。
答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。
答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。
答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。
答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。
答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。
答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。
10. 将x^2 + 6x + 9因式分解。
答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。
答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。
答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。
答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。
答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。
答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。
答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。
答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。
答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。
答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。
七年级下册数学因式分解练习题及答案
七年级下册数学因式分解练习题及答案一、因式分解1.下列变形属于分解因式的是A.2x2-4x+1=2x+1 B.m=ma+mb+mcC.x2-y2= D.=2.计算的结果,正确的是A.m2-4B.m2+16C.m2-1 D.m2+43.分解因式mx+my+mz=A.m+mz B.m C.m D.m3abc4.20052-2005一定能被整除A.00 B.004C.00 D.0095.下列分解因式正确的是A.ax+xb+x=xB.a2+ab+b2=2C.a2+5a-24= D.a+b=a2b6.已知多项式2x2+bx+c分解因式为2,则b,c的值是A.b=3,c=1 B.b=-c,c=2C.b=-c,c=-4D.b=-4,c=-67.请写出一个二次多项式,再将其分解因式,其结果为______.8.计算:21×3.14+62×3.14+17×3.14=_________.二、提公因式法9.多项式3a2b3c+4a5b2+6a3bc2的各项的公因式是 A.a2bB.12a5b3c C.12a2bc D.a2b210.把多项式m2+m分解因式等于A. B.C.m D.m11.2001+2002等于A.-22001B.-2200C.22001D.-212.-ab2+a2-ac2的公因式是A.-a B.C.-a D.-a213.观察下列各式:abx-cdy x2y+6y2x a3-3a2+2a-1 +a2+1 -m2nn+mn2n+1其中可以直接用提公因式法分解因式的有A.B.C.D.14.多项式12x2n-4nn提公因式后,括号里的代数式为A.4xn B.4xn-1 C.3xn D.3xn-115.分解下列因式:56x3yz-14x2y2z+21xy2z22+2nm-n+pa+b三、综合测试16.若x2+y=·B,则B=_______.17.已知a-2=b+c,则代数式a-b-c=______18.利用分解因式计算:197的5%,减去897的5%,差是多少?四、创新应用19.利用因式分解计算:0042-4×004;9×37-13×34121×0.13+12.1×0.9-12×1.2120 06006×008-20 08008×0062n?4?2?2n20.计算: n?32?2五、综合创新21.计算:2-22-23-?-218-219+22022.已知2x-y=23.已知:x3+x2+x+1=0,求1+x+x2+x3+x4+x5+?+x2007的值.24.设n为整数,求证:2-25能被4整除.1,xy=2,求2x4y3-x3y4的值.因式分解一、因式分解1.下列变形属于分解因式的是A.2x2-4x+1=2x+1 B.m=ma+mb+mcC.x2-y2= D.=2.计算的结果,正确的是A.m2-4B.m2+16C.m2-1 D.m2+43.分解因式mx+my+mz=A.m+mz B.m C.m D.m3abc4.20052-2005一定能被整除A.00 B.004C.00 D.0095.下列分解因式正确的是A.ax+xb+x=xB.a2+ab+b2=2C.a2+5a-24= D.a+b=a2b6.已知多项式2x2+bx+c分解因式为2,则b,c的值是A.b=3,c=1 B.b=-c,c=2C.b=-c,c=-4D.b=-4,c=-67.请写出一个二次多项式,再将其分解因式,其结果为______.8.计算:21×3.14+62×3.14+17×3.14=_________.二、提公因式法9.多项式3a2b3c+4a5b2+6a3bc2的各项的公因式是A.a2bB.12a5b3c C.12a2bc D.a2b210.把多项式m2+m分解因式等于A. B.C.m D.m11.2001+2002等于A.-22001B.-2200C.22001D.-212.-ab2+a2-ac2的公因式是A.-a B.C.-a15.分解下列因式:56x3yz-14x2y2z+21xy2z22+2nm-n+pa+bD.-a2三、16.若x2+y=·B,则B=_______.17.已知a-2=b+c,则代数式a-b-c=______18.利用分解因式计算:197的5%,减去897的5%,差是多少?四、创新应用19.利用因式分解计算:0042-4×004;9×37-13×34121×0.13+12.1×0.9-12×1.2120 06006×008-20 08008×0062n?4?2?2n20.计算:?2n?324.设n为整数,求证:2-25能被4整除.杨老师对同学们说:“我能猜出你们每一位同学的年龄,不信的话,你们就按下面方法试试:先把你的年龄乘以5,再加5,然后把结果扩大2倍,?最后把算得的结果告诉老师,老师就知道你的年龄了.”杨老师又说:“雨晴,你算出的是多少?”雨晴答:“130”.杨老师马上说:“你12岁”.如果你是杨老师,?当李强同学算出的结果是140时,你会说李强多少岁?答案:1.C .C .B .B .C .D7.4a2-4ab+b2=.3149.A 10.C 11.C 12.D 13.C 14.D15.7xyz因式分解一、因式分解1.下列变形属于分解因式的是A.2x2-4x+1=2x+1 B.m=ma+mb+mcC.x2-y2= D.=2.计算的结果,正确的是A.m2-4B.m2+16C.m2-1 D.m2+43.分解因式mx+my+mz=A.m+mz B.m C.m D.m3abc4.20052-2005一定能被整除A.00 B.004C.00 D.0095.下列分解因式正确的是A.ax+xb+x=xB.a2+ab+b2=2C.a2+5a-24= D.a+b=a2b6.已知多项式2x2+bx+c分解因式为2,则b,c的值是A.b=3,c=1 B.b=-c,c=2C.b=-c,c=-4D.b=-4,c=-67.请写出一个二次多项式,再将其分解因式,其结果为______.8.计算:21×3.14+62×3.14+17×3.14=_________.二、提公因式法9.多项式3a2b3c+4a5b2+6a3bc2的各项的公因式是 A.a2bB.12a5b3c C.12a2bc D.a2b210.把多项式m2+m分解因式等于A. B.C.m D.m11.2001+2002等于A.-22001B.-2200C.22001D.-212.-ab2+a2-ac2的公因式是A.-a B.C.-a D.-a213.观察下列各式:abx-cdy x2y+6y2x a3-3a2+2a-1 +a2+1 -m2nn+mn2n+1其中可以直接用提公因式法分解因式的有A.B.C.D.14.多项式12x2n-4nn提公因式后,括号里的代数式为A.4xn B.4xn-1 C.3xn D.3xn-115.分解下列因式:56x3yz-14x2y2z+21xy2z22+2nm-n+pa+b三、综合测试16.若x2+y=·B,则B=_______.17.已知a-2=b+c,则代数式a-b-c=______18.利用分解因式计算:197的5%,减去897的5%,差是多少?四、创新应用19.利用因式分解计算:0042-4×004;9×37-13×3121×0.13+12.1×0.9-12×1.2120 06006×008-20 08008×0062n?4?2?2n20.计算:?2n?3五、综合创新21.计算:2-22-23-?-218-219+22022.已知2x-y=1,xy=2,求2x4y3-x3y4的值.23.已知:x3+x2+x+1=0,求1+x+x2+x3+x4+x5+?+x2007的值.24.设n为整数,求证:2-25能被4整除.猜年龄杨老师对同学们说:“我能猜出你们每一位同学的年龄,不信的话,你们就按下面方法试试:先把你的年龄乘以5,再加5,然后把结果扩大2倍,?最后把算得的结果告诉老师,老师就知道你的年龄了.”杨老师又说:“雨晴,你算出的是多少?”雨晴答:“130”.杨老师马上说:“你12岁”.如果你是杨老师,?当李强同学算出的结果是140时,你会说李强多少岁?。
初中数学专项练习《因式分解》100道解答题包含答案(真题汇编)
初中数学专项练习《因式分解》100道解答题包含答案一、解答题(共100题)1、阅读理解题:我们知道因式分解与整式乘法是互逆的关系,那么逆用乘法公式(x+a)(x+b)=x2+(a+b)x+ab,即x2+(a+b)x+ab=(x+a)(x+b)是否可以分解因式呢?当然可以,而且也很简单.如:(1)x2+4x+3=x2+(1+3)x+1×3=(x+1)(x+3);(2)x2﹣4x﹣5=x2+(1﹣5)x+1×(﹣5)=(x+1)(x﹣5).2、化简:a2(a﹣1)﹣a3.3、阅读材料:若x2-2xy+2y2-8y+16=0,求x、y的值.解:∵x2-2xy+2y2-8y+16=0,∴(x2-2xy+y2)+(y2-8y+16)=0∴(x-y)2+(y-4)2=0,∴(x-y)2=0,(y-4)2=0,∴y=4,x=4.根据你的观察,探究下面的问题:已知a、b满足a2+b2-4a-6b+13=0.求a、b的值.4、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.5、分解因式(1)4x2+4x+1(2)2x2﹣18(3)y3﹣2y2+y(4)4a2﹣(b+c)2.6、用简便方法计算(1)(﹣0.25)11×(﹣4)12(2)20152﹣2014×2016.7、已知方程x2﹣2x﹣15=0的两个根分别是a和b,求代数式(a﹣b)2+4b(a ﹣b)+4b2的值.8、10x2+3x﹣4.9、已知,求的值.10、先化简,在求值:30x (y+4)-15x(y+4), 其中x=2,y=-211、(p﹣q)4÷(q﹣p)3•(p﹣q)2.12、先化简,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.13、因式分解:(2x+y)2﹣(x+2y)2.14、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.15、已知二次函数的图象与x轴交于两点,且,求a的值.16、若a m=4,a n=2,求a2m-n17、列方程解应用题:如果一个正方形的边长增加4厘米,那么它的面积就增加40平方厘米,则这个正方形的边长是多少?18、3m3n﹣6m2n2﹣72mn3.19、利用因式分解计算:3.68×15.7-31.4+15.7×0.32.20、先将代数式因式分解,再求值:2x(a﹣2)﹣y(2﹣a),其中a=0.5,x=1.5,y=﹣2.21、己知:△ABC,AD⊥BC于点D,且AB+BD=AC+CD,求证:AB=AC.22、已知:x+y=﹣3,x﹣y=7.求:①xy的值;②x2+y2的值.23、若a+b=﹣3,ab=1.求a3b+a2b2+ab3的值.24、已知多项式与的乘积中不含有一次项和二次项,求常数的值.25、已知多项式的结果中不含项和项,求和的值.26、分解因式: 4x2-427、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)28、有一个长方体模型,它的长为2×103cm,宽为1.5×102cm,高为1.2×102cm,它的体积是多少cm3?29、分解因式:2x2﹣8.30、解不等式:(x﹣6)(x﹣9)﹣(x﹣7)(x﹣1)<7(2x﹣5)31、已知A=2x,B是多项式,在计算B+A时,某同学把B+A看成B÷A结果得x2+x,求B+A.32、解答发现:(1)当a=3,b=2时,分别求代数式(a+b)2和a2+2ab+b2的值,并观察这两个代数式的值有什么关系?(2)再多找几组你喜欢的数试一试,从中你发现了什么规律?(3)利用你所发现的规律计算a=1. 625,b=0. 375时,a2+2ab+b2的值?33、设n为正整数,且x2n=5,求(2x3n)2﹣3(x2)2n的值.34、已知x﹣1=,求代数式(x+1)2﹣4(x+1)+4的值.35、已知x+y=2,xy=﹣1,求下列代数式的值:(1)5x2+5y2;(2)(x﹣y)2.36、已知.三角形的底边长为(2x+1)cm,高是(x﹣2)cm,若把底边和高各增加5厘米,那么三角形面积增加了多少?并求出x=3时三角形增加的面积.37、已知x2+xy﹣2y2=7,且x、y都是正整数,试求x、y的值.38、已知a-b=3,求a(a-2b)+b2的值39、先化简,再求值:.40、甲、乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a前面的符号,得到的结果为6x2+18x+12;由于乙漏抄了第二个多项中的x的系数,得到的结果为2x2+2x﹣12,请你计算出a、b的值各是多少,并写出这道整式乘法的正确结果.41、已知(x+a)(x2﹣x+c)的积中不含x2项和x项,求(x+a)(x2﹣x+c)的值是多少?42、已知a+b=﹣,求代数式(a﹣1)2+b(2a+b)+2a的值.43、因式分解:6p(p+q)﹣4q(p+q).44、(1)如果a+4=﹣3b,求3a×27b的值.(2)已知a m=2,a n=4,a k=32,求a3m+2n﹣k的值.45、先化简,再求值:{(a+b)2﹣(a﹣b)2}•a,其中a=﹣1,b=5.46、化简求值:当a=2005时,求-3a2(a2-2a-3)+3a(a3-2a2-3a)+2005的值47、“若a m=a n(a>0且a≠1,m、n是正整数),则m=n”.你能利用上面的结论解决下面的问题吗?试试看,相信你一定行!(1)如果27x=39,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)如果3x+2•5x+2=153x﹣8,求x的值.48、七年级某同学做一道题:“已知两个多项式A,B,,计算”,他误将写成了,结果得到答案,请你帮助他求出正确的答案.49、已知:,,求和的值.50、已知:a m=5,a n=2,求(1)a2m+3n的值;(2)a4n﹣3m的值.51、对于任意自然数n,(n+7)2-(n-5)2能否被24整除,为什么?52、先化简,再求值:(x﹣y2)﹣(x﹣y)(x+y)+(x+y)2,其中x=3,y=﹣.53、说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.54、设x>0,试比较代数式x3和x2+x+2的值的大小.55、(1)解方程:x2﹣4x=0(2)化简:m(m+3)﹣(m+1)2,其中m=+1.56、数学课堂上,王老师给同学们出了道题:若(x2﹣px+3)(x﹣q)中不含x2项,请同学们探究一下p与q的关系.请你根据所学知识帮助同学们解决一下.57、已知:a+b=﹣1,ab=﹣6,求下列各式的值:(1)a2b+ab2(2)a2+b2.58、x4﹣13x2y2+36y4.59、分解因式:(1)6xy2﹣9x2y﹣y3;(2)(x2+4)2﹣16x2.60、设的整数部分为x,小数部分为y,求(x+y)(x﹣y)的值.61、已知a+b=3,求代数式a2﹣b2+2a+8b+5的值.62、已知:,求代数式的值.63、请利用因式分解说明能被100整除.64、已知多项式x2-4x+m分解因式的结果为(x+a)(x-6),求2a-m的值.65、若△ABC的三边长a、b、c满足6a+8b+10c﹣50=a2+b2+c2,试判断△ABC 的形状.66、已知甲数为a×10n,乙数是甲数的10倍,丙数是乙数的2倍,甲、乙、丙三数的积为1.6×1012,求a,n的值.(其中1≤a≤10,n为正整数)67、已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.68、已知n是正整数,且,求的值.69、先化简,再求值:.70、当a=3,b=﹣1时(1)求代数式a2﹣b2和(a+b)(a﹣b)的值;(2)猜想这两个代数式的值有何关系?(3)根据(1)(2),你能用简便方法算出a=2008,b=2007时,a2﹣b2的值吗?71、已知三次四项式2x3﹣5x2﹣6x+k分解因式后有一个因式是x﹣3,试求k的值及另一个因式.72、阅读理解并解答:为了求1+2+22+23+24+...+22009的值,可令S=1+2+22+23+24+ (22009)则2S=2+22+23+24+…+22009+22010,因此2S﹣S=(2+22+23+…+22009+22010)﹣(1+2+22+23+…+22009)=22010﹣1.所以:S=22010﹣1.即1+2+22+23+24+…+22009=22010﹣1.请依照此法,求:1+4+42+43+44+…+42010的值.73、在日常生活中我们经常用到密码,如取款、上网购物需要密码,有一种用因式分解法产生密码,方便记忆,其原理是:将一个多项式因式分解:例如x4﹣y4=(x2+y2)(x+y)(x﹣y),当x=8,y=9时,x2+y2=145,x+y=17,x﹣y=4则可以得到密码是145174,1741454…,等等,根据上述方法当x=32,y=12时,对于多项式x2y﹣y3分解因式后可以形成哪些数字密码?74、先化简,再求值:(1)2(a2b﹣ab2)﹣3(a2b﹣1)+2ab2+1,其中a=1,b=2.(2)2a(a+b)﹣(a+b)2,其中a=3,b=5.75、已知关于x的多项式3x2+x+m因式分解以后有一个因式为(3x﹣2),试求m的值并将多项式因式分解.76、已知:a﹣b=﹣2015,ab=,求a2b﹣ab2的值.77、已知:,求78、如图,在一块边长为acm的正方形纸板四角,各剪去一个边长为bcm(b<)的正方形,利用因式分解计算当a=13.2,b=3.4时,剩余部分的面积.79、分解因式:4n2(m﹣1)+9﹣9m.80、已知3×9m×27m=321,求(﹣m2)3÷(m3•m2)的值.81、先化简,再求值:,其中a=﹣3,b= .82、已知常数a、b满足3a×32b=27,且(5a)2×(52b)2÷(53a)b=1,求a2+4b2的值.83、下面是小彬同学进行整式化简的过程,请认真阅读并完成相应任务.任务1:填空:①以上化简步骤中,第一步的依据是________;②以上化简步骤中,第________步开始出现不符合题意,这一步错误的原因是________ ;任务2:请写出该整式正确的化简过程,并计算当x=﹣1,y=﹣时该整式的值.84、因式分解:(1)x(x﹣y)﹣y(y﹣x);(2)a2x2y﹣axy2.85、(1)填空:(a﹣b)(a+b)= ;(a﹣b)(a2+ab+b2)= ;(a﹣b)(a3+a2b+ab2+b3)= .(2)猜想:(a﹣b)(a n﹣1+a n﹣2b+…+ab n﹣2+b n﹣1)= (其中n为正整数,且n≥2).(3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.86、分解因式:(1)4x2﹣12x3(2)a2﹣ab+b2(3)x4﹣81.87、现有三个多项式:a2+a-4,a2+5a+4,a2-a,请你选择其中两个进行加法运算,并把结果因式分解。
初中数学因式分解经典测试题附答案
A. B. C. D.
【答案】D
【解析】
【分析】
先把各个多项式分解因式,即可得出结果.
【详解】
解: ,
,
,
结果中不含有因式 的是选项D;
故选:D.
【点睛】
本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.
16.把多项式分解因式,正确的结果是( )
3.把代数式 分解因式,结果正确的是()
A. B.
C. D.
【答案】D
【解析】
此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.
解答:解: ,
=3x(x2-2xy+y2),
=3x(x-y)2.
故选D.
4.设a,b,c是 的三条边,且 ,则这个三角形是
A.等腰三角形B.直角三角形
C、xy﹣x=x(y﹣1),故此选项正确;
D、2x+y无法因式分解,故此选项错误.
故选C.
【点睛】
本题考查因式分解.
2.若 ,则 的值为()
A.-2B.2C.8D.-8
【答案】B
【解析】
【分析】
利用十字相乘法化简 ,即可求出 的值.
【详解】
∵
∴
解得
故答案为:B.
【点睛】
本题考查了因式分解的问题,掌握十字相乘法是解题的关键.
【答案】B
【解析】
【分析】
因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.
【详解】
七年级因式分解50道题及答案和过程
七年级因式分解50道题及答案和过程1.因式分解:(1)2218x -(2)()()244m n m n +-++2.因式分解:(1)2129xyz x y -;(2)2464x -.3.因式分解:(1)249x -;(2)322242m m n mn ++.4.因式分解:(1)2464x -;(2)232a a a -+-.5.因式分解:(1)2422ax ay -.(2)4224817216x x y y -+.6.因式分解:(1)228a -(2)()()24129a b a b +-++7.因式分解:(1)244x x -+;(2)2327x -.8.分解因式:(1)533416m n m n-(2)32221218x x y xy -+9.分解因式:(2)32232x y x y xy ++.10.因式分解:(1)2416x -;(2)23216164a b a ab --.11.因式分解:(1)2296x xy y -+.(2)(1)(3)4x x +-+.12.因式分解:(1)222a ab b -+(2)24()()a ab b a -+-13.因式分解(1)242025x x ++;(2)()()2293a b a b -+-.14.因式分解:(1)a 3-4a 2+4a ;(2)a 4b 4-81;(3)16(x -2y )2-4(x +y )2.15.因式分解:(1)32288a a a -+;(2)328x x -16.因式分解:(1)33a b ab -(2)22363x xy y -+-17.因式分解:(1)2x 2-8(2)4221x x -+18.因式分解:(2)228x -19.因式分解(1)a 2(x+y )﹣b 2(x+y )(2)x 4﹣8x 2+16.20.因式分解:(1)2693x xy x -+;(2)2xy x -;21.因式分解:(1)x 3y ﹣xy 3;(2)(x +2)(x +4)+x 2﹣422.因式分解:(1)322369x y x y xy -+(2)()()236x x y x y x -+-23.因式分解:(1)32246x x x -+-;(2)222(4)16a a +-.24.因式分解:(1)236x x -;(2)2441a a -+(3)()()229m n m n +--;25.因式分解:(1)4ab b+(2)232x x -+(3)2214a b b -+-(4)2464a -参考答案1.(1)()()21313x x +-(2)()22m n +-【分析】(1)先提公因式2,再按照平方差公式分解即可;(2)把m n +看整体,直接利用完全平方公式分解即可.(1)解:2218x -()2219x =-()()21313x x =+-(2)()()244m n m n +-++()22m n =+-2.(1)()343xy z x -(2)()()444x x +-【分析】(1)提取公因式3xy 即可;(2)先提取公因式4,再利用平方差公式分解因式即可.(1)解:2129xyz x y-()343xy z x =-(2)()()()22464416444.x x x x -=-=+-3.(1)()()2323x x +-(2)()22m m n +【解析】(1)根据平方差公式因式分解即可求解;(2)提公因式2m ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2223x -()()2323x x =+-;(2)原式=()2222m m mn n ++()22m m n =+.4.(1)()()444x x +-(2)()21a a --【解析】(1)后利用平方差公式分解因式;(2)先提取公因数,再结合完全平方公式分解因式;(1)解:原式()()()2416444x x x =-=+-;(2)原式()()22211a a a a a =--+=--.5.(1)()()222a x y x y +-(2)22(32)(32)x y x y +-【解析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式分解,整理后,再利用平方差公式分解即可.(1)解:2422ax ay -()242a x y =-()()222a x y x y =+-;(2)解:4224817216x x y y -+()22294x y =-()()223232x y x y =+-.6.(1)()()222a a +-(2)()2223a b +-【解析】(1)先提公因式2,再用平方差公式分解;(2)将2()a b +看成一个整体,利用完全平方公式直接分解.(1)解:228a -()224a =-()()222a a =+-;(2)()()24129a b a b +-++()()22129a b a b ⎡⎤=+-++⎣⎦()223a b ⎡⎤=+-⎣⎦=()2223a b +-.7.(1)()22x -(2)()()333x x +-【解析】(1)利用完全平方公式法进行因式分解即可;(2)先对整式进行提公因式,再利用平方差公式进行因式分解即可.(1)解:原式=()22x -(2)原式=()239x -=()()333x x +-8.(1)()()3422m n mn mn +-(2)()223x x y -【解析】(1)先提公因式34,m n 再利用平方差公式分解即可;(2)先提公因式2,x 再按照完全平方公式分解因式即可.(1)解:533416m n m n-()32244m n m n =-()()3422m n mn mn =+-(2)解:32221218x x y xy -+()22269x x xy y =-+()223x x y =-9.(1)()()244x x +-(2)()2xy x y +【解析】(1)提出公因式2,然后根据平方差公式因式分解即可求解;(2)提公因式xy ,然后根据完全平方公式因式分解即可求解.(1)解:原式=()2216x -()()244x x =+-;(2)解:原式=()222xy x xy y ++()2xy x y =+.10.(1)4(2)(2)x x +-(2)24(2)a a b --【分析】(1)根据提公因式法和公式法即可求解.(2)先利用提公因式法,再利用公式法即可求解.(1)解:2224164(2)4(2)(2)x x x x -=-=+-.(2)23216164a b a ab --224(44)a ab a b =--224(2)4a a ab b ⎡⎤=--+⎣⎦24(2)a a b =--.11.(1)(3x-y)2(2)(x-1)2【分析】(1)直接利用完全平方公式进行因式分解;(2)先拆开括号,然后利用完全平方公式继续进行因式分解.(1)解:原式=()2236x xy y -+=()23x y -.(2)原式=221x x -+=()21x -.12.(1)2()a b -(2)()(21)(21)a b a a -+-【解析】(1)利用完全平方公式解答,即可求解;(2)先提出公因式,再利用平方差公式解答,即可求解.(1)解:()2222a ab b a b -+=-;(2)解:24()()a ab b a -+-()()241a b a =--()()()2121a b a a =-+-13.(1)2(25)x +(2)(3)(31)a b a b -++【解析】(1)根据完全平方公式因式分解即可求解;(2)根据平方差公式与提公因式法因式分解即可求解.(1)242025x x ++=()2222255x x +⋅⋅+=2(25)x +(2)()()2293a b a b -+-=()()2233a b a b ⎡⎤-+-⎣⎦=()()()333a b a b a b +-+-=(3)(31)a b a b -++14.(1)()22a a -(2)()()()22933a b ab ab ++-(3)()()125x y x y --【解析】(1)先提出公因式,再利用完全平方公式解答,即可求解;(2)利用平方差公式解答,即可求解;(3)先利用平方差公式,再提出公因式,即可求解.(1)解:3244a a a-+()244a a a =-+()22a a =-(2)解:4481a b -()()222299a b a b =+-()()()22933a b ab ab =++-(3)解:()()221624x y x y --+()()()()422422x y x y x y x y =-++--+⎡⎤⎡⎤⎣⎦⎣⎦()()66210x y x y =--()()125x y x y =--15.(1)()222a a -(2)()()21212x x x +-【解析】(1)先提公因式,然后利用公式法因式分解,即可得到答案;(2)先提公因式,然后利用公式法因式分解,即可得到答案.(1)解:()()232228824422a a a a a a a a -+=-+=-;(2)解:()()()322821421212x x x x x x x -=-=+-;16.(1)()()ab a b a b +-(2)23()x y --【解析】(1)先提取公因式,再利用平方差公式分解因式;(2)先提取公因式,再利用完全平方公式分解因式.(1)解:33a b ab -()22ab a b =-()()ab a b a b =+-;(2)解:22363x xy y -+-()2232x xy y =--+()23x y =--.17.(1)()()222.x x +-(2)()()2211.x x +-【解析】(1)利用提公因式法提公因式后,再按照平方差公式分解即可。
因式分解100题试题附答案精选全文完整版
100题搞定因式分解计算因式分解100题(试题版)日期:________时间:________姓名:________成绩:________一、解答题(共100小题)1.因式分解:4a2b﹣b.2.因式分解:a2(a﹣b)+25(b﹣a).3.因式分解:x3+3x2y﹣4x﹣12y.4.因式分解:9(x+y)2﹣(x﹣y)2.5.因式分解:2a2b﹣12ab+18b.6.因式分解:﹣x3y+4x2y2﹣4xy3.7.因式分解:a2(x﹣y)+4b2(y﹣x).8.因式分解:4a3b+4a2b2+ab3.9.因式分解:(a+b)2﹣4a2.10.因式分解:3ax2﹣6axy+3ay2.11.因式分解:6x4﹣5x3﹣4x2.12.因式分解:(x﹣3y)(x﹣y)﹣(﹣x﹣y)213.因式分解:2m(a﹣b)﹣3n(b﹣a)14.因式分解:m2﹣(2m+3)2.16.因式分解:x2﹣4xy+4y2﹣117.因式分解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)18.因式分解:a2﹣4﹣3(a+2)19.因式分解:(x﹣1)2+2(x﹣5).20.因式分解:4x3﹣8x2+4x.21.因式分解:x3﹣2x2﹣3x22.因式分解:2x2﹣4xy+3x﹣6y24.因式分解:9x2﹣6x+1.25.因式分解:4ma2﹣mb2.26.因式分解:x2﹣2xy﹣8y2.27.因式分解:a2+4a(b+c)+4(b+c)2.28.因式分解:x2﹣4y2+4﹣4x29.因式分解:xy2﹣4xy+4x.30.因式分解:x4﹣5x2﹣36.31.因式分解:x3﹣2x2y+xy2.32.在实数范围内因式分解:x2﹣4xy﹣3y2.33.因式分解:9a2(x﹣y)+4b2(y﹣x)34.因式分解:x4﹣10x2+9.35.因式分解:x2﹣y2﹣2x+1.36.因式分解:(2x﹣y)(x+3y)﹣(x+y)(y﹣2x).37.因式分解:6(x+y)2﹣2(x﹣y)(x+y).38.因式分解:2m4n﹣12m3n2+18m2n3.39.因式分解:a2(x﹣y)+4(y﹣x).40.在实数范围内因式分解:﹣2a2b2+ab+2.41.因式分解:x2﹣9+3x(x﹣3)42.因式分解:4xy2+4x2y+y3.43.因式分解:(x2+4x)2﹣2(x2+4x)﹣15.44.因式分解:6xy2+9x2y+y3.45.因式分解:x3﹣3x2+2x.46.因式分解:x(a﹣b)+y(b﹣a)﹣3(b﹣a).47.因式分解:3ax﹣18by+6bx﹣9ay48.因式分解:(2a﹣b)(3a﹣2)+b(2﹣3a)49.因式分解:(a﹣3)2+(3﹣a)50.因式分解:(a+b)﹣2a(a+b)+a2(a+b)51.因式分解:12x4﹣6x3﹣168x252.因式分解:(2m+3n)(2m﹣n)﹣n(2m﹣n)53.因式分解:3x2(x﹣2y)﹣18x(x﹣2y)﹣27(2y﹣x)54.因式分解:(x﹣1)(x+1)(x﹣2)﹣(x﹣2)(x2+2x+4)55.因式分解:8x2y2﹣10xy﹣1256.因式分解:6(x+y)2﹣2(x+y)(x﹣y)57.因式分解:9(a﹣b)(a+b)﹣3(a﹣b)258.因式分解:4xy(x+y)2﹣6x2y(x+y)59.因式分解:﹣24m2x﹣16n2x.60.因式分解:4a(x﹣y)﹣2b(y﹣x)61.因式分解:ax4﹣14ax2﹣32a.62.因式分解:x3+5x2y﹣24xy2.63.因式分解:(1﹣3a)2﹣3(1﹣3a)64.因式分解:x(x﹣y)3+2x2(y﹣x)2﹣2xy(x﹣y)2.65.因式分解:x5﹣2x3﹣8x.366.因式分解:x2-y2+2x+y+467.因式分解:2(x+y)2﹣20(x+y)+50.68.因式分解:1+a+a(1+a)+a(1+a)2+a(1+a)3.69.因式分解:x2y﹣x2z+xy﹣xz.70.因式分解:(x2﹣x)2﹣8x2+8x+12.71.因式分解:x4﹣(3x﹣2)2.72.因式分解:(3m﹣1)2﹣(2m﹣3)2.73.因式分解:(2x+5)2﹣(2x﹣5)2.74.因式分解:(﹣2x﹣1)2(2x﹣1)2﹣(4x2﹣2x﹣1)275.因式分解:(m+1)(m﹣9)+8m.76.因式分解:9(a﹣b)2+36(b2﹣ab)+36b277.因式分解:(a2+4)2﹣16a2.78.因式分解:9(m+n)2﹣(m﹣n)279.因式分解:x4﹣8x2y2+16y4.80.因式分解:25x2﹣9(x﹣2y)281.因式分解:4x2y2﹣(x2+y2)2.82.因式分解:x(x﹣12)+4(3x﹣1).83.因式分解:(x2﹣3)2+2(3﹣x2)+1.84.因式分解:(x+2)(x﹣6)+16.85.因式分解:2m(2m﹣3)+6m﹣1.86.因式分解:x4﹣16y4.87.因式分解:(a2+1)2﹣4a2.88.因式分解:(2x+y)2﹣(x+2y)2.89.因式分解:(x2﹣6)2﹣6(x2﹣6)+990.因式分解:(x2+x)2﹣(x+1)2.91.因式分解:8(x2﹣2y2)﹣x(7x+y)+xy.92.因式分解:x4﹣10x2y2+9y4.93.因式分解:(x2+x﹣5)(x2+x﹣3)﹣394.因式分解:(m2+2m)2﹣7(m2+2m)﹣895.因式分解:(x2+2x)2﹣2(x2+2x)﹣396.因式分解:2x2+6x﹣3.5.97.因式分解:3x2﹣12x+998.因式分解:(x﹣4)(x+7)+18.99.因式分解:5a2b2+23ab﹣10.100.因式分解:(x+y)2﹣(4x+4y)﹣32.因式分解100题参考答案部分可能有误仅供参考一、解答题(共100小题)1.【解答】解:4a2b﹣b=b(4a2﹣1)=b(2a+1)(2a﹣1).2.【解答】解:a2(a﹣b)+25(b﹣a)=a2(a﹣b)﹣25(a﹣b)=(a﹣b)(a2﹣52)=(a﹣b)(a+5)(a﹣5).3.【解答】解:x3+3x2y﹣4x﹣12y=(x3+3x2y)﹣(4x+12y)=x2(x+3y)﹣4(x+3y)=(x+3y)(x2﹣4)=(x+3y)(x+2)(x﹣2).4.【解答】解:9(x+y)2﹣(x﹣y)2=[3(x+y)﹣(x﹣y)][3(x+y)+(x﹣y)]=(2x+4y)(4x+2y)=4(x+2y)(2x+y).5.【解答】解:原式=2b(a2﹣6a+9)=2b(a﹣3)2.6.【解答】解:原式=﹣xy(x2﹣4xy+4y2)=﹣xy(x﹣2y)2.7.【解答】解:原式=(x﹣y)(a2﹣4b2)=(x﹣y)(a+2b)(a﹣2b).故答案为:(x﹣y)(a+2b)(a﹣2b).8.【解答】解:原式=ab(4a2+4ab+b2)=ab(2a+b)2.9.【解答】解:原式=(a+b+2a)(a+b﹣2a)=(3a+b)(b﹣a).10.【解答】解:原式=3a(x2﹣2xy+y2)=3a(x﹣y)2.11.【解答】解:6x4﹣5x3﹣4x2=x2(6x2﹣5x﹣4)=x2(2x+1)(3x﹣4).12.【解答】解:原式=x2﹣xy﹣3xy+y2﹣(x2+xy+y2),=x2﹣xy﹣3xy+y2﹣x2﹣xy﹣y2,=﹣xy+y2,=﹣y(x﹣y).13.【解答】解:2m(a﹣b)﹣3n(b﹣a)=(a﹣b)(2m+3n).14.【解答】解:原式=(m+2m+3)(m﹣2m﹣3)=(3m+3)(﹣m﹣3)=﹣3(m+1)(m+3).15.【解答】解:原式=[3(x﹣y)+2]2=(3x﹣3y+2)2.16.【解答】解:x2﹣4xy+4y2﹣1=(x2﹣4xy+4y2)﹣1=(x﹣2y)2﹣1=(x﹣2y+1)(x﹣2y﹣1).17.【解答】解:(9x+y)(2y﹣x)﹣(3x+2y)(x﹣2y)=(2y﹣x)(9x+y+3x+2y)=3(2y﹣x)(4x+y).18.【解答】解:原式=(a+2)(a﹣2)﹣3(a+2)=(a+2)(a﹣5).19.【解答】解:原式=x2﹣2x+1+2x﹣10=x2﹣9=(x+3)(x﹣3).20.【解答】解:原式=4x(x2﹣2x+1)=4x(x﹣1)2.21.【解答】解:x3﹣2x2﹣3x=x(x2﹣2x﹣3)=x(x﹣3)(x+1).22.【解答】解:原式=2x(x﹣2y)+3(x﹣2y)=(x﹣2y)(2x+3).23.【解答】解:(x﹣2y)(x+3y)﹣(x﹣2y)2=(x﹣2y)(x+3y﹣x+2y)=5y(x﹣2y).24.【解答】解:原式=(3x﹣1)2.25.【解答】解:4ma2﹣mb2,=m(4a2﹣b2),=m(2a+b)(2a﹣b).26.【解答】解:x2﹣2xy﹣8y2=(x﹣4y)(x+2y).27.【解答】解:原式=[a+2(b+c)]2=(a+2b+2c)2.28.【解答】解:x2﹣4y2+4﹣4x=(x2﹣4x+4)﹣4y2=(x﹣2)2﹣4y2=(x+2y﹣2)(x﹣2y﹣2).29.【解答】解:xy2﹣4xy+4x=x(y2﹣4y+4)=x(y﹣2)2.30.【解答】解:原式=(x2﹣9)(x2+4)=(x+3)(x﹣3)(x2+4).31.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.32.【解答】解:x2﹣4xy﹣3y2=x2﹣4xy+4y2﹣7y2=(x﹣2y)2﹣7y2=(x﹣2y+y)(x﹣2y﹣y).33.【解答】解:9a2(x﹣y)+4b2(y﹣x)=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b).34.【解答】解:原式=(x2﹣1)(x2﹣9)=(x+1)(x﹣1)(x+3)(x﹣3).35.【解答】解:原式=(x2﹣2x+1)﹣y2=(x﹣1)2﹣y236.【解答】解:原式=(2x﹣y)(x+3y)+(x+y)(2x﹣y)=(2x﹣y)(x+3y+x+y)=(2x﹣y)(2x+4y)=2(2x﹣y)(x+2y).37.【解答】解:6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=4(x+y)(x+2y)38.【解答】解:2m4n﹣12m3n2+18m2n3=2m2n(m2﹣6mn+9n2)=2m2n(m﹣3n)2.39.【解答】原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).40.【解答】解:令﹣2a2b2+ab+2=0,则ab=,所以﹣2a2b2+ab+2=﹣2(ab﹣)(ab﹣).41.【解答】解:x2﹣9+3x(x﹣3)=(x﹣3)(x+3)+3x(x﹣3)=(x﹣3)(x+3+3x)=(x﹣3)(4x+3).42.【解答】解:4xy2+4x2y+y3=y(4xy+4x2+y2)=y(y+2x)2.43.【解答】解:原式=(x2+4x﹣5)(x2+4x+3)=(x+5)(x﹣1)(x+3)(x+1).44.【解答】解:原式=y(6xy+9x2+y2)=y(3x+y)2.45.【解答】解:x3﹣3x2+2x=x(x2﹣3x+2)=x(x﹣1)(x﹣2)46.【解答】解:原式=x(a﹣b)﹣y(a﹣b)+3(a﹣b)=(a﹣b)(x﹣y+3).47.【解答】解:原式=(3ax﹣9ay)+(6bx﹣18by)=3a(x﹣y)+6b(x﹣y)=3(x﹣y)(a+2b).48.【解答】解:(2a﹣b)(3a﹣2)+b(2﹣3a)=(2a﹣b)(3a﹣2)﹣b(3a﹣2)=(3a﹣2)(2a﹣b﹣b)=2(3a﹣2)(a﹣b).49.【解答】解:原式=(3﹣a)2+(3﹣a)=(3﹣a)(3﹣a+1)=(3﹣a)(4﹣a).50.【解答】解:原式=(a+b)(1﹣2a+a2)=(a+b)(1﹣a)251.【解答】解:12x4﹣6x3﹣168x2=6x2(2x2﹣x﹣28)52.【解答】解:原式=(2m ﹣n )(2m +3n ﹣n )=(2m ﹣n )(2m +2n )=2(2m ﹣n )(m +n ).53.【解答】解:3x 2(x ﹣2y )﹣18x (x ﹣2y )﹣27(2y ﹣x )=3x 2(x ﹣2y )﹣18x (x ﹣2y )+27(x ﹣2y )=3(x ﹣2y )(x 2﹣6x +9)=3(x ﹣2y )(x ﹣3)2.54.【解答】解:原式=(x ﹣2)(x 2﹣1﹣x 2﹣2x ﹣4)=(x ﹣2)(﹣2x ﹣5)=﹣2x 2﹣x +10.55.【解答】解:原式=2(4x 2y 2﹣5xy ﹣6)=2(4xy +3)(xy ﹣2).56.【解答】解:6(x +y )2﹣2(x +y )(x ﹣y )=2(x +y )[3(x +y )﹣(x ﹣y )]=2(x +y )(2x +4y )=4(x +y )(x +2y ).57.【解答】解:原式=3(a ﹣b )[3(a +b )﹣(a ﹣b )]=6(a ﹣b )(a +2b ).58.【解答】解:原式=2xy (x +y )•2(x +y )﹣2xy (x +y )•3x =2xy (x +y )•[2(x +y )﹣3x ]=2xy (x +y )(2y ﹣x ).59.【解答】解:原式=﹣8x (3m 2+2n 2).60.【解答】解:4a (x ﹣y )﹣2b (y ﹣x )=4a (x ﹣y )+2b (x ﹣y )=2(x ﹣y )(2a +b ).61.【解答】解:ax 4﹣14ax 2﹣32a =a (x 4﹣14x 2﹣32)=a (x 2+2)(x 2﹣16)=a (x 2+2)(x +4)(x ﹣4).62.【解答】解:原式=x (x 2+5xy ﹣24y 2)=x (x +8y )(x ﹣3y ).63.【解答】解:(1﹣3a )2﹣3(1﹣3a )=(1﹣3a )(1﹣3a ﹣3)=(1﹣3a )(﹣3a ﹣2)=﹣(1﹣3a )(3a +2)=﹣3a ﹣2+9a 2+6a =9a 2+3a ﹣2.64.【解答】解:x (x ﹣y )3+2x 2(y ﹣x )2﹣2xy (x ﹣y )2=x (x ﹣y )2[(x ﹣y )+2x ﹣2y ]=3x (x ﹣y )3.65.【解答】解:原式=x (x 4﹣2x 2﹣8)=x (x 2﹣4)(x 2+2)=x (x +2)(x ﹣2)(x 2+2).66.【解答】解:原式=x 2+2x +1-y 2+y +43=(x +1)2-(y ﹣)2⎫⎛⎫⎛31y x y x ()()322122167.【解答】解:2(x+y)2﹣20(x+y)+50.=2[(x+y)2﹣10(x+y)+25].=2(x+y﹣5)2.68.【解答】解:1+a+a(1+a)+a(1+a)2+a(1+a)3=(1+a)[1+a+a(1+a)+a(1+a)2]=(1+a)2[1+a+a(1+a)]=(1+a)4.69.【解答】解:x2y﹣x2z+xy﹣xz.=(x2y﹣x2z)+(xy﹣xz).=x2(y﹣z)+x(y﹣z).=x(x+1)(y﹣z).70.【解答】解:原式=(x2﹣x)2﹣8(x2﹣x)+12=(x2﹣x﹣2)(x2﹣x﹣6)=(x+1)(x﹣2)(x+2)(x﹣3)71.【解答】解:原式=(x2)2﹣(3x﹣2)2=(x2+3x﹣2)(x2﹣3x+2)=(x2+3x﹣2)(x﹣1)(x﹣2).72.【解答】解:原式=[(3m﹣1)+(2m﹣3)][(3m﹣1)﹣(2m﹣3)]=(5m﹣4)(m+2).73.【解答】解:原式=[(2x+5)+(2x﹣5)][(2x+5)﹣(2x﹣5)]=4x•10=40x.74.【解答】解:原式=[(﹣2x﹣1)(2x﹣1)+4x2﹣2x﹣1][(﹣2x﹣1)(2x﹣1)﹣4x2+2x+1]=﹣4x(﹣4x2+x+1).75.【解答】解:原式=m2﹣8m﹣9+8m=m2﹣9=(m+3)(m﹣3).76.【解答】解:原式=9[(a﹣b)2+4b(a﹣b)+4b2]=9(a﹣b+2b)2=9(a+b)2.77.【解答】解:原式=(a2+4)2﹣(4a)2,=(a2+4+4a)(a2+4﹣4a),=(a+2)2(a﹣2)2.78.【解答】解:原式=[3(m+n)]2﹣(m﹣n)2=(3m+3n+m﹣n)(3m+3n﹣m+n)=4(2m+n)(m+2n).79.【解答】解:原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.80.【解答】解:原式=[5x﹣3(x﹣2y)][5x+3(x﹣2y)]=(2x﹣6y)(8x﹣6y)=4(x+3y)(4x﹣3y).81.【解答】解:4x2y2﹣(x2+y2)2=﹣[(x2+y2)2﹣(2xy)2]=﹣(x2+y2+2xy)(x2+y2﹣2xy)=﹣(x+y)2(x﹣y)2.82.【解答】解:原式=x2﹣12x+12x﹣4=x2﹣4=(x+2)(x﹣2).83.【解答】解:(x2﹣3)2+2(3﹣x2)+1=(x2﹣3)2﹣2(x2﹣3)+1=(x2﹣4)2=(x+2)2(x﹣2)2.84.【解答】解:原式=x2﹣4x+4=(x﹣2)2.85.【解答】解:原式=4m2﹣6m+6m﹣1=4m2﹣1=(2m+1)(2m﹣1).86.【解答】解:x4﹣16y4=(x2+4y2)(x2﹣4y2)=(x2+4y2)(x+2y)(x﹣2y).87.【解答】解:原式=(a2+1+2a)(a2+1﹣2a)=(a+1)2(a﹣1)2.88.【解答】解:(2x+y)2﹣(x+2y)2=(2x+y+x+2y)(2x+y﹣x﹣2y)=3(x+y)(x﹣y).89.【解答】解:原式=(x2﹣6﹣3)2=(x2﹣9)2=(x+3)2(x﹣3)2.90.【解答】解:原式=(x2+x+x+1)(x2+x﹣x﹣1)=(x2+2x+1)(x2﹣1)=(x+1)2(x+1)(x﹣1)=(x+1)3(x﹣1).91.【解答】解:原式=8x2﹣16y2﹣7x2﹣xy+xy=x2﹣16y2=(x+4y)(x﹣4y).92.【解答】解:原式=(x2﹣9y2)(x2﹣y2)=(x﹣3y)(x+3y)(x﹣y)(x+y).93.【解答】解:原式=(x2+x)2﹣8(x2+x)+12=(x2+x﹣2)(x2+x﹣6)=(x﹣1)(x+2)(x﹣2)(x+3).94.【解答】解:(m2+2m)2﹣7(m2+2m)﹣8,=(m2+2m﹣8)(m2+2m+1),=(m+4)(m﹣2)(m+1)2.95.【解答】解:原式=(x2+2x﹣3)(x2+2x+1),=(x+3)(x﹣1)(x+1)2;96.【解答】解:原式=(2x﹣1)(x+).97.【解答】解:3x2﹣12x+9=3(x2﹣4x+3)=3(x﹣3)(x﹣1).98.【解答】解:(x﹣4)(x+7)+18=x2+3x﹣10=(x﹣2)(x+5).99.【解答】解:原式=(5ab﹣2)(ab+5).100.【解答】解:(x+y)2﹣(4x+4y)﹣32=(x+y)2﹣4(x+y)﹣32=(x+y+4)(x+y﹣8).。
初中数学因式分解专题训练及答案解析
七年级下数学因式分解专题训练一.选择题(共13小题)1.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2 C.x2+xy=x(x+y)D.x2+y2=(x+y)22.把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A.2B.3C.﹣2 D.﹣33.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1) B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)4.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x5.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+xy+y2D.x2﹣4x+46.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)27.下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y28.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)9.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)(x+y)C.x2﹣xy+xz﹣yz=(x﹣y)(x+z)D.x2﹣3x﹣10=(x+2)(x﹣5)10.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形11.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.412.(﹣8)2006+(﹣8)2005能被下列数整除的是()A.3B.5C.7D.913.如果x2+x﹣1=0,那么代数式x3+2x2﹣7的值为()A.6B.8C.﹣6 D.﹣8二.填空题(共12小题)14.若x2+4x+4=(x+2)(x+n),则n=_________.15.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是_________.16.因式分解:ax2y+axy2=_________.17.计算:9xy•(﹣x2y)=_________;分解因式:2x(a﹣2)+3y(2﹣a)=_________.18.若|m﹣4|+(﹣5)2=0,将mx2﹣ny2分解因式为_________.19.因式分解:(2x+1)2﹣x2=_________.20.分解因式:a3﹣ab2=_________.21.分解因式:a3﹣10a2+25a=_________.22.因式分解:9x2﹣y2﹣4y﹣4=_________.23.在实数范围内分解因式:x2+x﹣1=_________.24.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为_________.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:_________(写出一个即可).三.解答题(共5小题)26.化简:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2)27.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).28.在实数范围内分解因式:.29.计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3]30.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.七年级下数学因式分解专题训练参考答案与试题解析一.选择题(共13小题)1.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+6x+9=(x+3)2 C.x2+xy=x(x+y)D.x2+y2=(x+y)2考点:因式分解的意义.分析:根据公式特点判断,然后利用排除法求解.解答:解:A、是平方差公式,正确;B、是完全平方公式,正确;C、是提公因式法,正确;D、两平方项同号,因而不能分解,错误;故选D.点评:本题主要考查了对于学习过的两种分解因式的方法的记忆与理解,需熟练掌握.2.把x2+3x+c分解因式得:x2+3x+c=(x+1)(x+2),则c的值为()A.2B.3C.﹣2 D.﹣3考点:因式分解的意义.分析:根据因式分解与整式的乘法互为逆运算,把(x+1)(x+2)利用乘法公式展开即可求解.解答:解:∵(x+1)(x+2)=x2+2x+x+2=x2+3x+2,∴c=2.故选A.点评:本题主要考查了因式分解与整式的乘法互为逆运算.是中考中的常见题型.3.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1) B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)考点:因式分解的意义.分析:要找出“做得不够完整的一题”,实质是选出分解因式不正确的一题,只有选项A:x3﹣x=x(x2﹣1)没有分解完.解答:解:A、分解不彻底还可以继续分解:x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),B、C、D正确.故选A.点评:因式分解要彻底,直至分解到不能再分解为止.4.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.解答:解:A、是多项式乘法,错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,错误;C、提公因式法,正确;D、右边不是积的形式,错误;故选C.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.5.下列多项式能分解因式的是()A.x2﹣y B.x2+1 C.x2+xy+y2D.x2﹣4x+4考点:因式分解的意义.分析:根据多项式特点结合公式特征判断.解答:解:A、不能提公因式也不能运用公式,故本选项错误;B、同号不能运用平方差公式,故本选项错误;C、不符合完全平方公式,应该是x2+2xy+y2,故本选项错误;D、符合完全平方公式,正确;故选D.点评:本题主要考查了公式法分解因式的公式结构特点的记忆,熟记公式是解题的关键.6.下列分解因式正确的是()A.3x2﹣6x=x(3x﹣6)B.﹣a2+b2=(b+a)(b﹣a)C.4x2﹣y2=(4x+y)(4x﹣y)D.4x2﹣2xy+y2=(2x﹣y)2考点:因式分解-运用公式法;因式分解-提公因式法.专题:计算题.分析:根据因式分解的定义,把一个多项式写成几个整式积的形式叫做因式分解,并根据提取公因式法,利用平方差公式分解因式法对各选项分析判断后利用排除法求解.解答:解:A、3x2﹣6x=3x(x﹣2),故本选项错误;B、﹣a2+b2=(b+a)(b﹣a),故本选项正确;C、4x2﹣y2=(2x+y)(2x﹣y),故本选项错误;D、4x2﹣2xy+y2不能分解因式,故本选项错误.故选B.点评:本题主要考查了因式分解的定义,熟记常用的提公因式法,运用公式法分解因式的方法是解题的关键.7.下列多项式中,能用公式法分解因式的是()A.x2﹣xy B.x2+xy C.x2﹣y2D.x2+y2考点:因式分解-运用公式法.分析:能用平方差公式进行因式分解的式子的特点是:两个平方项,符号相反;能用完全平方公式法进行因式分解的式子的特点是:两个平方项的符号相同,另一项是两底数积的2倍.解答:解:A、x2﹣xy只能提公因式分解因式,故选项错误;B、x2+xy只能提公因式分解因式,故选项错误;C、x2﹣y2能用平方差公式进行因式分解,故选项正确;D、x2+y2不能继续分解因式,故选项错误.故选C.点评:本题考查用公式法进行因式分解.能用公式法进行因式分解的式子的特点需识记.8.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式分解即可.解答:解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选A.点评:本题先提取公因式,再利用完全平方公式分解,分解因式时一定要分解彻底.9.下列因式分解错误的是()A.x2﹣y2=(x+y)(x﹣y)B.x2+y2=(x+y)(x+y)C.x2﹣xy+xz﹣yz=(x﹣y)(x+z)D.x2﹣3x﹣10=(x+2)(x﹣5)考点:因式分解-十字相乘法等;因式分解的意义;因式分解-分组分解法.分析:根据公式法分解因式特点判断,然后利用排除法求解.解答:解:A、x2﹣y2=(x+y)(x﹣y),是平方差公式,正确;B、x2+y2,两平方项同号,不能运用平方差公式,错误;C、x2﹣xy+xz﹣yz=(x﹣y)(x+z),是分组分解法,正确;D、x2﹣3x﹣10=(x+2)(x﹣5),是十字相乘法,正确.故选B.点评:本题考查了公式法、分组分解法、十字相乘法分解因式,熟练掌握分解因式各种方法的特点对分解因式十分重要.10.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形考点:因式分解的应用.专题:因式分解.分析:把所给的等式a3+ab2+bc2=b3+a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.解答:解:∵a3+ab2+bc2=b3+a2b+ac2,∴a3﹣b3﹣a2b+ab2﹣ac2+bc2=0,(a3﹣a2b)+(ab2﹣b3)﹣(ac2﹣bc2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,所以a﹣b=0或a2+b2﹣c2=0.所以a=b或a2+b2=c2.故△ABC的形状是等腰三角形或直角三角形.故选C.点评:本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.11.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)==.给出下列关于F(n)的说法:(1)F(2)=;(2)F(24)=;(3)F(27)=3;(4)若n是一个完全平方数,则F(n)=1.其中正确说法的个数是()A.1B.2C.3D.4考点:因式分解的应用.专题:新定义.分析:把2,24,27,n分解为两个正整数的积的形式,找到相差最少的两个数,让较小的数除以较大的数,看结果是否与所给结果相同.解答:解:∵2=1×2,∴F(2)=是正确的;∵24=1×24=2×12=3×8=4×6,这几种分解中4和6的差的绝对值最小,∴F(24)==,故(2)是错误的;∵27=1×27=3×9,其中3和9的绝对值较小,又3<9,∴F(27)=,故(3)是错误的;∵n是一个完全平方数,∴n能分解成两个相等的数,则F(n)=1,故(4)是正确的.∴正确的有(1),(4).故选B.点评:本题考查题目信息获取能力,解决本题的关键是理解此题的定义:所有这种分解中两因数之差的绝对值最小,F(n)=(p≤q).12.(﹣8)2006+(﹣8)2005能被下列数整除的是()A.3B.5C.7D.9考点:因式分解的应用.分析:根据乘方的性质,提取公因式(﹣8)2005,整理即可得到是7的倍数,所以能被7整除.解答:解:(﹣8)2006+(﹣8)2005,=(﹣8)(﹣8)2005+(﹣8)2005,=(﹣8+1)(﹣8)2005,=﹣7×(﹣8)2005=7×82005.所以能被7整除.故选C.点评:本题考查提公因式法分解因式,关键在于提取公因式,然后再对所剩的因数进行计算.13.如果x2+x﹣1=0,那么代数式x3+2x2﹣7的值为()A.6B.8C.﹣6 D.﹣8考点:因式分解的应用.专题:整体思想.分析:由x2+x﹣1=0得x2+x=1,然后把它的值整体代入所求代数式,求值即可.解答:解:由x2+x﹣1=0得x2+x=1,∴x3+2x2﹣7=x3+x2+x2﹣7,=x(x2+x)+x2﹣7,=x+x2﹣7,=1﹣7,=﹣6.故选C.点评:本题考查提公因式法分解因式,代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式x2+x的值,然后利用“整体代入法”求代数式的值.二.填空题(共12小题)14.若x2+4x+4=(x+2)(x+n),则n=2.考点:因式分解的意义.专题:计算题.分析:根据因式分解与整式的乘法是互逆运算,把等式右边展开后根据对应项系数相等列式求解即可.解答:解:∵(x+2)(x+n)=x2+(n+2)x+2n,∴n+2=4,2n=4,解得n=2.点评:本题主要利用因式分解与整式的乘法是互逆运算.15.多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.考点:公因式.分析:分别将多项式ax2﹣4a与多项式x2﹣4x+4进行因式分解,再寻找他们的公因式.解答:解:∵ax2﹣4a=a(x2﹣4)=a(x+2)(x﹣2),x2﹣4x+4=(x﹣2)2,∴多项式ax2﹣4a与多项式x2﹣4x+4的公因式是x﹣2.点评:本题主要考查公因式的确定,先利用提公因式法和公式法分解因式,然后再确定公共因式.16.因式分解:ax2y+axy2=axy(x+y).考点:因式分解-提公因式法.分析:确定公因式为axy,然后提取公因式即可.解答:解:ax2y+axy2=axy(x+y).点评:本题考查了提公因式法分解因式,准确找出公因式是解题的关键.17.计算:9xy•(﹣x2y)=﹣3x3y2;分解因式:2x(a﹣2)+3y(2﹣a)=(a﹣2)(2x﹣3y).考点:因式分解-提公因式法;单项式乘多项式.专题:因式分解.分析:(1)根据单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式,计算即可.(2)直接提取公因式(a﹣2)即可.解答:解:9xy•(﹣x2y)=﹣×9•x2•x•y•y=﹣3x3y2,2x(a﹣2)+3y(2﹣a)=(a﹣2)(2x﹣3y),故答案分别为:﹣3x3y2,(a﹣2)(2x﹣3y).点评:(1)本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.(2)本题考查了提公因式法分解因式,解答此题的关键把(a﹣y)看作一个整体,利用整体思想进行因式分解.18.若|m﹣4|+(﹣5)2=0,将mx2﹣ny2分解因式为(2x+5y)(2x﹣5y).考点:因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:偶次方.分析:先根据绝对值非负数,平方数非负数的性质列式求出m、n的值分别是4和25,然后代入多项式,再利用平方差公式进行因式分解即可.解答:解:|m﹣4|+(﹣5)2=0∴m﹣4=0,﹣5=0,解得:m=4,n=25,∴mx2﹣ny2,=4x2﹣25y2,=(2x+5y)(2x﹣5y).点评:本题主要考查利用平方差公式分解因式,根据非负数的性质求出m、n的值是解题的关键.19.因式分解:(2x+1)2﹣x2=(3x+1)(x+1).考点:因式分解-运用公式法.分析:直接运用平方差公式分解因式,两项平方的差等于这两项的和与这两项的差的积.解答:解:(2x+1)2﹣x2,=(2x+1+x)(2x+1﹣x),=(3x+1)(x+1).点评:本题主要考查平方差公式分解因式,熟记公式结构是解题的关键,本题难点在于把(2x+1)看作一个整体.20.分解因式:a3﹣ab2=a(a+b)(a﹣b).考点:提公因式法与公式法的综合运用.分析:观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.解答:解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).点评:本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式.本题考点:因式分解(提取公因式法、应用公式法).21.分解因式:a3﹣10a2+25a=a(a﹣5)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续分解.解答:解:a3﹣10a2+25a,=a(a2﹣10a+25),(提取公因式)=a(a﹣5)2.(完全平方公式)点评:本题考查了提公因式法,公式法分解因式,关键在于提取公因式后可以利用完全平方公式继续进行二次分解,分解因式一定要彻底.22.因式分解:9x2﹣y2﹣4y﹣4=(3x+y+2)(3x﹣y﹣2).考点:因式分解-分组分解法.分析:此题可用分组分解法进行分解,可以将后三项分为一组,即可写成平方差的形式,利用平方差公式分解因式.解答:解:9x2﹣y2﹣4y﹣4,=9x2﹣(y2+4y+4),=9x2﹣(y+2)2,=(3x+y+2)(3x﹣y﹣2).点评:本题考查了分组分解法分解因式,用分组分解法进行因式分解的难点是采用两两分组还是三一分组.本题后三项可组成完全平方公式,可把后三项分为一组.23.在实数范围内分解因式:x2+x﹣1=(x++)(x+).考点:实数范围内分解因式;因式分解-运用公式法.分析:本题考查对一个多项式进行因式分解的能力,当要求在实数范围内进行分解时,分解的结果一般要分到出现无理数为止,而且对于不能直接看出采用什么方法进行因式分解的多项式,则需进行变形整理,一般可以在保证式子不变的前提下添加一些项,如本题,因为有x2+x,所以可考虑配成完全平方式,再继续分解.解答:解:x2+x+﹣1=(x+)2﹣=(x+)2﹣()2=[(x+)+][(x+)﹣]=(x++)(x+).点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.同时还要结合式子特点进行适当的变形,以便能够分解.24.已知P=3xy﹣8x+1,Q=x﹣2xy﹣2,当x≠0时,3P﹣2Q=7恒成立,则y的值为2.考点:因式分解的应用.分析:先根据题意把P=3xy﹣8x+1,Q=x﹣2xy﹣2分别代入3P﹣2Q=7中,再合并同类项,然后提取公因式,即可求出y的值.解答:解:∵P=3xy﹣8x+1,Q=x﹣2xy﹣2,∴3P﹣2Q=3(3xy﹣8x+1)﹣2(x﹣2xy﹣2)=7恒成立,∴9xy﹣24x+3﹣2x+4xy+4=7,13xy﹣26x=0,13x(y﹣2)=0,∵x≠0,∴y﹣2=0,∴y=2;故答案为:2.点评:此题考查了因式分解的应用,解题的关键是把要求的式子进行整理,然后提取公因式,是一道基础题.25.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x﹣y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是:101030或103010或301010(写出一个即可).考点:因式分解的应用.专题:开放型.分析:把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.解答:解:4x3﹣xy2=x(4x2﹣y2)=x(2x+y)(2x﹣y),当x=10,y=10时,x=10;2x+y=30;2x﹣y=10,用上述方法产生的密码是:101030或103010或301010.点评:本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.三.解答题(共5小题)26.化简:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2)考点:因式分解-提公因式法.分析:先对前两项提取公因式(a﹣b)(a+b),整理后又可以继续提取公因式2b,然后整理即可.解答:解:(a﹣b)(a+b)2﹣(a+b)(a﹣b)2+2b(a2+b2),=(a﹣b)(a+b)(a+b﹣a+b)+2b(a2+b2),=2b(a2﹣b2)+2b(a2+b2),=2b(a2﹣b2+a2﹣b2),=4a2b.点评:本题考查了平方差公式,提公因式法分解因式,对部分项提取公因式后再次出现公因式是解题的关键,运用因式分解法求解比利用整式的混合运算求解更加简便.27.因式分解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1).考点:提公因式法与公式法的综合运用.分析:先提取公因式(y2﹣1),再对余下的多项式利用完全平方公式继续分解,对公因式利用平方差公式分解因式.解答:解:x2(y2﹣1)+2x(y2﹣1)+(y2﹣1),=(y2﹣1)(x2+2x+1),=(y2﹣1)(x+1)2,=(y+1)(y﹣1)(x+1)2.点评:本题考查了提公因式法,公式法分解因式,难点在于提取公因式后需要对公因式和剩余项进行二次因式分解,分解因式一定要彻底.28.在实数范围内分解因式:.考点:实数范围内分解因式.分析:将原式化为(x2﹣2)+(x+)进行分解即可,前半部分可用平方差公式.解答:解:原式=(x2﹣2)+(x+)=(x+)(x﹣)+(x+)=(x+)(x﹣+1).点评:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.29.计算:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3]考点:因式分解的应用.专题:规律型.分析:本题要根据规律进行求解,我们发现式子的前两项可写成(1﹣a),那么(1﹣a)﹣a (1﹣a)用提取公因式法可得出(1﹣a)(1﹣a)=(1﹣a)2,再和下一项进行计算就是(1﹣a)2﹣a(1﹣a)2=(1﹣a)3,根据此规律,我们可得出原式=(1﹣a)2001﹣[(1﹣a)2001﹣3]=3.解答:解:1﹣a﹣a(1﹣a)﹣a(1﹣a)2﹣a(1﹣a)3﹣…﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3],=(1﹣a)2000﹣a(1﹣a)2000﹣[(1﹣a)2001﹣3],=(1﹣a)2001﹣[(1﹣a)2001﹣3],=3.点评:本题考查了提公因式法的应用,解题的关键是运用提取公因式法来找出式子的规律,从而求出答案.30.为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;(2)设第k所民办学校所得到的奖金为a k元(1≤k≤n),试用k、n和b表示a k(不必证明);(3)比较a k和a k+1的大小(k=1,2,…,n﹣1),并解释此结果关于奖金分配原则的实际意义.考点:因式分解的应用;列代数式.专题:规律型.分析:(1)第2所民办学校得到的奖金为:(总资金﹣第一所学校得到的奖金)÷n;第3所民办学校得到的奖金为:(总资金﹣第一所学校得到的奖金﹣第2所民办学校得到的奖金)÷n;(2)由(1)得k所民办学校所得到的奖金为a k=总资金÷n×(1﹣)n;(3)用a k表示出a k+1进行比较即可.解答:解:(1)因为第1所学校得奖金a1=,所以第2所学校得奖金a2=(b﹣)=(1﹣)所以第3所学校得奖金a3===(2)由上可归纳得到a k=(3)因为a k=,a k+1=,所以a k+1=(1﹣)a k<a k结果说明完成业绩好的学校,获得的奖金就多.点评:这是一道渗透新课程理念的好题.它以奖金发放为背景,以列代数式、因式分解、代数式的大小比较等相关知识为载体,考查了学生数感、符号感、数学建模能力、观察分析、归纳推理等能力.本题得分率较低,究其原因主要有:一是部份学生不能将文字语言转换成符号语言,二是部份学生不能在代数式的整理变形过程中总结发现规律.解决本题的关键一是充分理解题意,二要表示第k所民办学校所得到的奖金,就要在第2所、第3所民办学校得到的奖金(代数式)上发现规律,三要提高对代数式变形的技能.。
(基础题)初中数学专项练习《因式分解》100道计算题包含答案
初中数学专项练习《因式分解》100道计算题包含答案一、解答题(共100题)1、分解因式:(2a+b)(2a﹣b)+b(4a+2b)2、已知:8•22m﹣1•23m=217,求m的值.3、求代数式x(2x﹣1)﹣2(x﹣2)(x+1)的值,其中x=2017.4、数257-512能被120整除吗?请说明理由.5、分解因式: 4x2-46、解方程:(x+1)(x﹣1)=(x+2)(x﹣3)7、分解下列因式:(1)(x+y)2﹣4x2;(2)3m2n﹣12mn+12n.8、给定一列代数式:a3b2, ab4, a4b3, a2b5, a5b4, a3b6,….(1)分解因式:ab4﹣a3b2;(2)根据你发现的规律,试写出给定的那列代数式中的第100个代数式.9、已知3m=6,9n=2,求32m﹣4n的值.10、试说明:(a2+3a)(a2+3a+2)+1是一个完全平方式.11、把下列多项式分解因式(1)﹣a+a3b2(2)(x﹣1)(x﹣3)+1.12、(1)分解因式:(a+b)2+a+b+;(2)已知a+b=5,ab=6,求下列各式的值:①a2+b2 ②a2﹣ab+b2.13、已知:(2x﹣y﹣1)2+=0,(1)求的值;(2)求4x3y﹣4x2y2+xy3的值.14、(a-b)10÷(b-a)3÷(b-a)315、已知a,b是一个等腰三角形的两边长,且满足a2+b2-4a-6b+13=0,求这个等腰三角形的周长.16、已知a﹣b=5,ab=3,求代数式a3b﹣2a2b2+ab3的值.17、计算:(1)(﹣4ab3)(﹣ab)﹣(ab2)2;(2)(1.25×108)×(﹣8×105)×(﹣3×103).18、甲乙两人共同计算一道整式乘法:,由于甲抄错了第一个多项式中的符号,得到的结果为;由于乙漏抄了第二个多项式中的的系数,得到的结果为.请你计算出、的值各是多少,并写出这道整式乘法的符合题意结果.19、计算图中阴影部分的面积.20、把一张正方形桌子改成长方形,使长比原边长增加2米,宽比原边长短1米.设原桌面边长为x米(x<1.5),问改变后的桌子面积比原正方形桌子的面积是增加了还是减少了?说明理由.21、已知n为正整数,你能肯定2n+4﹣2n一定是30的倍数吗?22、七年级学生小明剪出了多张如图⑴中的正方形和长方形的卡片,利用这些卡片他拼成了如图⑵中的大正方形,由此验证了我们学过的公式:.现在请你选取图⑴中的卡片(各种卡片的张数不限),并利用它们在图⑶中拼出一个长方形,由此来验证等式:.(请按照图⑴中卡片的形状来画图,并像图⑵那样标上每张卡片的代号).23、已知三角形的三边长分别为 a,b,c,且满足等式 a2+b2+c2=ab+bc+ac,试猜想该三角形的形状,并证明你的猜想.24、先化简,再求值:(2a+3b)2﹣(2a﹣3b)2,其中a=.25、已知关于x的二次三项式2x2+mx+n因式分解的结果是,求m、n的值.26、(1)计算:a(a﹣2).(2)分解分式:m2﹣3m.27、若△ABC的三边长为a、b、c满足a2+b2+c2+200=12a+16b+20c,试判断△ABC的形状,并说明理由。
初一因式分解练习题及答案
初一因式分解练习题及答案精品文档初一因式分解练习题及答案一、选择1.下列各式由左到右变形中,是因式分解的是A.a=ax+ayB. x-4x+4=x+4C. 10x-5x=5xD. x-16+3x=+3x2.下列各式中,能用提公因式分解因式的是A. x-yB. x+2xC. x+yD. x-xy+13.多项式6xy-3xy-18xy分解因式时,应提取的公因式是A.xyB.3xyC.xyD.3xy4.多项式x+x提取公因式后剩下的因式是A. x+1B.xC. xD. x+15.下列变形错误的是A.-x-y=-B.= -C. –x-y+z=-D.=6.下列各式中能用平方差公式因式分解的是A. –xyB.x+yC.-x+yD.x-y7.下列分解因式错误的是A. 1-16a=B. x-x=xC.a-bc=D.m-0.01=8.下列多项式中,能用公式法分解因式的是A.x,xy1 / 9精品文档二、填空9.ab+ab-ab=ab.10.-7ab+14a-49ab=-7a.11.3+2=___________12.x-y=____________.13.-a+b=14.1-a=___________15.99-101=________ 12422222222222223222222222223222223332222322222222B. x,xyC. x,y D. x,y222216.x+x+____=17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。
222三、解答18.因式分解:??4x3?16x2?24x?8a2?123?2am?1?4am?2am?1?2a2b2-4ab+2?2-4x2y2?2-419.已知a+b-c=3,求2a+2b-2c的值。
2 / 9精品文档220、已知,2x-Ax+B=2,请问A、B的值是多少,221、若2x2+mx-1能分解为,求m的值。
22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。
因式分解初一数学习题及答案
因式分解初一数学习题及答案一、分解因式1.2x4y2-4x3y2+10xy4 。
2.5xn+1-15xn+60xn-1 。
4. (a+b)2x2-2(a2-b2)xy+(a-b)2y25. x4-16. -a2-b2+2ab+4 分解因式。
10.a2+b2+c2+2ab+2bc+2ac11.x2-2x-812.3x2+5x-213. (x+1)(x+2)(x+3)(x+4)+114. (x2+3x+2)(x2+7x+12)-120.15. 把多项式3x2+11x+10 分解因式。
16. 把多项式5x2―6xy―8y2 分解因式。
二证明题17. 求证:32000-431999+1031998能被7整除。
18. 设为正整数,且64n-7n 能被57整除,证明:是57的倍数.19. 求证:无论x、y 为何值,的值恒为正。
20. 已知x2+y2-4x+6y+13=0, 求x,y 的值。
三求值。
21. 已知a,b,c 满足a-b=8,ab+c2+16=0, 求a+b+c 的值.22. 已知x2+3x+6 是多项式x4-6x3+mx2+nx+36的一个因式,试确定m,n 的值,并求出它的其它因式。
因式分解精选练习答案一分解因式1. 解:原式=2xy2x3-2xy22x2+2xy25y2=2xy2(x3-2x2+5y2) 。
提示:先确定公因式,找各项系数的最大公约数2; 各项相同字母的最低次幂xy2,即公因式2xy2,再把各项的公因式提到括号外面,把多项式写成因式的积。
2. 提示:在公因式中相同字母x 的最低次幂是xn-1 ,提公因式时xn+1 提取xn-1 后为x2,xn 提取xn--1 后为x 。
解:原式=5xn--1x2-5xn--13x+5xn--112=5xn--1(x2-3x+12)3. 解:原式=3a(b-1)(1-8a3)=3a(b-1)(1-2a)(1+2a+4a2)提示:立方差公式:a3-b3=(a-b)(a2+ab+b2)立方和公式:a3+b3=(a+b)(a2-ab+b2)所以,1-8a3=(1-2a)(1+2a+4a2)4. 解:原式=[(a+b)x]2-2(a+b)(a-b)xy+[(a-b)y]2=(ax+bx-ay+by)2[提示:将(a+b)x 和(a-b)y 视为一个整体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学因式分解练习题及答案一、选择1.下列各式由左到右变形中,是因式分解的是A.a=ax+ayB. x-4x+4=x+4C. 10x-5x=5xD. x-16+3x=+3x2.下列各式中,能用提公因式分解因式的是A. x-yB. x+2xC. x+yD. x-xy+13.多项式6xy-3xy-18xy分解因式时,应提取的公因式是A.xyB.3xyC.xyD.3xy4.多项式x+x提取公因式后剩下的因式是A. x+1B.xC. xD. x+15.下列变形错误的是A.-x-y=-B.= -C. –x-y+z=-D.=6.下列各式中能用平方差公式因式分解的是A. –xyB.x+yC.-x+yD.x-y7.下列分解因式错误的是A. 1-16a=B. x-x=xC.a-bc=D.m-0.01=8.下列多项式中,能用公式法分解因式的是A.x-xy二、填空9.ab+ab-ab=ab.10.-7ab+14a-49ab=-7a.11.3+2=___________12.x-y=____________.13.-a+b=14.1-a=___________15.99-101=________12422222222222223222222222223222223332222322222222B. x+xyC. x-y D. x+y222216.x+x+____=17.若a+b=1,x-y=2,则a+2ab+b-x+y=____。
222三、解答18.因式分解:①?4x3?16x2?24x②8a2?123③2am?1?4am?2am?1④2a2b2-4ab+2⑤2-4x2y2⑥2-419.已知a+b-c=3,求2a+2b-2c的值。
220、已知,2x-Ax+B=2,请问A、B的值是多少?221、若2x2+mx-1能分解为,求m的值。
22.已知a+b=5,ab=7,求a2b+ab2-a-b的值。
23. 已知a2b2-8ab+4a2+b2+4=0,求ab的值。
24.请问9910-99能被99整除吗?说明理由。
参考答案一、选择1. C . B .C4.A .C. C7. B . C二、填空9. a+b-1; 10.b-2a+7b11.12.13. b-a14. 15.-40016.解答题18. 解:①原式=-4x211,17. -142②原式=8a+12=4=4 ③原式=2a④原式=2=2.⑤原式==⑥原式=-4+4=2222222222m-12232219. 解:2a+2b-2c=2=2×3=6.20、解:2x-Ax+B=2=x+8x-2所以A=-8,B=-2.21、解:2x+mx-1==x-x-1所以mx=-x 即m=-1.22. 解:ab+ab-a-b=ab-=把a+b=5,ab=7代入上式,原式=30.23. 解:将ab-8ab+4a+b+4=0变形得ab-4ab+4+4a-4ab+b=0;+=0所以ab=2,2a=b解得:a=±1,b=±2.所以ab=2或ab= -2.24. 解:99-99=99所以99-99能被99整除,结果为99-1.109109222222222222222224初一数学上因式分解练习题精选一、填空:1、若x2?2x?16是完全平方式,则m的值等于_____。
2、x2?x?m?2则m=____n=____3、2x3y2与12x6y的公因式是_4、若xm?yn=,则m=_______,n=_________。
5、在多项式3y2?5y3?15y5中,可以用平方差公式分解因式的有________________________ ,其结果是_____________________。
6、若x2?2x?16是完全平方式,则m=_______。
7、x2?x?2?8、已知1?x?x2x2004?x2005?0,则x2006?________.9、若162?M?25是完全平方式M=________。
10、x2?6x??__??2, x2??___??9?211、若9x2?k?y2是完全平方式,则k=_______。
12、若x2?4x?4的值为0,则3x2?12x?5的值是________。
13、若x2?ax?15?则a=_____。
14、若x?y?4,x2?y2?6则xy?___。
15、方程x2?4x?0,的解是________。
二、选择题:11、多项式?a?ab的公因式是A、-a、B、?aC、aD、?a2、若mx2?kx?9?2,则m,k的值分别是A、m=—2,k=6,B、m=2,k=12,C、m=—4,k=—12、D m=4,k=12、3、下列名式:x2?y2,?x2?y2,?x2?y2,2?2,x4?y4中能用平方差公式分解因式的有A、1个,B、2个,C、3个,D、4个4、计算?的值是3222391011111B、,C.,D.201020三、分解因式:1 、x4?2x3?35x2、x6?3x2、 52?424、x2?4xy?1?4y25、x5?x6、x3?127、ax2?bx2?bx?ax?b?a8、x4?18x2?81、9x4?36y210、?24四、代数式求值1、已知2x?y?13,xy?2,求x4y3?x3y4的值。
2、若x、y互为相反数,且2?2?4,求x、y的值3、已知a?b?2,求2?8的值五、计算:0.75?3.66?34?2.66200120001?2?1?22?562?8?56?22?2?4423六、试说明:1、对于任意自然数n,2?2都能被动24整除。
2、两个连续奇数的积加上其中较大的数,所得的数就是夹在这两个连续奇数之间的偶数与较大奇数的积。
七、利用分解因式计算1、一种光盘的外D=11.9厘米,内径的d=3.7厘米,求光盘的面积。
2、正方形1的周长比正方形2的周长长96厘米,其面积相差960平方厘米求这两个正方形的边长。
八、老师给了一个多项式,甲、乙、丙、丁四个同学分别对这个多项式进行了描述:甲:这是一个三次四项式乙:三次项系数为1,常数项为1。
丙:这个多项式前三项有公因式丁:这个多项式分解因式时要用到公式法若这四个同学描述都正确请你构造一个同时满足这个描述的多项式,并将它分解因式。
4因式分解一、因式分解1.下列变形属于分解因式的是A.2x2-4x+1=2x+1 B.m=ma+mb+mcC.x2-y2= D.=2.计算的结果,正确的是A.m2-4B.m2+16C.m2-1 D.m2+43.分解因式mx+my+mz=A.m+mz B.m C.m D.m3abc4.20052-2005一定能被整除A.00 B.004C.00 D.0095.下列分解因式正确的是A.ax+xb+x=xB.a2+ab+b2=2C.a2+5a-24= D.a+b=a2b6.已知多项式2x2+bx+c分解因式为2,则b,c的值是A.b=3,c=1 B.b=-c,c=2C.b=-c,c=-4D.b=-4,c=-67.请写出一个二次多项式,再将其分解因式,其结果为______.8.计算:21×3.14+62×3.14+17×3.14=_________.二、提公因式法9.多项式3a2b3c+4a5b2+6a3bc2的各项的公因式是A.a2bB.12a5b3c C.12a2bc D.a2b210.把多项式m2+m分解因式等于A. B.C.m D.m11.2001+2002等于A.-22001B.-2200C.22001D.-212.-ab2+a2-ac2的公因式是A.-a B.C.-a15.分解下列因式:56x3yz-14x2y2z+21xy2z22+2nm-n+pa+bD.-a2三、16.若x2+y=·B,则B=_______.17.已知a-2=b+c,则代数式a-b-c=______18.利用分解因式计算:197的5%,减去897的5%,差是多少?四、创新应用19.利用因式分解计算:0042-4×004;9×37-13×34121×0.13+12.1×0.9-12×1.2120 06006×008-20 08008×0062n?4?2?2n20.计算:?2n?324.设n为整数,求证:2-25能被4整除.杨老师对同学们说:“我能猜出你们每一位同学的年龄,不信的话,你们就按下面方法试试:先把你的年龄乘以5,再加5,然后把结果扩大2倍,?最后把算得的结果告诉老师,老师就知道你的年龄了.”杨老师又说:“雨晴,你算出的是多少?”雨晴答:“130”.杨老师马上说:“你12岁”.如果你是杨老师,?当李强同学算出的结果是140时,你会说李强多少岁?答案:1.C .C .B .B .C .D7.4a2-4ab+b2=.3149.A 10.C 11.C 12.D 13.C 14.D15.7xyz精品文档11/ 11。